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Abstract

We consider a model of a random height function with long-range constraints on a
discrete segment. This model was suggested by Benjamini, Yadin and Yehudayoff
and is a generalization of simple random walk. The random function is uniformly
sampled from all graph homomorphisms from the graph Pn,d to the integersZ, where
the graph Pn,d is the discrete segment {0, 1, . . . , n} with edges between vertices of
different parity whose distance is at most 2d + 1. Such a graph homomorphism can
be viewed as a height function whose values change by exactly one along edges of
the graph Pn,d. We also consider a similarly defined model on the discrete torus.

Benjamini, Yadin and Yehudayoff conjectured that this model undergoes a phase
transition from a delocalized to a localized phase when d grows beyond a threshold
c logn. We establish this conjecture with the precise threshold log2 n. Our results
provide information on the typical range and variance of the height function for every
given pair of n and d, including the critical case when d− log2 n tends to a constant.

In addition, we identify the local limit of the model, when d is constant and n tends
to infinity, as an explicitly defined Markov chain.
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1 Introduction

Given two graphs G and H, a graph homomorphism from G to H is a function
f : V (G)→ V (H) such that if x and y are neighbors in G, then f(x) and f(y) are neigh-
bors in H. A graph homomorphism from a graph G to Z is then a map from the vertex
set of G to the integers, that maps adjacent vertices to adjacent integers. For a given
vertex v0 ∈ G, we denote by Hom(G, v0) the set of all homomorphisms from G to Z,
which map v0 to 0. Precisely,

Hom(G, v0) :=
{
f : V (G)→ Z | f(v0) = 0, |f(x)− f(y)| = 1 when (x, y) ∈ E(G)

}
.
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Random walk with long-range constraints

The set Hom(G, v0) is non-empty and finite when G is finite, bipartite and connected.
Benjamini, Häggström and Mossel [1] initiated the study of random Z-homomorphisms,
that is, uniformly chosen elements of Hom(G, v0). Special cases of this model include
the simple random walk, when G = {0, 1, . . . , n} with nearest-neighbor connections, the
random walk bridge, when G is a cycle, and the branching random walk, when G is a
tree [3, 2]. The model is sometimes referred to as a G-indexed random walk. The be-
havior of typical Z-homomorphisms is poorly understood for general graphs G. Beyond
simple and branching random walks, results are available mainly for the hypercube
[8, 7], high-dimensional cubic lattices [10] and expander and tree graphs [1, 11]. In
particular, the case when G = Z2

2n, a two-dimensional discrete torus, appears com-
pletely open. This case is related to the 6-vertex, square-ice and antiferromagnetic
3-state Potts models of statistical physics (see [10]).

Benjamini, Yadin and Yehudayoff [4] suggested the study of this model when G =

Tn,d is a certain one-dimensional graph with long-range edges, defined below, and
where d may depend on n. In this work we study the properties of the model on this
graph, as well as its close relative, the graph Pn,d. Specifically, let Pn,d, for n, d ≥ 1, be
the graph defined by

V (Pn,d) := {0, 1, . . . , n},
E(Pn,d) := {(i, j) | |i− j| ∈ {1, 3, . . . , 2d+ 1}}.

(1.1)

Thus, a uniformly chosen random function f from Hom(Pn,d, 0) is a simple random walk
conditioned on satisfying |f(i)− f(j)| = 1 whenever i, j have different parity and are at
distance at most 2d + 1. Figure 1 shows a typical sample from Hom(Pn,d, 0). Similarly,
let Tn,d, n ≥ 1 even and d ≥ 1, be the graph defined by

V (Tn,d) := {0, 1, . . . , n− 1},
E(Tn,d) :=

{
(i, j) | min{|i− j|, n− |i− j|} ∈ {1, 3, . . . , 2d+ 1}

}
.

(1.2)

Thus, a uniformly chosen random function f in Hom(Tn,d, 0) is a simple random walk
bridge conditioned on satisfying |f(i)−f(j)| = 1 whenever i, j have different parity and
are at distance at most 2d+ 1 on the cycle.

In the rest of the paper we abbreviate Z-homomorphisms to homomorphisms. We
shall loosely refer to homomorphisms on Pn,d as being on the line, and to homomor-
phisms on Tn,d as being on the torus.

Our main objects of study are the size of the range of a typical homomorphism on
Pn,d or Tn,d and the variance of the homomorphism at given vertices. For a graph G,
the range of a function f : V (G)→ Z is defined as

Rng(f) := {f(v) | v ∈ V (G)}.

Benjamini, Yadin and Yehudayoff made the following conjecture.
Conjecture ([4]). There exist constants b, c > 0 such that if fn,d is uniformly sampled
from Hom(Tn,d, 0),

1. If d(n)− c log n→ −∞ as n→∞ then for any positive integer r, we have

P(|Rng(fn,d(n))| ≤ r) −−−−→
n→∞

0.

2. If d(n)− c log n→∞ as n→∞ then

P(|Rng(fn,d(n))| ≤ b) −−−−→
n→∞

1.
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n = 500, d = 0

n = 500, d = 1

n = 500, d = 2

Figure 1: Uniformly sampled homomorphisms in Hom(Pn,d, 0). The case d = 0 is just a
simple random walk. The simulation uses a Metropolis algorithm (see, e.g., [9, Chap-
ter 3]) and coupling from the past [12].

Our work establishes this conjecture with the precise constants b = 3 and c = 1/ log 2,
both on Tn,d and Pn,d. In addition, we discover that in the subcritical regime, when
d(n)− log2 n→ −∞, the size of the range of a typical homomorphism is of order

√
n2−d

and the variance of the homomorphism at vertex k is of order k2−d. Moreover, we
explore the behavior in the critical regime, when d(n)− log2 n→ µ ∈ R, and find that in
this case, the size of the range is a tight random variable whose distribution is closely
related to the Poisson distribution.

Our results may be intuitively understood as follows. Let f ∈ Hom(Pn,d). It is not
difficult to verify that if f(i + m) − f(i) ≥ 3 then m ≥ 2d + 3. Figure 2 shows such an
event. Moreover, if m = 2d+ 3 and this event occurs, then necessarily(

f(i+ 1)− f(i), f(i+ 2)− f(i), . . . , f(i+ 2d+ 3)− f(i)
)

= (1, 2, 1, 2, . . . , 1, 2, 1, 2, 3).

However, if this sequence of values is possible for f , then there are at least 2d other
possible candidates of the form

(1, 1 + s1, 1, 1 + s2, . . . , 1, 1 + sd, 1, 2, 1), si ∈ {−1, 1}.

Thus, intuitively, the probability that the homomorphism changes its height by 3 on any
given small segment is about 2−d. Therefore, when n2−d → 0, we will not have any
such segment, so that the size of the range of the homomorphism will be bounded by
3. Conversely, when n2−d → ∞, the expected number of segments with an upward
or downward movement of size 3 will be roughly n2−d. Since the direction of these
movements should be only mildly correlated, we expect the size of the resulting range
to be of order

√
n2−d. Our work makes these ideas precise.

2 Main Results

2.1 Homomorphisms on the line

In this section we present results on homomorphisms on the graph Pn,d, which was
defined in (1.1). Throughout this section, fn,d denotes a uniformly chosen homomor-
phism in Hom(Pn,d, 0).
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i k

Figure 2: A homomorphism jumps from some value t at vertex i to t+ 3 at vertex k. The
minimal length of such a segment is k − i = 2d+ 3. In order for this jump to occur, the
values at the d+ 1 vertices, k− 1, k− 3, . . . , k− 2d− 1, are forced to be t+ 2. Here d = 3.

We state results regarding the size of the range of a typical homomorphism. As a
homomorphism must change its value by exactly one along edges, the range is always
of size at least 2. In fact, the range is exactly 2 only for two particular homomorphisms,
and at least 3 otherwise. We shall show that the size of the range is 3 plus a term of
order

√
n2−d. Hence, we distinguish between three regimes, n2−d → ∞, n2−d → 0

and n2−d → λ ∈ (0,∞), termed the subcritical regime, the supercritical regime and the
critical regime, respectively.

The supercritical regime. The supercritical regime is when d(n) − log2 n → ∞ (i.e.
n2−d(n) → 0) as n→∞. In this case, the large number of constraints prevents a typical
homomorphism from growing. In fact, we show that, with high probability, it will take
on only 3 values.

Theorem 2.1. For any positive integers n, d and r, we have

P
(
|Rng(fn,d)| ≥ 3 + r

)
≤
(
n

r

)
2−dr and P

(
|Rng(fn,d)| < 3

)
≤ 21−n/2.

Thus, if d(n)− log2 n→∞ as n→∞ then

P
(
|Rng(fn,d(n))| = 3

)
−−−−→
n→∞

1.

The following corollary gives more precise information about the structure of a typi-
cal homomorphism in the supercritical regime. Denote by Vi := {2k+ i | 0 ≤ 2k+ i ≤ n},
i = 0, 1, the even and odd vertices, respectively, and denote by Ω0 and Ω1 the set of
homomorphisms which are constant on V0 and V1, respectively. Note that for each
i ∈ {0, 1}, conditioned on f ∈ Ωi, the random vector (f(x) − f(i) | x ∈ V1−i) consists of
independent uniform signs.

Corollary 2.2. If d(n)− log2 n→∞ as n→∞ then

P(Ω0 ∪ Ω1) = P
(
|Rng(fn,d(n))| ≤ 3

)
−−−−→
n→∞

1 and

P(Ω0 ∩ Ω1) = P
(
|Rng(fn,d(n))| < 3

)
−−−−→
n→∞

0.

Moreover, if n tends to infinity through odd numbers then P(Ω0) → 1/2, and if n tends
to infinity through even numbers then P(Ω0)→ 1/3.

The corollary implies that a typical homomorphism in the supercritical regime has
one of three possible structures. For odd values of n, with probability 1/2 − o(1), the
homomorphism takes the value 0 on all the even vertices, with probability 1/4− o(1), it
takes the value 1 on all the odd vertices, and, with probability 1/4 − o(1), it takes the
value −1 on all the odd vertices. For even values of n, the probability of each of these
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three options is 1/3−o(1). The dependence on the parity of n arises from the difference
in the number of even and odd vertices in each case. For odd values of n, |V0| = |V1|,
whereas for even values of n, |V0| = |V1|+ 1.

The subcritical regime. The subcritical regime is when d(n) − log2 n → −∞ (i.e.
n2−d(n) → ∞) as n → ∞. Here, the relatively small number of constraints allows a
typical homomorphism to grow.

Theorem 2.3. There exist absolute constants C, c > 0 such that for any positive inte-
gers n and d, we have

3 +
⌊
c
√
n2−d

⌋
− 21−n/2 ≤ E

[
|Rng(fn,d)|

]
≤ 3 + C

√
n2−d.

Moreover, for any ε > 0 there exists a δ > 0 such that for any positive integers n and d,
we have

P
(
|Rng(fn,d)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ ε+ 21−n/2. (2.1)

In particular, if d(n)− log2 n→ −∞ as n→∞ then for any positive integer r, we have

P(|Rng(fn,d(n))| ≤ r) −−−−→
n→∞

0.

The next theorem quantifies the rate of growth of the variance of the homomor-
phism.

Theorem 2.4. There exist absolute constants C, c > 0 such that for any positive inte-
gers n and d, we have

max{ck2−d, 1} ≤ Var(fn,d(k)) ≤ Ck2−d + 4, 1 ≤ k ≤ n.

The critical regime. The critical regime is when d(n)−log2 n→ − log2 λ (i.e. n2−d(n) →
λ) as n → ∞, for some λ ∈ (0,∞). In this case, the balance between the number
of constraints at each vertex and the amount of time available leads to an interesting
limiting behavior. Perhaps surprisingly, it turns out that the parity of n induces an effect
which does not disappear in the limit.

Denote by µeven(λ) the distribution of a Poisson(λ) variable conditioned to be even,
and denote by µodd(λ) the distribution of a Poisson(λ) variable conditioned to be odd.
Define the parity-biased Poisson distribution with parameters λ and α to be the follow-
ing convex combination of µeven(λ) and µodd(λ),

µ(λ, α) :=
α

α+ tanh(λ)
· µeven(λ) +

tanh(λ)

α+ tanh(λ)
· µodd(λ). (2.2)

One may check that

µ(λ, α)(r) = Z(λ, α)−1 · α(r) · λ
r

r!
, r ≥ 0, (2.3)

where α(r) = α if r is even and α(r) = 1 if r is odd and where Z(λ, α) is a normalizing
constant. In particular, we see that the Poisson(λ) distribution is obtained as µ(λ, 1).

Let (Si | i = 0, 1, . . . ) denote a simple random walk, and let

N±(λ) ∼ µ
(
λ/(2
√

2), (3/(2
√

2))±1
)

be independent of (Si | i ≥ 0). Then SN+(λ) and SN−(λ) are simple random walks stopped
at independent random times. For a positive integer k, denote Rng(Sk) := {Si | 0 ≤ i ≤
k}.
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Theorem 2.5. If n2−d(n) → λ as n→∞, for some λ ∈ (0,∞), then

|Rng(fn,d(n))| ===⇒
n→∞
n even

|Rng(SN+(λ))|+ 2 and |Rng(fn,d(n))| ===⇒
n→∞
n odd

|Rng(SN−(λ))|+ 2.

Here, the notation Xn =⇒ X as n → ∞, n even (odd), means that Xn converges in
distribution to X when n tends to infinity along even (odd) values. In fact, as the proof
shows, one may couple a critical homomorphism to a simple random walk run for N+

or N− steps, according to the parity of n.

2.2 Homomorphisms on the torus

In this section we present results for homomorphisms on the graph Tn,d, which was
defined in (1.2). Throughout this section, n is even and fn,d denotes a uniformly chosen
homomorphism in Hom(Tn,d, 0).

The supercritical regime. The supercritical regime is when d(n) − log2 n → ∞ (i.e.
n2−d(n) → 0) as n→∞. Similarly to the case on the line, the large number of constraints
cause a typical homomorphism to take on only 3 values.

Theorem 2.6. For any positive even integer n and any positive integers d and r, we
have

P
(
|Rng(fn,d)| ≥ 3 + r

)
≤
(
n

r

)2

2−(2d−1)r and P
(
|Rng(fn,d)| < 3

)
≤ 21−n/2

Thus, if d(n)− log2 n→∞ as n→∞ then

P
(
|Rng(fn,d(n))| = 3

)
−−−−→
n→∞

1.

Similarly to the case of the line, the following corollary gives more precise informa-
tion about the structure of a typical homomorphism in the supercritical regime. Denote
by Vi := {2k + i | 0 ≤ k < n/2}, i = 0, 1, the even and odd vertices of Tn,d, respectively,
and denote by Ω0 and Ω1 the set of homomorphisms which are constant on V0 and V1,
respectively. Note that for each i ∈ {0, 1}, conditioned on f ∈ Ωi, the random vector
(f(x)− f(i) | x ∈ V1−i) consists of independent uniform signs.

Corollary 2.7. If d(n)− log2 n→∞ as n→∞ then

P(Ω0 ∪ Ω1) = P
(
|Rng(fn,d(n))| ≤ 3

)
−−−−→
n→∞

1 and P(Ω0) = P(Ω1) −−−−→
n→∞

1/2.

Thus, a typical homomorphism in the supercritical regime is constant on either the
even or odd vertices of Tn,d, with the two cases being equally likely. The effect induced
by the parity of n in Corollary 2.2 does not appear here, as n is always assumed to be
even in the case of the torus.

The subcritical regime. The subcritical regime is when d(n) − log2 n → −∞ (i.e.
n2−d(n) →∞) as n→∞. As before, the relatively small number of constraints allows a
typical homomorphism to grow.

Theorem 2.8. There exist absolute constants C, c > 0 such that for any positive even
integer n and any positive integer d, we have

3 +
⌊
c
√
n2−d

⌋
− 21−n/2 ≤ E

[
|Rng(fn,d)|

]
≤ C(

√
n2−d + 1).

Moreover, for any ε > 0 there exists a δ > 0 such that for any positive even integer n
and any positive integer d, we have

P
(
|Rng(fn,d)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ ε+ 21−n/2.
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In particular, if d(n)− log2 n→ −∞ as n→∞ then for any positive integer r, we have

P
(
|Rng(fn,d(n))| ≤ r

)
−−−−→
n→∞

0.

The critical regime. The critical regime is when d(n)−log2 n→ − log2 λ (i.e. n2−d(n) →
λ) as n→∞, for some λ ∈ (0,∞). As for the line, this choice of parameters leads to an
interesting limiting behavior. In this case, the random homomorphism behaves similarly
to a simple random walk bridge of length 2N , where N is an independent random
variable whose distribution is a type of biased Poisson distribution. The distribution of
N here is biased differently from the case of the line. Specifically, N has the distribution
of a Poisson random variable with parameter

λ′ :=
λ

4
√

2
, (2.4)

conditioned to be equal to another such independent Poisson random variable.
Denote by ν(λ′) the distribution of X conditioned on X = Y , where X and Y are

independent Poisson(λ′) random variables. One may check that

ν(λ′)(k) = Z(λ′)−1 · (λ′)2k

(k!)2
, k ≥ 0, (2.5)

where Z(λ′) is a normalizing constant.
For a positive even integer k, let (Bki | 0 ≤ i ≤ k) denote a simple random walk bridge

of length k (that is, a simple random walk conditioned on Bkk = 0), and let N(λ′) ∼ ν(λ′)

be an independent random variable. Thus, B2N(λ′) is obtained by first sampling N(λ′)

and then sampling a simple random walk bridge of length 2N(λ′). For a positive even
integer k, denote Rng(Bk) := {Bki | 0 ≤ i ≤ k}.

Theorem 2.9. If n2−d(n) → λ as n→∞, for some λ ∈ (0,∞), then

|Rng(fn,d(n))| ===⇒
n→∞

∣∣Rng
(
B2N(λ′)

)∣∣+ 2,

where λ′ is defined by (2.4).

This theorem is closely related to Theorem 2.5. On the line, the range of a homomor-
phism in the critical regime is determined by a simple random walk whose length is a
parity-biased Poisson random variable. Note that if we condition a simple random walk
with a Poisson(µ) number of steps to end at its initial value, then the number of steps
it takes has distribution ν(µ/2). To see this, observe that the number of positive and
negative steps of the random walk are independent Poisson(µ/2) random variables and
we are conditioning that these variables are equal. The same phenomenon continues to
hold if we start with a simple random walk taking a parity-biased Poisson(µ,α) number
of steps. Indeed, the number of steps must be even in order for the walk to end at its
initial value, and a parity-biased Poisson(µ,α) conditioned to be even is the same as a
Poisson(µ) conditioned to be even.

2.3 Local limits on the line

In this section we present results for homomorphisms on the graph Pn,d, which was
defined in (1.1), when d is constant and n tends to infinity.

Our first result gives an approximate count of the number of homomorphisms.

Theorem 2.10. For any positive integer d there exists a constant C(d) > 0 such that

|Hom(Pn,d, 0)| = C(d)λ(d)n/2(1 + o(1)) as n→∞,
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where λ(d) is the unique positive solution to the equation

λd−1/2(λ− 2) = 1.

