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Abstract

We show that any càdlàg predictable process of finite variation is an a.s. limit of
elementary predictable processes; it follows that predictable stopping times can be
approximated ‘from below’ by predictable stopping times which take finitely many
values. We then obtain as corollaries two classical theorems: predictable stopping
times are announceable, and an increasing process is predictable iff it is natural.
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We recall that a process S = (St)t is called of class D if the family of random vari-
ables (Sτ )τ , where τ ranges through all stopping times, is uniformly integrable. If
S = (St)t∈[0,1] is a submartingale of class D, then it has a unique Doob-Meyer decompo-
sition S = M +A, where M is a uniformly integrable martingale and A is a predictable
increasing integrable process starting from zero, called the compensator of S. One can
give constructive proofs of the existence of the Doob-Meyer decomposition by taking
limits of the discrete time Doob decompositions (Mn

t +Ant )t∈Dn
of the sampled process

(St)t∈Dn
relative to refining partitions (Dn)n. Indeed in [9] the compensator is obtained

as the limit of the An’s in the σ(L1, L∞)-topology; more simply, even if in general these
discrete time approximations do not converge in probability to A for all t, one can al-
ways build some forward convex combinations An of the An such that lim supnAnt = At
a.s. for all t, as was shown in [1]. It follows that Ant → At a.s. as n → ∞ along a
subsequence which a priori depends on both t and ω; it is then natural to ask whether
there is such a subsequence (nk)k which works simultaneously for all (t, ω), so that Ank

t

converges to At a.s. for all t as k → ∞; in this paper we show that this is indeed the
case, in particular proving that any predictable increasing process A is a pointwise limit
of predictable increasing processes An of the form

An = 1{0}A0 +
∑2n

k=1 1( k−1
2n , k

2n ]Ank
2n
.

From this ‘dyadic’ approximation, by time change it easily follows that predictable
stopping times can be approximated ‘from below’ by predictable stopping times which
take finitely many values; this being a predictable analogue of the simple fact that any
stopping time is the limit of a decreasing sequence of stopping times, each taking values
in a finite set.
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Approximation of predictable processes

We notice how these results can be used to provide an alternative derivation of the
following well known theorems: predictable stopping times are announceable, and an
increasing process is predictable iff it is natural (we show this passing to the limit the
analogous discrete time statement).

To prove the convergence results of [1] and our main theorem, use is made of the
existence of a sequence of stopping times which exhaust the jumps of a càdlàg adapted
process. We prove this classic result without using the deep debut and section the-
orems, by showing explicitly that the jump times, and the ‘first-approach time’, of a
càdlàg (predictable) adapted process are (predictable) stopping times; our proofs are
elementary, and hold even if the filtration does not satisfy the usual conditions. More-
over, we show how a simple variant of this result can be used to characterize the conti-
nuity of local martingales and of the compensator of special semimartingales.

The rest of the paper is organized as follows: in Section 1 we introduce some defi-
nitions and conventions, and we state our results on the approximation of predictable
processes of finite variation and of predictable stopping times, and we prove the second
one. In Section 2 we discuss the equivalent characterizations of predictable stopping
times. In Section 3 we state and prove some classical results on predictable stopping
times. In Section 4 we prove our previously-stated main result on the convergence of
the dyadic approximations. In Section 5 we show that an increasing process is pre-
dictable iff it is natural. Finally, in Section 6 we derive some corollaries about special
semimartingales.

1 The main results

In this Section, after introducing some definitions and conventions, we state our
results on the approximation of predictable processes of integrable variation and of
predictable stopping times, and we prove the second one.

In this article we will consider a fixed filtered probability space (Ω,F ,F, P ) and we
assume that the filtration F = (Ft)t∈[0,∞] satisfies the usual conditions of right continu-
ity and saturatedness. By convention, the inf of an empty set will be ∞. Inequalities
are meant in the weak sense, so tn ↑ t means tn ≤ tn+1 ≤ t and tn → t, ‘increasing’
means ‘non-decreasing’ etc. We will say that a process A is increasing (resp. of finite
variation) if it is adapted and (At(ω))t is increasing (resp. of finite variation) for P a.e.
ω. A process X is called integrable if supt |Xt| ∈ L1(P). A property of a process S (in-
tegrability, martingality, boundedness etc.) is said to hold locally if there is a sequence
of stopping times τn ↑ ∞ s.t., for each n ∈ N, Sτn1{τn>0} satisfies the property. All local
martingales we will deal with are assumed to be càdlàg. Given a càdlàg process X,
we set X0− := X0 and X− := (Xt−)t, and define ∆Xt := Xt − Xt− for t ∈ [0,∞) and
∆Xt = 0 for t = ∞. We will call a process predictable if it is measurable with respect
to the sigma algebra generated on [0,∞)× Ω by the càg adapted processes; a stopping
time τ will be called predictable if 1[τ,∞) is predictable. We denote with Dn the set
{k/2n : k = 0, . . . , 2n} of dyadics of order n in [0, 1], and with D = ∪n∈NDn the set of all
dyadics in [0, 1].

