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Abstract
Since the pioneering works of C.C. Heyde, A.V. Nagaev, and S.V. Nagaev in 1960’s
and 1970’s, the precise asymptotic behavior of large-deviation probabilities of sums
of heavy-tailed random variables has been extensively investigated by many people,
but mostly it is assumed that the random variables under discussion are indepen-
dent. In this paper, we extend the study to the case of negatively dependent random
variables and we find out that the asymptotic behavior of precise large deviations
is insensitive to the negative dependence.
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1 Introduction

Let {Xk, k = 1, 2, . . .} be a sequence of random variables with common distribution F
and mean 0 satisfying F (x) = 1 − F (x) > 0 for all x, and let Sn be its nth partial sum,
n = 1, 2, . . .. In the present paper we are interested in precise large deviations of these
partial sums in the situation that the random variables {Xk, k = 1, 2, . . .} are heavy tailed
and negatively dependent. Following many researchers in this field, we aim to prove that
for each fixed γ > 0, the relation

Pr (Sn > x) ∼ nF (x), n →∞, (1.1)

holds uniformly for all x ≥ γn. That is,

lim
n→∞

sup
x≥γn

∣∣∣∣Pr (Sn > x)

nF (x)
− 1

∣∣∣∣ = 0.

An important class of heavy-tailed distributions is D, which consists of all distributions
with dominated variation in the sense that the relation

lim sup
x→∞

F (vx)

F (x)
< ∞

holds for some (hence for all) 0 < v < 1. A slightly smaller class is C, which consists of
all distributions with consistent variation in the sense that

lim
v↘1

lim inf
x→∞

F (vx)

F (x)
= 1, or, equivalently, lim

v↗1
lim sup

x→∞

F (vx)

F (x)
= 1. (1.2)

The regularity property in (1.2) has been investigated in the literature; see Stadtmüller
and Trautner (1979), Bingham et al. (1987), and Cline (1994), among others. Besides
precise large deviations, the class C has recently been used in different studies of applied
probability such as queueing systems and ruin theory. Closely related is the famous class
R of all distributions with regular variation in the sense that for some α ≥ 0, the relation

lim
x→∞

F (xy)

F (x)
= y−α (1.3)

holds for every y > 0. Clearly, the class C covers the class R. Examples that illustrate
the inclusion R ⊂ C is proper were given in Cline and Samorodnitsky (1994) and Cai and
Tang (2004).

For classical works of precise large deviations with heavy tails, we refer the reader to
Heyde (1967a, 1967b, 1968), A.V. Nagaev (1969a, 1969b, 1969c), S.V. Nagaev (1973,
1979), Pinelis (1985), while for recent works, we refer to Cline and Hsing (1991), Rozovskĭı
(1993), Vinogradov (1994), Mikosch and A.V. Nagaev (1998), Tang et al. (2001), Ng et
al. (2004), and Baltrūnas and Klüppelberg (2004), among many others.
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Strolling in this literature, we find that most works were conducted only for indepen-
dent random variables, though several dealing with non-identically distributed random
variables.

The goal of this paper is to extend the study to certain dependent cases. More precisely, we
shall consider negative dependence structures for the random variables {Xk, k = 1, 2, . . .}.
As defined below, these structures describe that the tails of finite-dimensional distribu-
tions of the random variables {Xk, k = 1, 2, . . .} in the lower left or/and upper right
corners are dominated by the corresponding tails of the finite-dimensional distributions of
an i.i.d. sequence with the same marginal distributions. As is pointed out by the referee,
the intuition of the negative dependence structures is that they assist cancellation, and
limit theorems in probability theory are basically cancellation phenomena. These depen-
dence structures have been systematically investigated in the literature since they were
introduced by Ebrahimi and Ghosh (1981) and Block et al. (1982).