Remark 2.11. The constant λ(d) above satisfies

λ(d) = 2 + 2−d+1/2(1− o(1)) as d→∞.

Our next result concerns the local limit of the homomorphism. This local limit lives
on P∞,d, the limiting graph of Pn,d. Precisely, P∞,d, for d ≥ 1, is the graph defined by

V (P∞,d) := {0, 1, 2, . . .},
E(P∞,d) :=

{
(i, j) | |i− j| ∈ {1, 3, . . . , 2d+ 1}

}
.

(2.6)

For a function g defined on a domain Ω and a set A ⊆ Ω, we write g|A for the restriction
of g to A.

Theorem 2.12 (Local Limit). For any constant d ≥ 1, there exists a distribution µ∞,d
on Hom(P∞,d, 0) such that the uniform distribution on Hom(Pn,d, 0) converges to µ∞,d
as n → ∞, in the following sense. Let fn,d be a uniformly chosen homomorphism in
Hom(Pn,d, 0) and let f∞,d be sampled from µ∞,d. Then,

P(fn,d|{0,1,...,r} = f) −−−−→
n→∞

P(f∞,d|{0,1,...,r} = f) for any r ≥ 0 and f ∈ Z{0,1,...,r}.

Remark 2.13. The random homomorphism f∞,d is described by an explicit Markov
chain on 2d+ 2 states, as shown in Figure 12, through a process which decodes infinite
words on the alphabet {a, b, A,B} into homomorphisms on P∞,d. See Section 6 for
details.

Policy on constants: In the rest of the paper we employ the following policy on con-
stants. We write C, c, C ′, c′ for positive absolute constants, whose values may change
from line to line. Specifically, the values of C,C ′ may increase and the values of c, c′

may decrease from line to line.

3 Preliminaries

We gather here a number of general tools which we require for our proof.

Lemma 3.1. Let E and F be events in a discrete probability space and let T : E → P(F )

be a mapping, where P(A) denotes the collection of all subsets of A. For f ∈ F , define

N(f) := {e ∈ E | f ∈ T (e)} .

If for some p, q > 0, we have

P(T (e)) ≥ P(e) · p, e ∈ E,
|N(f)| ≤ q, f ∈ F,

(3.1)

then
P(E) ≤ P(F ) · q

p
.

Proof. It is a simple matter to verify that∑
e∈E

P(T (e)) =
∑
e∈E

∑
f∈F

P(f)1T (e)(f) =
∑
f∈F

∑
e∈E

P(f)1T (e)(f) =
∑
f∈F

P(f) · |N(f)|.

The result now follows by the assumptions in (3.1).
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Remark 3.2. The opposite inequalities in (3.1) would yield the analogous result. Namely,
if P(T (e)) ≤ pP(e) for all e ∈ E and |N(f)| ≥ q for all f ∈ F , then pP(E) ≥ qP(F ). Note
that when applying this lemma for the uniform distribution, the assumptions in (3.1)
become |T (e)| ≥ p for all e ∈ E and |N(f)| ≤ q for all f ∈ F , while the conclusion
remains the same.

Lemma 3.3. Let X be a non-negative, integer-valued random variable. Assume that,
for some positive integer n and some a > 1, we have P(X = k) ≥ a · P(X = k − 1), for
all 1 ≤ k ≤ n. Then

P(X < n) ≤ 1/a.

Proof. It is easy to verify (by induction) that

P(X = n) ≥ ak · P(X = n− k), 1 ≤ k ≤ n.

Thus,

P(X < n) =

n−1∑
k=0

P(X = k) =

n∑
k=1

P(X = n− k) ≤ P(X = n) ·
n∑
k=1

a−k ≤ P(X = n)

a− 1
.

Therefore,

1 ≥ P(X ≤ n) = P(X < n) + P(X = n) ≥ P(X < n)(1 + (a− 1)) = a · P(X < n).

We will use a theorem by Benjamini, Häggström and Mossel [1] to transfer results
from the line to the torus. This is an FKG inequality for the measure induced on non-
negative homomorphisms by taking pointwise absolute value.

Given a set V , we equip ZV with the usual pointwise partial order �, i.e. f � g if
f(v) ≤ g(v) for all v ∈ V . A function φ : ZV → R is said to be increasing if φ(f) ≤ φ(g)

whenever f � g.

Theorem 3.4 (FKG inequality for absolute values [1, Proposition 2.3]). LetG be a finite,
bipartite and connected graph, let v0 ∈ V (G) and let f be a uniformly chosen homomor-
phism in Hom(G, v0). Then, for any two increasing functions φ, ψ : Hom(G, v0)→ R, we
have

E
[
φ(|f |) · ψ(|f |)

]
≥ E

[
φ(|f |)

]
· E
[
ψ(|f |)

]
,

where |f | is the non-negative homomorphism obtained from f by taking pointwise ab-
solute value.

Consider the event Q that a homomorphism on Pn,d is in fact a valid homomorphism
on Tn,d (by identifying the vertex n with the vertex 0). If we could write 1Q(f) = ψ(|f |)
for some function ψ then we may be able to use the above theorem to transfer results
from the line to the torus by conditioning on Q. However, it is not the case that 1Q is a
function of the absolute value of the homomorphism, and so we cannot apply Theorem
3.4 directly. Instead, we make use of Theorem 3.4 in order to prove a similar proposition
specialized for our purposes. See Proposition 5.9 in Section 5 for more details.

The following result of Erdős is useful for analyzing homomorphism on the line.

Theorem 3.5 ([6, Theorem 1]). Let n be a positive integer, let a1, . . . , an ∈ R satisfy
|ai| ≥ 1 for 1 ≤ i ≤ n and let ε1, . . . , εn ∼ U({−1, 1}) be random independent signs.
Denote

S := ε1a1 + · · ·+ εnan.

Then, for any integer r > 0 and any a ∈ R, we have

P(|S − a| < r) ≤ r ·
(

n

bn/2c

)
· 2−n ≤ Cr√

n
.
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The next proposition, which is a consequence of the previous result, is useful for
analyzing homomorphisms on the torus.

Proposition 3.6. Let n be a positive integer, let a1, . . . , an ∈ R satisfy |ai| ≥ 1 for
1 ≤ i ≤ n and let π be a uniformly chosen permutation of {1, 2, . . . , n}. Denote

Si := aπ(1) + · · ·+ aπ(i), 1 ≤ i ≤ n.

Then, for any integer r > 0, we have

P

(
max
1≤i≤n

|Si| < r

)
≤ Cr√

n
.

Proof. Let ε1, . . . , εn ∼ U({−1, 1}) be uniform independent signs. Denote

a := a1 + · · ·+ an,

S′ :=

n∑
i=1

εi + 1

2
ai =

ε1a1 + · · ·+ εnan
2

+
a

2
.

Let T ∼ Bin(n, 1/2) be independent of π and observe that

ST
d
=S′,

an observation which was pointed out to us by Gady Kozma. Therefore, by Theorem 3.5,

P

(
max
1≤i≤n

|Si| < r

)
≤ P (|ST | < r) = P (|S′| < r) = P

(∣∣∣∣∣
n∑
i=1

εiai + a

∣∣∣∣∣ < 2r

)
≤ Cr√

n
.

The next lemma presents a simple result on limits of distributions.

Lemma 3.7. Let X∞, X1, X2, . . . be non-negative, integer-valued random variables. As-
sume that P(X∞ = k) > 0 for all integers k ≥ 0. If the family {X1, X2, . . . } is tight, and

lim
n→∞

P(Xn = k)

P(Xn = k − 1)
=

P(X∞ = k)

P(X∞ = k − 1)
, k ≥ 1, (3.2)

then
Xn ===⇒

n→∞
X∞.

Proof. Let ε > 0 and, using the tightness assumption, choose an integer M such that
P(Xn > M) ≤ ε for all n ∈ N ∪ {∞}. Then

1− ε ≤
M∑
k=0

P(Xn = k) ≤ 1, n ∈ N ∪ {∞}.

Therefore, by the assumption (3.2),

lim sup
n→∞

1− ε
P(Xn = 0)

≤ lim
n→∞

M∑
k=0

P(Xn = k)

P(Xn = 0)
=

M∑
k=0

P(X∞ = k)

P(X∞ = 0)
≤ 1

P(X∞ = 0)
.

Similarly, we have

lim inf
n→∞

1

P(Xn = 0)
≥ lim
n→∞

M∑
k=0

P(Xn = k)

P(Xn = 0)
=

M∑
k=0

P(X∞ = k)

P(X∞ = 0)
≥ 1− ε
P(X∞ = 0)

.

Since ε is arbitrary, we conclude that P(Xn = 0)→ P(X∞ = 0) as n→∞, which in turn
gives that P(Xn = k)→ P(X∞ = k) as n→∞ for all k, by (3.2).
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4 Homomorphisms on the Line

In this section we will prove the theorems regarding homomorphisms on the line
which were stated in Section 2.1. As pointed out in the introduction, it seems unlikely
that a homomorphism jumps from some value t to t ± 3 on any given small segment.
Figure 2 illustrates a section of a homomorphism for which such a jump occurs. The
main idea in our proofs is to identify the vertices at which these jumps occur, as they
determine the large scale behavior of the homomorphism. That is, the values of the
homomorphism at the jumps contain the global information necessary to determine the
range and the variance. To this end, we first define the notion of the (local) average
height of a homomorphism at a vertex (this is illustrated by the horizontal dashed line
in Figure 3). The average height at a vertex is determined by finding the closest past
time at which 3 different values appeared consecutively and taking the midpoint to be
the average height. At vertices for which no such time exists (as is the case for the 0

vertex), we set the average height to be 0. One can think of the average height as a
process beginning at 0 that “lazily follows” the homomorphism, only to ensure that it
is never at a distance greater than 1. With this notion in hand, we define a jump as
a change in the average height. Of course any such jump has an associated sign or
direction, which is determined by whether the average height increases or decreases.

We later show that the probability of a jump occurring at a given vertex (greater
than 2d) is no more than 2−d. This will show that in the supercritical regime, with high
probability, there will not be any jumps (after vertex 2d). That is, the average height
does not change after time 2d. A moment’s reflection reveals that this means that the
homomorphism takes on at most 3 different values (not 4, as it may initially seem).

We do not give a lower bound for the probability of a jump occurring at a given
vertex. Instead, we only show that the typical number of jumps is of order n2−d, the
jumps are approximately equidistributed on the line and that, moreover, the directions
of these jumps are weakly correlated. Of course, if the directions of these jumps were
truly independent, then the values of the homomorphism at the jumps would constitute
a simple random walk. We will show that, at least in terms of the maximum/range of the
homomorphism, the behavior is very similar to that of a simple random walk. This will
show that the range is of order

√
n2−d and that the variance at a vertex k is of order

k2−d.

In the analysis of these so-called jumps, we encounter a minor complication due to
the fact that jumps in the same direction can “clump” together. Of course jumps cannot
occur consecutively in the sense of two consecutive vertices on the line. So then what is
the minimal distance between two jumps? The answer is twofold. The minimal distance
between two jumps with different directions is 2d + 3, while two jumps in the same
direction can already occur at distance 2d+ 1. This phenomenon will pop up again and
again in our analysis. For example, its manifestation is evident in the Markov chain
describing the local limit in Section 6 (see Figure 12).

One meaning of this phenomenon is that if we condition on the event that a jump
occurs at two given vertices, say k1 and k2, k1 < k2, the directions of these jumps are
non-negatively correlated. However, conditioning also on the event that a jump does
not occur just after the first of these jumps (i.e. at k1 + 2d+ 1), their directions become
independent. This leads us to consider “chains” of jumps. A chain is just a sequence of
minimal-distance same-direction jumps. Now, if we condition on the event that there are
chains of given lengths (and not longer) at any number of given vertices, the directions
of all these chains will be independent. This will allow us to reduce some of the analysis
to a case of independent variables.

EJP 19 (2014), paper 52.
Page 11/54

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3060
http://ejp.ejpecp.org/


Random walk with long-range constraints

Figure 3: A homomorphism in Hom(Pn,d). The big vertices denote the positions of the
jumps. The dashed horizontal lines denote the average height. Here d = 3.

4.1 Definitions

We consider the graph Pn,d whose vertex set is {0, 1, ..., n} and whose edges are
(k,m) for |k −m| = 1, 3, ..., 2d + 1. Throughout this section, Hom(Pn,d) := Hom(Pn,d, 0),
f is a uniformly sampled homomorphism from Hom(Pn,d), the probability space is the
uniform distribution on the set Hom(Pn,d), and events are subsets of Hom(Pn,d).

We define h(k), the (local) average height at vertex k, inductively as follows. Set
h(0) := 0. For 1 ≤ k ≤ n, define

h(k) :=

{
h(k − 1) if |f(k)− h(k − 1)| ≤ 1

f(k − 1) otherwise
,

∆(k) := h(k)− h(k − 1).

Define the event

Ak := {∆(k) 6= 0}.

When Ak occurs, we say that a jump occurred at vertex k (see Figure 3). Note that if k
is the position of the first jump then |f(k)| = 2, so that, in particular, k is even. Let

S := {1 ≤ k ≤ n | ∆(k) 6= 0} (4.1)

be the positions of the jumps, and denote by

R := |S \ {1, . . . , 2d+ 1}| =
n∑

k=2d+2

1Ak
(4.2)

the number of jumps after vertex 2d + 1. Recall that if a jump occurs at vertex k, then
the minimal possible value of k′ > k at which another jump can occur is k + 2d+ 1. Let
Ck,t be the event that there is a chain of t minimal-distance jumps ending at vertex k.
That is, for t ≥ 1 and (t− 1)(2d+ 1) < k ≤ n, we define

Ck,t := Ak ∩Ak−2d−1 ∩ · · · ∩Ak−(t−1)(2d+1).

Let I = {s1, . . . , st} ⊂ {1, 2, . . . , n}. We say that I is a feasible jump structure if
{S = I} 6= ∅. Observe that {S = I} 6= ∅ if and only if P(S = I) > 0 if and only if when we
reorder the si to satisfy s1 < s2 < · · · < st, we have

s1 is even and for 2 ≤ j ≤ t, sj − sj−1 is odd and satisfies sj − sj−1 ≥ 2d+ 1. (4.3)

In addition, we say that a subset I ⊂ {1, . . . , n} is a feasible jump sub-structure if it is a
subset of a feasible jump structure, or equivalently, if {I ⊂ S} 6= ∅. For a feasible jump
sub-structure I, the event {I ⊂ S} can be uniquely written as Ck1,t1 ∩· · ·∩Ckm,tm , where

t1 + · · ·+ tm = |I|,
kj − kj−1 > (2d+ 1)tj , 2 ≤ j ≤ m.

(4.4)
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These conditions ensure that there is no overlap between the different chains, and
moreover, that there is some gap between them (since otherwise they would merge into
a larger chain). For such I, we define

C(I) := {(kj , tj) | 1 ≤ j ≤ m},

and refer to this as the chain structure of I.

4.2 Main lemmas

As the above definitions suggest, the notion of a jump at a given vertex plays an
important role in our analysis. It turns out that the behavior of jumps at the first 2d+ 1

vertices differs significantly from that of the other vertices. Hence, it will be a recurring
theme throughout Section 4 that these cases are handled separately.

The first two lemmas concern the probability of jumps at given vertices. The first of
which shows that jumps at the first 2d + 1 vertices are not unlikely, while the second
shows that elsewhere jumps are unlikely.

Lemma 4.1. We have
1/4 ≤ P(A2) ≤ 1/2

and
1/3 ≤ P(A1 ∪ · · · ∪A2d+1) ≤ 2/3.

Proof. Denote J := A1 ∪ · · · ∪A2d+1. We shall show that

P(A2) ≤ P(J) ≤ 2P(A2),

P(A2) ≤ P(Jc) ≤ 2P(A2),

from which the result easily follows. Note that, by (4.3), Ak = ∅ for k = 1, 3, . . . , 2d + 1,
so that J = A2 ∪A4 ∪ · · · ∪A2d. Clearly P(A2) ≤ P(J), as A2 ⊂ J .

We note the following useful observation. For a homomorphism f ∈ Hom(Pn,d), we
have

f ∈ A2 ⇐⇒ f(2) = 2f(1) ⇐⇒ f(2) 6= 0. (4.5)

We begin by showing that P(J \ A2) ≤ P(A2), from which it follows that P(J) ≤
2P(A2). To this end it suffices to show an injective mapping from J \A2 to A2. Consider
the mapping f 7→ f1 from J \A2 to A2 defined by

f1(k) :=

{
f(k) if k 6= 2

2f(1) if k = 2
, 0 ≤ k ≤ n.

One may check that if f ∈ J \ A2 then f(1) = f(3) = · · · = f(2d + 3), so that f1 ∈ A2.
Recalling (4.5), it is clear that this mapping is invertible, and so we have P(J \ A2) ≤
P(A2).

We now show that P(A2) ≤ P(Jc). Define a mapping f 7→ f2 from A2 to Jc by

f2(k) :=

{
f(k + 1)− f(1) if 0 ≤ k < n

f(n− 1)− f(1) if k = n
, 0 ≤ k ≤ n.

Again one may check that this mapping is well-defined (in fact, this mapping can be
defined on the entire space). Since it is injective (recall (4.5)), we obtain P(A2) ≤ P(Jc).

Finally, we show that P(Jc) ≤ 2P(A2). Consider the mapping T : Jc → A2 defined by

T (f)(k) :=

{
0 if k = 0

f(k − 1) + f(1) if 1 ≤ k ≤ n
, 0 ≤ k ≤ n.
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To see that this mapping is well-defined, recall (4.5), and note that f ∈ Jc implies that
f(0) = f(2) = · · · = f(2d) = 0. This is not an injective mapping, however, it satisfies
|T−1(g)| ≤ 2 for g ∈ A2. Therefore, by Lemma 3.1, we have P(Jc) ≤ 2P(A2).

The next lemma is concerned with the probability of jumps occurring at given ver-
tices after 2d+1. It states that this probability is exponentially small in d times the num-
ber of jumps. The idea behind the proof is to remove the jumps and replace the freed
up areas with segments of constant average height. This allows us to gain entropy by
setting the values at every other vertex in each such segment to be the average height
±1. See Figure 4.

Lemma 4.2. For any t ≥ 1 and for any 2d+ 1 < s1 < · · · < st ≤ n, we have

P(As1 ∩ · · · ∩Ast) ≤ 2−dt.

Proof. If I := {s1, . . . , st} is not a feasible jump sub-structure then there is nothing to
prove. Otherwise, we consider the chain structure of I, C(I) = {(k1, t1), . . . , (km, tm)},
where we have ordered the elements so that the kj are increasing. Due to our assump-
tion that s1 > 2d+ 1, we have k1 > (2d+ 1)t1. We note that it is enough to prove that for
all 1 ≤ j ≤ m,

P(Ckj ,tj | Ck1,t1 ∩ · · · ∩ Ckj−1,tj−1
) ≤ 2−dtj .

