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EIGENVALUE EXPANSIONS FOR BROWNIAN MOTION
WITH AN APPLICATION TO OCCUPATION TIMES 1

Richard F. Bass
Krzysztof Burdzy

University of Washington

Abstract. Let B be a Borel subset of Rd with finite volume. We give an eigenvalue
expansion for the transition densities of Brownian motion killed on exiting B. Let A1 be
the time spent by Brownian motion in a closed cone with vertex 0 until time one. We show
that limu→0 logP 0(A1 < u)/ logu = 1/ξ where ξ is defined in terms of the first eigenvalue
of the Laplacian in a compact domain. Eigenvalues of the Laplacian in open and closed
sets are compared.

1. Introduction. It is well-known that the transition densities of Brownian motion killed

on exiting a bounded open domain in Rd have an expansion in terms of the eigenvalues

and eigenfunctions of the Laplacian on the domain. One of the purposes of this paper

is to point out that there exists an eigenvalue expansion for the transition densities of

Brownian motion killed on exiting an arbitrary Borel subset B of Rd, provided only that

the Lebesgue measure of B is finite; see Theorem 1.1. The notion of eigenvalues of the

Dirichlet Laplacian in non-open sets seems to a large extent not to have been considered

in analysis.

As a consequence of this expansion, we get some continuity results on the first eigen-

value. If λ(B) denotes the first eigenvalue of a set B and Jn are sets of finite volume

decreasing to a compact set K, we show in Theorem 1.2 that λ(Jn)→ λ(K).

Another of the results of this paper is concerned with the amount of time Brownian

motion Xt spends in a cone up to time t = 1; see Theorem 1.3. The formula we prove is

the same as one of the formulae in Meyre and Werner [MW]. Our contribution consists of

extending the result to a much larger family of cones.

Theorems 1.1 and 1.2 are proved in Section 2, while Theorem 1.3 is proved in Section

3. In the last section of the paper we compare the first eigenvalue of an open domain with

the first eigenvalue of its closure, and illustrate by means of some examples.

We start by defining the eigenvalues of the Laplacian in arbitrary Borel sets of finite

1 Research partially supported by NSF grant DMS 9322689.
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volume. Multidimensional Brownian motion will be denoted Xt. For a Borel set B ∈ Rd,

let

τ (B) = τB = inf{t > 0 : Xt /∈ B}

and

T (B) = TB = inf{t > 0 : Xt ∈ B}.

Let pB(t, x, y) be the transition densities for Brownian motion killed on exiting B, let

GB(x, y) be the corresponding Green function, and set PBt f(x) =
∫
B
pB(t, x, y)f(y)dy.

For definitions and further information, see Bass [B], Sections III.3, III.4. We use 〈f, g〉 to

denote
∫
f(x)g(x)dx. The sphere in Rd with center y and radius r will be denoted S(y, r),

while the corresponding open ball will be denoted B(y, r).

Theorem 1.1. Suppose B ⊂ Rd is a Borel set whose Lebesgue measure is finite and

positive and let µ denote the restriction of the Lebesgue measure to B. There exist reals

0 < λ1 ≤ λ2 ≤ · · · <∞ and a complete orthonormal system ϕi for L2(B) such that

(i) the sequence {λi} has no subsequential limit point other than ∞,

(ii) for each t we have PBt ϕi = e−λitϕi, µ-a.e.,

(iii) if f ∈ L2(B), then

PBt f =
∞∑
i=1

e−λit〈f, ϕi〉ϕi, µ-a.e.,

the convergence is absolute, and the convergence takes place in L∞(B),

(iv) we have the expansion

pB(t, x, y) =
∞∑
i=1

e−λitϕi(x)ϕi(y)

for µ2-almost every pair (x, y), the convergence is absolute, and the convergence takes

place in L∞(B ×B), and

(v) if for some t > 0 we have pB(t, x, y) > 0 for µ2-almost every pair (x, y), then λ1 < λ2

and ϕ1 > 0, µ-almost everywhere.

Let λ(B) denote the first eigenvalue, i.e., λ1 from Theorem 1.1.

Theorem 1.2. Let Jn be Borel subsets of Rd with finite volume decreasing to a compact

set K. The eigenvalues λ(Jn) converge to λ(K) as n→∞.

It is standard to adapt the proof of Theorem 1.1 to see that a result analogous to

Theorem 1.1 holds for a compact subset K of a sphere S(y, r) such that S(y, r) \K has a

non-empty interior relative to S(y, r). In this case, the transition probabilities pK(t, x, y)
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are those of the Brownian motion on S(y, r). Suppose that K is a subset of S(0, 1) and

let λ(K) be the first eigenvalue (i.e., λ1). Then let v = d/2− 1 and

ξ(K) =
(v2 + 2λ(K))1/2 + v

λ(K)
.