To state and prove our main theorem we need the following non-standard definitions:
we will say that a process B is Dn-predictable if it is of the form

B = 1{0}B0 +
∑
s∈Dn\{0} 1(s−2−n,s]Bs , (1.1)

where B0 is F0-measurable and Bs is Fs−2−n -measurable for every s ∈ Dn \ {0}; given
a ∈ (0, 1], we define Dk(a) := max{s ∈ Dk : s < a}.

Theorem 1.1. If A = (At)t∈[0,1] is a càdlàg predictable process with finite variation,
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Approximation of predictable processes

there exist a subsequence (Nn)n of (N)N∈N and, for each n ∈ N, a DNn
-predictable

process An such that ∃ limnAnt = At a.s. for all t ∈ [0, 1] and An0 = A0. If A is increasing
then each An can be chosen to be increasing, and if A has integrable variation then
(An)n can be chosen so that |var(An)1| ≤ h for all n ∈ N for some h ∈ L1(P).

Because of the relationship between increasing adapted processes and time-changes,
it is now easy to prove the following.

Theorem 1.2. If τ is a predictable stopping time, one can construct for each n ∈ N a
predictable stopping time σn with values in a finite set and such that σn → τ , σn = 0 on
{τ = 0} and, if ω ∈ {τ > 0}, there exists n0(ω) s.t. σn(ω) < τ(ω) for all n ≥ n0(ω).

Proof. As [0, 1] is homeomorphic to [0,∞], we can assume w.l.o.g. that τ has values
in [0, 1]. Apply Theorem 1.1 to A := 1[τ,1] to obtain Nn and increasing An. Define
σn := inf{t ∈ [0, 1] : Ant ≥ 1/2} ∧ 1, and notice that since An is DNn

-predictable, trivially
σn is a predictable stopping time with values in DNn

, and σn = 0 on {τ = 0} since
An0 = A0. Since limnAnτ = Aτ = 1 for P a.e. ω, there exists n0 = n0(ω) s.t. Anτ > 1/2

for all n ≥ n0; so on {τ > 0}, since An is constant on the interval (Dn(τ),Dn(τ) + 2−n]

which contains τ , necessarily σn ≤ DNn
(τ) < τ holds for all n ≥ n0.

Moreover if ε > 0, limnAnτ−ε = Aτ−ε = 0 a.s. on {τ − ε > 0}, and so there exists
n1 = n1(ω) s.t. Anτ−ε ≤ 1/4 for all n ≥ n1; it follows that a.s. lim infn σn ≥ τ − ε,
and so a.s. τ ≤ lim infn σn ≤ lim supn σn ≤ τ on {τ > 0}. Now just re-define σn as
max{0, τ − 1/n} on the null set where either limk σk = τ fails or σn ≥ τ > 0.

Notice that in the previous proof the re-defined σn’s are still predictable, because
any measurable process indistinguishable from zero is predictable when the filtration
satisfies the usual conditions (see [10, Lemma 13.8]).

2 Predictable, fair and announceable stopping times

In this section we notice that Theorem 1.2 immediately implies that predictable
stopping times are announceable, and then discuss other proofs of this important result
which are found in the literature.

If τn is an increasing sequence of stopping times converging to τ and such that
τn < τ on {τ > 0} for all n, we will say that τn announces τ ; a stopping time τ for which
such an announcing sequence exists is called announceable. Trivially announceable
stopping times are predictable: if τn announces τ , the process 1[τ,∞) is the pointwise
limit of the càg adapted processes 1{0}1{τn=0}+1(τn,∞); we now show that the opposite
holds too, and can even be strengthened.

Corollary 2.1. Any predictable stopping time can be announced by a sequence of pre-
dictable stopping times.

Proof. If (σn)n are as in Theorem 1.2 then infk≥n σk is attained, and so the increasing
sequence of stopping times τn := infk≥n σk satisfies 1[τn,∞) = infk≥n 1[σk,∞); thus, each
τn is a predictable stopping time. Since trivially limn τn = τ , τn < τ on {τ > 0} and
τn = 0 otherwise, the thesis follows.

Notice that one could alternatively first prove Corollary 2.1, and then easily derive
from it Theorem 1.2. Indeed, let (τn)n be predictable stopping times announcing τ and
(τkn)k be a decreasing sequence of predictable stopping times, each taking values in a
finite set, s.t. limk τ

k
n = τn and τkn = 0 on {τn = 0}. Then, if (kn)n is a subsequence s.t.

P(τknn ≥ τ > 0) < 1/2n, Theorem 1.2 follows taking first σn := τknn , and then re-defining
σn as max{0, τ − 1/n} on the null set where τkmm ≥ τ > 0 happens for infinitely many
m’s.
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Corollary 2.1 is typically proved using yet another useful condition equivalent to be-
ing announceable; following [10], we will say that a stopping time τ is fair if E[Mτ ] =