We prove something stronger. Let 1 ≤ k ≤ n and t ≥ 1 be such that k′ := k−(2d+1)t−1 ≥
0. Then, for any ξ ∈ Z{0,...,k′} such that P(f |{0,...,k′} = ξ) > 0, we have

P
(
Ck,t | f |{0,...,k′} = ξ

)
≤ 2−dt−bt/2c. (4.6)

In order to show this, we construct a mapping which removes this chain and replaces
the freed up segment with a segment of constant average height (see Figure 4). For-
mally, we proceed as follows. For m ≥ 1 and w ∈ {−1, 1}m, denote

w̃ := (w1, 0, w2, 0, . . . , wm, 0).

Define a mapping
Tk,t : Ck,t × {−1, 1}dt+bt/2c → Hom(Pn,d)

by

Tk,t(f, w)(i) :=


f(i) if i ≤ k′

f(k′) + w̃(i− k′) if k′ < i < k − 1

f(i+ δ)− f(k − 1) + f(k′) if k − 1 ≤ i < n

f(i− δ)− f(k − 1) + f(k′) if i = n

, (4.7)

where δ = 0 if t is even and δ = 1 if t is odd.
We now show that Tk,t is well-defined, i.e. that Tk,t(f, w) ∈ Hom(Pn,d). For 0 ≤ i, j ≤

n, denote
∆i,j := |Tk,t(f, w)(i)− Tk,t(f, w)(j)|.

For 0 ≤ j ≤ n, define the event

Bj :=
{
f(i) = f(j) when 0 ≤ i ≤ n satisfies |i− j| ∈ {2, 4, . . . , 2d}

}
.

We must show that ∆i,j = 1 whenever |i − j| ∈ {1, 3, . . . , 2d + 1}. Let 0 ≤ i, j ≤ n

satisfy |i − j| ∈ {1, 3, . . . , 2d + 1} and assume without loss of generality that i < j. We
shall further assume that j < n, the case j = n being similar. If j ≤ k′, i ≥ k − 1

or k′ < i < j < k − 1 then ∆i,j = 1 follows immediately from (4.7) and the fact that
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f ∈ Ck,t

Tk,t(f, w)

k′ k

Figure 4: A section of a homomorphism f in the event Ck,t. Removing the chain be-
tween k′ and k, and replacing it with fluctuations around the average height, gives the
homomorphism Tk,t(f, w). The dashed horizontal lines denote the average height. Here
d = 2, t = 3 and w = (−1, 1, 1,−1,−1, 1,−1).

f ∈ Hom(Pn,d). It remains to check the case when i ≤ k′ and j > k′ and the case when
i < k − 1 and j ≥ k − 1.

We begin with the first case. Here, we have ∆i,j = |f(i)− f(k′)− w̃(j− k′)|. Observe
that Ck,t ⊂ Bk′ . Therefore, if i has the same parity as k′ then f(i) = f(k′) and |w̃(j −
k′)| = 1 since j has the same parity as k′. Otherwise, i has the opposite parity of k′, and
then |f(i)− f(k′)| = 1 and w̃(j − k′) = 0. Thus, ∆i,j = 1.

In the second case, we have ∆i,j = |f(j + δ) − f(k − 1) − w̃(i − k′)|. Note that
Ck,t ⊂ Bk−1 and that i − k′ has the same parity as j + δ − k. One finds in a similar
manner as in the first case that |f(j + δ) − f(k − 1)| = 1 and w̃(i − k′) = 0 when i has
the same parity as k′, and that f(j + δ) = f(k − 1) and |w̃(i − k′)| = 1 when i has the
opposite parity of k′. Hence, ∆i,j = 1.

Observe that for any f ∈ Ck,t, necessarily,

(f(k′), f(k′ + 1), . . . , f(k), f(k + 1))

= (f(k′), . . . , f(k′))± (0, 1, . . . , 0, 1, 0︸ ︷︷ ︸
2d+1

, 1, 2, . . . , 1, 2, 1︸ ︷︷ ︸
2d+1

, . . . , t− 1, t, . . . , t− 1, t, t− 1︸ ︷︷ ︸
2d+1

, t, t+ 1, t).

Thus, it is easy to see that the mapping is injective. Moreover, the event {f |{0,...,k′} = ξ}
is clearly invariant under this mapping, so that

P
(
Ck,t ∩ {f |{0,...,k′} = ξ}

)
· 2dt+bt/2c ≤ P

(
f |{0,...,k′} = ξ

)
,

proving (4.6).

Remark 4.3. The proof shows in fact that the probability of the event As1 ∩ · · · ∩Ast is
bounded by 2−dt−(bt1/2c+···+btr/2c), where t1, . . . , tr are the lengths of the chains corre-
sponding to s1, . . . , st. With a small modification, the proof can be enhanced to give the
bound 2−dt−bt/2c, but we neither prove nor use this.

Recall the definition of R from (4.2). We would like to obtain inequalities on the
probability that R is a given value. We could do this in a similar manner to which
the previous lemma was proved. However, for variety, we prefer to employ a more
direct combinatorial technique. This approach also has the advantage of introducing
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f

Y (f)

X(f)
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Figure 5: A homomorphism is decomposed into two parts; chains (in blue) and fluctua-
tions (in gray). The chains, which consist of consecutive jumps, contribute to the change
in average height, while the fluctuations do not. From the chains, we construct X(f),
which contains the direction of each chain. From the fluctuations, we construct Y (f),
which contains the direction of each fluctuation. Given the positions of the jumps, X(f)

and Y (f) precisely contain the remaining information on the homomorphism. That is,
for any choice of X and Y , there exists a unique homomorphism f with X(f) = X and
Y (f) = Y . Here d = 2.

Lemma 4.5, which gives a useful description of the structure of the homomorphisms in
Hom(Pn,d).

We decompose a homomorphism into two parts (see Figure 5). The first part consti-
tutes the changes in average height (the underlying walk) of the homomorphism, while
the second part constitutes the fluctuations around the average height (the segments of
constant average height). For a feasible jump sub-structure I, define the chain points
of I by

CP (I) :=
⋃

(k,t)∈C(I)

{k − (2d+ 1)t− 1, . . . , k − 1, k},

and the fluctuation points of I by

FP (I) :=
{

1 ≤ k ≤ n | min
{
i > 0 | k − i ∈ CP (I) ∪ {−1}

}
is even

}
.

That is, a point is a fluctuation point if its distance from the chain to its left is positive
and even. In particular, recalling the definition of S from (4.1), for any homomorphism
f and any k ∈ FP (S(f)), f is not at its average height at k. Now, for a homomorphism
f , define

X(f) ∈ {−1, 1}C(S(f)) and

Y (f) ∈ {−1, 1}FP (S(f))

by

X(f)(k,t) := f(k)− f(k − 1) and

Y (f)k := f(k)− f(k − 1).
(4.8)

Claim 4.4. For any feasible jump structure I, we have

|FP (I)| = max

{
0, d+ 1− min I

2

}
+

⌈
n− |I|

2

⌉
− d|I| − |C(I)|. (4.9)
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Proof. Suppose that C(I) = {(k1, t1), . . . , (km, tm)}. Denote t := |I| = t1 + · · · + tm and
s := min I. Then

|CP (I)| =
m∑
j=1

(
(2d+ 1)tj + 2

)
= (2d+ 1)t+ 2m,

|CP (I) ∩ {0, 1, . . . , n}| = (2d+ 1)t+ 2m−max{0, 2d+ 2− s}.

Therefore, recalling that s is even by (4.3),

|FP (I)| =
⌈
n− |CP (I) ∩ {0, 1, . . . , n}|

2

⌉
=

⌈
n− (2d+ 1)t− 2m+ max{0, 2d+ 2− s}

2

⌉
=

⌈
n− t

2

⌉
− dt−m+ max{0, d+ 1− s/2}.

Lemma 4.5. For any feasible jump structure I, the mapping f 7→ (X(f), Y (f)) is a
bijection between {S = I} and {−1, 1}C(I) × {−1, 1}FP (I).

Proof. We shall describe the inverse mapping which maps a pair (X,Y ) ∈ {−1, 1}C(I) ×
{−1, 1}FP (I) to the homomorphism fX,Y ∈ {S = I}. For 0 ≤ i ≤ n, let

H(X, i) :=
∑

(k,t)∈C(I)
k<i

t ·X(k,t),

be the average height accumulated by chains ending before i. For (k, t) ∈ C(I), denote
by k′(k, t) := k − (2d + 1)t − 1 the first vertex of the chain and observe that H(X, i) =

H(X, k′(k, t)) for all k′(k, t) ≤ i ≤ k. Now, define

fX,Y (i) :=


H(X, i) + Yi if i ∈ FP (I)

H(X, i) if i+ 1 ∈ FP (I) or i− 1 ∈ FP (I)

H(X, i) +X(k,t)Ci−k′(k,t) if k′(k, t) ≤ i ≤ k for some (k, t) ∈ C(I)

,

where C = (C0, C1, . . . ) is the infinite sequence defined by

C := (0, 1, . . . , 0, 1, 0︸ ︷︷ ︸
2d+1

, 1, 2, . . . , 1, 2, 1︸ ︷︷ ︸
2d+1

, 2, 3, . . . , 2, 3, 2︸ ︷︷ ︸
2d+1

, . . . ).

See Figure 5. It is not difficult to check that fX,Y ∈ Hom(Pn,d) and that S(fX,Y ) = I.
It remains to check that X(fX,Y ) = X, Y (fX,Y ) = Y and fX(f),Y (f) = f . We omit the
details.

Corollary 4.6. Conditioned on S, the following properties hold.

1. X is uniformly distributed over {−1, 1}C(S).
2. The random variables {∆(s)}s∈S are independent uniform signs conditioned on

∆(s) = ∆(s′) whenever s, s′ ∈ S satisfy |s− s′| = 2d+ 1.

3. The difference in average height between two vertices 0 ≤ k0 < k1 ≤ n is a sum of
independent variables, namely,

h(k1)− h(k0) =
∑

(j,t)∈C(S∩{k0+1,...,k1})

t ·∆(j). (4.10)
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Proof. The first statement is an immediate consequence of Lemma 4.5. The second
statement is in turn a consequence of the first statement and of the definition of the
chain structure C(S). For the third statement, since

h(k) =

k∑
i=1

∆(i) =
∑
s∈S
s≤k

∆(s), 1 ≤ k ≤ n,

we see that

h(k1)− h(k0) =
∑
s∈S

k0<s≤k1

∆(s) =
∑

(j,t)∈C(S∩{k0+1,...,k1})

t ·∆(j).

Corollary 4.7. Conditioned on |S| and min(S∪{2d+2}), S is uniformly distributed over
all feasible jump structures I having |I| = |S| and min(I ∪ {2d+ 2}) = min(S ∪ {2d+ 2}).

Proof. By Lemma 4.5 and Claim 4.4, log2 |{S = I}| = |C(I)| + |FP (I)| depends only on
|I| and min(I ∪ {2d+ 2}).

For r ≥ 0 and 1 ≤ i ≤ d+ 1, denote by ci(r) the number of feasible jump structures I
having |I \ {1, . . . , 2d+ 1}| = r and min(I ∪ {2d+ 2}) = 2i (recalling from (4.3) that min I

is even).

Claim 4.8. For any non-negative integer r, we have

cd+1(r) =

(
b(n− r − 1)/2c − (d− 1)r

r

)
and

ci(r) =

(
b(n− r)/2c − (d− 1)r − i

r

)
, 1 ≤ i ≤ d.

(4.11)

Proof. By considering the distance between two consecutive values in I and recalling
(4.3), we see that the number of feasible jump structures I having |I| = r and min I >

2d+1 (where we set min ∅ :=∞) is given by the number of non-negative integer solutions
to the equation

x1 + x2 + · · ·+ xr ≤ n

under the additional constraints that x1 is even and at least 2d + 2 and, for 2 ≤ j ≤ r,
xj is odd and at least 2d + 1. Therefore, after substituting x1 = 2y1 + 2d + 2 and
xj = 2yj + 2d + 1 for 2 ≤ j ≤ r, we see that cd+1(r) is equal to the number of non-
negative integer solutions to the equation

2(y1 + · · ·+ yr) ≤ n− (2d+ 1)r − 1,

from which the first result easily follows. Similarly, the number of feasible jump struc-
tures I having |I| = r+ 1 and min I = 2i is given by the number of non-negative integer
solutions to the equation

2i+ x1 + · · ·+ xr ≤ n

under the additional constraint that, for 1 ≤ j ≤ r, xj is odd and at least 2d + 1.
Therefore, substituting xj = 2yj + 2d + 1 as before, we see that, for 1 ≤ i ≤ d, ci(r)
is equal to the number of non-negative integer solutions to the equation

2(y1 + · · ·+ yr) ≤ n− (2d+ 1)r − 2i,

from which the second result follows.
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The next lemma and its corollary give bounds on the distribution of R. Observe that,
by Claim 4.8, for any 1 ≤ i ≤ d+1, P

(
R = r | min(S∪{2d+2}) = 2i

)
> 0 when r satisfies

(2d+ 1)r + 2d ≤ n.

Lemma 4.9. For any positive integer r such that (2d+ 1)r + 2d ≤ n, we have

n− Crd
4r2d

≤
P
(
R = r | min(S ∪ {2d+ 2}) = 2i

)
P
(
R = r − 1 | min(S ∪ {2d+ 2}) = 2i

) ≤ n

2r2d
, 1 ≤ i ≤ d+ 1.

Proof. By Lemma 4.5, Claim 4.4 and Claim 4.8, we have

|{R = r} ∩ {min(S ∪ {2d+ 2}) = 2i}| = ci(r)bi(r), 1 ≤ i ≤ d+ 1,

where ci(r) is given by (4.11) and

bd+1(r) = 2d(n−r)/2e−dr,

bi(r) = 2d(n−r−1)/2e−dr−i+1, 1 ≤ i ≤ d.
(4.12)

It is easy to see that

2−d−1 ≤ bi(r)

bi(r − 1)
≤ 2−d, 1 ≤ i ≤ d+ 1, (4.13)

and a computation shows that

n− Crd
2r

≤ ci(r)

ci(r − 1)
≤ n

2r
, 1 ≤ i ≤ d+ 1. (4.14)

We present this last computation for i = d+ 1. We have

cd+1(r)

cd+1(r − 1)
=
b(n− r − 1)/2c − (d− 1)r

r
·
r−1∏
j=1

b(n− r − 1)/2c − (d− 1)r − j
b(n− r)/2c − (d− 1)(r − 1)− j + 1

.

Since
n/2− Cdr ≤ b(n− r − 1)/2c − (d− 1)r ≤ n/2,

it suffices to show that the product above is at most 1 and at least 1 − Cdr/(n − Cdr).
Indeed, every element in the product is clearly at most 1, and hence so is the product.
For the other inequality, note that the last element in the product is the smallest, so
that the product is at least(

b(n− r − 1)/2c − dr + 1

b(n− r)/2c − d(r − 1) + 1

)r−1
≥
(

1− d+ 1

n/2− r/2− dr + d+ 1

)r
≥ 1− 4dr

n− 4dr
.

The statement now follows directly from (4.13) and (4.14).

Corollary 4.10. For any positive integer r such that (2d+ 1)r + 2d ≤ n, we have

n− Crd
4r2d

≤ P(R = r)

P(R = r − 1)
≤ n

2r2d
.

4.3 Proof of theorems

We are now ready to prove the theorems stated in Section 2.1.

The supercritical regime. We prove Theorem 2.1 and Corollary 2.2. By Lemma 4.2,
we have

P(R ≥ r) = P

 ⋃
2d+1<s1<···<sr≤n

As1 ∩ · · · ∩Asr

 ≤ (n
r

)
2−dr, r ≥ 1.
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One may easily check that |Rng(f)| ≤ R+ 3, so that

P
(
|Rng(f)| ≥ 3 + r

)
≤ P(R ≥ r) ≤

(
n

r

)
2−dr, r ≥ 1.

Moreover, it is easy to describe all homomorphisms which take on at most 3 values.
Denote by V0 and V1 the even and odd vertices in {0, 1, . . . , n}, respectively, and denote
by Ω0 and Ω1 the set of homomorphisms which are constant on V0 and V1, respectively.
Then it is clear that {|Rng(f)| ≤ 3} = Ω0 ∪ Ω1, that {|Rng(f)| < 3} = Ω0 ∩ Ω1 and that
|Ω0∩Ω1| = 2. Also, note that |V0| = bn/2c+1 and |V1| = dn/2e, so that |Ω0| = 2|V1| = 2dn/2e

and |Ω1| = 2|V0| = 2bn/2c+1. Therefore,

P
(
|Rng(f)| < 3

)
= P(Ω0 ∩ Ω1) ≤ |Ω0 ∩ Ω1|

|Ω0 ∪ Ω1|
=

2

2dn/2e + 2bn/2c+1 − 2
≤ 21−n/2,

completing the proof of Theorem 2.1. To obtain Corollary 2.2, note that

P(Ω1)

P(Ω0)
= 2bn/2c+1−dn/2e =

{
2 if n is even

1 if n is odd
.

Hence, if d− log2 n→∞ as n→∞ then, since P(Ω0 ∪ Ω1) = P(|Rng(f)| ≤ 3) = 1− o(1)

by Theorem 2.1, we see that P(Ω0) = 1/2− o(1) if n is odd and P(Ω0) = 1/3− o(1) if n is
even.

The subcritical regime. Before proving the relevant theorems, we need a better
understanding of the typical number of jumps.

Lemma 4.11. For any ε > 0, we have

P
(
R < bεcn2−dc | min(S ∪ {2d+ 2}) = 2i

)
≤ ε, 1 ≤ i ≤ d+ 1.

Proof. Let 0 < ε < 1 and 1 ≤ i ≤ d+ 1. Lemma 4.9 implies that if c is small enough,

P(R = r | min(S ∪ {2d+ 2}) = 2i)

P(R = r − 1 | min(S ∪ {2d+ 2}) = 2i)
≥ 1

ε
, 1 ≤ r ≤ bεcn2−dc.

Lemma 3.3 now yields the result.

Corollary 4.12. For any ε > 0, if n2−d ≥ C/ε then

P
(
R < εcn2−d | min(S ∪ {2d+ 2}) = 2i

)
≤ ε, 1 ≤ i ≤ d+ 1. (4.15)

Consequently, if n2−d ≥ C then

E
[
R | min(S ∪ {2d+ 2}) = 2i

]
≥ cn2−d, 1 ≤ i ≤ d+ 1. (4.16)

Proof. If n2−d ≥ C/ε then εc′n2−d ≤ bεcn2−dc, and hence, (4.15) follows from Lemma 4.11.
To obtain (4.16), substitute ε = 1/2 in (4.15).

We shall also require a similar inequality for the number of jumps up to a given
vertex. For 2d+ 1 ≤ k ≤ n, define

R(k) := |S ∩ {2d+ 2, 2d+ 3, . . . , k}| =
k∑

i=2d+2

1Ai .