Let C be a closed cone in Rd with non-empty interior and vertex (0, . . . , 0) and let J be

the closure of S(0, 1) \ C . We will write

At =

∫ t

0

1(Xs∈C)ds,

i.e., At is the amount of time spent by X inside C before time t.

Theorem 1.3. Assume that the d-dimensional Lebesgue measure of the boundary of C

is zero and that both C and its complement have non-empty interiors. Then

lim
u→0

logP 0(A1 < u)

log u
= 1/ξ(J).

It seems that the only case when an explicit formula for P 0(A1 < u) is known is when

C is a half-space, where the distribution is known as the “arc-sine law.” See Bingham and

Doney [BD] for related results.

Meyre and Werner [MR] proved that P 0(A1 < u) is comparable to u1/ξ(J), but they

had to assume that C is convex. Meyre [M] considered more general cones but made a

strong assumption of regularity on the boundary.

Our paper is inspired by a question posed by W. Werner. We are grateful for discus-

sions with P. Baxendale, E.B. Davies, R. Howard, P. March, M. van den Berg, W. Werner,

and Z. Zhao.

2. Eigenvalue expansions. In this section we prove Theorem 1.1, 1.2, and also give a

result (Proposition 2.1) on hitting times which is of independent interest.

Proof of Theorem 1.1. For each t, pB(t, x, y) ≤ p(t, x, y), the density of unkilled Brow-

nian motion, which is bounded by a constant depending only on t. Since B has finite

volume,
∫
B

∫
B
pB(t, x, y)2 dxdy < ∞. By Riesz and Sz.-Nagy [RN], page 179, PBt is a

completely continuous operator, that is, the image of the unit ball in L2(B) under PBt is a

set whose closure in L2 is compact. By the Hilbert-Schmidt expansion theorem (Riesz and

Sz.-Nagy [RN] or Bass [B], Section III.4), PBt has an eigenvalue expansion as in (iii) and

(iv). The fact that the eigenvalues of PBt are of the form e−λit, that the λi and ϕi do not
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depend on t, and that (i) holds may be proved as in Bass [B] or Port and Stone [PS], using

the complete continuity of PBt in L2 in place of the equicontinuity of {PBt f : ‖f‖∞ ≤ 1}.
Because

e−λiϕi(x) = PB1 ϕi(x) =

∫
pB(1, x, y)ϕi(y)dy

≤
(∫

B

p(1, x, y)2 dy
)1/2(∫

B

ϕi(y)2 dy
)1/2

≤ c1, a.e.,

then

ϕi(x) ≤ eλic1, a.e. (2.1)

Let ‖f‖∞ denote the L∞(B) norm of f . By the semigroup property and Parseval’s identity

applied to f(y) = pB(t/2, x, y),

pB(t, x, x) =

∫
B

pB(t/2, x, y)2 dy = 〈pB(t/2, x, ·), pB(t/2, x, ·)〉

=

∞∑
i=1

〈pB(t/2, x, ·), ϕi〉2 =

∞∑
i=1

(PBt/2ϕi(x))2

=

∞∑
i=1

e−λitϕi(x)2.

Integrating over B,
∞∑
i=1

e−λit =

∫
B

pB(t, x, x)dx <∞ (2.2)

for all t > 0. Since (2.2) holds for all t, this and (2.1) imply that the convergence in (iii)

and (iv) is absolute and takes place in L∞(B) and L∞(B ×B), respectively.

Assertion (v) is an immediate consequence of the Krein-Rutman theorem [KR].

The hypothesis of finite volume is sufficient, but not necessary and sufficient; see, e.g.,

[vdB]. On the other hand, some restriction on B is required for the conclusion of Theorem

1.1 to hold, as the case B = Rd shows.

Proposition 2.1. Suppose K ⊂ Rd is a compact set.

(i) There exist λ, c1 ∈ (0,∞) such that P x(τK ≥ t) ≤ c1e−λt for all x ∈ K and all t > 0;

(ii) There exists c2 ∈ (0,∞) and a Borel set L contained in K such that P x(τK > t) ≥
c2e
−λt for all x ∈ L and all t > 0, where λ is the same constant as in (i).

(iii) Suppose there exists a ball B = B(x0, r) contained in the interior of K such that for

almost every x that is not regular for Kc,

P x(TB < τK) > 0.
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Then there exists c3 ∈ (0,∞) and an open set M contained in K such that

P x(τK > t) ≥ c3e−λt for all x ∈M and all t > 0, where λ is the same constant

as in (i) and (ii).