Definition 1.1. We call random variables {Xk, k = 1, 2, . . .}

(1) Lower Negatively Dependent (LND) if for each n = 1, 2, . . . and all x1, . . ., xn,

Pr (X1 ≤ x1, . . . , Xn ≤ xn) ≤
n∏

k=1

Pr (Xk ≤ xk) ; (1.4)

(2) Upper Negatively Dependent (UND) if for each n = 1, 2, . . . and all x1, . . ., xn,

Pr (X1 > x1, . . . , Xn > xn) ≤
n∏

k=1

Pr (Xk > xk) ; (1.5)

(3) Negatively Dependent (ND) if both (1.4) and (1.5) hold for each n = 1, 2, . . . and
all x1, . . ., xn.

It is worth mentioning that for n = 2, the LND, UND, and ND structures are equivalent;
see, for example, Lehmann (1966). In terms of the well-known Farlie-Gumbel-Morgenstern
distributions (see Kotz et al. (2000)), it is not difficult to construct practically interesting
examples that are (lower/upper) negatively dependent but not independent. We also
remark that these notions of negative dependence are much more verifiable than the
commonly used notion of negative association, the latter of which was introduced by
Alam and Saxena (1981) and Joag-Dev and Proschan (1983). See also Bingham and Nili
Sani (2004) for a recent account and for a list of relevant references.

The basic assumption of this paper is that the random variables {Xk, k = 1, 2, . . .} are
ND with common distribution F ∈ C. Below is our main result, which indicates that the
asymptotic relation (1.1) is insensitive to the assumed ND structure.
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Theorem 1.1. Let {Xk, k = 1, 2, . . .} be ND with common distribution F ∈ C and mean
0 satisfying

xF (−x) = o
(
F (x)

)
, x →∞. (1.6)

Then for each fixed γ > 0, relation (1.1) holds uniformly for all x ≥ γn. Condition (1.6)
is unnecessary when {Xk, k = 1, 2, . . .} are mutually independent.

Condition (1.6) indicates that the left tail of F should be lighter than the right tail. The
result is new even when the random variables {Xk, k = 1, 2, . . .} are mutually independent.
The main difficulties that we encounter in the proof are due to the negative dependence
structure of {Xk, k = 1, 2, . . .} and the two-sided support of F .

The remaining part of this paper consists of two sections. After preparing several lemmas
in Section 2, we formulate in Sections 3 the proof of Theorem 1.1 in two parts, which
provide the probability Pr (Sn > x) with an asymptotic upper estimate and an asymptotic
lower estimate, respectively.

2 Preliminaries

Throughout, every limit relation without explicit limit procedure is with respect to n →
∞, letting the relation speak for itself. For positive functions f(·) and g(·), we write

f = O(g) if lim sup f/g < ∞,

f = o(g) if lim f/g = 0,

f � g if both f = O(g) and g = O(f),

f . g if lim sup f/g ≤ 1,

f & g if lim inf f/g ≥ 1, and

f ∼ g if both f . g and f & g.

For a distribution F , we define

J∗F = − lim
v→∞

log F ∗(v)

log v
with F ∗(v) = lim inf

x→∞

F (vx)

F (x)
for v > 0,

and we call the quantity J∗F the (upper) Matuszewska index of the distribution F . For
details of the Matuszewska indices see Bingham et al. (1987, Chapter 2.1), while for
further discussions and applications see Cline and Samorodnitsky (1994) and Tang and
Tsitsiashvili (2003).

Clearly, if relation (1.3) holds with some α ≥ 0 then J∗F = α. Moreover, F ∈ D if and
only if F (vx) � F (x) as x →∞ for each v > 0 if and only if J∗F < ∞. We shall be using
these equivalents without further comment.

The following lemma is a combination of Proposition 2.2.1 of Bingham et al. (1987) and
Lemma 3.5 of Tang and Tsitsiashvili (2003):
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Lemma 2.1. If F ∈ D, then,

(1) for each p > J∗F , there exist positive constants C and D such that the inequality

F (y)

F (x)
≤ C

(
x

y

)p

holds for all x ≥ y ≥ D;

(2) it holds for each p > J∗F that x−p = o
(
F (x)

)
.