Lemma 4.13. We have

E[R(k)] ≥ ck2−d − 1/6, 1 ≤ k ≤ n.
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Proof. First note that the statement is trivial when n2−d < C. Thus, we may assume
that n2−d ≥ C. Denote x1 := minS − 1 and denote by x2, . . . , xr the distances between
consecutive values in S. By Corollary 4.7 and (4.3), conditioned on the event {R = r}
and on the event E := {minS > 2d} (again, we set min ∅ =∞), x1, . . . , xr are identically
distributed and satisfy 1 + x1 + · · ·+ xr ≤ n. Hence

E[xi | R = r, E] ≤ n/r, 1 ≤ i ≤ r.

Since R(k) < j if and only if 1 + x1 + · · ·+ xj > k, we have by Markov’s inequality that

P(R(k) < j | R,E) = P(x1 + · · ·+ xj ≥ k | R,E) ≤ 1

k
E[x1 + · · ·+ xj | R,E] ≤ jn

kR
.

So

E[R(k) | R,E] ≥ P
(
R(k) ≥ bkR/2nc | R,E

)
· bkR/2nc ≥ (1/2)bkR/2nc ≥ kR/4n− 1/2.

Hence, by the assumption that n2−d ≥ C and by (4.16),

E[R(k) | E] ≥ kE[R | E]/4n− 1/2 ≥ ck2−d − 1/2.

Finally, by Lemma 4.1, we have

E[R(k)] ≥ E[R(k) | E] · P(E) ≥ ck2−d − 1/6.

Lemma 4.14. We have
Var(f(k)) ≥ 1, 1 ≤ k ≤ n.

Proof. If k is odd then |f(k)| ≥ 1 and the result follows by the fact that f(k) is symmetric.
Henceforth, we assume that k is even.

Consider the mapping f 7→ f0 from A2 to Ac2 defined by

f0(i) :=

{
0 if i = 0

f(i)− f(2) if i ≥ 1
, 0 ≤ i ≤ n.

One may check that this mapping is indeed well-defined and that it is injective. Since
|f0(k)| = 2 when f(k) = 0, and since the mapping is injective, we have

P({f(k) = 0} ∩A2) ≤ P({|f(k)| = 2} ∩Ac2)

≤ P({f(k) 6= 0} ∩Ac2) = 1− P({f(k) = 0} ∪A2).

Therefore,

P(f(k) = 0) + P(A2) = P({f(k) = 0} ∪A2) + P({f(k) = 0} ∩A2) ≤ 1.

Since, P(A2) ≥ 1/4 by Lemma 4.1, we have

P(f(k) = 0) ≤ 3/4.

Finally, since f(k) 6= 0 if and only if |f(k)| ≥ 2, we have

Var(f(k)) = E
[
f(k)2

]
≥ 4 · P(|f(k)| ≥ 2) = 4 · P(f(k) 6= 0) ≥ 1.

We are now ready to prove Theorem 2.4 and Theorem 2.3. In both proofs, we con-
sider the following modified average height h′. For 1 ≤ k ≤ n, define

h′(k) :=

{
0 if k ≤ 2d+ 1

h(k)− h(2d+ 1) otherwise
.
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Recall that Corollary 4.6 implies that, for any 2d + 2 ≤ k ≤ n, conditioned on S,
{∆(j) | (j, t) ∈ C(S ∩ {2d+ 2, . . . , k})} are independent and

h′(k) =
∑

(j,t)∈C(S∩{2d+2,...,k})

t ·∆(j), 1 ≤ k ≤ n. (4.17)

Proof of Theorem 2.4. By the above remark, we have

Var(h′(k) | S) =
∑

(j,t)∈C(S∩{2d+2,...,k})

t2, 1 ≤ k ≤ n. (4.18)

Notice that, conditioned on S, the expectation of h′(k) is zero, so that by the law of total
variance,

Var(h′(k)) = E[Var(h′(k) | S)], 1 ≤ k ≤ n. (4.19)

To obtain an upper bound on Var(h′(k)), we use Lemma 4.2 to obtain

P
(
(j, t) ∈ C(S ∩ {2d+ 2, . . . , k})

)
≤ P(Cj,t) · 1{(2d+1)t<j≤k} ≤ 2−dt · 1{j≤k},

for any 1 ≤ j ≤ n and t ≥ 1. Therefore, by (4.18) and (4.19), we have

Var(h′(k)) = E
[
Var(h′(k) | S)

]
≤
∞∑
t=1

n∑
j=1

t22−dt · 1{j≤k} = k

∞∑
t=1

t22−dt ≤ Ck2−d. (4.20)

Finally, since |f(k)− h(k)| ≤ 1 and |h(k)− h′(k)| ≤ 1, we have |f(k)| ≤ |h′(k)|+ 2, which
gives

Var(f(k)) = E
[
f(k)2

]
≤ E

[
(|h′(k)|+ 2)2

]
= E

[
h′(k)2 + 4|h′(k)|+ 4

]
≤ 5 · E

[
h′(k)2

]
+ 4 = 5 · Var(h′(k)) + 4 ≤ Ck2−d + 4.

For the lower bound, we note that∑
(j,t)∈C(S∩{2d+2,...,k})

t2 ≥
∑

(j,t)∈C(S∩{2d+2,...,k})

t = |S ∩ {2d+ 2, . . . , k}| = R(k).

Therefore, by (4.18), (4.19) and Lemma 4.13, we have

Var(h′(k)) = E[Var(h′(k) | S)] ≥ E[R(k)] ≥ ck2−d − 1/6.

Since |f(k)− h(k)| ≤ 1 and |h(k)− h′(k)| ≤ 1, we have |f(k)| ≥ |h′(k)| − 2. In particular,
|f(k)| ≥ |h′(k)|/3 when |h′(k)| ≥ 3. Therefore,

Var(f(k)) = E
[
f(k)2

]
≥ E

[
(h′(k)/3)2 · 1{|h′(k)|≥3}

]
= E

[
h′(k)2

]
/9− E

[
h′(k)2 · 1{|h′(k)|≤2}

]
/9

≥ Var(h′(k))/9− 4/9

≥ ck2−d − 1/2.

Finally, together with Lemma 4.14, we have

Var(f(k)) ≥ max{1, ck2−d − 1/2} ≥ max{1, c′k2−d}.

Proof of upper bound in Theorem 2.3. Denote C(S∩{2d+2, . . . , n}) = {(k1, t1), . . . , (km, tm)},
ordering the elements so that the kj are increasing. Observe that for any 1 ≤ j < m and
any kj ≤ k ≤ kj+1, we have that h(k) is between h(kj) and h(kj+1). Therefore,

max
1≤k≤n

|h′(k)| = max
1≤j≤m

|h′(kj)|.
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In this notation, by (4.17) we have

h′(kj) =

j∑
i=1

ti ·∆(ki), 1 ≤ j ≤ m,

where, conditioned on S, {∆(kj) | 1 ≤ j ≤ m} are independent. Therefore, we may
apply Kolmogorov’s maximal inequality to the process (h′(kj) | 1 ≤ j ≤ m), conditioned
on S, to obtain

P

(
max

1≤k≤n
|h′(k)| ≥ x | S

)
= P

(
max

(k,t)∈C(S∩{2d+2,...,n})
|h′(k)| ≥ x | S

)
≤ Var(h′(n) | S)

x2
.

Therefore, by (4.20), we have

P

(
max

1≤k≤n
|h′(k)| ≥ x

)
= E

[
P

(
max

1≤k≤n
|h′(k)| ≥ x | S

)]
≤ Var(h′(n))

x2
≤ Cn2−d

x2
.

From this we obtain

E

[
max

1≤k≤n
|h′(k)|

]
=
∞∑
x=1

P

(
max

1≤k≤n
|h′(k)| ≥ x

)
≤
∞∑
x=1

min

{
1,
Cn2−d

x2

}
≤ C ′

√
n2−d.

To see the last inequality one checks that

∞∑
x=1

min

{
1,
Cn2−d

x2

}
≤
d
√
n2−de−1∑
x=1

1 + min

{
1,

Cn2−d

d
√
n2−de2

}
+

∞∑
x=d
√
n2−de+1

Cn2−d

x2

≤
√
n2−d + min

{
1,

Cn2−d

d
√
n2−de2

}
+

∫ ∞
√
n2−d

Cn2−d

x2
dx ≤ C ′

√
n2−d.

Finally, using the fact that

|Rng(f)| ≤ 3 + max
1≤k≤n

h′(k)− min
1≤k≤n

h′(k),

we obtain

E
[
|Rng(f)|

]
≤ 3 + 2 · E

[
max

1≤k≤n
|h′(k)|

]
≤ 3 + C

√
n2−d.

Proof of lower bound in Theorem 2.3. We begin by showing that the range is large with
high probability, when n2−d is large enough. Fix 0 < ε < 1. Assume that n2−d ≥ C/ε. By
(4.15), there exists a δ1 > 0, depending only on ε, such that

P
(
R < 2δ1n2−d

)
≤ ε/4. (4.21)

This tells us that typically there are many jumps. We now show that typically there are
many distinct chains as well. For s ≥ 1, let

Ms :=
∑

(2d+1)s<k≤n

1Ck,s

be the number of sub-chains of length s. Then, as we shall now show,

|C(S)| ≥ R−Ms

s− 1
, s ≥ 2. (4.22)
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Indeed, denoting C(S ∩ {2d + 2, . . . , n}) = {(k1, t1), . . . , (km, tm)} and considering the
contribution of each chain to Ms, we see that

Ms =

m∑
i=1

max{0, ti − s+ 1} ≥
m∑
i=1

(ti − s+ 1) = R− (s− 1)m.

Note that |C(S)| ≥ m now yields (4.22). By Lemma 4.2, we have

E[Ms] =
∑

(2d+1)s<k≤n

P(Ck,s) ≤ n2−ds ≤ n2−d21−s, s ≥ 1.

Taking s = s0 large enough, we have by Markov’s inequality,

P
(
Ms0 ≥ δ1n2−d

)
≤ E[Ms0 ]

δ1n2−d
≤ 21−s0

δ1
≤ ε/4. (4.23)

Therefore, by (4.21), (4.22) and (4.23), we have for δ2 := δ1/s0 that

P
(
|C(S)| ≥ δ2n2−d

)
≥ P

(
R ≥ 2δ1n2−d,Ms0 ≤ δ1n2−d

)
≥ 1− ε/2. (4.24)

Recalling from Corollary 4.6 that, conditioned on S, h(n) is the sum of |C(S)| indepen-
dent random variables, we may apply Theorem 3.5 to obtain

P
(
|h(n)| < r | S

)
≤ Cr√

|C(S)|
, r ∈ N.

Therefore,

P
(
|Rng(f)| < r | |C(S)|

)
≤ P

(
|h(n)| < r | |C(S)|

)
≤ Cr√

|C(S)|
, r ∈ N. (4.25)

Finally, by (4.24) and (4.25), for any δ > 0, we have

P
(
|Rng(f)| <

⌊
δ
√
n2−d

⌋)
≤ P

(
|C(S)| < δ2n2−d

)
+ P

(
|Rng(f)| <

⌊
δ
√
n2−d

⌋
| |C(S)| ≥ δ2n2−d

)
≤ ε/2 + Cδ/

√
δ2.

Therefore, there exists a δ > 0, depending only on ε, such that if δ
√
n2−d ≥ 1 then

P
(
|Rng(f)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ P

(
|Rng(f)| <

⌊
4δ
√
n2−d

⌋)
≤ ε,

proving (2.1) when n2−d is large enough. On the other hand, if δ
√
n2−d < 1 then (2.1)

follows immediately from Theorem 2.1, since

P
(
|Rng(f)| < 3 +

⌊
δ
√
n2−d

⌋)
= P (|Rng(f)| < 3) ≤ 21−n/2.

It remains to show the lower bound on the expectation. Note that the statement is
trivial when n ≤ 2, and so we may assume that n ≥ 3. By taking ε = 1/4 in (2.1), noting
that |Rng(f)| ≥ 2 and by Theorem 2.1, we conclude that

E
[
|Rng(f)|

]
= 3 + E

[
(|Rng(f)| − 3) · 1{|Rng(f)|≥3}

]
+ E

[
(|Rng(f)| − 3) · 1{|Rng(f)|<3}

]
= 3 + E

[
(|Rng(f)| − 3) · 1{|Rng(f)|≥3}

]
− P (|Rng(f)| < 3)

≥ 3 + (1− 1/4− 2−1/2)
⌊
δ
√
n2−d

⌋
− 21−n/2

≥ 3 +
⌊
c
√
n2−d

⌋
− 21−n/2.

(4.26)
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The critical regime. Here we prove Theorem 2.5. Denote λ := limn2−d which exists
and is a positive number by assumption. The proof of Theorem 2.5 consists of two parts.
First, we show that R converges to N±(λ) as n tends to infinity through even or odd
integers. Next, we show that in this regime the values at the jumps constitute a simple
random walk and that this walk determines the range of the homomorphism.

By Lemma 4.2, we have

E[R] =

n∑
k=2d+2

P(Ak) ≤ n2−d = λ+ o(1).

Therefore, the expectation of R is uniformly bounded as n → ∞, and hence, Markov’s
inequality implies that R is tight as n→∞. Using notation as in the proof of Lemma 4.9,
we have

|{R = r} ∩ {min(S ∪ {2d+ 2}) = 2i}| = ci(r)bi(r), 1 ≤ i ≤ d+ 1.

A direct computation shows that for any constant r ≥ 0, we have

ci(r) ∼
nr

2rr!
as n→∞,

uniformly in 1 ≤ i ≤ d+ 1, and

2d(n−r)/2e ∼ 2(n−r)/2 · γ(n− r) as n→∞,

where γ(k) := 1 if k is even and γ(k) :=
√

2 if k is odd. Denoting by J := A1 ∪ · · · ∪A2d+1

the event that a jump occurs prior to vertex 2d+ 2, and recalling (4.12), we obtain

|{R = r} ∩ Jc| ∼ nr

r!
· 2n/2−(d+3/2)r · γ(n− r),

|{R = r} ∩A2i| ∼
nr

r!
· 2n/2−(d+3/2)r+1/2−i · γ(n− r − 1),

uniformly in 1 ≤ i ≤ d. Therefore, denoting λ′ := λ/(2
√

2), we have

|{R = r}| ∼ λ′r

r!
· 2n/2 ·

(
γ(n− r) +

√
2γ(n− r − 1)

)
,

where we have used the fact that
∑d
i=1 2−i → 1. Using the tightness of R, we see that

P(R = r) ∼ Z(n)−1 · λ
′r

r!
·
(
γ(n− r) +

√
2γ(n− r − 1)

)
,

where Z(n) is a normalizing constant. Therefore, recalling the parity-biased Poisson
distribution defined in (2.2) and the equation (2.3), we see that

R ===⇒
n→∞
n even

µ
(
λ′, 3/(2

√
2)
)

and R ===⇒
n→∞
n odd

µ
(
λ′, 2
√

2/3
)
, (4.27)

completing the first part of the proof.
We remark that it is also possible to obtain the limiting distribution of R conditioned

on whether or not a jump occurred at the first 2d + 1 vertices. We do not make use of
this in our paper but we note the final result. A further calculation gives the following
formula for the asymptotic probability of J ,(√

2 · P(Jc)

P(J)

)(−1)n

−−−−→
n→∞

cosh(λ′) +
√

2 sinh(λ′)

sinh(λ′) +
√

2 cosh(λ′)
,

EJP 19 (2014), paper 52.
Page 25/54

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3060
http://ejp.ejpecp.org/


Random walk with long-range constraints

and the following formula for the asymptotic distribution of R given 1J ,

P(R = r | 1J)− µ
(
λ′,
√

2
(−1)n+1+1J

)
(r) −−−−→

n→∞
0.

We now proceed to analyze the range of a typical homomorphism in the critical
regime. We begin by showing that the jumps are sparse enough so that it is unlikely to
have chains of length greater than one. Let

B :=

n⋂
k=2d+2

(Ack ∪Ack−2d−1)

be the event that there are no two minimal-distance jumps (i.e. jumps at distance
2d + 1). We wish to show that P(B) = 1 − o(1). Indeed, by considering the first 2d + 1

elements in the intersection separately from the rest, Lemma 4.2 implies that P(Bc) ≤
(2d+ 1)2−d +n2−2d = o(1) as required. Notice that 1B is determined by S. Let I denote
the set of all feasible jump structures I such that {S = I} ⊂ B. Observe that on the
event B, C(S) = {(s, 1) | s ∈ S}. Therefore, by Corollary 4.6, for any I ∈ I, conditioned
on S = I, {∆(s) | s ∈ S} are independent uniform signs and, by (4.17),

h′(k) =
∑

s∈S∩{2d+2,...,k}

∆(s).

In other words, for any I ∈ I, conditioned on S = I, (h′(s) | 2d + 1 < s ∈ S) is a simple
random walk of length R (without the leading zero). Since

{h′(s) | 2d+ 1 < s ∈ S} ∪ {0} = {h′(k) | 2d+ 1 ≤ k ≤ n},

for any I ∈ I,

|{h′(k) | 2d+ 1 ≤ k ≤ n}| d= |Rng(SR)| conditioned on S = I, (4.28)

where Si is an independent simple random walk run for i steps. Define the event

E := {|{f(k) | 0 ≤ k ≤ 2d}| > 2}.

It is not difficult to check that

|Rng(f)| = 2 + |{h′(k) | 2d+ 1 ≤ k ≤ n}| on E. (4.29)

We now show that P(E) = 1− o(1). Observe that Lemma 4.5 implies that

P(Ec | minS ≥ 4d+ 2) = 2 · 2−d.

Hence, by Lemma 4.2, and since J ⊂ E, we have

P(Ec) = P(Ec ∩ {minS < 4d+ 2}) + P(Ec ∩ {minS ≥ 4d+ 2})
≤ P(2d+ 2 ≤ minS < 4d+ 2) + P(Ec | minS ≥ 4d+ 2)

≤ 2d2−d + 21−d = o(1).

Finally, Theorem 2.5 follows from (4.27), (4.28), (4.29) and the fact that P(E ∩ B) =

1− o(1).
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5 Homomorphisms on the Torus

In this section we prove the theorems regarding homomorphisms on the torus which
were stated in Section 2.2. The ideas and notions previously introduced in Section 4
to handle the case of homomorphisms on the line will still prove to be effective on the
torus, although some of them will need to be adapted. For example, the notions of
average height, jumps and chains will still be used and they are defined in an analo-
gous manner. One thing which must change, for instance, is how we use these notions
and the events that we condition on. Note that, if we condition on the lengths and the
positions of the chains, their signs will not be independent, since they must add up cor-
rectly. This fact, which is inherently due to the topology of the torus, makes the analysis
slightly more complex. Instead, we will show that, conditioned on the lengths and the
signs of the chains (but not on their positions), their relative order is uniform. This will
allow us to reduce some of the analysis to a case of a uniformly chosen reordering of
a sequence of numbers. One aspect which is simpler for homomorphisms on the torus
is that there are no boundary effects, i.e., no need to consider the first 2d + 1 vertices
separately.