Proof of Proposition 2.1. Let us apply Theorem 1.1(iii) with the function f = 1K to

get for a.e. x,

PKt 1K(x) =
∑

{i:λi=λ1}
e−λ1t〈1K , ϕi〉ϕi(x) + e−λ1t

∑
{i:λi>λ1}

e−(λi−λ1)t〈1K , ϕi〉ϕi(x)

= e−λ1tΦ(x) + e−λ1tΨ(t, x). (2.3)

Let |K| denote the Lebesgue measure of K. Note that

〈1K , ϕi〉 ≤
(∫

(1K(x)2dx
)1/2(∫

(ϕ2
i (x)dx

)1/2

= |K|1/2.

By (2.1) and (2.2) of the proof of Theorem 1.1 it follows that

‖Ψ(t, ·)‖∞ ≤
∑

{i:λi>λ1}
|K|1/2c3e−(λi−λ1)teλi

≤
∑

{i:λ1<λi<2λ1}
|K|1/2c3e−(λi−λ1)teλi +

∑
{i:2λ1≤λi}

|K|1/2c3e−λi(t/2−1)

→ 0

as t→∞ by dominated convergence. Similarly,

‖Φ(·)‖∞ ≤ c4|K|1/2eλ1 .

From these estimates, there exists c5 such that

‖PKt 1K(·)‖∞ ≤ c5e−λ1t

for t large. Then if x ∈ K,

P x(τK > t) = PKt 1K(x) = PK1 PKt−11K(x)

=

∫
pK(1, x, y)PKt−11K(y)dy

≤ c6c5e−λ1(t−1) = c7e
−λ1t

for t large, with c7 independent of t and x. Property (i) follows easily from this with

λ = λ1.
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We turn next to the proof of (iii). There are at most finitely many i such that λi = λ1

because {λi} has only ∞ as a subsequential limit point. Φ cannot be equal to 0, a.e.,

because that would contradict the linear independence of the ϕi. Since PKt 1K ≥ 0 for all

t and Ψ(t, x) = o(Φ(x)) for almost every x on the set where Φ 6= 0, we must have Φ ≥ 0,

a.e. Hence Φ must be positive on a set of positive measure.

Note PKt Φ = e−λ1tΦ, a.e. Therefore

GKΦ =

∫ ∞
0

PKt Φ dt = λ−1
1 Φ, a.e. (2.4)

If x is regular for Kc, then

Φ(x) = λ1GKΦ(x) = λ1E
x

∫ τK

0

Φ(Xs)ds = 0, a.e.

We conclude that {x ∈ K : x is not regular for Kc,Φ(x) > 0} has positive measure.

Suppose x is not regular for Kc and P x(TB < τK) > 0. By the strong Markov

property and the support theorem for Brownian motion, GK1B(x) > 0. If x /∈ B, then

GK(x, y) must be positive for some y ∈ B, and hence for all y ∈ B by Harnack’s inequality.

If x ∈ B, then GK(x, y) ≥ GB(x, y) > 0 for all y ∈ B. So for all y ∈ B, GK(x, y) > 0 for

almost all x that are not regular for Kc. Therefore for y ∈ B,

GKΦ(y) =

∫
K

GK(x, y)Φ(x)dx > 0.

The functionGKΦ is continuous in the interior ofK, hence inB. So ifM = B(x0, r/2),

the ball with the same center asB but half the radius, there exists δ > 0 such thatGKΦ > δ

in M . Since Φ = λ1GKΦ (see (2.4)), then Φ > λ1δ almost everywhere in M . Recall that

‖Ψ(t, ·)‖∞ → 0. So, using (2.3), there exist c8 > 0 and t0 such that for t ≥ t0 − 1,

PKt 1K(x) ≥ c8e−λ1t for almost every x ∈M.

If t ≥ t0 and x ∈M ,

P x(τK > t) = PKt 1K(x) = PK1 PKt−11K(x)

=

∫
K

pK(1, x, y)PKt−11K(y)dy

≥
∫
M

pB(1, x, y)PKt−11K(y)dy

≥ c9c8e−λ1(t−1) = c9c8e
λ1e−λ1t,

7



since pB(1, x, y) is bounded below for x, y ∈ M . Property (iii) follows for t ≥ t0 with the

same λ as in (i), namely, λ = λ1. To remove the restriction involving t0, note that if t < t0,

then

P x(τK > t) ≥ P x(τK > t0) ≥ c10e
−λt0 ≥

(
c10e

−λt0
)
e−λt.