E[Mτ−] holds for every bounded martingaleM (where we setM∞ := M∞− := limt→∞Mt).
Since by the optional sampling theorem Mτn = E[Mτ |Fτn ] holds for every uniformly
integrable martingale M , taking expectations and passing to the limit shows that an-
nounceable stopping times are fair (more, it shows that if τ is announceable and M is
a uniformly integrable martingale then Mτ− ∈ L1(P) and E[Mτ−] = E[Mτ ]). The oppo-
site implication is also true, so being predictable, being fair and being announceable
are equivalent conditions for a stopping time. For a proof of the fact that fair stopping
times are announceable we refer to [10, Chapter 6, Theorem 12.6], as we have noth-
ing to add to this implication. Knowing that fair stopping times are announceable, to
conclude the proof of all the equivalences typically one shows directly that predictable
stopping times are fair (in the present paper, this follows instead from Corollary 2.1
since, as explained above, announceable stopping times are fair). This fact is often de-
rived as a consequence of the (difficult) section theorem for predictable sets; one can
however find in [10, Chapter 6, Theorem 12.6] a direct proof which does not use the
section theorems themselves, but does involve ideas from their proofs, which are essen-
tially based on Choquet’s capacity theorem. Another possibility is to proceed as [7] and
give a proof of the Doob-Meyer decomposition which shows inter-alia that increasing
predictable processes are natural; applying this to the predictable process A := 1[τ,1]

shows that predictable stopping times are fair (in particular in this paper, instead of
proving Theorem 1.2 directly, we could see it as an immediate corollary of Theorem
5.2). Yet another way is to proceed as in [6]; this proof, although intuitive, uses the
theory of integration with respect to general predictable bounded integrands, as well
as the Bichteler-Dellacherie theorem and Jacod’s countable expansion theorem.

3 Predictable stopping times

In this section we prove that a number of commonly used hitting times are (pre-
dictable) stopping times when the underlying process is càdlàg and adapted (predictable),
and we use this to show that one can exactly exhaust the jumps of a càdlàg adapted (pre-
dictable) process with sequence of (predictable) stopping times. To precisely state this
fact, we recall that JσK := {(t, ω) ∈ [0,∞) × Ω : t = σ(ω)} denotes the graph of a stop-
ping time σ. If X is càdlàg we say that a sequence of stopping times (σn)n∈N exactly
exhausts the jumps of X in B ⊆ R if {∆X ∈ B} = ∪nJσnK and JσnK∩ JσmK = ∅ whenever
n 6= m (i.e. σn 6= σm on {σm < ∞} for n 6= m). We will say that (σn)n∈N is strictly
increasing to ∞ if σn < σn+1 on {σn < ∞} and σi → ∞ as i → ∞. Given B ⊆ R we set
d(x,B) := inf{|x− y| : y ∈ B}.

Theorem 3.1. If X = (Xt)t≥0 is a càdlàg adapted process, Ck are closed in R and
0 /∈ F = ∪kCk then there exist a sequence of stopping times (σn)n which exactly ex-
hausts the jumps of X in F , and if X is predictable then each σn can be chosen to be
predictable. Moreover, if d(0, F ) > 0 then (σn)n can be chosen to be strictly increasing
to∞.

The rest of this section is devoted to giving an elementary proof of the classical
Theorem 3.1 and of the following lemma (which we only use in Section 6); thus, the
reader interested in new results may safely decide to jump directly to Section 4.

Lemma 3.2. If X is càdlàg adapted and C is closed, the first-approach time

σ := inf{t ≥ 0 : Xt ∈ C or Xt− ∈ C} (3.1)

is a stopping time, and it is predictable if X is predictable.
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We remark that all the results in this section hold, with exactly the same proof, if
the process X has values not in R but in a generic topological vector space Y which
supports a translation invariant distance d that generates the topology, in which case we
assume that Y is endowed with the Borel sigma algebra B(Y ). Notice that the function
d(·, B) := inf{d(x, y) : y ∈ B} is Lipschitz (with constant 1), so it is Borel measurable. We
will use without further mention the fact that if B is closed and yk → y then d(yk, B)→ 0

implies y ∈ B.

Proof of Lemma 3.2. Let tn ↓ t be s.t. either Xtn ∈ C or Xtn− ∈ C. If tn = t then
either Xt ∈ C or Xt− ∈ C, and if tn ↓ t and tn > t for all n then, whether Xtn ∈ C or
Xtn− ∈ C, necessarily Xt ∈ C; thus, the infimum in (3.1) is attained. From this and the
compactness of [0, t] it follows that {σ ≤ t} = L, where

{Xt ∈ C} ∪
⋂
n∈N

⋃
q∈Q∩[0,t)

{d(Xq, C) < 1/n} =: L belongs to Ft; (3.2)

thus, σ is a stopping time.
Now suppose that X is predictable. Since the infimum in (3.1) is attained, if t ≤ σ

then σ = t iff either Xt ∈ C or Xt− ∈ C; in other words

1{σ} = 1[0,σ]

(
1C(X) ∨ 1C(X−)

)
. (3.3)

The càg processes 1[0,σ] and X− are adapted and thus predictable, so (3.3) implies that
1{σ} is predictable and so also 1[σ,∞) = 1− 1[0,σ] + 1{σ} is predictable.

Although we could, similarly to [2, Chapter 1, Proposition 1.32], prove part of The-
orem 3.1 using Lemma 3.2 (making use of the concept of the sigma algebra Fτ−), we
find it more natural to study directly the jump times of X as follows.

Lemma 3.3. If τ is a stopping time, X is càdlàg adapted, Cn are closed sets and F =

∪nCn satisfies d(0, F ) > 0 then

σ := inf{t > τ : ∆Xt ∈ F} (3.4)

is a stopping time s.t. σ > τ on {τ <∞}, and σ is predictable if X is predictable.

