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1 Introduction

Let BH =
{
BHt : t ∈ [0, 1]

}
be a fractional Brownian motion (fBm) on (Ω,F , P ). That

is,
{
BHt : t ≥ 0

}
is a centered Gaussian process with covariance

RH(t, s) = E(BHt B
H
s ) =

1

2
(|t|2H + |s|2H − |t− s|2H), (1.1)

where H ∈ (0, 1) is the Hurst parameter. Consider the random variable F given by a
functional of BH :

F =

∫ 1

0

∫ 1

0

∣∣BHt −BHt′ ∣∣2p
|t− t′|q

dtdt′, (1.2)

where p, q ≥ 0 satisfy (2p− 2)H > q − 1.
In the case of H = 1

2 , BH is a Brownian motion, and the random variable F is the
Sobolev norm on the Wiener space considered by Airault and Malliavin in [1]. This
norm plays a central role in the construction of surface measures on the Wiener space.
Fang [4] showed that F is non-degenerate in the sense of Malliavin calculus (see the
definition below). Then it follows from the well-known criteria on regularity of densities
that the law of F has a smooth density.

The purpose of this note is to extend this result to the case H 6= 1
2 and to show that

F is non-degenerate.
In order to state our result precisely, we need some notations from Malliavin calculus

(for which we refer to Nualart [9, Section 1.2]). Denote by E the set of all step functions
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Non-degeneracy of Sobolev norms of fBm

on [0, 1]. Let H be the Hilbert space defined as closure of E with respect to the scalar
product

〈1[0,t],1[0,s]〉H = RH(t, s), for s, t ∈ [0, 1].

Then the mapping 1[0,t] 7→ BHt extends to a linear isometry between H and the Gaussian
space spanned by BH . We denote this isometry by BH . Then, for any h, g ∈ H, BH(f)

and BH(g) are two centered Gaussian random variables with E[BH(h)BH(g)] = 〈h, g〉H.
We define the space D1,2 as the closure of the set of smooth and cylindrical random
variable of the form

G = f(BH(h1), . . . , BH(hn))

with hi ∈ H, f ∈ C∞p (Rn) (f and all its partial derivatives has polynomial growth) under
the norm

‖G‖1,2 =

√
E[G2] + E[‖DG‖2H],

where the DF is the Malliavin derivative of F defined as

DG =

n∑
i=1

∂f

∂xi
(BH(h1), . . . , BH(hn))hi.

We say that a random vector V = (V1, . . . , Vd) whose components are in D1,2 is non-
degenerate if its Malliavin matrix γV =

(
〈DVi, DVj〉H

)
is invertible a.s. and (det γV)−1 ∈

Lp(Ω), for all p ≥ 1 (see for instance [9, Definition 2.1.1]). Our main result is the
following theorem.

Theorem 1.1. For all H ∈ (0, 1), the functional F of a fBm BH given in (1.2) is non-
degenerate. That is,

‖DF‖−1
H ∈ Lk(Ω), for all k ≥ 1. (1.3)

We shall follow the same scheme introduced in [4] to prove Theorem 1.1. That is, it
suffices to prove that for any integer n, there exists a constant Cn such that

P (‖DF‖H ≤ ε) ≤ Cnε
n (1.4)

for all ε small. This kind of inequality is called upper bound estimate in small devia-
tion theory (also called small ball probability theory, for which we refer to [6] and the
reference therein). To prove (1.4), we will need an upper bound estimate of the small
deviation for the path variance of the fBm, which is introduced in the following section.

We comment that Li and Shao [5, Theorem 4] proved that

P

(∫ 1

0

∫ 1

0

∣∣BHt −BHs ∣∣2p
|t− s|q

dtds ≤ ε

)
≤ exp{− C

εβ
} (1.5)

for p > 0, 0 ≤ q < 1 + 2pH, q 6= 1 and β = 1/(pH − max {0, q − 1}. But (1.5) gives the
small ball probability of F , not of ‖DF‖H.

2 An estimate on the path variance of fBm

In this section we show the following useful lemma.