5.1 Definitions

We consider the graph Tn,d, n even, whose vertex set is V := {0, . . . , n−1} and whose
edges are defined by i ∼ j if and only if ρ(i, j) = 1, 3, . . . , 2d + 1, where we define the
distance ρ between x and y to be

ρ(x, y) := min{|x− y|, n− |x− y|}, x, y ∈ V.

We define also the clockwise distance ρ+ from x to y to be

ρ+(x, y) := y − x+ n1{x>y} = min{k ≥ 0 | x+ k = y mod n}, x, y ∈ V.

Note that ρ+(x, y) + ρ+(y, x) = n and that ρ(x, y) = min{ρ+(x, y), ρ+(y, x)} for any x, y ∈
V .

Throughout this section, Hom(Tn,d) := Hom(Tn,d, 0), f is a uniformly sampled ho-
momorphism from Hom(Tn,d), the probability space is the uniform distribution on the
set Hom(Tn,d), and events are subsets of Hom(Tn,d). We also note that, in this section,
addition and subtraction of elements in V are always modulo n.

We would like to define the notion of the (local) average height of a homomorphism
at a vertex x ∈ V . To do so, we “look back” just enough in order to define this in a
meaningful way. Precisely, for x ∈ V , define the average height at x as the unique
number h(x) satisfying

There exists a k ≥ 1 for which {f(x− i) | i = 0, 1, . . . , k} = {h(x)− 1, h(x), h(x) + 1}.

This is well defined for any homomorphism f which takes on at least 3 values. There are
two specific homomorphisms for which the size of the range is 2, and hence for which
this is not well defined. These are fflat

1 and fflat
−1 , where

fflat
i (x) :=

{
0 if x is even

i if x is odd
, x ∈ V, i ∈ {−1, 1}.

For these homomorphisms we define h(x) := 0 for all x ∈ V . For x ∈ V , define

∆(x) := h(x)− h(x− 1),

Ax := {∆(x) 6= 0}.
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Observe that necessarily ∆(x) ∈ {−1, 0, 1}. When Ax occurs, we will say that a jump
occurred at vertex x. For x, y ∈ V , denote by

Ax,y := Ax ∩Ay ∩ {∆(x) = −∆(y)}

the event that there are jumps in opposite directions at x and y. Denote by

S+ := {x ∈ V | ∆(x) = 1} and S− := {x ∈ V | ∆(x) = −1}

the sets of vertices at which a positive or negative jump occurred, respectively. Let

S := S+ ∪ S− (5.1)

be the set of vertices at which we have a jump in either direction. Notice that necessar-
ily |S+| = |S−|, and define

R := |S+| = |S−| = |S|/2,

the number of jumps in a given direction. Notice that the distance between jumps is at
least 2d+ 1, as for homomorphisms on the line. For x ∈ V and t ≥ 1, let

Cx,t := Ax ∩Ax−2d−1 ∩ · · · ∩Ax−(t−1)(2d−1)

be the event that there is a chain of t minimal-distance jumps ending at vertex x.
We say that a subset I ⊂ V is a feasible jump structure if {S = I} 6= ∅, i.e. if P(S =

I) > 0. We would like to describe this condition solely in terms of the structure of I. To
this end, write I = {s1, . . . , st}, where 0 ≤ s1 < · · · < st < n and let s0 := st. Similarly to
the case of the line, see condition (4.3), the following conditions are necessary for I to
be a feasible jump structure.

ρ+(sj−1, sj) ≥ 2d+ 1, 1 ≤ j ≤ t,
ρ+(sj−1, sj) is odd, 1 ≤ j ≤ t.

(5.2)

In contrast to the case of the line, these conditions alone are not sufficient for I to be
a feasible jump structure. This is due to the fact that the torus imposes a topological
constraint. Namely, that at the end of the homomorphism the average height must
“return” to its initial value. This additional condition, whose precise description (5.4)
we postpone to the next section, along with condition (5.2), is necessary and sufficient
for I to be a feasible jump structure.

In addition, we say that a subset I ⊂ V is a feasible jump sub-structure if it is a subset
of a feasible jump structure, or equivalently, if {I ⊂ S} 6= ∅. Notice that the definition
implies that condition (5.2) is necessary for I to be a feasible jump sub-structure. For
any I ⊂ V satisfying (5.2), by considering the connected components of the subgraph
of Tn,d induced by I, one may see that the event {I ⊂ S} can be uniquely written as
Ck1,t1 ∩ · · · ∩ Ckm,tm , where

0 ≤ k1 < · · · < km < n,

t1 + · · ·+ tm = |I|,
ρ+(kj−1, kj) > (2d+ 1)tj , 1 ≤ j ≤ m,

(5.3)

and where we let k0 := km (see Figure 6). These conditions ensure that there is no
overlap between the different chains, and moreover, that there is some gap between
them (since otherwise they would merge into a larger chain). For a subset I ⊂ V

satisfying (5.2), we define

C(I) := {(kj , tj) | 1 ≤ j ≤ m},

and refer to this as the chain structure of I.
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Figure 6: Given a subset I ⊂ V satisfying (5.2), we construct C(I), the chain struc-
ture of I, by partitioning the elements of I according to the connected components
in the subgraph of Tn,d induced by I. The elements of I are denoted by large ver-
tices and the chain structure is denoted by blocks surrounding the vertices. In
the figure, n = 90, d = 2 and I = {0, 5, 12, 35, 54, 65, 70, 75}, and hence, C(I) =

{(5, 2), (12, 1), (35, 1), (54, 1), (75, 3)}.

5.2 The structure of a homomorphism

In this section, our goal is to a give a useful description of the structure of a ho-
momorphism on the torus. Namely, that which is stated in Lemma 5.2 and Lemma 5.3
below. To this end, we would like to decompose a homomorphism into two parts (see
Figure 5 and Figure 7). The first part, which we shall denote by X, constitutes the
changes in average height (the underlying bridge) of the homomorphism, while the sec-
ond part, which we shall denote by Y , constitutes the fluctuations around the average
height (the segments of constant average height).

We proceed first to define X. Given a subset I ⊂ V satisfying (5.2), denote the set
of feasible sign vectors for I by

B∗(I) :=

ε ∈ {−1, 1}C(I) |
∑

(k,t)∈C(I)

ε(k,t)t = 0

 .

When I = ∅, this set contains one element, the function with the empty domain. Note
that in order for a subset I ⊂ V to be a feasible jump structure, it is necessary and
sufficient for I to satisfy (5.2) and

B∗(I) 6= ∅. (5.4)

This last condition is the manifestation of the topological constraint imposed by the
torus. It says that the chain structure induced by the position of the jumps is such that
it is possible to assign signs to each chain so that the average height “returns” to its
initial value when completing an entire loop around the torus.

For a feasible jump structure I and a feasible sign vector ε ∈ B∗(I), define the signed
chain structure of (I, ε) by

C∗(I, ε) :=
{

(k, ε(k,t) · t) | (k, t) ∈ C(I)
}
. (5.5)

Recall the definition of S from (5.1). Define X ∈ {−1, 1}C(S) by

X(k,t) := f(k)− f(k − 1), (k, t) ∈ C(S),
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Figure 7: A homomorphism is broken up into sections of fluctuations and chains. The
positions, lengths and associated signs of each chain (denoted by blocks with signs
inside) make up the signed chain structure C∗(S,X) of the homomorphism. This infor-
mation, along with the independent fluctuation values between the chains (denoted by
wavy lines), uniquely determines the homomorphism.

and note that X ∈ B∗(S). This defines for us the random signed chain structure
C∗(S,X). This random variable contains in a fairly simple manner all the necessary
information for determining the range of f . Namely, it gives us the positions, lengths
and signs of the chains in f .

We now proceed to define Y . For a non-empty feasible jump structure I, define the
fluctuation points of I by

FP (I) :=
{
y ∈ V | ρ+(y, I) ∈ 2d+ 1 + 2N

}
,

where ρ+(y, I) := mins∈I ρ
+(y, s) and N := {1, 2, 3, . . .}. That is, a point is a fluctuation

point if its clockwise distance to the closest jump in the clockwise direction is odd and
at least 2d + 3. In particular, for any homomorphism f and any y ∈ FP (S(f)), f is not
at its average height at y. Now, for a homomorphism f having at least one jump, define
Y ∈ {−1, 1}FP (S) by

Yy := f(y)− f(y − 1), y ∈ FP (S).

It will be useful to have the following formula for the number of fluctuation points.

Claim 5.1. For any non-empty feasible jump structure I, we have

|FP (I)| = n/2− (d+ 1/2)|I| − |C(I)|.

Proof. We have∣∣{y ∈ V | ρ+(y, I) < 2d+ 3
}∣∣ =

∑
(k,t)∈C(I)

((2d+ 1)t+ 2) = (2d+ 1)|I|+ 2|C(I)|.
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Furthermore, the set {y ∈ V | ρ+(y, I) ≥ 2d + 3} is a disjoint union of intervals of even
length, by (5.2), so that

|FP (I)| =
∣∣{y ∈ V | ρ+(y, I) ≥ 2d+ 3

}∣∣ /2
=
(
n−

∣∣{y ∈ V | ρ+(y, I) < 2d+ 3
}∣∣) /2

= n/2− (d+ 1/2)|I| − |C(I)|.

The final lemmas show that X,Y and the jump structure S exactly encode the homo-
morphism.

Lemma 5.2. For any non-empty feasible jump structure I, the mapping f 7→ (X(f), Y (f))

is a bijection between {S = I} and B∗(I) × {−1, 1}FP (I). Also, the event {S = ∅} is of
size 2n/2+1 − 2.

This is an immediate consequence of the following lemma.

Lemma 5.3. For any non-empty feasible jump structure I and any feasible sign vector
ε ∈ B∗(I), the mapping f 7→ Y (f) is a bijection between {C∗(S,X) = C∗(I, ε)} and
{−1, 1}FP (I). Also, the event {C∗(S,X) = ∅} is of size 2n/2+1 − 2.

Proof. It is not hard to verify that this is indeed a bijection (see Figure 7 for a macro-
scopic picture and Figure 5 for a microscopic picture). We omit the proof as it is very
similar to that of Lemma 4.5.

For the second statement, we note that {C∗(S,X) = ∅} = {S = ∅} = {h ≡ const}, and
hence by considering the events {h ≡ 0} and {|h| ≡ 1}, and recalling that we set h ≡ 0

when f takes on only two values, the statement readily follows.

5.3 The range

In this section, our goal is to give a more explicit description of the distribution of
the range of a homomorphism. Namely, that which is stated in Proposition 5.4 below.

Recall the definition of the signed chain structure from (5.5). Let

W̄ := {w | (k,w) ∈ C∗(S,X)} , (5.6)

be the set of lengths and signs of the chains taken with multiplicities, i.e. W̄ is a multi-
set. For a vector of integers w = (w1, . . . , wm), denote by

|Rng(w)| := 1 + max
0≤j≤m

j∑
i=1

wi − min
0≤j≤m

j∑
i=1

wi, (5.7)

the size of the smallest interval in Z which contains all partial sums of w.

Proposition 5.4. Let m ≥ 1, let w̄ = {w1, . . . , wm} be a multi-set such that P(W̄ = w̄) >

0 and let π be a uniformly chosen permutation of {1, 2, . . . ,m}. Then,

(|Rng(f)| conditioned on W̄ = w̄)
d
= 2 + |Rng(wπ(1), . . . , wπ(m))|.

Proposition 5.4 is a direct consequence of the following two lemmas. The first of
these, Lemma 5.5, relates the range of f to a random variable W defined below. The
second, Lemma 5.7, describes the distribution of W conditioned on W̄ .

Given a set X and a vector x ∈ Xm, define the period of x by

per(x) := min{1 ≤ k ≤ m | σk(x) = x},
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where σ : Xm → Xm is the mapping (x1, . . . , xm) 7→ (x2, . . . , xm, x1) and σk is its iteration
k times, so that σm is the identity map. Define an equivalence relation on Xm by x ∼ y if
and only if there exists a k such that σk(x) = y. Denote by [x] := {x, σ(x), . . . , σm−1(x)}
the equivalence class of x. Observe that |[x]| = per(x). For x, y ∈ Xm, define

x ∨ y :=
(
(x1, y1), . . . , (xm, ym)

)
,

and note that per(x ∨ y) = lcm(per(x),per(y)).
Write C∗(S,X) = {(ki, wi)}mi=1, where 0 ≤ k1 < · · · < km < n. Let k0 := km and define

W := [(w1, . . . , wm)] .

That is, W forgets the absolute position of the chains and remembers only their signed
length and relative ordering. Note that W̄ is determined by W .

We begin by showing that the random variable W governs the range of the homo-
morphism. For a vector of integers w whose sum is zero, recalling (5.7), we define
|Rng([w])| := |Rng(w)|, and note that this is indeed well-defined by the equivalence
class of w.

Lemma 5.5. We have

|Rng(f)| = 2 + |Rng(W )| on the event {W̄ 6= ∅}.

Proof. The partial sums of W correspond to differences in average height between two
vertices. Therefore, |Rng(W )| = 1 + maxx∈V h(x) − minx∈V h(x). By the definition of
the average height, we have |f(x) − h(x)| ≤ 1 and {h(x) − 1, h(x), h(x) + 1} ⊂ Rng(f)

for any vertex x ∈ V . Therefore, by considering vertices at which the average height is
maximal or minimal, we obtain the additional factor of 2 in the above equation.

Remark 5.6. On the event {W̄ = ∅}, the size of the range of f is either 2 or 3. However,
Lemma 5.2 implies that, conditioned on W̄ = ∅, the probability that the size of the range
is 2 is of order 2−n/2.

The next lemma is the final ingredient in the proof of Proposition 5.4. The remaining
part of this section is devoted to its proof.

Lemma 5.7. Let m ≥ 1, let w̄ = {w1, . . . , wm} be a multi-set such that P(W̄ = w̄) > 0

and let π be a uniformly chosen permutation of {1, 2, . . . ,m}. Then,

(Wconditioned on W̄ = w̄)
d
= [wπ(1), . . . , wπ(m)].

Write C∗(S,X) = {(ki, wi)}mi=1, where 0 ≤ k1 < · · · < km < n. Let k0 := km and define

Z :=
[(
ρ+(ki−1, ki − (2d+ 1)|wi| − 2)/2, wi

)m
i=1

]
.

That is, Z forgets the absolute positions of the chains in C∗(S,X) and remembers only
their distances one to the other (precisely, half the distance from the last vertex of
one chain to one vertex before the beginning of the next chain). Note that the first
coordinate of each element in Z is necessarily a non-negative integer. Also note that W
is determined by Z. The next claim calculates the distribution of Z.

Claim 5.8. Let m ≥ 1. Let w ∈ (Z \ {0})m be such that w1 + · · · + wm = 0 and let
x ∈ (N ∪ {0})m be such that

(2d+ 1)(|w1|+ · · ·+ |wm|) + 2m+ 2(x1 + · · ·+ xm) = n. (5.8)

Then

|{Z = [x ∨ w]}| = n · per(x ∨ w)

m
· 2x1+···+xm .
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Proof. Recall conditions (5.2) and (5.4), and note that, together with the assumptions,
they imply that the event {Z = [x∨w]} is non-empty. We partition the event {Z = [x∨w]}
according to C∗(S,X). Let r ≥ 1 be the number of subsets in this partition, so that

{Z = [x ∨ w]} =

r⋃
i=1

{C∗(S,X) = C∗(Ii, εi)},

where the (Ii, εi) are distinct and feasible. By Lemma 5.3, Claim 5.1 and (5.8),

|{C∗(S,X) = C∗(Ii, εi)}| = 2n/2−(d+1/2)(|w1|+···+|wm|)−m = 2x1+···+xm ,

for any 1 ≤ i ≤ r, and therefore,

|{Z = [x ∨ w]}| = r · 2x1+···+xm .

Recalling the definition of Z, we see that {Z = [x∨w]} determines C∗(S,X) = {(ki, wi)}mi=1

up to a rotation of the torus. It is not hard to see that if l = per(x∨w) then r = nl/m.

Proof of Lemma 5.7. We show something stronger. Define

D := [(x1, . . . , xm)] where Z = [((xi, wi))
m
i=1].

Let m ≥ 1, let w̄ = {w1, . . . , wm} be a multi-set and let x = (x1, . . . , xm) be such that
P(W̄ = w̄,D = [x]) > 0. We shall show that

(W conditioned on W̄ = w̄ and D = [x])
d
= [wπ(1), . . . , wπ(m)],

where π is a uniformly chosen permutation of {1, 2, . . . ,m}.
Let w be an ordering of w̄. Define

Z(x,w) :=
{

[x′ ∨ w′] | x′ ∈ [x], w′ ∈ [w]
}
,

and note that |Z(x,w)| = gcd(per(x),per(w)). We have

P(W = [w] | W̄ = w̄, D = [x]) =
P(W = [w], D = [x])

P(W̄ = w̄, D = [x])
=

∑
z∈Z(x,w) |{Z = z}|∣∣{W̄ = w̄} ∩ {D = [x]}

∣∣ .
Let w′ ∈ [w] and x′ ∈ [x] be representatives of their equivalence classes. By Claim 5.8,
we have

|{Z = [x′ ∨ w′]}| = n · per(x′ ∨ w′)
m

· 2x1+···+xm .

Since, per(x′ ∨ w′) = lcm(per(x′),per(w′)), per(x′) = per(x) and per(w′) = per(w), we see
that P(W = [w] | W̄ = w̄, D = [x]) is proportional to

|Z(x,w)| · lcm(per(x),per(w)) = per(x) · per(w).

That is, conditioned on W̄ = w̄ and D = [x], the probability that W equals [w] is
proportional to per(w). Finally, observe that the same is true for the probability that
[wπ(1), . . . , wπ(m)] equals [w]. Indeed, one may check that

P([wπ(1), . . . , wπ(m)] = [w]) =
per(w)

C(w̄)
,

where C(w̄) is a multinomial coefficient depending on w̄.
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5.4 Proof of theorems

In this section, we are primarily concerned with homomorphisms on the graph Tn,d.
However, we will occasionally also refer to homomorphisms on the graph Pn,d. We
note that in either case, such a homomorphism can be seen as an element of Z{0,1,...,n},
where f ∈ Hom(Tn,d) is extended to {0, 1, . . . , n} by f(n) := 0. Therefore, the uniform
distributions on Hom(Pn,d) and Hom(Tn,d) can be seen as distributions on Z{0,1,...,n}. We
shall denote the probability and expectation with respect to each of these distributions
by PP and EP and PT and ET , respectively. Throughout this section, we will frequently
drop the subscript, in which case P and E will refer to PT and ET .

We first state some technical lemmas and propositions whose proofs we defer to the
next section. Our first proposition is one which will allow us to transfer some results
from the line to the torus. This is an FKG-type inequality for the measure induced on
non-negative homomorphisms by taking pointwise absolute value.

Proposition 5.9. For any increasing function φ : Z{0,1,...,n} → [0,∞), we have

ET [φ(|f |)] ≤ 9 · EP [φ(|f |)].