Proof. We will use the fact that, since X is càdlàg, for any compact interval J the set
{t ∈ J : d(∆Xt, 0) ≥ d(0, F )} is finite, so the set D := {t > τ : ∆Xt ∈ F} is discrete; in
particular, the inf defining σ is attained, so σ > τ on {τ <∞}. That σ is a stopping time
follows from the identity {σ ≤ t} = L ∈ Ft, where

L :=
⋃

q∈Q∩(0,1)

(
{τ ≤ qt} ∩

( ⋃
n≥1

⋂
k≥1

⋃
(u,s)∈Aq

k(t)

{d(Xs −Xu, Cn) <
1

k
}
))
,

and Aqk(t) is the countable set

Aqk(t) := {(at, bt) : a, b ∈ Q ∩ (q, 1], a < b < a+ 1/k}.

To prove {σ ≤ t} = L, consider that, since D is discrete, σ ≤ t iff t > τ and there exist
s ∈ (τ, t] and n ∈ N s.t. ∆Xs ∈ Cn. Thus, σ ≤ t iff there exist q ∈ Q ∩ (0, 1), n ∈ N, and
sequences uk ↑ s and sk ↓ s s.t. tq ≥ τ , uk < s, (uk, sk) ∈ Aqk(t) and

d(Xsk −Xuk
, Cn) < 1/k for all k. (3.5)
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This shows that {σ ≤ t} ⊆ L, and that to prove the opposite inequality given q ∈ Q∩(0, 1)

and (uk, sk) ∈ Aqk(t) such that tq ≥ τ and (3.5) hold, we only need to show that we can
replace (uk, sk) with some (ûk, ŝk) satisfying the same properties and additionally s.t.
ûk < s, ûk ↑ s and ŝk ↓ s for some s. This is easily done: by compactness there exists a
subsequence (nk)k s.t. unk

(resp. snk
) is converging to some u (resp s) and w.l.o.g. the

convergence is monotone; since uk < sk < uk + 1/k necessarily u = s, and since (3.5)
implies lim infk d(Xsk − Xuk

, 0) ≥ d(0, F ) > 0 necessarily snk
must be decreasing and

unk
increasing and s.t. unk

< s (otherwise ∃ limkXsk − Xuk
= 0); thus, we can choose

(ûk, ŝk) := (unk
, snk

) ∈ Aqnk
(t) ⊆ Aqk(t) as it also satisfies (3.5).

Now suppose that X is predictable and notice that, since D is discrete, if τ < t ≤ σ

then σ = t iff ∆Xt ∈ F ; in other words 1{σ} = 1(τ,σ]1F (∆X), which implies that σ is
predictable (just as (3.3) does in Lemma 3.2).

Proof of Theorem 3.1. If d(0, F ) > 0, let σ−1 := 0 and define recursively (σk)k∈N by
setting σk+1 := inf{t > σk : ∆Xt ∈ F}. By Lemma 3.3 each σk is a stopping time, and
a predictable one if X is predictable. Since σn < σn+1 on {σn < ∞}, and since for any
compact interval J the set {t ∈ J : d(∆Xt, 0) ≥ d(0, F )} is finite, (σk)k∈N exhausts the
jumps of X in F and it is strictly increasing to∞.

For general F s.t. 0 /∈ F , we reduce to the previous case by using the annullus
Dn := {y : d(y, 0) ∈ (2n, 2n+1]}. Notice that Dn can be written as the union of countably
many closed sets, and so also can F ∩ Dn. Now, given n ∈ Z, set σn−1 := 0 and define
recursively (σnk )k∈N by setting σnk+1 := inf{t > σnk : ∆Xt ∈ F ∩Dn}, so that

{∆X ∈ F} = ∪n{∆X ∈ F ∩Dn} = ∪k,nJσnk K.

Moreover, since σnk+1 > σnk on {σnk < ∞}, and since Dn and Dm are disjoint for n 6= m

and ∆Xσn
k
∈ F ∩ Dn on {σnk < ∞} for every k, it follows that σij 6= σnk on {σnk < ∞} if

(i, j) 6= (n, k), so enumerating the countable family (σnk )k,n∈Z we get a sequence which
exactly exhausts the jumps of X in F .

4 How to approximate the compensator

In this section we prove Theorem 1.1; to do this, we revisit the proof of the existence
of the Doob-Meyer decomposition given [1], and we strengthen it as to obtain that
Ant → At a.s. for all t along a subsequence. For didactical reasons we prefer to present
below the whole proof, rather than explaining how to modify the one given in [1].

To obtain convergence at a given stopping time, we will use the following lemma,
which is reminiscent of [5, Lemma A.2], and whose point is that the subsequences (in
the assumption and in the conclusion) are not allowed to depend on ω.

Lemma 4.1. Let f, g, (fn)n, (g
n)n be random variables in L1(P) that satisfy

0 ≤ fn ≤ gn, gn → g in L1(P) , lim
n→∞

E[fn] = E[f ].