Lemma 2.1 (Estimate of the path variance of the fBm). Let BH =
{
BHt : t ∈ [0, 1]

}
be a

fBm. For 0 ≤ a < b ≤ 1, consider the path variance V[a,b](B
H) defined by

V[a,b](B
H) =

∫ b

a

∣∣BHt ∣∣2 dt

b− a
− (

∫ b

a

BHt
dt

b− a
)2.
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Non-degeneracy of Sobolev norms of fBm

Then for cH = H
(

(2H + 1) sin π
2H+1

)− 2H+1
2H

(Γ(2H + 1) sin(πH))
1

2H ,

lim
ε→0

ε
1
H logP (V[a,b](B

H) ≤ ε2) = −(b− a)cH . (2.1)

Actually, we will only need

lim sup
ε→0

ε
1
H logP (V[a,b](B

H) ≤ ε2) <∞. (2.2)

In the case of H = 1
2 , this estimate of the path variance for Brownian motion was

introduced by Malliavin [7, Lemma 3.3.2], using the following Payley–Wiener expansion
of Brownian motion:

Bt = tG+
√

2

∞∑
k=1

1

2πk
(Xk cos 2πkt+ Yk sin 2πkt), a.s. for all t ∈ [0, 1], (2.3)

where G, Xk, Yk, k ∈ N, are i.i.d. standard Gaussian random variables. Then the esti-
mate (2.2) follows by observing that V[0,1](B) = 1

2π2

∑∞
k=1

1
2πk (X2

k + Y 2
k ), a sum of χ2(1)

random variables. The above expansion of Brownian motion can be obtained by inte-
grating an expansion of white noise on the orthonormal basis

{
1,
√

2 cos 2πkt,
√

2 sin 2πkt
}

of L2[0, 1]. Payley–Wiener expansion of fBm has been established recently by Dzha-
paridze and van Zanten [3]:

BHt = tX +

∞∑
k=1

1

ωk
[Xk(cos 2ωkt− 1) + Yk sin 2ωkt] , (2.4)

where 0 < ω1 < ω2 < . . . are the real zeros of J−H (the Bessel function of the first
kind of order −H), and X, Xk, Yk, k ∈ N, are independent centered Gaussian random
variables with variance

EX2 = σ2
H , EX

2
k = EY 2

k = σ2
k,

with σ2
H =

Γ( 3
2−H)

2HΓ(H+ 1
2 )Γ(3−2H)

and σ2
k = σ2

H(2 − 2H)Γ2(1 − H)
(
ωk
2

)2H
J−H(ωk). Because

the path variance V[0,1](B
H) is difficult to evaluate in the case H 6= 1

2 , the techniques of
[7, Lemma 3.3.2] to prove (2.2) no longer work.

Fortunately, recent developments in small deviation theory allow us to derive a sim-
ple proof of (2.1).

Proof of Lemma 2.1. In [8, Theorem 3.1 and Remark 3.1] Nazarov and Nikitin proved
that for any square integrable random variable G and any nonnegative function ψ ∈
L1[0, 1],

lim
ε→0

ε
1
H logP (

∫ 1

0

(BHt −G)2ψ(t)dt ≤ ε2) = −cH
(∫ 1

0

ψ(t)
1

2H+1 dt

) 2H+1
2H

. (2.5)

Notice that by the self-similarity property of fBm,

V[a,b](B
H) =

∫ b

a

(
BHt −BH

)2 dt

b− a
= b

∫ 1

a/b

(
BHbu −BH

)2 du

b− a

has the same distribution as b2H+1
∫ 1

a/b

(
BHu − b−HBH

)2
du
b−a . Then, Lemma 2.1 follows

from (2.5) by taking G = b−HBH and ψ(t) = 1[a/b,1](t).

We comment that Bronski [2] proved (2.5) for the caseG = 0 and ψ ≡ 1 by estimating
the asymptotics of the Karhunen–Loeve eigenvalues of fBm. Actually, the assumption
G = 0 is not necessary, because a random variable G here doesn’t contribute to the
asymptotics of the Karhunen–Loeve eigenvalues.
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3 Proof of the main theorem

In this section we prove (1.3) by estimating P (‖DF‖H ≤ ε) for ε small.
For simplicity, we denote

I =
{

(t, t′) ∈ [0, 1]2, t′ ≤ t
}
,

~t = (t, t′) , d~t = dtdt′.