The next two lemmas are concerned with the probability of jumps occurring at given
vertices. In the case of the line, we were able to obtain in Lemma 4.2 a good upper
bound on the probability of having t jumps at any given vertices. In the case of the
torus, we are not able to obtain such a general result. The main difficulty is due to the
topological constraint imposed by the torus. In particular, if a jump occurs at a given
vertex then a jump in the opposite direction must also occur at some other vertex. The
next lemma shows that the probability of a chain of consecutive jumps is still unlikely.

Lemma 5.10. For any vertex x ∈ V and any positive integer t, we have

P(Cx,t) ≤ C2−dt.

The following lemma shows that having jumps in opposing directions at given ver-
tices is also unlikely.

Lemma 5.11. For J, J ′ ⊂ V let AJ,J ′ :=
⋂
x∈J,y∈J′ Ax,y be the event that there are jumps

in one direction at all vertices in J and jumps in the opposite direction at all vertices in
J ′. Then, for any subsets J, J ′ ⊂ V of size m each, we have

P(AJ,J ′) ≤ 2−(2d−1)m.

The last lemma is the analog of Corollary 4.10 on the line. It will allow us to deduce
the typical order of magnitude of R.

Lemma 5.12. For any positive even integer n and any positive integers d and r such
that Cdr ≤ n, we have

P(R = r) ≥ n2

r222d+5
·
(

1− Cdr

n

)2

· P(R = r − 1).

As in the case of homomorphisms on the line, it is also possible to prove an inequality
in the opposite direction, showing that P(R = r) ≤ C n2

r222d
P(R = r − 1), but we neither

use nor prove this.

The supercritical regime. We prove Theorem 2.6 and Corollary 2.7. By Lemma 5.11
and by the union bound, we have

P(R ≥ r) = P

 ⋃
J,J ′⊂V
|J|=|J′|=r

AJ,J ′

 ≤ (nr
)2

2−(2d−1)r, r ≥ 1.
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One may easily check that |Rng(f)| ≤ R+ 3, so that

P
(
|Rng(f)| ≥ 3 + r

)
≤
(
n

r

)2

2−(2d−1)r, r ≥ 1. (5.9)

Moreover, it is easy to describe all homomorphisms which take on at most 3 values. Let
Ω0 be the set of homomorphisms which are constant on the even vertices (having the
value 0 on the even vertices and 1 or −1 on the odd vertices), and let Ω1 be the set of
homomorphisms which are constant on the odd vertices (having the value ±1 on the odd
vertices, and 0 or ±2, respectively, on the even vertices). Then {|Rng(f)| ≤ 3} = Ω0∪Ω1,
|Ω0 ∩ Ω1| = 2, and |Ω0| = |Ω1| = 2n/2. Therefore,

P
(
|Rng(f)| < 3

)
= P(Ω0 ∩ Ω1) ≤ |Ω0 ∩ Ω1|

|Ω0 ∪ Ω1|
=

2

2n/2+1 − 2
≤ 21−n/2,

completing the proof of Theorem 2.6. To obtain Corollary 2.7, recall that |Ω0| = |Ω1|
and note that if d− log2 n→∞ as n→∞ then P(Ω0 ∪Ω1) = P(|Rng(f)| ≤ 3) = 1− o(1),
by Theorem 2.6.

We remark that the bound (5.9) obtained for the probability that the range is large
constitutes something of a compromise between two possibilities. With somewhat less
work we could have used the FKG-type inequality, Proposition 5.9, to obtain a weaker
bound. With somewhat more work we could make a finer analysis of the possible cases
in the proof of Lemma 5.11 and obtain a somewhat better bound, with 2d − 1 replaced
by 2d+ 1 or even 2d+ 2. The bound we chose to prove has the benefit that it is already
rather good and has a relatively simple proof.

The subcritical regime. We begin by proving the upper bound in Theorem 2.8. Since
max0≤k≤n |f(k)| is an increasing function in |f |, we have by Proposition 5.9,

ET

[
max

0≤k≤n
|f(k)|

]
≤ 9 · EP

[
max

0≤k≤n
|f(k)|

]
.

By our previous result on the line, Theorem 2.3, we have

EP

[
max

0≤k≤n
|f(k)|

]
≤ EP

[
|Rng(f)| − 1

]
≤ 2 + C

√
n2−d,

and then, using symmetry,

ET
[
|Rng(f)|

]
= ET

[
1 + max

0≤k≤n
f(k)− min

0≤k≤n
f(k)

]
≤ 1+2·ET

[
max

0≤k≤n
|f(k)|

]
≤ 37+C

√
n2−d.

We now prove the lower bound in Theorem 2.8. The proof is very similar to that of
the lower bound in Theorem 2.3, and so we only give an outline. First, we show that for
any ε > 0 there exists a δ > 0 such that

P
(
|Rng(f)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ ε+ 21−n/2.

Let ε > 0. Note that, by Theorem 2.6, the statement is trivial when δ
√
n2−d < 1. Hence,

we may assume that n2−d ≥ C/ε. Mimicking the proof of Lemma 4.11 and its corollary,
using Lemma 5.12 in place of Lemma 4.9, we find that there exists a δ1 > 0 such that

P
(
R < δ1n2−d

)
≤ ε/4.

Continuing as in (4.22) - (4.24), using Lemma 5.10 in place of Lemma 4.2, we obtain

P
(
|C(S)| ≥ δ2n2−d

)
≥ 1− ε/2, (5.10)
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for some δ2 > 0. Proposition 5.4 and Proposition 3.6 imply that

P
(
|Rng(f)| < r | |C(S)|

)
≤ Cr√

|C(S)|
, r ∈ N. (5.11)

Now, putting (5.10) and (5.11) together, we see that there exists a δ > 0 such that

P
(
|Rng(f)| < 3 +

⌊
δ
√
n2−d

⌋)
≤ P

(
|Rng(f)| <

⌊
4δ
√
n2−d

⌋)
≤ ε.

Finally, repeating the calculation in (4.26), where we use Theorem 2.6 in place of The-
orem 2.1, we obtain

E
[
|Rng(f)|

]
≥ 3 +

⌊
c
√
n2−d

⌋
− 21−n/2.

The critical regime. Here we prove Theorem 2.9. Denote λ := limn2−d which exists
and is a positive number by assumption. We begin by showing that in the critical regime
the jumps are sparse enough so that it is unlikely to have chains of length greater than
one. Let

B :=
⋂
x∈V

(Acx ∪Acx+2d+1)

be the event that there are no two minimal-distance jumps (i.e. jumps at distance 2d+1).
We wish to show that P(B) = 1− o(1). Indeed, by Lemma 5.10, we have

P(Bc) ≤
∑
x∈V

P(Ax ∩Ax+2d+1) ≤ Cn2−2d = o(1).

We now find the limiting distribution of R as n tends to infinity. By Lemma 5.2 and
Claim 5.1, we have that P(R = r | B) is proportional to{

c(n, d, r) ·
(
2r
r

)
· 2n/2−r(2d+3) if r ≥ 1

2n/2+1 − 2 if r = 0
, (5.12)

where c(n, d, r) is the number of feasible jump structures I having |I| = |C(I)| = 2r.

Claim 5.13. For any r ≥ 1, we have

c(n, d, r) =
n

2r
·
(
n/2− (2d+ 1)r − 1

2r − 1

)
.

Proof. Denote by I the set of all feasible jump structures I having |I| = |C(I)| = 2r. For
v ∈ V , let Iv := {I ∈ I | v ∈ I}. Then,

n|I0| =
∑
v∈V
|Iv| =

∑
v∈V

∑
I∈I

1I(v) =
∑
I∈I

∑
v∈V

1I(v) =
∑
I∈I
|I| = 2r|I| = 2r · c(n, d, r).

It remains to compute the size of I0. By considering the distances between consecutive
elements in any I ∈ I0, and recalling (5.2), (5.3) and (5.4), we see that |I0| is given by
the number of non-negative integer solutions to the equation

x1 + x2 + · · ·+ x2r = n,

under the additional constraint that, for 1 ≤ j ≤ 2r, xj is odd and at least 2d + 3.
Therefore, after substituting xj = 2yj + 2d+ 3 for 1 ≤ j ≤ 2r, we see that |I0| is equal to
the number of non-negative integer solutions to the equation

y1 + · · · y2r = n/2− (2d+ 3)r,

from which the result now follows.

EJP 19 (2014), paper 52.
Page 36/54

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3060
http://ejp.ejpecp.org/


Random walk with long-range constraints

By (5.12) and Claim 5.13, for any fixed r ≥ 1, we have

P(R = r | B)

P(R = r − 1 | B)
=

n2

r222d+5
· (1 + o(1)) =

(λ′)2

r2
· (1 + o(1)),

where λ′ := λ/(4
√

2). By Lemma 5.10 and since P(B) = 1− o(1), we have

E[R | B] =
1

2

∑
x∈V

P(Ax | B) ≤ 1

2P(B)

∑
x∈V

P(Ax) ≤ Cn2−d

P(B)
= O(1).

Therefore, conditioned on B, the expectation of R is uniformly bounded as n → ∞.
Hence, Markov’s inequality implies that, conditioned on B, R is tight as n→∞. Recall
the definition of the distribution ν(λ′) in (2.5). Let N(λ′) ∼ ν(λ′) and note that

P(N(λ′) = r)

P(N(λ′) = r − 1)
=

(λ′)2

r2
, r ≥ 1.

Thus, Lemma 3.7 implies that, conditioned on B, R converges in distribution to N(λ′).
Finally, since P(B) = 1− o(1), we conclude that R converges in distribution to ν(λ′).

It remains to understand the range of a homomorphism. Recalling the definition
of W̄ given in (5.6), we observe that the event B is the same as the event {|W̄ | =

|C(S)| = 2R}, which is the same as the event that W̄ consists of R 1’s and R (−1)’s.
Therefore, by Proposition 5.4, conditioned on B and on R, on the event {R > 0}, the
range of a homomorphism is equal in distribution to two plus the range of a random walk
bridge of length 2R. By Theorem 2.6, conditioned on the event {R = 0}, the range of
a homomorphism is 3 with probability tending to one. This, together with our previous
result on the convergence of R in distribution, completes the proof of Theorem 2.9.

5.5 Proof of main lemmas

Proof of Proposition 5.9. Recall that a homomorphism on Pn,d or Tn,d can be seen as
an element of Z{0,1,...,n}, where f ∈ Hom(Tn,d) is extended to {0, 1, . . . , n} by f(n) := 0.
Therefore, the uniform distributions on Hom(Pn,d) and Hom(Tn,d) are distributions on
Z{0,1,...,n}, which we denote by PP and PT respectively. We also denote by Q := {f ∈
Hom(Tn,d)} the support of PT , so that the measure PP (· | Q) is just the measure PT .

Let φ : Z{0,1,...,n} → [0,∞) be an increasing function. Note that the event {f(n) = 0}
is a decreasing event in |f |. Therefore, we can apply Theorem 3.4 for the functions φ
and ψ(f) := 1{f(n)=0}, to obtain

EP
[
φ(|f |) | f(n) = 0

]
≤ EP

[
φ(|f |)

]
. (5.13)

Notice that sampling a random homomorphism on Pn,d conditioned on {f(n) = 0} is
not equivalent to sampling a random homomorphism on Tn,d, which is just to say that
Q 6= {f(n) = 0}. However, it is equivalent to sampling a random homomorphism on
another graph. Namely, the graph P ′n,d obtained from Pn,d by identifying the vertex
0 with the vertex n. In order to obtain Tn,d from P ′n,d, we must still add some edges
which are missing, for example, the edge between n − 1 and 2, and the edge between
n− 2 and 1. Nonetheless, this observation shows that the measure PP (· | f(n) = 0) also
satisfies the FKG inequality in Theorem 3.4, since it is equivalent to sampling a random
homomorphism on P ′n,d. Define the events

J := {|f(k)| ≤ 1, k = 0, 1, . . . , 2d} and

J ′ := {|f(k)| ≤ 1, k = n, n− 1, . . . , n− 2d}.
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Notice that

J ∩ J ′ ⊂ Q ⊂ {f(n) = 0}.

Thus, using (5.13) and the fact that φ is non-negative, we obtain

EP
[
φ(|f |) | Q

]
≤ EP

[
φ(|f |) | f(n) = 0

]
· PP (f(n) = 0)

PP (Q)
≤

EP
[
φ(|f |)

]
PP (J ∩ J ′ | f(n) = 0)

.

We now wish to bound P(J ∩ J ′ | f(n) = 0) from below. We first apply Theorem 3.4 to
the graph P ′n,d to get

PP (J ∩ J ′ | f(n) = 0) ≥ PP (J | f(n) = 0) · PP (J ′ | f(n) = 0) = PP (J | f(n) = 0)2,

where we have used symmetry in the second step. Next, we apply Theorem 3.4 again
to the graph Pn,d to get

PP (J | f(n) = 0) ≥ PP (J).

Finally, since J is just the event that no jump occurs at the first 2d+ 1 vertices, we have
by Lemma 4.1 that PP (J) ≥ 1/3. Therefore, we have shown that

ET
[
φ(|f |)

]
= EP

[
φ(|f |) | Q

]
≤ 9 · EP

[
φ(|f |)

]
.

For the proofs of the remaining lemmas, it is convenient to denote by [x, y] the ver-
tices on the arc going from x to y in the clockwise direction. That is, for x, y ∈ V , we
define

[x, y] := {z ∈ V | ρ+(x, z) ≤ ρ+(x, y)}.

Also, for a set J ⊂ V and an integer t, we let

J + t := {j + t | j ∈ J}

where, as always, addition for vertices on the torus is taken modulo n.

Proof of Lemma 5.10. First, we partition Cx,t into two events C0
x,t and C1

x,t. Denote
x′ := x− (2d+ 1)t− 1 and define

C0
x,t := Cx,t ∩

{
|f(x)− f(x′ − 1)| = 2 + t

}
,

C1
x,t := Cx,t ∩

{
|f(x)− f(x′ − 1)| = t

}
.

Note that since any f ∈ Cx,t has |f(x)− f(x′)| = 1 + t, we indeed have Cx,t = C0
x,t ∪C1

x,t.
Also, observe that

C0
x,t = {|f(x)− f(x′ − 1)| ≥ 2 + t}, (5.14)

since for any f ∈ Hom(Tn,d), |f(x)−f(x′−1)| ≤ 2+ t necessarily holds and |f(x)−f(x′−
1)| = 2 + t holds only if there is a chain of length t at x.

We now prove that

P(C1
x,t) ≤ P(C0

x,t). (5.15)

By rotating the torus if necessary, we note that it suffices to prove this under the as-
sumption that x′ 6= 1. This simplifies slightly the following discussion as it avoids issues
stemming from the fact that f(0) is normalized to be 0.

Consider the mapping f 7→ f0 from C1
x,t to C0

x,t defined by

f0(y) :=

{
f(y) if y 6= x′ − 1

2f(y + 1)− f(y) if y = x′ − 1
, y ∈ V.
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x′′ x′

x

Figure 8: A homomorphism f in C1
x,t. Modifying the value at x′−1 to be f(x′′) injectively

maps this homomorphism to C0
x,t. Here d = 2 and t = 3.

Let f ∈ C1
x,t. Note that, by the definition of the jumps and the average height, there

exists a vertex x′′ ∈ V such that |f(x)−f(x′′)| = 2+t and such that 1 ≤ |f(y)−f(x′′)| ≤ 2

for any y ∈ [x′′+1, x′+2d+1]. It is easy to see that the existence of such a x′′ implies that
f0 is well-defined (see Figure 8). Since the mapping is clearly injective, (5.15) follows,
and so P(Cx,t) ≤ 2P(C0

x,t).
It remains to bound the probability of the event C0

x,t. Due to rotation equivariance,
the probability of this event is independent of x. Thus, substituting x = (2d+ 1)t+ 2 so
that x′ = 1, and recalling (5.14), we have

P(C0
x,t) = P(C0

(2d+1)t+2,t) = P(|f((2d+ 1)t+ 2)| ≥ 2 + t).

Since this last event is clearly an increasing event in |f |, Proposition 5.9 and Lemma 4.2
now yield

PT (C0
x,t) = PT (|f((2d+ 1)t+ 2))| ≥ 2 + t)

≤ 9 · PP (|f((2d+ 1)t+ 2))| ≥ 2 + t) = 9 · PP (C(2d+1)t+2,t+1) ≤ C2−dt.

Proof of Lemma 5.11. The idea of the proof is to remove jumps from the jump structure
of the given homomorphism and observe that this results in more fluctuation points. We
shall do so by removing the jumps two at a time. See Figure 9.

We begin with some notation. For a feasible jump structure I and a vertex x ∈ I,
denote by C(I, x) the chain in I containing x, i.e., C(I, x) is the unique element (k, t) ∈
C(I) satisfying x ∈ [k−(2d+1)(t−1), k]. For a feasible jump structure I and two vertices
x, y ∈ I belonging to different chains, i.e. C(I, x) 6= C(I, y), denote

Ix,y := (I ∩ [y + 1, x− 1]) ∪ ((I ∩ [x+ 1, y − 1])− 1).

Note that Ix,y satisfies condition (5.2). Moreover, it is easy to see that the chain struc-
ture of Ix,y satisfies

C(Ix,y) = C(I ∩ [y + 1, x− 1]) ∪ C((I ∩ [x+ 1, y − 1])− 1).

In particular,
|C(I)| − 2 ≤ |C(Ix,y)| ≤ |C(I)|+ 2 (5.16)

and, denoting Dx,y := {x− 2d− 1, x+ 2d+ 1, y − 2d− 1, y + 2d+ 1},

|C(Ix,y)| = |C(I)| − 2, if I ∩Dx,y = ∅. (5.17)

Now, for a feasible sign vector ε ∈ B∗(I), define εx,y ∈ {−1, 1}C(Ix,y) by

εx,y(k, t) :=

{
ε(C(I, k)) if k ∈ I
ε(C(I, k + 1)) if k + 1 ∈ I

, (k, t) ∈ C(Ix,y).
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x y

Figure 9: An illustration of the operation of “removing jumps” from a homomorphism.
Given a homomorphism having jumps at x and y in opposite directions, we may remove
these jumps and gain entropy in the newly formed fluctuation points. Here d = 3.

That is, the sign of a chain in C(Ix,y) is inherited from its corresponding chain in C(I).
Note that, ∑

(k,t)∈C(Ix,y)

εx,y(k, t) · t = −ε(C(I, x))− ε(C(I, y)).

Hence, if ε(C(I, x)) 6= ε(C(I, y)) then εx,y ∈ B∗(Ix,y) and, by (5.4), Ix,y is a feasible jump
structure.

Denote by I the set of all feasible jump structures. For subsets J, J ′ ⊂ V , denote
by B(J, J ′) the set of all feasible signed jump structures containing J ∪ J ′ and having
different signs on J and J ′, i.e.,

B(J, J ′) :=
{

(I, ε) | I ∈ I, ε ∈ B∗(I), J ∪ J ′ ⊂ I, ε(C(I, x)) 6= ε(C(I, y)) ∀x ∈ J, y ∈ J ′
}
.

Then, we have the equality of events,

AJ,J ′ = {(S,X) ∈ B(J, J ′)}.