Assume moreover that for every subsequence (ni)i

lim sup
i→∞

fni(ω) = f(ω) for P a.e. ω. (4.1)

Then, there exists h ∈ L1(P) and a subsequence (ni)i such that fni ≤ h for all i and
(fni)i converges almost surely to f as i→∞.

Proof. Passing to a subsequence (without relabeling) we get that ||gn − g||L1(P) ≤ 2−n,
thus the random variable h := g+

∑
n |gn− g| is integrable and dominates the sequence
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(fn)n. By the dominated convergence theorem and (4.1) it follows that

lim
n→∞

E

[
sup
m≥n

fm
]

= E[f ]. (4.2)

The assumption E[f ] = limnE[fn] and (4.2) imply that hn := fn − supm≥n f
m converges

to 0 in L1 (since hn ≤ 0). We can then extract a further subsequence (not relabeled)
such that hn converges to 0 P a.s. Thus, thanks to the monotonicity of (supm≥n f

m)n,
also (fn)n also converges a.s., and then (4.1) implies that its limit is f .

Proof of Theorem 1.1. The identity var(A)t = var(A)t− + |At − At−| shows that var(A)

is predictable (since var(A)− and A− are adapted and càg). Thus A± := (var(A)±A)/2

are predictable increasing and satisfy A = A+−A−, so we can assume w.l.o.g. that A is
increasing. Moreover, by passing to an equivalent measure we can assume w.l.o.g. that
A is integrable.

If A0 = 0 set S := A, which trivially is a submartingale of class D. Let (Mn
t +Ant )t∈Dn

be the discrete time Doob decomposition of the sampled process (St)t∈Dn , and extend
Mn and An to [0, 1] setting

Mn
t := E[Mn

1 |Ft] and Ant := Ank/2n for t ∈ ((k − 1)/2n, k/2n];

then it follows from [1, Lemma 2.1 and 2.2] that there exist M̂ ∈ L1(P) and convex
weights λnn, . . . , λ

n
Nn

such that Mn := λnnM
n + . . . + λnNn

MNn satisfies Mn
1 → M̂ in L1.

Now define

Mt := E[M̂ |Ft], B := S −M, An := λnnA
n + . . .+ λnNn

ANn . (4.3)

We take of course the càdlàg versions of the martingales Mn and M ; in particular, B
is càdlàg. We now want to show that, a.s. for all t ∈ [0, 1], ∃ limiAni

t = Bt for some
subsequence (ni)i (which does not depend on t nor ω); this would show1 that B is
predictable, so S = M + B would be a Doob-Meyer decomposition of S = 0 + A, and
thus B = A by the uniqueness of the decomposition (which follows from [3, Lemma
22.11]).

Since Mn
1 → M̂ = M1 in L1(P), by Jensen inequality and the optional sampling

theorem we get that, for every [0, 1]-valued stopping time τ , Sτ − Mn
τ converges to

Sτ −Mτ = Bτ in L1; in particular, since Ant = St −Mn
t holds for t ∈ Dn, we get that

Ant → Bt in L1 for all t ∈ D. Passing to a subsequence (without relabeling), we can also
obtain that ||An1 − B1||L1(P) ≤ 2−n and Ant → Bt a.s. for all t ∈ D. It follows that B is
a.s. increasing on D, and so by right-continuity also on [0, 1], and the random variable
h := B1 +

∑
n |An1 −B1| is integrable and dominates the sequence (An1 )n.

We remark that, since the equality Ant = St − Mn
t generally fails if t /∈ Dn, it is

unclear for now if, given a [0, 1]-valued stopping time τ , we can also get Anτ → Bτ a.s.;
we will now explain how to obtain this by passing to a subsequence. We only need to
show that ∃ limiE[Ani

τ ] = E[Bτ ] and lim supiAni
τ = Bτ a.s. for every subsequence (ni)i;

indeed, applying Lemma 4.1 to fn = Anτ , f = Bτ , g
n = An1 and g = B1 would then yield

a subsequence (ñi)i such that limiAñi
τ = Bτ a.s.. Take then an arbitrary subsequence

(ni)i, and recall that An, B are increasing and Ant → Bt a.s. and in L1 for all t ∈ D. It
follows that lim supiAni

τ ≤ Bτ , and that applying Fatou’s lemma to (Ani
1 −Ani

τ )i gives

lim inf
i

E[Ani
τ ] ≤ lim inf

i
E[Ani

τ ] ≤ lim sup
i

E[Ani
τ ] ≤ E[lim sup

i
Ani
τ ] ≤ E[Bτ ].

1Because An is adapted and càg, and any measurable process indistinguishable from zero is predictable
when the filtration satisfies the usual conditions (see [10, Lemma 13.8]).
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Thus, to conclude the existence of (ñi)i such that limiAñi
τ = Bτ a.s. it is enough to show

that ∃ limnE[Anτ ] = E[Bτ ]. This is easy: since S is of class D, if θn := min{t ∈ Dn : t ≥ τ}
then θn ↓ τ and Anτ = Anθn so we get

E[Anτ ] = E[Anθn ] = E[Sθn ]− E[M0]→ E[Sτ ]− E[M0] = E[Bτ ].