Lemma 3.1. Let Q(~t, ~s) = 〈1[t′,t],1[s′,s]〉H. Then the operator Q on L2(I) defined by

Qf(~t) =

∫
I

Q(~t, ~s)f(~s)d~s, f ∈ L2(I)

is symmetric positive and compact.

Proof. Compactness follows from Q(~t, ~s) ∈ L2(I × I). The function Q(~t, ~s) is symmetric,
so is the operator Q. Finally, Q is positive because for any f ∈ L2(I),

〈Qf, f〉L2(I) =

∫
I

∫
I

Q(~t, ~s)f(~s)d~sf(~t)d~t =

∥∥∥∥∫
I

1[t′,t]f(~t)d~t,

∥∥∥∥2

H

.

Then, it follows that Q has a sequence of decreasing eigenvalues {λn}n∈N, i.e.
λ1 ≥ · · · ≥ λn > 0, and λn → 0. The corresponding normalized eigen-functions
{ϕn}n∈N form an orthonormal basis of L2(I). Each of them is continuous because
φn(~t) = λ−1

n

∫
I
Q(~t, ~s)φn(~s)d~s and Q(~t, ~s) is continuous. We can write

Q(~t, ~s) =
∑
n≥1

λnϕn(~t)ϕn (~s) . (3.1)

From the definition of Malliavin derivative we have

DrF = 4p

∫
I

∣∣BHt −BHt′ ∣∣2p−1

|t− t′|q
sign(BHt −BHt′ )1[t′,t](r)dtdt

′.

Then

‖DF‖2H = 16p2

∥∥∥∥∥
∫
I

1[t′,t](·)
∣∣BHt −BHt′ ∣∣2p−1

|t− t′|q
sign(BHt −BHt′ )dtdt′

∥∥∥∥∥
2

H

(3.2)

= 16p2

∫
I×I
〈1[t′,t],1[s′,s]〉H

∣∣BHt −BHt′ ∣∣2p−1

|t− t′|q
sign(BHt −BHt′ )

×
∣∣BHs −BHs′ ∣∣2p−1

|s− s′|q
sign(BHs −BHs′ )d~td~s.

Using (3.1) to evaluate the inner product in (3.2) yields

‖DF‖2H = 16p2
∑
i≥1

λiV
2
i , (3.3)

where we denote

Vi =

∫
I

ϕi(t, t
′)

∣∣BHt −BHt′ ∣∣2p−1

|t− t′|q
sign(BHt −BHt′ )dtdt′. (3.4)

For each β = (β1, . . . , βn) ∈ Sn−1 (the unit sphere in Rn), let Ψβ(~t) =
∑n
i=1 βiϕi(~t).

We denote

Gβ =

∫
I

Ψ2
β(~t)

∣∣BHt −BHt′ ∣∣2p−2

|t− t′|q
d~t. (3.5)
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Lemma 3.2. There exists a constant Cp,H > 0 such that for all β ∈ Sn−1 and ε > 0,

P (Gβ ≤ ε) ≤ exp
{
−Cp,Hε−

1
2H(p−1)

}
. (3.6)

Proof. Fix an arbitrary β ∈ Sn−1. Then Ψβ 6≡ 0 since ϕi, . . . , ϕn are linearly independent.
Since Ψβ is continuous on I, there exists ~tβ = (t′β , tβ) ∈ I, δβ and ρβ such that for all
~t ∈ Aβ := [t′β − δβ , t′β + δβ ]× [tβ − δβ , tβ + δβ ] ⊂ I,

Ψ2
β(~t) ≥ ρβ > 0.

Let C = 2 maxi∈{1,...,n} sup~t∈I
∣∣ϕ(~t)

∣∣ <∞. Then for any β′ ∈ Sn−1,∣∣Ψ2
β(~t)−Ψ2

β′(~t)
∣∣ ≤ C ‖β − β′‖ .