By the second item of this lemma it is easy to see that if F (x)1(0≤x<∞) has a finite mean
then J∗F ≥ 1.

The following properties of LND or UND random variables are direct consequences of
Definition 1.1 and were mentioned by Block et al. (1982, p. 769):

Lemma 2.2. For random variables {Xk, k = 1, 2, . . .} and real functions
{fk(·), k = 1, 2, . . .},

(1) if {Xk, k = 1, 2, . . .} are LND (UND) and {fk(·), k = 1, 2, . . .} are all monotone
increasing, then {fk(Xk), k = 1, 2, . . .} are still LND (UND);

(2) if {Xk, k = 1, 2, . . .} are LND (UND) and {fk(·), k = 1, 2, . . .} are all monotone
decreasing, then {fk(Xk), k = 1, 2, . . .} are UND (LND);

(3) if {Xk, k = 1, 2, . . .} are ND and {fk(·), k = 1, 2, . . .} are either all monotone in-
creasing or all monotone decreasing, then {fk(Xk), k = 1, 2, . . .} are still ND;

(4) if {Xk, k = 1, 2, . . .} are nonnegative and UND, then for each n = 1, 2, . . .,

E

(
n∏

k=1

Xk

)
≤

n∏
k=1

EXk.

In the next lemma we establish general inequalities for the tail probabilities of sums of
UND random variables. Relevant references in this direction but for independent random
variables are Fuk and S.V. Nagaev (1971) and S.V. Nagaev (1979), whose ideas will be
applied throughout the paper. See also Tang and Yan (2002). This lemma will be used
in deriving a lower asymptotic estimate of the large-deviation probabilities.

We shall be using the symbols x+ = max{x, 0}, m− = EX11(X1≤0), and m+ = EX11(X1>0).

Lemma 2.3. Let {Xk, k = 1, 2, . . .} be UND with common distribution F and mean 0
satisfying E

(
X+

1

)r
< ∞ for some r > 1. Then for each fixed γ > 0 and p > 0, there exist

positive numbers v and C = C(v, γ) irrespective to x and n such that for all x ≥ γn and
n = 1, 2, . . .,

Pr

(
n∑

k=1

Xk ≥ x

)
≤ nF (vx) + Cx−p. (2.1)
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Proof. If we have proven the result for all x ≥ γn and all large n, say n ≥ n0 + 1, then
using the inequality

Pr

(
n∑

k=1

Xk ≥ x

)
≤ n Pr

(
X1 ≥

x

n0

)
, for n = 1, 2, . . . , n0, (2.2)

the result extends to all n = 1, 2, . . ..

With arbitrarily fixed v > 0 we write X̃k = min {Xk, vx}, k = 1, 2, . . ., which, by Lemma
2.2(1), are still UND. A standard truncation argument gives that

Pr

(
n∑

k=1

Xk ≥ x

)
= Pr

(
n∑

k=1

Xk ≥ x, max
1≤k≤n

Xk > vx

)
+ Pr

(
n∑

k=1

Xk ≥ x, max
1≤k≤n

Xk ≤ vx

)

≤ nF (vx) + Pr

(
n∑

k=1

X̃k ≥ x

)
. (2.3)

We estimate the second term above as follows. For a positive number h = h(n, x), which
we shall specify later, by Chebyshev’s inequality and Lemma 2.2(1)(4),

Pr

(
n∑

k=1

X̃k ≥ x

)
≤ e−hx

(
Eeh eX1

)n

. (2.4)

Arbitrarily choose some 1 < q < min{r, 2}. We see that Eeh eX1 is bounded from above by∫ 0

−∞

(
ehu − 1

)
F (du) +

∫ vx

0

ehu − 1− hu

uq
uqF (du) +

(
ehvx − 1

)
F (vx) + hm+ + 1. (2.5)

For the first term in (2.5), since

0 ≤ ehu − 1− hu

h
≤ u(ehu − 1) ≤ −u for all u ≤ 0,

by the dominated convergence theorem we have

lim
h↘0

∫ 0

−∞

(
ehu − 1

)
F (du)

h
= lim

h↘0

∫ 0

−∞

ehu − 1− hu

h
F (du) + m− = m−.