Finally, we show (ii). By the first paragraph of the proof of (iii), Φ is positive on a set

of positive measure. Hence there exists c11 > 0 and a Borel set L contained in K such that

L has positive measure and Φ > c11 on L. The conclusion (ii) follows from this similarly

to the above.

Proof of Theorem 1.2. Applying (2.3) with t− n−1 and letting n→∞, we get

P x(τK ≥ t) = P x(τK > t), a.e.,

by (2.1), (2.2), and dominated convergence. Hence, for all x and t,

P x(τK = t) = 0. (2.5)

Since the events {τJn ≥ t} are decreasing in n, the same is true for the probabilities

P x(τJn ≥ t). By (2.3)

λ1(B) = − lim
t→∞

logP x(τB > t)/t, a.e.,

from which it follows that λ(Jn) is an increasing function of n.

Suppose that λ∗ = limn→∞ λ(Jn) is strictly smaller than λ(K). So there exists ε > 0

such that λ(Jn) < λ(K) − ε for all n. We will show that this assumption leads to a

contradiction.

Let ϕn1 be the eigenfunction corresponding to the first eigenvalue in Jn. Recall from

the proof of Theorem 1.1 that

ϕn1 (x) ≤ eλ(Jn)

(∫
Jn

p(1, x, y)2dy

)1/2

and so we can find a constant c1 such that

ϕn1 (x) ≤ c1

for all x ∈ Jn and all n sufficiently large.

Since ϕn1 (x) ≤ c1 but the L2(Jn) norm of ϕn1 is equal to 1, for large n we can find

c2, c3 > 0 and a set M = M(n) ⊂ K such that the Lebesgue measure of M is greater than

c3 and ϕn1 (x) > c2 for every x ∈M .
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Let |K| denote the Lebesgue measure of K and let µ be the probability measure on

K obtained by renormalizing the Lebesgue measure restricted to K. Then, for n large,∫
K

ϕn1 (x)µ(dx) ≥ c2c3/|K| = c4.

If n is sufficiently large, for all t,

Eµ(ϕn1 (Xt); τJn > t) =

∫
P Jnt ϕn1 (x)µ(dx) = e−λ(Jn)t

∫
ϕn1 (x)µ(dx)

≥ c4e−λ(Jn)t ≥ c4e−λ(K)teεt.

On the other hand, if n is sufficiently large,

Eµ(ϕn1 (Xt); τK ≥ t) ≤ c1Pµ(τK ≥ t) ≤ c1c5e−λ(K)t

by Proposition 2.1(i), where c5 is the constant c1 of that proposition.

Now take t large so that c4eεt > c1c5. The set K is contained in the sets Jn, so

{τK > t} ⊂ {τJn > t}. Using (2.5),

0 < c4e
−λ(K)teεt − c1c5e−λ(K)t

≤ Eµ((ϕn1 (Xt); τJn > t)− Eµ(ϕn1 (Xt); τK ≥ t)
= Eµ(ϕn1 (Xt); τK < t < τJn) ≤ c1Pµ(τK < t < τJn).

Since the events {τK < t < τJn} decrease to ∅, the right hand side tends to 0 as n→∞,

a contradiction.

3. Time spent in a cone. This section is devoted to the proof of Theorem 1.3.

In this section we want to consider eigenvalue expansions for Brownian motion on

S(y, r) killed on exiting a subset B of S(y, r). The proofs of Section 2 are easily adapted

to this situation; we leave it to the reader to supply the details, and we apply the results

of Section 2 without further mention.

Let Cδ = {x ∈ Rd : dist(x,Cc) ≥ δ} and Jδ be the closure of S(0, 1) \ Cδ. Fix some

small δ∗ > 0 so that Cδ∗ has a non-empty interior.

Lemma 3.1. Let C be a closed cone in Rd such that C and its complement have non-

empty interiors. Let J be the closure of S(0, 1) \ C . Recall that v = d/2− 1 and

ξ(J) =
(v2 + 2λ(J))1/2 + v

λ(J)
.
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(i) There is an open set M ⊂ S(0, 1) and a constant c1 > 0 such that for every x with

x/|x| ∈M we have for t ≥ |x|2,

P x(TC > t) ≥ c1(t/|x|2)−1/ξ(J).

(ii) There exists c2 <∞ such that for all x 6= 0,

P x(TC > t) ≤ c2(t/|x|2)−1/ξ(J).

Proof. Lemma 3.1 follows from Proposition 2.1 in the same way as Proposition 2.3 follows

from Proposition 2.2 in Meyre [M].

