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Abstract

We consider controlled random walks that are martingales with uniformly bounded
increments and nontrivial jump probabilities and show that such walks can be con-
structed so that P (Sun = 0) decays at polynomial rate n−α where α > 0 can be
arbitrarily small. We also show, by means of a general delocalization lemma for mar-
tingales, which is of independent interest, that slower than polynomial decay is not
possible.
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1 Introduction and statement of results

Consider a discrete time martingale {Mi}i≥0 adapted to a filtration Fi whose incre-
ments are uniformly bounded by 1, i.e. |Mi+1 −Mi| ≤ 1, and such that

P (|Mi+1 −Mi| = 1 | Fi) > c > 0.

It is folklore that in many respects, such a martingale should be well approximated by
Brownian motion. In particular, one would expect that P (|Mn| ≤ 1) should be of order
n−1/2. Our goal in this paper is to point out that this naive expectation is completely
wrong. We will frame this in the language of controlled processes below, but a corollary
of our main result, Theorem 1.3 below, is the following.

Corollary 1.1. For any α > 0 there exist β > 0 and c > 0 so that for any n > 0

there exists an Fi-adapted discrete time martingale {Mi}i≥0 with |Mi+1 −Mi| ≤ 1 and
P (|Mi+1 −Mi| = 1 | Fi) > β such that

P (|Mn| ≤ 1) ≥ cn−α .

Corollary 1.1 can be viewed as a localization lemma. A complementary delocalization
estimate was obtained by de la Rue [6]. We provide a different proof to a strengthened
version of his results.
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Localization for martingales

Theorem 1.2. For any δ ∈ (0, 1] and β ∈ [0, 1/2) there exist C = C(δ, β) < ∞ and
α = α(δ, β) > 0 so that the following holds.

If M0,M1, . . . ,Mn is a discrete time martingale (with respect to a filtration Fi) satis-
fying E((Mi+1 −Mi)

2|Fi) ∈ [δ, 1] and |Mi+1 −Mi| ≤ nβ a.s., then

sup
z
P (|Mn − z| ≤ nβ) < Cn−α . (1.1)

The heart of the proof of Theorem 1.2 uses a sequence of entrance times to a space-
time region, which may be of independent interest (see Figure 2.1 for a graphical de-
piction).

Our interest in these questions arose while one of us was working on [8]. Charlie
Smart then kindly pointed out [11] that the continuous time results in [2] and [4] con-
cerning the viscosity solution of certain optimal control problems could be adapted to
the discrete time setting (using [5]) in order to show an integrated version of Corollary
1.1, namely that for any fixed β, γ > 0 a martingale {Mi} as in the corollary could be
constructed so that for all δ small,

P (|Mn| ≤ δ
√
n) ≥ γδ . (1.2)

(Note that γ can be taken arbitrarily large, for β fixed. The estimate (1.2) is in contrast
with the expected linear-in-δ behavior one might naively expect from diffusive scaling.)
This then raises the question of whether a local version of this result could be obtained,
and our goal in this short note is to answer that in the affirmative.

We phrase some of our results in the language of controlled random walks. Fix a
parameter q ∈ [0, 1). Consider a controlled simple random walk {Sui }i≥0, defined as
follows. Let S0 = 0 and let Fi = σ(S0, S1, . . . , Si) denote the sigma-field generated by
the process up to time i. A q-admissible control is a collection of random variables
{ui}i≥0 satisfying the following conditions:

1. a) ui ∈ [0, q], a.s..

2. b) ui is Fi-adapted.

Let Uq denote the set of all q-admissible controls. For u ∈ Uq, the controlled simple
random walk {Sui }i≥0 is determined by the equation

P (Sui+1 = Sui + ∆|Fi) =

{
ui, ∆ = 0

(1− ui)/2, ∆ = ±1 .
(1.3)

Of course, {Sui }i≥0 is an Fi-martingale. For q = 0, we recover the standard simple
random walk. We prove the following.