Thus, there exists some real function α(·) with α(h) → 0 as h ↘ 0 such that∫ 0

−∞

(
ehu − 1

)
F (du) = (1 + α(h)) hm−. (2.6)

By virtue of the monotonicity in u ∈ (0,∞) of
(
ehu − 1− hu

)
/uq, we deal with the second

term in (2.5) as ∫ vx

0

ehu − 1− hu

uq
uqF (du) ≤ ehvx − 1− hvx

(vx)q
E
(
X+

1

)q
. (2.7)
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Substituting (2.6) and (2.7) into (2.5), from (2.4) we obtain that

Pr

(
n∑

k=1

X̃k ≥ x

)

≤ e−hx

(
(1 + α(h)) hm− +

ehvx − 1− hvx

(vx)q
E
(
X+

1

)q
+
(
ehvx − 1

)
F (vx) + hm+ + 1

)n

≤ exp

{
(1 + α(h)) nhm− +

ehvx − 1

(vx)q
nE
(
X+

1

)q
+
(
ehvx − 1

)
nF (vx) + nhm+ − hx)

}
= exp

{
α(h)nhm− +

ehvx − 1

(vx)q
nE
(
X+

1

)q
+
(
ehvx − 1

)
nF (vx)− hx)

}
, (2.8)

where at the second step we used an elementary inequality s + 1 ≤ es for all s. In (2.8),
take

h =
1

vx
log

(
vq−1xq

nE
(
X+

1

)q + 1

)
,

which is positive and tends to 0 uniformly for all x ≥ γn. After some simple calculation
we see that for all large n such that |α(h)m−| /γ ≤ 1/2 holds for all x ≥ γn, the right-hand
side of (2.8) is bounded from above by

exp

{
1

2v
log

(
vq−1xq

nE
(
X+

1

)q + 1

)
+

1

v
+

vq−1xqF (vx)

E
(
X+

1

)q − 1

v
log

(
vq−1xq

nE
(
X+

1

)q + 1

)}

≤ exp

{
1

v
+

vq−1xqF (vx)

E
(
X+

1

)q
}(

vq−1γxq−1

E
(
X+

1

)q
)−1/(2v)

≤ Cx−(q−1)/(2v),

where the coefficient C is given by

C = sup
x≥0

exp

{
1

v
+

vq−1xqF (vx)

E
(
X+

1

)q
}(

vq−1γ

E
(
X+

1

)q
)−1/(2v)

< ∞.

Hence, with some v > 0 such that (q − 1)/(2v) > p, from (2.3) we prove that inequality
(2.1) holds for all x ≥ γn and all large n = 1, 2, . . ..

3 Proof of Theorem 1.1

Hereafter, all limit relations are uniform for all x ≥ γn. We shall not repeat this expla-
nation, but it remains in place.

113



3.1 An asymptotic upper estimate

Theorem 3.1. Let {Xk, k = 1, 2, . . .} be UND with common distribution F ∈ C and mean
0. Then for each fixed γ > 0, the relation

Pr (Sn > x) . nF (x) (3.1)

holds uniformly for all x ≥ γn. That is,

lim sup
n→∞

sup
x≥γn

Pr (Sn > x)

nF (x)
≤ 1.

Proof. With arbitrarily fixed 0 < v < 1, we write X̃k = min{Xk, vx}, k = 1, 2, . . ., and

S̃n =
∑n

k=1 X̃k, n = 1, 2, . . .. Analogously to (2.3),

Pr (Sn > x) ≤ nF (vx) + Pr
(
S̃n > x

)
. (3.2)

To estimate the second term above, we write a = max{− log(nF (vx)), 1}, which tends to
∞. Analogously to (2.4), with a temporarily fixed number h = h(x, n) > 0 we have

Pr
(
S̃n > x

)
nF (vx)

≤ e−hx+a
(
Eeh eX1

)n

. (3.3)