Then for any β′ ∈ Sn−1 satisfying ‖β′ − β‖ ≤ ρβ/2C, one has

Ψ2
β′(~t) ≥ Ψ2

β(~t)−
∣∣Ψ2

β(~t)−Ψ2
β′(~t)

∣∣ ≥ ρβ/2, (3.7)

for any ~t ∈ Aβ .
Note that Sn−1 has a finite cover Sn−1 ⊂ ∪mi=1B(βi,

ρβi

2C ). Denote ρi = ρβi , δi = δβi ,
~ti = ~tβi and Ai = Aβi . Then it follows from (3.7) that for any β ∈ Sn−1, there exists a
βi ∈ Sn−1 such that

Ψ2
β(~t) ≥ ρi/2, for all ~t ∈ Ai.

Then noticing that |t− t′| ≤ 1 and applying Jensen’s inequality we obtain

Gβ ≥ ρi
2

∫
Ai

∣∣BHt −BHt′ ∣∣2p−2

|t− t′|q
d~t ≥ ρi

2

∫
Ai

∣∣BHt −BHt′ ∣∣2p−2
d~t

≥ ρi
2(2δi)p−2

(∫
Ai

(
BHt −BHt′

)2
d~t

)p−1

. (3.8)

Note that for f ∈ C[a, b] with average f = 1
b−a

∫ b
a
f(ξ)dξ, we have

1

b− a

∫ b

a

(f(ξ)− f)2dξ ≤ 1

b− a

∫ b

a

(f(ξ)− c)2dξ

for any number c. Then∫
Ai

(
BHt −BHt′

)2
d~t =

∫ ti+δi

ti−δi

∫ t′i+δi

t′i−δi

(
BHt −BHt′

)2
dtdt′ ≥ 2δi

∫ ti+δi

ti−δi

(
BHt −BH

)2

dt

(3.9)
where BH =

∫ ti+δi
ti−δi B

H
t dt. Combining (3.8) and (3.9) and applying Lemma 2.1 we obtain

P (Gβ ≤ ε) ≤ P (

∫ ti+δi

ti−δi

(
BHt −BH

)2

dt ≤ (ρiδi)
− 1
p−1 ε

1
p−1 )

≤ exp{−cHδi (ρiδi)
1

2H(p−1) ε−
1

2H(p−1) }.

Then one obtains (3.6) by choosing Cp,H = cH min1≤i≤m δi (ρiδi)
1

2H(p−1) .

Remark: At the first glance, it seems that (3.6) can be obtained by applying (1.5)
to the first inequality in (3.8). But (1.5) can only be applied to square interval on the
diagonal like [a, b]× [a, b] (after applying the scaling and self-similarity property of fBm),
and here the interval Ai = [t′i − δi, t′i + δi]× [ti − δi, ti + δi] is off diagonal.
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Lemma 3.3. For any integer n, the random vector V = (V1, . . . , Vn) defined in (3.4) is
non-degenerate.

Proof. Denote by M =
(
〈DVi, DVj〉H

)
the Malliavin matrix of V. We want to show that

(detM)
−1 ∈ Lk, for any k ≥ 1. Note that detM ≥ γn1 , where γ1 > 0 is the smallest

eigenvalue of the positive definite matrix M . Then it suffices to show that γ−1
1 ∈ Lnk,

for any k ≥ 1, for which it is enough to estimate P (γ1 ≤ ε) for ε small. We have

γ1 = inf
‖β‖=1

(Mβ, β) = inf
‖β‖=1

∥∥∥∥∥D
(

n∑
i=1

βiVi

)∥∥∥∥∥
2

H

. (3.10)

For any β = (β1, . . . , βn) ∈ Sn−1, let Ψβ(~t) =
∑n
i=1 βiϕi(~t). Then,

Dr

(
n∑
i=1

βiVi

)
= (2p− 1)

∫
I

Ψβ(~t)

∣∣BHt −BHt′ ∣∣2p−2

|t− t′|q
1[t′,t](r)d~t.