Proof of Theorem 1.3. Step 1. First we will show that there is c1 > 0 such that for all

cones C̃ with Cδ∗ ⊂ C̃ ⊂ C we have

P x(|X(T
C̃

)| > |x|/2) > c1. (3.1)

In other words, with probability greater than c1 the cone is hit at a place at least half as

far from the origin as the starting point. The constant c1 may depend on Cδ∗ and C but

does not otherwise depend on C̃.

Let T be the hitting time of the set S(0, |x|/2)∪S(0, 2|x|)∪ C̃ . The process Rt = |Xt|
is a submartingale and T is a stopping time so ExRT ≥ |x|. Since RT ∈ [|x|/2, 2|x|], a.s.,

we must have

P x(RT > |x|/2) ≥ 1/4.

The cone Cδ∗ has non-empty interior so it is easy to see that for every point y ∈ S(0, 2|x|),
Brownian motion starting from y will hit Cδ∗ before hitting S(0, |x|) ∪ S(0, 3|x|) with

probability greater than c2 > 0. If RT > |x|/2 then either XT ∈ C̃ or XT ∈ S(0, 2|x|). By

applying the strong Markov property at T we conclude that

P x(|X(T
C̃

)| > |x|/2) ≥ c2/4

which proves (3.1).

Step 2. Suppose that 0 < a < r. Assume that C̃ is a cone with Cδ∗ ⊂ C̃ ⊂ C and

P x(TS(0,r) < T
C̃

) ≤ ρ

for all x ∈ S(0, a). Let Ĉ = {y ∈ C̃ : |y| ≥ a/2}. We will prove that

P x(TS(0,r) < T
Ĉ

) ≤ c3ρ (3.2)
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for all x ∈ S(0, a) where c3 may depend on C and δ∗ but does not otherwise depend on C̃,

a or r.

Let T0 = 0,

Sk = inf{t > Tk : Xt ∈ C̃ ∪ S(0, a/2)}, k ≥ 0,

Tk = inf{t > Sk−1 : Xt ∈ S(0, a)}, k > 0.

Typically, Sk and Tk are finite for small k and infinite for large k in dimensions higher

than 2. For the event {Tk < T
Ĉ
} to happen, the process would have to return k times to

S(0, a) and after each return it would have to hit S(0, a/2) before hitting C̃ . A repeated

application of the strong Markov property and (3.1) yield for x ∈ S(0, a),

P x(Tk < T
Ĉ

) ≤ (1− c1)k.

Hence

P x(TS(0,r) < T
Ĉ

) ≤
∑
k≥0

Ex[1{Tk<T (Ĉ)}P
X(Tk)(TS(0,r) < T (C̃ ∪ S(0, a/2)))]

≤
∑
k≥0

(1− c1)kρ ≤ c3ρ

and the proof of (3.2) is complete.

Step 3. Fix some small α > 0 and for small s > 0 let a = s1/2−α. Recall the truncated

cone Ĉ from the previous step and suppose that x ∈ S(0, a). We have

P x(T
Ĉ
> 1/4) ≤ P x(T

Ĉ
> TS(0,sα)) + P x(TS(0,sα) > 1/4).

A standard estimate gives

P x(TS(0,sα) > 1/4) ≤ exp(−s−α)

for small s and so

P x(T
Ĉ
> 1/4) ≤ P x(T

Ĉ
> TS(0,sα)) + exp(−s−α).

We also have

P x(T
Ĉ
> TS(0,sα)) ≤ P x(T

Ĉ
> s3α) + P x(TS(0,sα) < s3α).

It is easy to see that

P x(TS(0,sα) < s3α) ≤ exp(−s−α/2)
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for small s, so it follows that

P x(T
Ĉ
> 1/4) ≤ P x(T

Ĉ
> s3α) + 2 exp(−s−α/2). (3.3)

Recall that δ∗ > 0 is small and let ξ∗ = ξ(Jδ∗). According to Lemma 3.1 (ii) there

exists c4 such that for all δ ∈ (0, δ∗), C̃ = Cδ, all t > 0 and all x ∈ S(0, a),

P x(T
C̃
> t) ≤ P x(TCδ∗ > t) ≤ c4(t/a2)−1/ξ∗ .

We obtain from (3.2),

P x(T
Ĉ
> t) ≤ c3c4(t/a2)−1/ξ∗

for all x ∈ S(0, a). We apply this formula with t = s3α and combine it with (3.3) to obtain

P x(T
Ĉ
> 1/4) ≤ c3c4(s3α/a2)−1/ξ∗ + 2 exp(−s−α/2)

= c3c4(s3α/s1−2α)−1/ξ∗ + 2 exp(−s−α/2)

≤ c5s(1−5α)/ξ∗

for small s.