Theorem 1.3. For any q ∈ (0, 1), there exists σ+(q), σ−(q) ∈ (0, 1/2) and c, C ∈ (0,∞)

such that for any n

cn−σ−(q) < sup
u∈Uq

P (Sun = 0) < Cn−σ+(q) (1.4)

and

σ−(q)→q↗1 0. (1.5)

Work related to ours (in the context of the control of diffusion processes) has ap-
peared in [9]; more recently, the results in [1] are related to the lower bound in Theo-
rem 1.3. A variant of Theorem 1.2 is proved in [10], and used to establish transience of
a certain self-interacting random walk in Z3.
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Localization for martingales

2 Proofs

Theorem 1.2 (which immediately implies the upper bound in Theorem 1.3) is ob-
tained by observing that any martingale has to overcome a (logarithmic number of)
barriers in order to reach the target region, and each such barrier can be overcome only
with (conditional on the history) probability bounded away from 1. The lower bound in
Theorem 1.3, on the other hand, will be obtained by exhibiting an explicit control.

2.1 Upper bound - Proof of Theorem 1.2

Throughout this subsection, δ ∈ (0, 1] is a fixed constant, and {Mi}i≥0 denotes a
martingale adapted to a filtration Fi, satisfying the condition

E
(
(Mi+1 −Mi)

2|Fi
)
≥ δ . (2.1)

We begin with an elementary lemma.

Lemma 2.1. Assume that M0 = 0, that (2.1) holds, and that for some h ≥ 1, |Mi+1 −
Mi| ≤ h almost surely. Fix

` ≥ 24h2/δ . (2.2)

Let τ = min{i : |Mi| ≥ h}. Then,

P (Mτ ≥ h, τ ≤ `) ≥
1

6
. (2.3)

Proof of Lemma 2.1. By (2.1), the process {M2
i − δi} is a sub-martingale, hence

0 ≤ E(M2
τ∧` − δ(τ ∧ `)) ≤ 4h2 − δE(τ ∧ `) ,

where the bound on the increments of {Mi} was used in the last inequality. It follows
that E(τ ∧ `) ≤ 4h2/δ, and therefore,

P (τ ≥ `) ≤ 4h2/δ` ≤ 1

6
, (2.4)

where (2.2) was used in the second inequality. On the other hand, using again that
increments of {Mi} are bounded by h,

0 = EMτ ≤ 2hP (Mτ ≥ h)− hP (Mτ ≤ −h),

which implies that P (Mτ ≤ −h) ≤ 2/3. Combining this with (2.4) yields the lemma.

We have the following corollary.

Lemma 2.2. Let H,L > 0 and let K be a positive integer so that H2 ≤ δKL/24. Assume
(2.1), M0 = 0, and that

|Mi+1 −Mi| ≤
H

K
, almost surely (2.5)

Let τH = min{i : Mi ≥ H}. Then,

P (τH ≤ L) ≥
(

1

6

)K
. (2.6)

Proof of Lemma 2.2. Set ` = L/K, h = H/K, and iterate Lemma 2.1 K times.

Combining Lemma 2.1 and Lemma 2.2, one obtains the following.
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Localization for martingales

Lemma 2.3. Let L > 0 be a positive integer. Set H = 3
√
L and let K be a positive

integer so that Kδ ≥ 216. Assume (2.1), M0 = z, (2.5) and

E
(
(Mi+1 −Mi)

2|Fi
)
≤ 1 . (2.7)

Let
D = {(i, x) ∈ Z+ ×R : i ∈ [L, 2L], |x| ≤ H/3} .

Then,

P ({(i,Mi)}2Li=L ∩ D = ∅) ≥ 1

2
·
(

1

6

)K
. (2.8)

Proof of Lemma 2.3. It is enough to consider z ≥ 0. Let τ̄H = min{i : Mi ≥ z + H}.
Note that the condition on K ensured that H2 ≤ δKL/24. By Lemma 2.2,

P (τ̄H ≤ L) ≥ (1/6)K .

On the other hand, by Doob’s inequality and (2.7), on the event τ̄H ≤ L,

P ( sup
i≤2L

|Mτ̄H+i −Mτ̄H | ≥ 2H/3|Fτ̄H ) ≤ 2L

(2H/3)2
=

1

2
.

Combining the last two displays completes the proof.
We can now begin to construct the barriers alluded to above. Fix n > 0 and set

Vm,n = [m,n] ∩ Z, Rn = [−n, n]. Write Vn = V0,n and Bj,n = V(1−2−j)n,n. Define the
following nested subsets of Vn ×R:

D0 = Vn ×R, Di = B6i,n ×R[2−3i
√
n] .

Let K = d216/δe and set N0 = max{i : 2−3i
√
n ≥ Knβ}, then

N0 ≥
1/2− β

log 6
log n− log(216/δ)

log 6
− 1 .