Applying (3.1) in the computation of the norm (3.10) yields∥∥∥∥∥D
(

n∑
i=1

βiVi

)∥∥∥∥∥
2

H

= (2p− 1)
2
∫ 1

0

dr

(∫
I

Ψβ(~t)

∣∣BHt −BHt′ ∣∣2p−2

|t− t′|q
1[t′,t](r)d~t

)2

= (2p− 1)
2
∑
i≥1

λi

(∫
I

ϕi(~t)Ψβ(~t)

∣∣BHt −BHt′ ∣∣2p−2

|t− t′|q
d~t

)2

≥ (2p− 1)
2

n∑
i=1

λiq
2
i ,

where qi =
∫
I
ϕi(~t)Ψβ(~t)

(BHt −B
H
t′ )

2p−2

|t−t′|q d~t. The definition (3.5) implies Gβ =
∑n
i=1 βiqi.

Since λ1 ≥ · · · ≥ λn > 0, we obtain

n∑
i=1

λiq
2
i ≥ λn

n∑
i=1

q2
i ≥ λn

n∑
i=1

β2
i q

2
i ≥

λn
n
G2
β ,

where in the third inequality we used the fact that
∑n
i=1 a

2
i ≥ 1

n (
∑n
i=1 ai)

2. Therefore∥∥∥∥∥D
(

n∑
i=1

βiVi

)∥∥∥∥∥
2

H

≥ (2p− 1)2λn
n
G2
β . (3.11)

Combining (3.10) and (3.11) we have

γ1 = inf
‖β‖=1

(Mβ, β) ≥ (2p− 1)2λn
n

inf
‖β‖=1

G2
β . (3.12)

For any ε > 0 and 0 < α < 1
2H(p−1) , let

Wβ = {Gβ ≥ ε} ,

and
Wn =

{
‖DVi‖2H ≤ exp ε−α, i = 1, . . . , n

}
.

On Wn, for any β, β′ ∈ Sn−1 we have

|(Mβ, β)− (Mβ′, β′)| ≤ Cn ‖β − β′‖ exp
1

εα
,
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where Cn is a constant independent of β, β′ and ε.
Note that we can find a finite cover ∪mi=1B(βi, exp(− 2

εα )) of Sn−1 with βi ∈ Sn−1 and

m ≤ C exp
2n

εα
.

Then on Wn, for any β ∈ Sn−1, there exists a βi such that

(Mβ, β) ≥
(
Mβi, βi

)
− Cn exp

1

εα
exp(− 2

εα
).

On Wβi ∩Wn, applying (3.12) with An = (2p− 1)2 λn
n and taking ε small enough,

(Mβ, β) ≥ Anε2 − Cn exp(− 1

εα
) ≥ An

2
ε2.

Hence, on ∩mi=1Wβi ∩Wn,

γ1 = inf
‖β‖=1

(Mβ, β) ≥ An
2
ε2 > 0. (3.13)

On the other hand, applying Lemma 3.2, we have

P (∪mi=1W
c
βi) ≤

m∑
i=1

P (∪mi=1W
c
βi) ≤ m

√
2 exp(− Cp,H

ε1/2H(p−1)
)

≤ C exp
2n

εα
exp(− Cp,α

ε1/2H(p−1)
) ≤ C exp(− C

ε1/2H(p−1)
). (3.14)

Also, by Chebyshev’s inequality, we can write

P (W c
n) ≤ C exp(− 1

εα
). (3.15)

Then it follows from (3.13)–(3.15) that for ε small,

P (γ1 <
An
2
ε2) ≤ C exp(− 1

εα
).

This completes the proof of the lemma.

Proof of Theorem 1.1. Note that

‖DF‖2H = 16p2
∑
i≥1

λiV
2
i ≥ 16p2λn

n∑
i=1

V 2
i , (3.16)

for any integer n. Then, denoting |V|2 =
∑n
i=1 V

2
i we have

P (‖DF‖H < ε) ≤ P
(
|V| < ε

4p
√
λn

)
.

Since V = (V1, . . . , Vn) is non-degenerate, then it has a smooth density fVn(x). Then we
have

P

(
|V| < ε

4p
√
λn

)
≤ Cn,pεn,

where Cn,p = 2πn/2

nΓ(n2 )

(
4p
√
λn
)−n

max|x|≤1 fVn(x). Now the theorem follows.
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