Now we let δ = sα/2 (we consider only small s). Note that for small s, the distance

between Ĉδ and ∂C is greater than s1/2−α. A standard estimate for Brownian motion

shows that for x ∈ Ĉδ and small s,

P x(T∂C < s1−α) ≤ exp(−s−α/2)

and so

P x(A1/4 < s1−α) ≤ exp(−s−α/2).

Another standard estimate gives for small a,

P 0(TS(0,a) > 1/4) ≤ exp(−a−1).

We combine our estimates to see that for small s,

P 0(A1 < s1−α) ≤ P 0(TS(0,a) > 1/4)

+ E0PX(TS(0,a))(T
Ĉδ
> 1/4) + E0PX(T (Ĉδ))(A1/4 < s1−α)

≤ exp(−a−1) + c5s
(1−5α)/ξ∗ + exp(−s−α/2)

≤ c6s(1−5α)/ξ∗ .
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If we substitute u = s1−α, we obtain

P 0(A1 < u) ≤ c6u(1−5α)/[(1−α)ξ∗].

It follows that

lim inf
u→0

logP 0(A1 < u)/ log u ≥ (1 − 5α)/[(1− α)ξ∗].

We proved in Theorem 1.2 that limδ→0 ξ(Jδ) = ξ(J). Hence, by choosing sufficiently

small δ∗ > 0 we can assume that ξ∗ = ξ(Jδ∗) is arbitrarily close to ξ(J). This and the fact

that α may be chosen arbitrarily close to 0 show that

lim inf
u→0

logP 0(A1 < u)/ log u ≥ 1/ξ(J).

This proves the lower bound in Theorem 1.3.

Step 4. Next we prove the opposite inequality. Find a set M as in Lemma 3.1 (i) and

let c7 be equal to the c1 in that same lemma. Let M1 = {x : x/|x| ∈ M} and a = u1/2.

The probability p = P 0(ATS(0,a)
< u, X(TS(0,a)) ∈ M1) does not depend on u, by scaling,

and it is strictly positive.

Let Co denote the interior of C . Recall that we have assumed that the boundary of

C has zero d-dimensional Lebesgue measure. Hence,∫ ∞
0

1(Xs∈∂C)ds = 0

and so

At =

∫ ∞
0

1(Xs∈Co)ds.

This, the strong Markov property applied at TS(0,a) and Lemma 3.1 (i) imply that

P 0(A1 < u) ≥ E0[1{ATS(0,a)
<u}1{X(TS(0,a))∈M1}P

X(TS(0,a))(TCo > 1)]

≥ pc7(1/a2)−1/ξ(J) = pc7(1/u)−1/ξ(J).

It follows that

lim sup
u→0

logP 0(A1 < u)/ log u ≤ 1/ξ(J).

The proof of Theorem 1.3 is complete.

4. Eigenvalues of the Laplacian in compact and open sets. Classical spectral

analysis of the Laplacian is limited to open domains. The Laplacian itself can be defined

at every point of an open set using standard formulae for derivatives. Our Theorem 1.1
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applies to many sets that have empty interior (see Example 4.1 below) and “Laplacian”

has to be defined using, for example, Brownian transition probabilities. It is natural to

ask about the relationship between eigenvalues in open and closed sets. It is easy to prove

that the spectrum for a compact sets is the same as the spectrum for its interior if the

common boundary of these sets is smooth. This section is devoted to a discussion of what

happens for non-smooth sets.

We will be concerned only with the first eigenvalue and denote it λ.

We start with a simple example of a highly irregular set showing that the first eigen-

value for a compact set and its interior can be different.

Example 4.1. (Cheese set) Let Q = {(x1, x2) ∈ R2 : |x1| ≤ 1, |x2| ≤ 1}. Let {yi}i≥1

be an ordering of all points with rational coordinates in Q, except (0, 0). For each i,

choose ri > 0 so that P (0,0)(TB(yi,ri) < T∂Q) < 2−(i+1). Let K = Q \
⋃
i≥1 B(yi, ri).

Then Brownian motion starting from (0, 0) does not hit Kc immediately a.s. and so the

spectrum given in Theorem 1.1 is non-trivial. At the same time, the interior of K is empty.

For the rest of this section we will consider only compact sets K such that K is

the closure of the interior D of K. It is clear from the above example that typically

λ(D) 6= λ(K) if we do not make this assumption.