We split the expectation Eeh eX1 into several parts as

Eeh eX1 =

(∫ 0

−∞
+

∫ vx/a2

0

+

∫ vx

vx/a2

)
(ehu − 1)F (du) +

(
ehvx − 1

)
F (vx) + 1

=̂ (I1 + I2 + I3) +
(
ehvx − 1

)
F (vx) + 1. (3.4)

The idea of the division in (3.4) is from Cline and Hsing (1991), but the method is
different. As done in (2.6), there exists some real function α(·) with α(h) → 0 as h ↘ 0
such that

I1 = (1 + α(h)) hm−. (3.5)

For I2, using an elementary inequality es − 1 ≤ ses for all s we have

I2 ≤ ehvx/a2

h

∫ vx/a2

0

uF (du) ≤ ehvx/a2

hm+. (3.6)

For I3, by Lemma 2.1(1) with some p > J∗F , there exist some positive constants C and D
irrespective to x and n such that for all x ≥ D,

I3 ≤ ehvxF (vx/a2) ≤ Cehvxa2pF (vx). (3.7)
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Substituting (3.5), (3.6), and (3.7) into (3.4) yields that

Eeh eX1 ≤ (1 + α(h)) hm− + ehvx/a2

hm+ + O(1)ehvxa2pF (vx) + 1. (3.8)

Further substituting (3.8) into (3.3) and setting in the resulting inequality

h =
a− 2p log a

vx
,

which tends to zero, we obtain that

Pr
(
S̃n > x

)
nF (vx)

≤ e−hx+a
(
(1 + α(h)) hm− + e1/ahm+ + O(1)eaF (vx) + 1

)n
.

Then, as done in (2.8), using the elementary inequality s + 1 ≤ es for all s gives that

Pr
(
S̃n > x

)
nF (vx)

≤ exp
{
(1 + α(h)) nhm− + e1/anhm+ + O(1)eanF (vx)− hx + a

}
= exp

{(
(1 + α(h)) m− + e1/am+

)
nh + O(1)− hx + a

}
= O(1) exp {o(1)nh− hx + a}
= O(1) exp {o(a) + (1− 1/v) a}
= o(1), (3.9)

where the fact (1 + α(h)) m−+e1/am+ → 0 used at the third step results from α(h) → 0,
a →∞, and m− + m+ = 0. Substituting (3.9) into (3.2) yields that

Pr (Sn > x) . nF (vx). (3.10)

By the arbitrariness of 0 < v < 1 and the definition of F ∈ C, we obtain that

lim sup
n→∞

sup
x≥γn

Pr (Sn > x)

nF (x)
≤ lim

v↗1
lim sup

n→∞
sup
x≥γn

nF (vx)

nF (x)
= 1. (3.11)

This proves (3.1).

Note that during the proof of Theorem 3.1, the condition F ∈ D suffices for (3.10).
Moreover, for each fixed positive integer n0, from (2.2) we see that the inequality

Pr

(
n∑

k=1

Xk ≥ x

)
≤ C(n0)nF (x)

holds for some C(n0) > 0, all x ≥ 0, and all n = 1, 2, . . . , n0. Hence, we conclude the
following:
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Corollary 3.1. Let {Xk, k = 1, 2, . . .} be UND with common distribution F ∈ D and
mean 0. Then for each fixed γ > 0 and some C = C(γ) irrespective to x and n, the
inequality

Pr (Sn > x) ≤ CnF (x) (3.12)

holds for all x ≥ γn and n = 1, 2, . . ..

Inequality (3.12) is sharp in view of the fact that its bound is linear in n. This result is
useful, particularly when dealing with tail probabilities of random sums of heavy-tailed
random variables.

3.2 An asymptotic lower estimate

Theorem 3.2. Let {Xk, k = 1, 2, . . .} be LND with common distribution F ∈ C and mean
0 satisfying (1.6). Then for each fixed γ > 0, the relation

Pr (Sn > x) & nF (x) (3.13)

holds uniformly for all x ≥ γn. That is,

lim inf
n→∞

inf
x≥γn

Pr (Sn > x)

nF (x)
≥ 1.