Now use Theorem 3.1 to obtain [0, 1] ∪ {∞}-valued2 stopping times (σk)k which ex-
actly exhaust all the jumps of B (i.e. the jumps of B in R \ {0}), and set τk := 1 ∧ σk. As
shown above, there exists a subsequence (ni)i such that limiAni

τk
= Bτk a.s. for k = 1.

By the same token, passing to further subsequences (without relabeling) and using a
diagonal procedure, we can find a subsequence (ni)i such that limiAni

τk
= Bτk a.s. si-

multaneously for all k. Since An, B are increasing, B is càdlàg and Ant → Bt for all
t ∈ D, necessarily ∃ limnAnt = Bt if B is continuous at t; since ∃ limiAni

τk
= Bτk for all k

and (τk)k exhausts all the jumps of B, it follows that ∃ limiAni
t = Bt a.s. for all t ∈ [0, 1].

Since An0 = 0, this concludes the proof in the case A0 = 0; in the general case, apply the
above to Ã = A − A01[0,∞) to obtain some Ãn and h̃, and then set An := A01[0,∞) + Ãn

and h := |A0|+ h̃.

5 Predictable processes are natural, and vice versa

In this section we prove in continuous time that an increasing process is predictable
iff it is natural by passing to the limit the analogous discrete time statement, making
use of Theorem 1.1.

In discrete time, we will call increasing process an increasing sequence of integrable
random variables A = (An)n∈N such that A0 = 0. An increasing process is called
predictable if An+1 is Fn-measurable for every n ≥ 0, and is called natural if, for every
bounded martingale M = (Mn)n∈N, we have E[MnAn] = E[

∑n
k=1Mk−1(Ak − Ak−1)]

for every n ≥ 0. In this setting it is trivial to prove that an increasing processes is
predictable iff it is natural (see e.g. [4, Chapter 1, Proposition 4.3]).

When working on the time interval [0, 1], a càdlàg increasing integrable processA s.t.
A0 = 0 is called natural if, for every bounded martingale M , E[M1A1] = E[

∫ 1

0
Ms−dAs].

Notice that in some books an equivalent definition is used: in discrete time it is trivial to
prove that every increasing process A satisfies E[MnAn] = E[

∑n
k=1Mk(Ak − Ak−1)] for

all bounded martingales M and n ∈ N, and that taking continuous time limits one imme-
diately obtains that every càdlàg increasing process A satisfies E[M1A1] = E[

∫ 1

0
MsdAs]

(see e.g. [4, Chapter 1, Lemma 4.7]); thus A is natural iff E[
∫ 1

0
∆MsdAs] = 0. To pass

to the continuous time limit, we will need the following approximation lemma. Given
functions f, g and a partition π = {0 = t0 ≤ t1 ≤ . . . ≤ tn+1 = 1}, set

fπ :=
∑n
i=0 f(ti)1[ti,ti+1) + f(1)1{1} ,

∑
π f∆g :=

∑n
i=0 f(ti)(g(ti+1)− g(ti)).

Lemma 5.1. Given f, g, gn : [0, 1] → R, with g, gn increasing and f, g càdlàg, let D be
a dense subset of [0, 1] and (πn)n∈N be partitions of [0, 1] which satisfy πn ⊆ πn+1 and
∪nπn = D ⊇ {∆f 6= 0}. Then gk(t)→ g(t) for all t ∈ D implies that∑

πk

f∆gk →
∫
(0,1]

f(s−)dg(s) =:

∫
f−dg as k →∞. (5.1)

2As we are working on the time interval [0, 1], all stopping times have values in [0, 1] ∪ {∞}.
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Proof. Since f is right continuous at 0 ∈ D, for any k ∈ N the set

Ak := {t ∈ (0, 1] : lim sup
n

sup
[0,t)

|fπn − f | < 1/k}

is non-empty. Its supremum t̄ is attained, since D is dense and ∃f(t̄−), and cannot be
< 1: otherwise, whether ∆f(t̄) = 0 or t̄ ∈ πn for big enough n, the right continuity of f
would imply the existence of a s > t̄ in A. Thus Ak = [0, 1] for all k, so fπn converges
uniformly to f . In particular

∫
fπn
− dg →

∫
f−dg as n → ∞, and since the sequence

(gk(1))k is converging and thus is bounded, the inequality

|
∑
πk

(fπn − f)∆gk| ≤ sup
s
|(fπn − f)(s)| sup

k
gk(1)

shows that
∑
πk

(fπn − f)∆gk → 0 as n→∞, uniformly in k. Thus, to conclude the proof
it is enough to show (5.1) when f is replaced by fπn . Since, for k ≥ n,∫

fπn
− dg =

∑
πn

f∆g and
∑
πk

fπn∆gk =
∑
πn

fπn∆gk =
∑
πn

f∆gk ,

we need to show that
∑
πn
f∆gk →

∑
πn
f∆g as k → ∞, which is trivially true since

gk(t)→ g(t) at every t ∈ D ⊇ πn.