For a set D ∈ R3 and r ≥ 0, let B(D, r) = {x ∈ R3 : dist(D,x) < r} and B(D, r) =

{x ∈ R3 : dist(D,x) ≤ r}.
For a compact set K, the set of all x ∈ ∂K such that

P x(TKc = 0) = 0

will be denoted I(K). In other words, I(K) is the set of points which are not regular for

Kc.

The following result has been inspired by discussions of eigenvalue continuity with R.

Howard. We will only sketch its proof.

Proposition 4.2. Suppose that K is a compact set and K is the closure of its interior

D. Then λ(D) = λ(K) if and only if I(K) is polar.

Proof. Let Dn = B(D, 1/n) and Kn = B(K, 1/n). The sets Dn are open and Kn

are compact. It is easy to check that Dn ⊂ Kn ⊂ Dn−1. Hence λ(Dn) ≤ λ(Kn) ≤
λ(Dn−1). The monotonicity of λ follows, for example, from the first paragraph of the

proof of Theorem 1.2. We see that

lim
n→∞

λ(Dn) = lim
n→∞

λ(Kn).
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By Theorem 1.2, λ(K) = limn→∞ λ(Kn). Thus it will suffice to show that

lim
n→∞

λ(Dn) = λ(D)

if and only if I(K) is polar.

That the polarity of I(K) implies limn→∞ λ(Dn) = λ(D) was proved by Le Gall [LG].

Now we will sketch how to prove the opposite implication. Assume that I(K) is not polar.

We modify the proof of Theorem 1 in Gesztesy and Zhao [GZ] as follows.

We will discuss only the case when the boundary ofD has zero d-dimensional Lebesgue

measure. This is the case covered by the second part of the proof in [GZ]. The other case

can be adapted to our purposes in an analogous manner.

Suppose that x ∈ D and consider a Brownian bridge X starting at x at time 0 and

returning to x at time 1. The path properties of a Brownian bridge are the same as those

of Brownian motion away from the starting point and end point. Since I(K) is non-polar,

there is a positive probability that X will hit I(K). The strong Markov property applied

at the hitting time of I(K) may be used to show that X does not enter Kc just after

hitting I(K) with positive probability. Then we can use time reversal to see that X may

hit I(K) before hitting Kc with positive probability. Another application of the strong

Markov property shows that {Xt, 0 ≤ t ≤ 1} may hit I(K) but not hit Kc with positive

probability. In terms of unconditioned Brownian motion, this implies that for x ∈ D,

P x(TI(K) < TKc) = c(x) > 0.

Hence

P x(TDc < TKc) ≥ P x(TI(K) < TKc ) = c(x) > 0.

This is the analogue of (40) in [GZ]. The same argument as in [GZ] then implies

P x(t < TKc) > P x(t < TDc) + ε(x)

for some t > 0 and ε(x) > 0. This is the analogue of (43) in [GZ].

Next we obtain a formula corresponding to (44) in [GZ]. Let ϕ(x) be the first eigen-

function in D and let us define ϕ(x) = 0 for x /∈ D. Then

Ex(ϕ(Xt); t < TDcn) ≥ Ex(ϕ(Xt); t < TKc) > Ex(ϕ(Xt); t < TDc) + δ(x).

It is shown in [GZ] (see (32), (33) and (45)) that this implies that λ(Dn) < λ(D) − η.

Here η > 0 may be chosen independently of n because δ(x) does not depend on n. This

completes the argument.
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Can one describe in geometric terms all sets K with I(K) polar? We do not have a

complete characterization but two partial results should shed some light on the problem.

The first result is due to R. Howard who has an analytic proof. We supply our own proof

which is probabilistic and seems to illustrate well the special role of the main assumption

of the proposition.

Proposition 4.3. (R. Howard (private communication)) If the boundary of K can be

represented locally as the graph of a continuous function then I(K) is polar.

We would like to point out that if K ⊂ Rd, d ≥ 3, and ∂K is locally the graph of a

continuous function then the boundary of K may contain infinitely many points x which

are irregular for Kc, i.e., such that P x(TKc = 0) = 0. A standard example of such a point

is the “Lebesgue thorn.” If d = 2 then there are no such points.