Therefore, the lemma is equivalent to

P
(
(S,X) ∈ B(J, J ′)

)
≤ 2−(2d−1)m, m ≥ 0, J, J ′ ⊂ V, |J | = |J ′| = m. (5.18)

We prove this by induction on m. The induction base, m = 0, and the case when
B(J, J ′) = ∅ are trivial. Suppose that m ≥ 1 and let J, J ′ ⊂ V be such that B(J, J ′) 6= ∅.
We choose two vertices x ∈ J and y ∈ J ′ such that [x, y] ∩ (J ∪ J ′) = {x, y} and define a
mapping

T : B(J, J ′)→ B(J \ {x}, J ′ \ {y})
by

T (I, ε) := (Ix,y, εx,y).

Note that the mapping I 7→ Ix,y is injective on {I ∈ I | x, y ∈ I}. Thus, recalling that
jumps belonging to the same chain must have the same sign, it is not hard to see that,
for any (I ′, ε′) ∈ B(J \ {x}, J ′ \ {y}), we have

|T−1(I ′, ε′)| ≤

{
1 if I ′ ∩D′x,y 6= ∅
2 if I ′ ∩D′x,y = ∅

,

where D′x,y := {x − 2d − 1, x + 2d, y − 2d − 2, y + 2d + 1}. Moreover, by Lemma 5.3 and
Claim 5.1, for any (I, ε) ∈ B(J, J ′),

P
(
(S,X) = T (I, ε)

)
= P

(
(S,X) = (I, ε)

)
·

{
22d+1+|C(I)|−|C(Ix,y)| if Ix,y 6= ∅
22d+3(2− 21−n/2) if Ix,y = ∅

.
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Thus, by (5.16) and (5.17), for any (I, ε) ∈ B(J, J ′),

P
(
(S,X) = T (I, ε)

)
≥ P

(
(S,X) = (I, ε)

)
· 22d−1 ·

{
1 if I ∩Dx,y 6= ∅
16 if I ∩Dx,y = ∅

.

Denote

B :=
{

(I, ε) ∈ B(J, J ′) | I ∩Dx,y = ∅
}
,

B′ :=
{

(I ′, ε′) ∈ B(J \ {x}, J ′ \ {y}) | I ′ ∩D′x,y = ∅
}
.

Note that T maps B into B′ and B(J, J ′) \ B into B(J \ {x}, J ′ \ {y}) \ B′. Therefore,
applying Lemma 3.1 to the restriction of T to B and separately to its restriction to
B(J, J ′) \B, we obtain

P
(
(S,X) ∈ B(J, J ′)

)
= P

(
(S,X) ∈ B

)
+ P

(
(S,X) ∈ B(J, J ′) \B

)
≤ 2−(2d+2) · P

(
(S,X) ∈ B′

)
+ 2−(2d−1) · P

(
(S,X) ∈ B(J \ {x}, J ′ \ {y}) \B′

)
≤ 2−(2d−1) · P

(
(S,X) ∈ B(J \ {x}, J ′ \ {y})

)
.

Thus, (5.18) follows by induction, proving the lemma.

Proof of Lemma 5.12. The proof utilizes a similar technique as the proof of Lemma 5.11,
where this time we aim to add jumps to the jump structure of the homomorphism rather
than remove jumps.

For a feasible jump structure I, denote

U(I) :=


{

(x, y) ∈ V 2 | ρ(x, y) ≥ 2d+ 3, ρ
+(I,x), ρ+(x,I)+1,

ρ+(y,I), ρ+(I,y)−1 ∈ D
}

if I 6= ∅{
(x, y) ∈ V 2 | ρ(x, y) ∈ D, ρ(0, x) is even

}
if I = ∅

,

where ρ+(x, I) := mins∈I ρ
+(x, s), ρ+(I, x) := mins∈I ρ

+(s, x) and

D := {2d+ 3, 2d+ 5, . . . }.

For a feasible jump structure I and a pair (x, y) ∈ U(I), define

Ix,y := (I ∩ [y, x]) ∪ ((I ∩ [x, y]) + 1) ∪ {x, y}.

Note that Ix,y satisfies condition (5.2). Moreover, it is easy to see that the chain struc-
ture of Ix,y satisfies

C(Ix,y) = C(I ∩ [y, x]) ∪ C((I ∩ [x, y]) + 1) ∪ {(x, 1), (y, 1)}.

Now, for a feasible sign vector ε ∈ B∗(I) and a sign i ∈ {−1, 1}, define εx,y,i ∈ B∗(Ix,y)

by

εx,y,i(k, t) :=


ε(k, t) if k ∈ I
ε(k − 1, t) if k − 1 ∈ I
i if k = x

−i if k = y

, (k, t) ∈ C(Ix,y).

That is, the sign of a chain in C(Ix,y) \ {(x, 1), (y, 1)} is inherited from its corresponding
chain in C(I) and the sign of the chain at x, which is opposite of that of y, is determined
independently. Note that, by (5.4), Ix,y is a feasible jump structure. Moreover, since
|Ix,y| = |I|+ 2 and |C(Ix,y)| = |C(I)|+ 2, Lemma 5.3 and Claim 5.1 imply that

P
(
(S,X) = (Ix,y, εx,y,i)

)
= P

(
(S,X) = (I, ε)

)
· 2−2d−3 ·

{
1 if I 6= ∅
(2− 21−n/2)−1 if I = ∅

. (5.19)
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Denote by I the set of all feasible jump structures. For r ≥ 0, let Br denote the set
of feasible signed jump structures having 2r jumps, i.e.,

Br := {(I, ε) | I ∈ I, ε ∈ B∗(I), |I| = 2r}.

For r ≥ 1, define the mapping

Tr : Br−1 → P(Br)

by

Tr(I, ε) :=
{

(Ix,y, εx,y,i) | (x, y) ∈ U(I), i ∈ {−1, 1}
}
.

Assume henceforth that n ≥ Cdr. Then, since the mapping ((x, y), i) 7→ (Ix,y, εx,y,i) is
injective on U(I)× {−1, 1}, we have

|Tr(I, ε)| = 2|U(I)| ≥ 2(n/2− Cdr)2.

Therefore, by (5.19),

P
(
(S,X) ∈ Tr(I, ε)

)
≥ P

(
(S,X) = (I, ε)

)
· (n− Cdr)2

22d+5
·

{
2 if r ≥ 2

1 if r = 1
.

For (I ′, ε′) ∈ Br, denote

Nr(I
′, ε′) :=

{
(I, ε) ∈ Br−1 | (I ′, ε′) ∈ Tr(I, ε)

}
.

We have

|Nr(I ′, ε′)| ≤ r2 ·

{
2 if r ≥ 2

1 if r = 1
.

Thus, considering separately the case r = 1, Lemma 3.1 implies that for any r ≥ 1,

P(R = r−1) = P
(
(S,X) ∈ Br−1

)
≤ P

(
(S,X) ∈ Br

)
· r222d+5

(n− Cdr)2
= P(R = r) · r222d+5

(n− Cdr)2
.

6 Local limits on the line

In this section we prove the theorems which were stated in Section 2.3. Through-
out this section, the parameter d ≥ 1 is fixed, and so we drop the d from the notation
when convenient. On the other hand, the parameter n ≥ 1 is allowed to vary, and our
main goal is to understand Hom(Pn,d) := Hom(Pn,d, 0) as n grows larger. At first, in
Section 6.2, we investigate the asymptotic size of Hom(Pn,d) as n tends to infinity. Sub-
sequently, in Sections 6.3 and 6.4, we describe the local limit of such homomorphisms
as a probability measure on infinite homomorphisms defined through a Markov chain
(see Figure 12).

6.1 Definitions

Given a finite set Π, called an alphabet, we denote by Π∗ the set of all finite words
on Π. That is,

Π∗ :=
{

(a1, a2, . . . , at) | ai ∈ Π, t ≥ 0
}
.

For u, v ∈ Π∗, we denote the length of u by |u| and the concatenation of u and v by u ◦ v,
i.e.,

u ◦ v := (u1, . . . , u|u|, v1, . . . , v|v|).
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It is clear that concatenation is associative. For u ∈ Π∗ with |u| ≥ 1, let u− be the word
obtained from u by dropping the last element, i.e.,

u− := (u1, . . . , u|u|−1).

Define the derivative operator Dn : Hom(Pn,d)→ {−1, 1}n by

(Dn(f))k := f(k)− f(k − 1), 1 ≤ k ≤ n. (6.1)

Denote by D ⊂ {−1, 1}∗ the set of words on {−1, 1} which do not contain (−1,−1,−1)

or (1, 1, 1) as a subsequence, and note that Dn(Hom(Pn,d)) ⊂ D. Let Σ be the four letter
alphabet

Σ := {a, b, A,B},

where

a := (1,−1),

b := (−1, 1),

A := (1, 1,−1),

B := (−1,−1, 1).

These basic sequences will serve as a means to encode homomorphisms into words (see
Figure 10). Define T ′ : Σ∗ → {−1, 1}∗ by

T ′(x) := x1 ◦ x2 ◦ · · · ◦ x|x|.

For x ∈ Σ∗, define the weight of x by

w(x) := |T ′(x)| =
|x|∑
k=1

|xk|. (6.2)

Now, we define a mapping T : D → Σ∗ recursively by the relations

T (()) := (),

T ((1)) := (a),

T ((−1)) := (b),

T ((1, 1)) := (A),

T ((−1,−1)) := (B),

T (u ◦ v) := (u) ◦ T (v) for u ∈ Σ and v ∈ D.

(6.3)

It is not hard to see that T is indeed well-defined (see Figure 11), and that it maps a
word u ∈ D to the unique word x ∈ Σ∗ satisfying T ′(x) = u or T ′(x)− = u (in which case
w(x) = |u| or w(x) = |u|+1, respectively). Also, one should note that T−1(x) = ∅ if x ∈ Σ∗

contains (a,B) or (b, A) as a sub-word or if x = ∅, and that T−1(x) = {T ′(x), T ′(x)−}
otherwise.

Another observation which will be useful later on is that the recursive relation in the
last line of (6.3) may be generalized to hold for certain u ∈ D.

Claim 6.1. We have

T (u ◦ v) = T (u) ◦ T (v) for u, v ∈ D such that |u| = w(T (u)). (6.4)
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a := (1,−1) A := (1, 1,−1)

b := (−1, 1) B := (−1,−1, 1)

Figure 10: The basic building blocks for encoding a homomorphism into a word on the
alphabet Σ := {a, b, A,B}.

f =

u =

x =

-1 1︸ ︷︷ ︸
b

1 -1︸ ︷︷ ︸
a

1 -1︸ ︷︷ ︸
a

1 1 -1︸ ︷︷ ︸
A

1 -1︸ ︷︷ ︸
a

-1 1︸ ︷︷ ︸
b

1 -1︸ ︷︷ ︸
a

-1 1︸ ︷︷ ︸
b

-1 1︸ ︷︷ ︸
b

-1 -1 1︸ ︷︷ ︸
B

1 -1︸ ︷︷ ︸
a

1︸︷︷︸
a

Figure 11: A homomorphism f ∈ Hom(Pn,d) is first viewed as a word u := Dn(f) of
length n on the alphabet {−1, 1}. Then, u is encoded into a word x := T (u) on the
alphabet Σ by sequentially reading off the letters from left to right, as defined in the
recursive formula in (6.3). If this process exhausts u completely then we end up with a
word x of weight exactly n. Otherwise, we remain with a tail of u of length one or two
(as is the case in this figure), which is a prefix of at least one element in Σ. In this case,
the last letter is chosen in such a way that the weight of the resulting word x is n + 1,
as defined by the base cases in (6.3).

Proof. We prove the claim by induction on |u|. If |u| = 0 then there is nothing to prove.
Otherwise, |u| ≥ 1. By the assumption, we have |u| = w(T (u)), which implies that u
may be decomposed as u = u′ ◦ u′′, where u′ ∈ Σ. Note that this now implies that
|u′′| = w(T (u′′)) < |u|, since T (u) = (u′) ◦ T (u′′) by (6.3). Therefore, by (6.3) and
induction,

T (u ◦ v) = T (u′ ◦ u′′ ◦ v) = (u′) ◦ T (u′′ ◦ v)

= (u′) ◦ T (u′′) ◦ T (v) = T (u′ ◦ u′′) ◦ T (v) = T (u) ◦ T (v).

We say a word x ∈ Σ∗ is d-legal if it satisfies the conditions

xm = A ⇒ xm−i = a, ∀i ∈ {1, . . . , d− 1} such that i < m,

xm = B ⇒ xm−i = b, ∀i ∈ {1, . . . , d− 1} such that i < m,

xm = A, m > d ⇒ xm−d ∈ {a,A},
xm = B, m > d ⇒ xm−d ∈ {b, B}.

(6.5)

Denote by Ωn,d the set of d-legal words on Σ of weight n or n+ 1. That is,

Ωn,d := {x ∈ Σ∗ | x is d-legal, w(x) ∈ {n, n+ 1}}.

Define
Ln := (T ◦Dn)|Hom(Pn,d).
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Claim 6.2. The mapping Ln is a bijection between Hom(Pn,d) and Ωn,d.

Proof. It is clear from (6.2) and (6.3) that Ln injectively maps Hom(Pn,d) to words on Σ

of weight n or n+ 1. It remains to show that the image of Ln is precisely Ωn,d.
One may easily see that a homomorphism f ∈ Hom(Pn,1) is a homomorphism in

Hom(Pn,d) if and only if Dn(f) does not contain a sequence of the form

ul± := ±(1, 1,−1, . . . , 1,−1︸ ︷︷ ︸
2l

, 1, 1),

with 1 ≤ l ≤ d− 1. Indeed, Dn(f) contains ul± if and only if there exist 0 ≤ i, j ≤ n such
that |i−j| = 2l+3 and |f(i)−f(j)| = 3. Now, it is also not hard to check that ul+ appears
in Dn(f) if and only if Ln(f) contains a subword of the form

(A, a, . . . , a︸ ︷︷ ︸
l−1

, A) or (B, a, . . . , a︸ ︷︷ ︸
l

, A) or (b, a, . . . , a︸ ︷︷ ︸
l

, A),

depending on the position of ul+ in Dn(f). The same is true for ul− with {a,A} and
{b, B} interchanged. Therefore, by (6.5), we see that ul± appears in Dn(f), for some
1 ≤ l ≤ d− 1, if and only if Ln(f) is not d-legal.

We have shown that for any f ∈ Hom(Pn,1), f ∈ Hom(Pn,d) if and only if Ln(f) ∈ Ωn,d.
In particular, since Hom(Pn,d) ⊂ Hom(Pn,1), we have Ln(Hom(Pn,d)) ⊂ Ωn,d. For the
other direction, let x ∈ Ωn,d. Either T ′(x) or T ′(x)− is of length n. Let u ∈ D be this
sequence and let f := D−1n (u) ∈ Hom(Pn,1). Since Ln(f) = T (u) = x is d-legal, we see
that f ∈ Hom(Pn,d). Hence, Ωn,d ⊂ Ln(Hom(Pn,d)), completing the proof.

6.2 Counting the homomorphisms

In this section we prove Theorem 2.10. This is done by deriving a recursion formula
and investigating its characteristic polynomial.

For 0 ≤ k,m ≤ d, define

Ωn,d(k,m) := {x ∈ Ωn,d | x1, . . . , xk 6= A and x1, . . . , xm 6= B} .

By symmetry we have |Ωn,d(k,m)| = |Ωn,d(m, k)|, so we can define

cn(k) := |Ωn,d(k, d)| = |Ωn,d(d, k)|, 0 ≤ k ≤ d− 1.

This definition is motivated by the following two lemmas, which show that the cn(k) sat-
isfy some explicit recursion formulas and that they have a simple relation to |Hom(Pn,d)|.

Lemma 6.3. For any n ≥ 3, we have

|Hom(Pn,d)| = 2cn−2(0) + 2cn−3(d− 1).

Proof. Note that by (6.5), we have

{x ∈ Ωn,d | x1 = a} = {(a) ◦ x | x ∈ Ωn−2,d(0, d)},
{x ∈ Ωn,d | x1 = A} = {(A) ◦ x | x ∈ Ωn−3,d(d− 1, d)}.

(6.6)

Therefore, by partitioning according to the first element and by the symmetry between
{a,A} and {b, B}, we obtain

|Ωn,d| = 2
∣∣{x ∈ Ωn,d | x1 = a}

∣∣+ 2
∣∣{x ∈ Ωn,d | x1 = A}

∣∣
= 2cn−2(0) + 2cn−3(d− 1).

The result now follows as |Ωn,d| = |Hom(Pn,d)|, by Claim 6.2.
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Lemma 6.4. For any n ≥ 3, we have

cn(0) = cn−2(0) + cn−2(d− 1) + cn−3(d− 1), (6.7)

cn(k) = cn−2(k − 1) + cn−2(d− 1), 1 ≤ k ≤ d− 1. (6.8)

Proof. Note that by (6.5), similarly to (6.6), we have

{x ∈ Ωn,d(0, d) | x1 = a} = {(a) ◦ x | x ∈ Ωn−2,d(0, d)},
{x ∈ Ωn,d(0, d) | x1 = b} = {(b) ◦ x | x ∈ Ωn−2,d(d, d− 1)},
{x ∈ Ωn,d(0, d) | x1 = A} = {(A) ◦ x | x ∈ Ωn−3,d(d− 1, d)}.

Therefore, by partitioning according to the first element, we obtain

cn(0) = |Ωn,d(0, d)|
=
∣∣{x ∈ Ωn,d(0, d) | x1 = a}

∣∣+
∣∣{x ∈ Ωn,d(0, d) | x1 = b}

∣∣+
∣∣{x ∈ Ωn,d(0, d) | x1 = A}

∣∣
= |Ωn−2,d(0, d)|+ |Ωn−2,d(d, d− 1)|+ |Ωn−3,d(d− 1, d)|
= cn−2(0) + cn−2(d− 1) + cn−3(d− 1).

In a similar manner, for 1 ≤ k ≤ d− 1, we have

cn(k) = |Ωn,d(k, d)|
=
∣∣{x ∈ Ωn,d(k, d) | x1 = a}

∣∣+
∣∣{x ∈ Ωn,d(k, d) | x1 = b}

∣∣
=
∣∣{(a) ◦ x | x ∈ Ωn−2,d(k − 1, d)}

∣∣+
∣∣{(b) ◦ x | x ∈ Ωn−2,d(d, d− 1)}

∣∣
= cn−2(k − 1) + cn−2(d− 1).

We express all quantities cn(k) in terms of cn(d − 1). Substituting k = d − 1 in (6.8)
yields

cn(d− 2) = cn+2(d− 1)− cn(d− 1).

Now substituting k = d− 2 in (6.8) gives

cn(d− 3) = cn+2(d− 2)− cn(d− 1) = cn+4(d− 1)− cn+2(d− 1)− cn(d− 1).