We will call optional partition an increasing finite or infinite sequence of stopping
times π which is pointwise finite on compacts, meaning that π = (σn)n∈I , I ⊆ N, σn ≤
σn+1 for all n and {n : σn(ω) ≤ t} is a finite set for any ω and t <∞. Notice that, working
on the time index [0, 1], Theorem 3.1 will tell us that the jumps of size at least 1/n (i.e.
the jumps in (−∞,−1/n] ∪ [1/n,∞)) of a càdlàg process X form an optional partition
of [0, 1] ∪ {∞}-valued stopping times. If π = (σn)n, we will denote write π(ω) for the
sequence of reals (σn(ω))n. Given two finite optional partitions π = (σn)Nn=0, π̂ = (σ̂j)

J
j=0,

a convenient way to construct a finite increasing family of stopping times π ∪ π̂ which
satisfies (π ∪ π̂)(ω) = π(ω) ∪ π̂(ω) for all ω is to define π ∪ π̂ to be the ordered3 family of
stopping times

σ1 ∧ σ̂j , σn, σn ∨ (σ̂j ∧ σn+1), σN , σN ∨ σ̂j ,

where j = 0, . . . , J , n = 0, . . . , N − 1. If π = (τj)
J
j=0 is a finite partition and N,B are

càdlàg processes, define∑
π N−∆B :=

∑J
j=1Nτj−1(Bτj −Bτj−1),

which satisfies (
∑
π N−∆B)(ω) =

∑
π(ω)N−(ω)∆B(ω). Given a finite optional partition

π = (σn)Nn=0, we will say that a process B is π-predictable if Bσn
is Fσn−1

-measurable,
B0 is F0-measurable and

B = 1{0}B0 +
∑N
n=1 1(σn−1,σn]Bσn . (5.2)

Notice that, if α, β, γ are stopping times and A is a Fα measurable random variable then
C := A1{α≤γ} is Fα ∩ Fγ ⊆ Fα∨(β∧γ)-measurable and

A1(α,γ] = A1(α,α∨(β∧γ)] + C1(α∨(β∧γ),γ];

so, if B is π-predictable, it is trivially (π ∪ π̂)-predictable for any finite optional partition
π̂ (this is why we defined π ∪ π̂ as above).

3One can indeed order this family!
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Theorem 5.2. A càdlàg increasing integrable process A s.t. A0 = 0 is natural iff it is
predictable.

Proof. If M is a martingale bounded by a constant C and A = (At)t∈[0,1] is predictable,
let h,An, Nn be as in Theorem 1.1, let (σi)i be the optional partition of the jumps of M
of size at least 1/n, and set π̂n := (1 ∧ σi)i. Let πnk = (τi)i be the finite optional partition
DNn

∪ (1 ∧ σi)i=0,...,k. Since An is DNn
-predictable, it is πnk -predictable, and thus (Anτi)i

is a (Fτi)i-predictable increasing process, and so also a (Fτi)i-natural process. Thus
E[M1An1 ] = E[

∑
πn
k
M−∆An] holds since (Mτi ,Fτi)i is a bounded martingale.

Now, fix a generic ω ∈ Ω and set πn(ω) := DNn
∪ π̂n(ω); since (σi)i is pointwise finite

on compacts, there exists k0 = k0(ω) s.t. πnk (ω) = πn(ω) if k ≥ k0. Thus(∑
πn
k

M−∆An
)

(ω)
k→∞−→

(∑
πn

M−∆An
)

(ω) :=
∑
πn(ω)

M−(ω)∆An(ω),

the sum on the RHS being well defined, as it is finite for each ω. Since (
∑
πn
k
M−∆An)k

is dominated by CAn1 , it converges also in L1(P), so

E[M1An1 ] = E[
∑
πn M−∆An]. (5.3)

We can now apply Lemma 5.1 and Theorem 1.1 and obtain that
∑
πn M−∆An (resp. An1 )

converges P a.s. to
∫ 1

0
Ms−dAs (resp. A1); since it is dominated by Ch (resp. h), we can

pass (5.3) to the limit and obtain that A is natural.

Assume now that A is natural, and let A = M +B be its Doob-Meyer decomposition;
the càdlàg increasing integrable process B is predictable, thus natural, and now A = B

follows from the uniqueness of the Doob-Meyer decomposition of a submartingale of
class D into a martingale plus a natural process, which is easy to prove (it follows from
[4, Chapter 1, Theorem 4.10]).

6 Consequences for special semimartingales

In this section we show how some well known facts about special semimartingales
and predictable processes can be derived as simple consequences of Theorem 3.1 ap-
plied to the set F = (0,∞); in particular, we characterize which special semimartingales
S have a continuous compensator.

We will often use without explicit mention the following trivial consequence of the
optional sampling theorem: if τ is an announceable stopping time and S = M+A, where
M is a uniformly integrable martingale and A is càdlàg increasing integrable and s.t.
A0 = 0, then Mτ− ∈ L1(P) and E[∆Mτ ] = 0, so Sτ− ∈ L1(P) and E[∆Sτ ] = E[∆Aτ ]. Also,
we will use without further notice the fact that predictability is preserved by stopping
(this follows from Xτ

1{τ>0} = X1(0,τ ] +Xτ1(τ,∞)).

Theorem 6.1. Almost every path of a predictable local martingale M is continuous.