Proof. Suppose that f : Rd−1 → R is a continuous function, D = {(x1, . . . , xd) ∈ Rd :

xd > f(x1, . . . , xd−1)} and K = D. Suppose that x ∈ ∂D is regular for Dc. Then P x-

a.s. there exist times tn, n ≥ 1, such that tn > 0, tn → 0 and X(tn) ∈ Dc for every

n. Let Y (t) = X(t) − t · (0, . . . , 0, 1), i.e., Y is a Brownian motion with drift. We have

Y (tn) = X(tn)−tn ·(0, . . . , 0, 1) ∈ Kc since f is a continuous function and X(tn) ∈ Dc. We

see that Brownian motion with constant drift starting from x hits Kc immediately with

probability 1. The distributions of Brownian motion and Brownian motion with constant

drift are mutually absolutely continuous on the finite time interval [0, 1] so we conclude

that Brownian motion starting from x hits Kc immediately with probability 1. We have

shown that if x is regular for Dc then it is also regular for Kc.

The set of all points in ∂D which are irregular for Dc is polar (Blumenthal and Getoor

[BG]) so I(K) is polar.

It is easy to adapt the proof to the case when the boundary can be represented only

locally as the graph of a function.

The next example goes in the opposite direction to Proposition 4.3. If the boundary

of K is represented locally by a bounded function, I(K) need not be polar.

Example 4.4. We will construct an open set D such that

(i) D = {(x1, x2, x3) ∈ R3 : |x1| < 1, |x2| < 1, f(x1, x2) < x3 < 1} for some (discontinu-

ous) bounded function f ,

(ii) the volume (i.e., the three-dimensional Lebesgue measure) of the boundary ∂D is

equal to zero,

(iii) D is the interior of the closure K of D,
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(iv) λ(D) 6= λ(K).

We will identify R2 with {(x1, x2, x3) ∈ R3 : x3 = 0} and similarly for subsets of R2.

Let
Q = {(x1, x2, x3) ∈ R3 : |x1| < 1, |x2| < 1, |x3| < 1},
M = {(x1, x2, x3) ∈ Q : x1 = 0, x3 ≤ 0},

and let M1 be the orthogonal projection of M on R2.

Fix a base point z = (0, 0, 1/2) ∈ Q. Let

p = P z(TM < T∂Q).

It is clear that p is strictly positive.

Choose a sequence of distinct points yk = (y1
k, y

2
k) ∈ R2, k ≥ 1, such that each point

of M1 is an accumulation point of the sequence {yk} but there are no accumulation points

outside the closure of M1. Let

Fk(r) = {(x1, x2, x3) ∈ Q : x3 ≤ 0, |x1 − y1
k| ≤ r, |x2 − y2

k| ≤ r}.

For a fixed k, P z(TFk(r) < T∂Q) goes to zero as r→ 0. We choose rk > 0 so small that

P z(TFk(rk) < T∂Q) < p/2k+1

for every k > 0. Moreover we choose rk so small that the sets Fk(rk), k ≥ 1, are disjoint.

We let D = Q \
(
M ∪

⋃
k Fk(rk)

)
.

We will now verify that properties (i)-(iv) hold for D.

(i) Let G be the projection of M ∪
⋃
k Fk on R2. Then let f be equal to 0 on G and

equal to −1 otherwise. It is easy to see that (i) is satisfied by this function f and domain

D.

(ii) The boundary of D is a subset of ∂Q∪M ∪
⋃
k ∂Fk. Hence, ∂D is a subset of the

countable union of sets whose three-dimensional Lebesgue measure is zero.

(iii) Every open set is a subset of the interior of its closure. Recall that every point

of M1 is a cluster point of the sequence {yk}. Hence every point of M is a cluster point of

some points in the interiors of Fk’s. This implies that no point of M may belong to the

interior of K. It is evident that no other point of Dc may belong to the interior of K.

(iv) Note that

P z(TM < T∂Q < TKc) ≥ P z(TM < T∂Q)−
∞∑
k=1

P z(TFk(rk) < T∂Q)

≥ p−
∞∑
k=1

p/2k+1 = p/2 > 0.
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By applying the strong Markov property at TM we conclude that there is a non-polar

subset M̃ of M \ ∂Q such that for every x ∈ M̃ we have

P x(TKc > 0) ≥ P x(T∂Q < TKc) > 0.

By Blumenthal’s 0-1 law, P x(TKc > 0) = 1 for such x. Hence, M̃ ⊂ I(K), and so I(K) is

non-polar. Proposition 4.2 now implies that λ(D) 6= λ(K).

The referee for this paper suggested the following two problems.

Problem 1. If K is compact and is equal to the closure of its interior, estimate

|λ(D)− λ(K)| in terms of the capacity of I(K).

Problem 2. Is it possible to define the Dirichlet Laplacian in terms of “generalized”

derivatives at most points of a compact set and extend the theory of Sobolev spaces to

such sets?
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