Continuing in this manner (by induction), we get for 1 ≤ m < d,

cn(d−m− 1) = cn+2m(d− 1)− cn+2m−2(d− 1)− · · · − cn+2(d− 1)− cn(d− 1). (6.9)

In particular, for m = d− 1 this gives,

cn(0) = cn+2d−2(d− 1)− cn+2d−4(d− 1)− · · · − cn+2(d− 1)− cn(d− 1).

Substituting this in (6.7) gives

cn+2d−2(d− 1) = 2cn+2d−4(d− 1) + cn−3(d− 1), n ≥ 3.

The characteristic polynomial for this equation is

q(µ) := µ2d−1(µ2 − 2)− 1.

Claim 6.5. The polynomial q has 2d + 1 distinct (complex) roots. Exactly one of these,
which we denote by µ0, is positive. Moreover, µ0 >

√
2, while all other roots have

modulus less than
√

2.
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Proof. Assume that d ≥ 2 (the case d = 1 can be verified directly). It is easy to verify
that the derivative of q does not vanish at any zero, so that the roots are simple, and
hence there are 2d+ 1 distinct roots. Since q(±

√
2) = −1, q(

√
3) > 0 and q(−2/

√
3) > 0,

the intermediate value theorem implies that there are roots
√

2 < µ0 <
√

3 and −
√

2 <

µ1 < −2/
√

3. Considering q as a real function, by differentiating, one finds that q has a
single minimum and a single maximum, and hence at most 3 real roots. Since q(−1) = 0,
we see that µ0 is indeed the unique positive root. For the last part, it suffices to show
q has 2d − 1 roots of modulus at most 1. This is a consequence of Rouché’s theorem
applied to q and g(z) := 2z2d−1 on the disc D := {z ∈ C | |z| ≤ r} for any sufficiently
small r > 1. Indeed, on ∂D, we have |g(z)| = 2r2d−1 and |q(z) + g(z)| ≤ r2d+1 + 1, and
since r2d+1 + 1 < 2r2d−1 (using our assumption that d ≥ 2), Rouché’s theorem implies
that g and q have the same number of zeros in D. As g clearly has 2d− 1 zeros in D, this
completes the proof.

Let µ0 be the unique positive root of q. We denote λ := µ2
0. That is, λ is the unique

positive solution of the equation

λd−1/2(λ− 2) = 1. (6.10)

Claim 6.6. For any fixed 0 ≤ k ≤ d− 1, there exists a constant rk > 0, such that

cn(k) ∼ rkλn/2 as n→∞.

Proof. Denote by µ0 :=
√
λ, µ1, . . . , µ2d the roots of q. The roots µi are distinct, and

therefore,

cn(k) = r0kµ
n
0 + · · ·+ r2dk µ

n
2d,

for some coefficients rik. Indeed, this is the case for k = d − 1 as the polynomial q is
the characteristic polynomial for the recursion of cn(d − 1) and it then follows also for
0 ≤ k < d − 1 by (6.9). Now, since any word x ∈ {a, b}∗ is d-legal and has w(x) = 2|x|,
we see that

cn(k) = |Ωn,d(k, d)| ≥
∣∣{a, b}dn/2e∣∣ = 2dn/2e ≥

√
2
n
.

Therefore, since |µi| <
√

2 for 1 ≤ i ≤ 2d, we must have r0k > 0 for all 0 ≤ k ≤ d− 1, and
then

cn(k) ∼ r0kµn0 = r0kλ
n/2.

We now have all the ingredients to prove Theorem 2.10.

Proof of Theorem 2.10. By Lemma 6.3 and Claim 6.6, we have

|Hom(Pn,d)| = 2cn−2(0) + 2cn−3(d− 1)

∼ 2r0λ
(n−2)/2 + 2rd−1λ

(n−3)/2 = C(d)λn/2(1 + o(1)) as n→∞.

Claim 6.6 gives the asymptotic behavior of cn(k) as n → ∞ for fixed d ≥ 1. Specifi-
cally, it says that the order of magnitude of cn(k) is λn, where λ = λ(d) depends on d and
is given implicitly by (6.10). The next claim describes the dependence of the constant
λ(d) on d as d→∞.

Claim 6.7. The unique positive solution λ of (6.10) satisfies

λ = λ(d) = 2 + 2−d+1/2(1− o(1)) as d→∞.
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Proof. Writing λ = 2 + δ, we have by (6.10) that

δ = (2 + δ)−d+1/2.

Thus, since δ > 0, we have
δ ≤ 2−d+1/2,

and therefore,
2d−1/2δ = (1 + δ/2)−d+1/2 → 1 as d→∞.

6.3 Infinite homomorphisms

Denote by P∞,d the graph on the vertex set {0, 1, 2, ...} with the edge set {(i, j) | |i−
j| = 1, 3, ..., 2d+ 1}. Note that Hom(P∞,d) := Hom(P∞,d, 0) is an infinite set of homomor-
phisms. For a homomorphism f ∈ Hom(Pn,d) (where possibly n = ∞) and an integer
r ≥ 0, we denote by Br(f) the restriction of f to the first r + 1 vertices, so that

Br(f) := f |{0,1,...,min{r,n}} ∈ Hom(Pmin{r,n},d).

An infinite word x on Σ is d-legal if it satisfies (6.5), as for finite words. Denote by
Ω∞,d the set of infinite d-legal words on Σ. That is,

Ω∞,d := {x ∈ ΣN | x is d-legal}.

The mapping Dn defined in (6.1) extends to the case n =∞ in an obvious way. The map-
ping T defined in (6.3) can also be extended to map the infinite words D∞(Hom(P∞,d))

to Ω∞,d by the same recursion formula. Then, following the proof of Claim 6.2, we see
that

L∞ := (T ◦D∞)|Hom(P∞,d)

is a bijection between Hom(P∞,d) and Ω∞,d.

6.4 The local limit as a Markov chain

The main goal of this section is to prove Theorem 2.12. To this end, we will describe
a Markov chain (see Figure 12) on the state space

Σ̃ := {a1, . . . , ad, b1, . . . , bd, A,B},

which will allow us to generate words in Ω∞,d, and hence also homomorphisms in
Hom(P∞,d) through the bijection L∞. Loosely speaking, the idea of this Markov chain is
that the state ak (bk) represents the fact that a streak of k consecutive a’s (b’s) has been
accumulated. Likewise, the state A (B) represents the fact that a jump has occurred in
the positive (negative) direction.

Consider the above Markov chain (see Figure 12) on the state space Σ̃ with the
transition probabilities p and the initial state distribution π as described below.

p(A, b1) = p(ad, ad) := λ−1,

p(A, a1) :=

{
0 if d ≥ 2

λ−1 if d = 1
,

p(ak, b1) :=
λ− 1

λk(λ− 2) + λ
, 1 ≤ k ≤ d,

(6.11)

where λ is the unique positive solution to (6.10). The analogous relations hold with
the roles of {a,A} and {b, B} interchanged. Figure 12 shows the legal transitions (i.e.,
transitions having positive probability). The probability of unspecified legal transitions
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a1 a2 · · · ad

A

b1 b2 · · · bd

B

a1A

b1B

Figure 12: The Markov chains describing the local limit when d ≥ 2 (on the left) and
when d = 1 (on the right). The allowed transitions are those determined by (6.5).

are determined by the condition
∑
s p(s

′, s) = 1. The initial state distribution π is given
by

π(ad) = π(bd) :=
λ−1/2

2
and π(A) = π(B) :=

1− λ−1/2

2
.

It is interesting to note that, since λ > 2 and using (6.10), we have

1

2
> λ−1 = p(a1, b1) > p(a2, b1) > · · · > p(ad, b1) =

λ− 1

λ+
√
λ
>

1

2 +
√

2
,

which expresses the fact that there is a small but growing tendency to continue in the
same direction.

Running this chain for an infinite amount of time and considering its trajectory as an
infinite word on Σ̃, we may obtain an infinite word W∞ on Σ by dropping the subscripts
of the letters in Σ̃. More precisely, let W̃ (1), W̃ (2), . . . be a Markov chain on Σ̃ with
transition probabilities as in (6.11) and such that W̃ (1) ∼ π. Define φ : Σ̃ → Σ by
φ(ai) := a, φ(bi) := b, φ(A) := A and φ(B) := B. Then W∞ is defined by W∞(k) :=

φ(W̃ (k)) for k ≥ 1. Recalling (6.5), it is clear that this process generates a d-legal word,
i.e. that W∞ ∈ Ω∞,d. Denote by

f∞ := L−1∞ (W∞)

the infinite homomorphism corresponding to this word. Recall the definition of Br(f)

from Section 6.3. Let fn be a uniformly chosen homomorphism in Hom(Pn,d). Theo-
rem 2.12 will follow when we show that

P(Br(fn) = f) −−−−→
n→∞

P(Br(f∞) = f) for any r ≥ 1 and f ∈ Hom(Pr,d). (6.12)

For n ≥ 1, define
Wn := Ln(fn).

The following lemma links the uniform distribution on homomorphisms to the above
Markov chain. For any 1 ≤ n ≤ ∞ and any word x ∈ Ωn,d, there exists a unique
trajectory (s1, s2, . . . , s|x|) such that si ∈ Σ̃, s1 ∈ {ad, bd, A,B} and p(si, si+1) > 0, which

generates the word x by the process of dropping the subscripts of the symbols in Σ̃.
For a finite word x, define State(x) := s|x| to be the final state of this trajectory. Let
Pk : Σ∗ → Σk denote the truncation to length k.
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b a . . . a︸ ︷︷ ︸
<d

−→
ba . . . aa

or
ba . . . ab

b a . . . a︸ ︷︷ ︸
≥d

−→
ba . . . aa

or
ba . . . ab

or

ba . . . aA

Figure 13: The possible transitions from state ak for 1 ≤ k < d (on the top) and for k = d

(on the bottom), as determined by (6.5). The transitions from state A are analogous,
and the transitions from states bk and B are symmetric.

Lemma 6.8. For any u ∈ Σ and x ∈ Σ∗ such that x and x ◦ (u) are d-legal, we have

P(Wn(1) = u) −−−−→
n→∞

π(State(u))

P
(
Wn(|x|+ 1) = u | P|x|(Wn) = x

)
−−−−→
n→∞

p(State(x),State(x ◦ (u)).
(6.13)

Proof. For a d-legal word x ∈ Σ∗, define M(x) := i− 1 if State(x) ∈ {ai, bi} for 1 ≤ i ≤ d
and M(x) := 0 if State(x) ∈ {A,B}. Then, using Claim 6.2, we have for any n ≥ w(x)

that
|{P|x|(Wn) = x}| = cn−w(x)(d−M(x)− 1).

By Claim 6.6, we have cn(d− 1) ∼ aλn/2, for some constant a > 0, and then (6.9) gives

cn(d−m− 1) ∼ aλn/2+m − aλn/2+m−1 − · · · − aλn/2+1 − aλn/2, 1 ≤ m < d.

Thus,

cn(d−m− 1) ∼ aλn/2λ
m(λ− 2) + 1

λ− 1
, 0 ≤ m < d. (6.14)

Therefore, if State(x) = ai with 1 ≤ i ≤ d, then State(x ◦ (b)) = b1 and

P
(
Wn(|x|+ 1) = b | P|x|(Wn) = x

)
=
|{P|x|+1(Wn) = x ◦ (b)}|
|{P|x|(Wn) = x}|

=
cn−w(x)−2(d− 1)

cn−w(x)(d− i)
∼ λ− 1

λi(λ− 2) + λ
= p(ai, b1).

The remaining cases are handled similarly by taking the relevant ratios. This proves
the second part of (6.13). For the first part, we will also need to compute the size of
Hom(Pn,d). By Lemma 6.3, (6.14) and (6.10), we have

|Hom(Pn,d)| = 2cn−2(0) + 2cn−3(d− 1) ∼ 2aλn/2−1
λ1/2 + 1

λ− 1
. (6.15)

Therefore, since State((a)) = ad,

P(Wn(1) = a) =
|{P1(Wn) = (a)}|
|Hom(Pn,d)|

=
cn−2(0)

|Hom(Pn,d)|
∼ λ−1/2/2 = π(ad).

The remaining cases are again handled similarly. This proves the first part of (6.13).
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We continue by observing, using Claim 6.1, that for any r ≥ 1 and f ∈ Hom(Pr,d)

there exists a k ≥ 1 and a set X(f) ⊂ Σk such that we have the equality of events,

{Br(fn) = f} = {Pk(Wn) ∈ X(f)}, r ≤ n ≤ ∞. (6.16)

For instance, one may takeX((0,−1, 0, 1, 0)) = {(b, a)} andX((0,−1, 0, 1, 0, 1)) = {(b, a, a), (b, a,A)}.
In addition, Lemma 6.8 implies that

P(Pk(Wn) = x) −−−−→
n→∞

P(Pk(W∞) = x) for any k ≥ 0 and x ∈ Σk. (6.17)

This follows directly from (6.13) when x is d-legal, and it follows trivially when x is not
d-legal since the probabilities involved are zero.

Finally, putting together (6.16) and (6.17), we conclude that for any r ≥ 1 and f ∈
Hom(Pr,d), we have

lim
n→∞

P(Br(fn) = f) = lim
n→∞

∑
x∈X(f)

P(P|x|(Wn) = x) =
∑

x∈X(f)

P(P|x|(W∞) = x) = P(Br(f∞) = f),

proving (6.12), as required.
We remark that it is now simple to derive an exact formula for the probability that

Br(f∞) = f for certain homomorphisms f ∈ Hom(Pr,d). Specifically, let f ∈ Hom(Pr,d)

satisfy w(Lr(f)) = r. For such f , one may take X(f) = {Lr(f)}. Hence, denoting
x := Lr(f) and m := M(x) (defined in the proof of Lemma 6.8), we have using (6.14)
and (6.15) that

P(Br(f∞) = f) = P(P|x|(W∞) = x) = lim
n→∞

P(P|x|(Wn) = x)

= lim
n→∞

cn−r(d−m− 1)

|Hom(Pn,d)|
=

1

2
λ1−r/2

λm(λ− 2) + 1

λ1/2 + 1
.

7 Discussion and Open Problems

7.1 A continuous model

One may consider a continuous variant of the graph homomorphisms considered
here. Given a finite connected graph G = (V,E) and a vertex v0 ∈ V , let

Lip(G, v0) := {f : V → R | f(v0) = 0, |f(u)− f(v)| ≤ 1 when (u, v) ∈ E}.

Thus, elements of Lip(G, v0) may be regarded as real-valued Lipschitz functions on the
graph, normalized to equal 0 at v0. There is a natural uniform measure on Lip(G, v0)

obtained by regarding a function f ∈ Lip(G, v0) as a vector in RV \{v0} and using normal-
ized Lebesgue measure there. Hence, one may speak of a uniformly sampled function
from Lip(G, v0). In statistical physics terminology, this models a random surface whose
energy is defined via the Hammock potential (see, e.g., [5]).

Naively, one may expect the behavior of a uniformly chosen function f from Lip(Pn,d, 0)

to be rather similar, perhaps up to constants, to that of a uniformly chosen function
from Hom(Pn,d, 0). In particular, one may expect that Var(f(n)) ≈ n2−d when n2−d ≥ 1,
say. However, a different intuition comes from the following consideration. A standard
heuristic in statistical physics is that (continuous) models of random surfaces should be-
have similarly to the Gaussian free field. The Gaussian free field is again a real-valued
function g : V → R, satisfying g(v0) = 0, and sampled from a distribution whose density
is proportional to

exp

−β ∑
(u,v)∈E

(g(u)− g(v))2

 ,
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n = 500, d = 0

n = 500, d = 1

n = 500, d = 2

n = 500, d = 5

Figure 14: Uniformly sampled functions in Lip(Pn,d, 0). The case d = 0 is just a random
walk with independent uniform increments in [−1, 1]. The simulation uses a Metropolis
algorithm (see, e.g., [9, Chapter 3]) and coupling from the past [12].

with β ∈ (0,∞) a parameter. Analysis of the variance of the Gaussian free field on a
graph is made simple by the observation that its distribution is a multivariate Gaussian.
When G = Pn,d and v0 = 0 one obtains that Var(g(n)) ≈ nd−3/β. Thus it is not clear
whether one should expect a function f sampled uniformly from Lip(G, v0) to satisfy
Var(f(n)) ≈ n2−d or Var(f(n)) ≈ nd−α. We conjecture the latter to be the truth. Thus,
we expect a significant difference in behavior between the homomorphism model con-
sidered in this paper and its continuous counterpart. Consideration of the complete
graph suggests that, when comparing the Gaussian free field to the continuous Lips-
chitz model on a regular graph, one should take β to be one over the degree. As Pn,d is
nearly a (2d+ 2)-regular graph, this leads to the following conjecture.

Conjecture 7.1. There exist absolute constants C, c > 0 such that the following holds
for any positive integers n and d. If f is uniformly sampled from Lip(Pn,d, 0) then

c(nd−2 + 1) ≤ Var(f(n)) ≤ C(nd−2 + 1).

In particular, the threshold function d(n) separating the regime of localization from
the regime of delocalization is polynomial in n, rather than logarithmic in n as is the
case for the homomorphism model. Figure 14 shows a uniformly sampled function in
Lip(Pn,d, 0). We remark that when considering this model it is natural to consider the
non-bipartite graph P̃n,d, which is the discrete segment {0, 1, . . . , n} with edges between
vertices at distance at most d+ 1, regardless of their parity.
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7.2 The scaling limit

In this paper we explored the properties of a random homomorphism for given n

and d, and also the local limit of the homomorphism when d is fixed and n tends to
infinity. Another limit of interest is the scaling limit. As in many models of random walk,
one may expect that in the subcritical regime, when the range of a homomorphism in
Hom(Pn,d, 0) tends to infinity as n tends to infinity, the homomorphism has a Brownian
motion scaling limit. This is the content of the next conjecture.

Conjecture 7.2. There exists a function σ : N → (0,∞) such that the following holds.
Let fn,d be a uniformly chosen homomorphism in Hom(Pn,d, 0). Define Bn,d : [0, 1] → R

to be the continuous function defined by

Bn,d

(
i

n

)
:=

fn,d(i)

σ(d)
√
n

and interpolated linearly between these points. If d(n) − log2 n → −∞ as n → ∞, then
Bn,d(n) converges in distribution as n→∞ to a standard Brownian motion on [0, 1].

An educated guess for the function σ may be obtained as follows. Recall the local
limit f∞,d from Section 6. The fact that f∞,d may be described via a Markov chain
simplifies the analysis of its scaling limit. Define

σ′(d)2 :=
(λ(d)− 2)(λ(d)− 1)

4 + (2d+ 1)(λ(d)− 2)
,

where λ(d) is defined in Theorem 2.10. Observe that, by Claim 6.7,

σ′(d)2 = 2−d−3/2(1− o(1)) as d→∞.

Then, defining the continuous function

B′n,d

(
i

n

)
:=

f∞,d(i)

σ′(d)
√
n
,

interpolated linearly between these points, it may be shown that for any fixed d the
process B′n,d converges in distribution as n → ∞ to a standard Brownian motion on
[0, 1]. Thus, it seems plausible that the σ(d) of the above conjecture equals σ′(d).
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