Proof. By localization we can assume that M is a uniformly integrable martingale. The-
orem 3.1 provides us with a sequence (σn)n of predictable stopping times which exactly
exhausts the positive jumps of M (i.e. the jumps of M in (0,∞)), and Corollary 2.1 tells
us that (σn)n are announceable. It follows that E[Mσn ] = E[Mσn−] and so, since by
definition we have ∆Mσn > 0 on {σn < ∞} and ∆Mσn = 0 on {σn = ∞}, necessarily
each {σn < ∞} has probability zero. It follows that {supt ∆Mt > 0} = ∪n{σn < ∞} has
probability zero, and analogously so does {inft ∆Mt < 0} = {supt ∆(−M)t > 0}, so M is
a.s. continuous.
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We will say that M + A is a (canonical) semimartingale decomposition of a process
S if M is a local martingale, A is a càdlàg adapted (resp. predictable) process of finite
variation s.t. A0 = 0 and S = M + A. A process S admitting a (canonical) semimartin-
gale decomposition is called a (special) semimartingale. Recall that the canonical semi-
martingale decomposition is unique (for a proof see e.g. [3, Lemma 22.11]), and that
the process A is called the compensator of S; M is called the (local) martingale part of
S.

We now need the following theorem, whose elementary proof (which we provide
below for convenience of the reader) is essentially standard; the only unconventional
choice is to prove it using Lemma 3.2. The advantage of this approach is that it is much
easier to show that σ defined in (3.1) is a stopping time than showing that σ := inf{t ≥
0 : |Xt| ≥ K} is one (see e.g. [11, Chapter 2, Lemma 75.1]); of course it would be even
easier to use τ := inf{t ≥ 0 : |Xt| > K} instead, but the problem is that it is unclear
whether τ is a predictable stopping time when X is predictable.

Theorem 6.2. Any càdlàg predictable process X is locally bounded.

Proof. Given X càdlàg predictable, let Ck := (−∞, k] ∪ [k,∞) and

σk := inf{t ≥ 0 : Xt ∈ Ck or Xt− ∈ Ck}. (6.1)

Lemma 3.2 and Corollary 2.1 show that σk is an announceable stopping time. Trivially
σk ≤ σk+1; since X is càdlàg, each of its paths is bounded on compacts, so σk →∞. Let
(τnk )n be a sequence of stopping times announcing σk, and (nk)k be a subsequence s.t.
P(τnk

k + 1/2k ≤ σk < ∞) < 1/2k, so that a.s. τnk

k + 1/2k ≤ σk < ∞ holds for at most
finitely many k’s, and thus the increasing sequence of stopping times %i := infk≥i τ

nk

k

converges to limk σk = ∞. Since |X%k |1{%k>0} ≤ k holds because %k ≤ τnk

k < σk on
{σk > 0}, X is locally bounded.

Here an immediate and useful consequence of Theorem 6.2.

Corollary 6.3. If A is càdlàg predictable and of finite variation then its variation is
locally bounded.

From Corollary 6.3 it follows that if S is a special semimartingale then one can write
S asM+A for a local martingaleM and a càdlàg adapted process A of locally integrable
variation (the vice versa is also true, and is given by the Doob-Meyer decomposition).
Moreover, the optional sampling theorem implies that any local martingale is locally
integrable (see [8, Chapter 3, Theorem 38]), thus in any decomposition of a special
semimartingale S as M + A, where A is a process of finite variation and M is a local
martingale, the process A is of locally integrable variation. The next important char-
acterization of special semimartingales is also a consequence of Corollary 6.3. For its
simple proof we refer to [8, Chapter 3, Theorem 32]); we remark that the proof implic-
itly makes use of the uniqueness of the canonical decomposition to obtain the existence
of a canonical decomposition of S on [0,∞) from the ones on [0, σn].

Corollary 6.4. A semimartingale S is special iff the process Xt := sups≤t |∆Ss| is locally
integrable (or equivalently if S∗t := sups≤t |Ss| is locally integrable).

It follows from Corollary 6.4 that any continuous semimartingale is special, and then
Theorem 6.1 implies that its local martingale part and compensator are continuous
processes. More generally, one can characterize which special semimartingales S have
a continuous compensator.
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Theorem 6.5. If S = M + A is the canonical decomposition of the special semi-
martingale S, then A is a.s. continuous iff, for all announceable stopping times τ ,
E[∆Sσn

τ ] = 0 holds for one (and thus all) sequences of stopping times σn ↑ ∞ s.t.
1{σn>0}(supt≤σn

|Mt| + var(A)σn
) ∈ L1(P). In particular, if S = M + A is the Doob-

Meyer decomposition of a submartingale S of class D, then A is a.s. continuous iff
E[∆Sτ ] = 0 for all announceable stopping times τ .

Proof. One implication is obvious. For the opposite one, assume by localization that
supt |Mt| and var(A) are integrable, and let (τn)n be a sequence of predictable stopping
times which exactly exhausts the positive jumps of A. Since by Corollary 2.1 predictable
stopping times are announceable, we obtain that 0 = E[∆Sτn ] = E[∆Aτn ]. Since ∆Aτn ≥
0, it follows that ∆Aτn = 0 a.s. for all n, so τn = ∞ a.s. and P({supt ∆At > 0}) =∑
nP({τn < ∞}) = 0. Analogously P({∆ supt(−A)t > 0}) = 0, so A has a.s. continuous

paths.
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