Let τ0 = 0 and for i ≥ 1 set τi = min{t > τi−1 : (t,Mt) ∈ Di}. A direct consequence of
Lemma 2.3 is the following.

Lemma 2.4. Under the assumptions of Theorem 1.2, there exists a constant c = c(δ) >

0 so that, for any i = 0, 1, . . . , N0 − 1 and any n integer, on the event τi < n one has

P (τi+1 ≥ n|Fτi) ≥ c, a.s. . (2.9)

Proof of Lemma 2.4. Set L = 2−6(i+1)n. On the event τi < n we distinguish between
two cases. If τi ≤ n− 2L then (2.9) follows from Lemma 2.3 with the choice L as above,
applied to the martingale M (L)

j = Mn−2L+j , j = 0, 1, . . . , 2L. (The choice of N0 ensured
that in the applications of Lemma 2.3 for any i ≤ N0 − 1, the condition (2.5) holds.)

On the other hand, if n−2L < τi < n then
∣∣|Mτi |−8

√
L
∣∣ ≤ nβ and by Doob’s inequality

and (2.7) we get

P (τi+1 ≤ n|Fτi) ≤ P ( sup
j≤2L

|Mτi+j −Mτi | ≥ 7
√
L− nβ)

≤ P ( sup
j≤2L

|Mτi+j −Mτi | ≥ 6
√
L) ≤ 1

18
.

This completes the proof.
Proof of Theorem 1.2. It is clearly enough to consider z = 0 with arbitraryM0. Adjusting
C if necessary, we may and will assume that N0 > 1. Note that {|Mn| ≤ nβ} ⊂ {τN0

≤ n}
and therefore, by Lemma 2.4,

P (|Mn| ≤ nβ) ≤ (1− c)N0−1 .

This yields the theorem.
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n

τ1

τ2

τ3

Figure 1: The sets Di and their crossings by a trajectory with Mn = 0.

2.2 Proof of Theorem 1.3

The upper bound in (1.4) is a consequence of Theorem 1.2. We thus need only to
consider the lower bound in (1.4), and the claim (1.5).

First note that the simple control ui = q (which yields a lazy random walk denoted
{Sqn}n≥0) already achieves a lower bound in (1.4) of order cn−1/2 since

sup
u∈Uq

P (Sun = 0) ≥ P (Sqn = 0) ≥ cn−1/2

by the local central limit theorem. Thus, what we need to show is that for any q > 0

there is a (polynomially) better control and that as q → 1 we can achieve an exponent
close to 0. Toward this end, we use two very simple controls, that are not approximation
of the optimal control. See Section 3 for further comments on this point.

We begin with the following a-priori estimate.

Lemma 2.5. For any q > 0 there exist α > 0, β > 0, K0 > 0 and ε > 0 such that for any
K > K0 there is a q-admissible control such that

K∑
x=−K

Px(SuαK2 = y) > 1 + ε ,

for any y ∈ [−βK, βK].

Proof of Lemma 2.5: The control we take is slow inside [−βK, βK] and fast outside,
i.e. we take ui = q for |Sui | ≤ βK and ui = 0 for |Sui | > βK. We claim that given any
q > 0, using this control with α > 0 and β > 0 small enough and K > K0 with K0 large
enough will satisfy the conclusion of the lemma with some ε > 0.

Our control does not change with time, it is a reversible Markov chain with weights
wx,x+1 = 1 and wx,x = 0 for |x| > βK and wx,x = 2q/(1 − q) for |x| ≤ βK. Its reversing
measure is thus πx = 2 for |x| > βK and πx = 2/(1− q) for |x| ≤ βK.

Using reversibility we get

Px(SuαK2 = y) = Py(SuαK2 = x)
πy
πx
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Thus,

K∑
x=−K

Px(SuαK2 = y) =

K∑
x=−K

Py(SuαK2 = x)
πy
πx

=
1

1− q

[ −βK∑
x=−K

Py(SuαK2 = x) +

K∑
x=βK

Py(SuαK2 = x)
]

+

βK∑
x=−βK

Py(SuαK2 = x)

=
1

1− q

[
Py(SuαK2 ∈ [−K,K])− qPy(SuαK2 ∈ [−βK, βK])

]
Now, the probability that a simple random walk will get to a distance of more than

K/2 in αK2 steps tends to 0 as α tends to 0, uniformly in K. Obviously, this applies
also for our controlled random walk (which is sometimes lazy), hence by choosing small
enough α we can guarantee that for any K > 0 and any y ∈ [−K/2,K/2] we have
Py(SuαK2 ∈ [−K,K]) > 1− q.