Condition (1.6) is unnecessary when {Xk, k = 1, 2, . . .} are mutually independent.

Proof. With arbitrarily fixed v > 1, we have

Pr (Sn > x) ≥ Pr

(
Sn > x, max

1≤k≤n
Xk > vx

)
≥

n∑
k=1

Pr (Sn > x,Xk > vx)−
∑

1≤k<l≤n

Pr (Sn > x,Xk > vx, Xl > vx)

=̂ J1 − J2. (3.14)

From the remark after Definition 1.1, it is clear that the random variables {Xk, k =
1, 2, . . .} are pairwise UND. Therefore,

J2 ≤
(
nF (vx)

)2
. (3.15)

To deal with J1, recall an elementary inequality Pr (E1E2) ≥ Pr (E1) + Pr (E2)− 1 for all
events E1 and E2. We have

J1 ≥
n∑

k=1

Pr (Sn −Xk > (1− v)x, Xk > vx) (3.16)

≥
n∑

k=1

(Pr (Sn −Xk > (1− v)x) + Pr (Xk > vx)− 1)

=
n∑

k=1

(
F (vx)− Pr

( ∑
l: 1≤l≤n,l 6=k

(−Xl) ≥ (v − 1)x

))
. (3.17)
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By Lemma 2.2(2), the random variables {−Xk, k = 1, 2, . . .} are UND. Then for arbitrarily
fixed p > J∗F , by Lemma 2.3 there exist positive constants v0 and C irrespective to x and
n such that the inequality

Pr

( ∑
l: 1≤l≤n,l 6=k

(−Xl) ≥ (v − 1)x

)
≤ n Pr

(
−X1 ≥

(v − 1)x

v0

)
+ Cx−p

holds for all x ≥ γn and n = 1, 2, . . .. Hence by Lemma 2.1(2) and condition (1.6),

Pr

( ∑
l: 1≤l≤n,l 6=k

(−Xl) ≥ (v − 1)x

)
≤ x

γ
F

(
−(v − 1)x

v0

)
+ Cx−p = o

(
F (vx)

)
. (3.18)

Substituting (3.18) into (3.17) yields that

J1 & nF (vx). (3.19)

Then substituting (3.15) and (3.19) into (3.14) yields that

Pr (Sn > x) & nF (vx). (3.20)

Thus, analogously to (3.11) we prove relation (3.13).

Now we assume that the random variables {Xk, k = 1, 2, . . .} are mutually independent
and we show that condition (1.6) is unnecessary. Actually, in this case we only need to
rewrite the treatment on J1 in the segment between (3.16) and (3.19) as follows (the other
part of the proof remains valid):

J1 ≥
n∑

k=1

F (vx) Pr (Sn −Xk > (1− v)x) ∼ nF (vx),

where we used the law of large numbers to obtain that Pr (Sn −Xk > (1− v)x) → 1.
This ends the proof of Theorem 3.2.

Note that during the proof of Theorem 3.2 the condition F ∈ D suffices for (3.20).
Moreover, for each fixed positive integer n0 the inequalities

Pr (Sn > x) ≥ Pr (X1 > x) Pr (X2 > 0) · · ·Pr (Xn > 0) ≥ C(n0)nF (x)

trivially hold for some C(n0) > 0, all x ≥ 0, and all n = 1, 2, . . . , n0. Analogously to
Corollary 3.1, we conclude the following:

Corollary 3.2. Let {Xk, k = 1, 2, . . .} be LND with common distribution F ∈ D and mean
0 satisfying (1.6). Then for each fixed γ > 0 and some C = C(γ) > 0, the inequality

Pr (Sn > x) ≥ CnF (x)

holds for all x ≥ γn and n = 1, 2, . . .. Condition (1.6) is unnecessary when {Xk, k =
1, 2, . . .} are mutually independent.

Acknowledgments: The author wishes to thank the referee for his/her helpful comments.
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