Having fixed α, we now claim that

lim sup
K0→∞

lim sup
β→0

sup
K>K0

sup
y∈[−βK,βK]

Py(SuαK2 ∈ [−βK, βK]) = 0 . (2.10)

Indeed, by [12, Corollary 14.5], there exists a constant C(q) so that

pt(x, y) ≤ C(q)√
t
,

for any two states x and y. (The bound in [12] is valid for any random walk on an
infinite graph with bounded degree and bounded above and below conductances, see
[12, Pg. 40]; Note that while the bound is stated for discrete time chains, it can also be
transferred without much effort to the continuous time setting. See e.g. [7, Theorem
2.14 and Proposition 3.13].)

Plugging t = αK2, we get

Py(SuαK2 ∈ [−βK, βK] <
C(q)(2βK + 1)√

αK
,

which tends to 0 when β → 0 and K →∞ in the order prescribed in (2.10).
Thus, by choosing small enough β and large enough K0 we can have

Py(SuαK2 ∈ [−K,K])− qPy(SuαK2 ∈ [−βK, βK]) > 1− q

uniformly for all K > K0 and we are done.
Proof of the lower bound in Theorem 1.3: Fix q > 0 and choose α, β,K0 and ε according
to Lemma 2.5.

Let L = b− log(n/K2
0 )/2 log βc and let n` = n − αK2

0

∑`
i=1 β

−2`, for ` = 1, . . . , L and
n0 = n. For time t = 0, . . . , nL we use the control ut = q. Notice that nL ≈ n so standard
estimates for lazy random walk show that there exists a constant c > 0, independent of
n, such that P0(SunL = y) > cn−1/2, for any y ∈ [−K0β

−L,K0β
−L] ⊂ [−n1/2, n1/2].

For any ` = L, . . . , 1, from time n` to n`−1 we use the strategy provided by Lemma
2.5 for K = K0β

−`. Applying Lemma 2.5 repeatedly, we see that for any ` = L−1, . . . , 0,
at time n` we have P0(Sun` = y) > c(1 + ε)L−`n−1/2 for any y ∈ [−K0β

−`,K0β
−`]. In

particular, we have

P0(Sun = 0) > c′(1 + ε)Ln−
1
2 = c(1 + ε)

logK0
log β n−

1
2−

log(1+ε)
2 log β ,

showing that σ−(q) < 1/2. This completes the proof of (1.4).
In preparation for the proof of (1.5), we provide an auxilliary estimate.
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Lemma 2.6. For any ε > 0 there exist A and q < 1 such that for any K there is a
q-admissible control with the property that for any x ∈ [−2K, 2K] we have

Px(SuAK2 ∈ [−K,K]) > 1− ε .

Proof of Lemma 2.6: Let A be so that for a simple random walk on Z we have for
any K,

P0(τ2K > AK2) < ε/2, (2.11)

where τ2K is the first hitting time of 2K. Existence of such A is immediate from the
invariance principle, since

lim
K→∞

P0(τ2K > AK2) = P0(Wθ2 > A)→A→∞ 0 ,

where {Wt}t≥0 is standard Brownian motion and θ2 is the first hitting time of 2 by the
Brownian motion.

Having chosen A, let q < 1 be so big such that for a q-lazy random walk (that is, a
random walk with control ui = q) we have for any K,

P0(τ{−K,K} < AK2) < ε/2, (2.12)

where τ{−K,K} is the first time of hitting either K or −K.
We now define the control to be fast until the walk hits 0 and slow afterwards, i.e.

we take ui = 0 for i < τ0 := min{n : Sun = 0} and ui = q for i ≥ τ0. If the starting location
Su0 is in [−2K, 2K], then by (2.11) with probability at least 1 − ε/2 we hit 0 before time
AK2. If that happens, then by (2.12) with probability at least 1 − ε/2, the walk stays
inside [−K,K] until time AK2.

We can now complete the proof of Theorem 1.3.
Proof of (1.5): Fix ε > 0 and choose q and A according to Lemma 2.6.

Let L = blog4(n/A)c and let n` = n−A
∑`
i=0 4k, for ` = 0, . . . , L. For time 0 to nL, we

have
P0(SunL ∈ [−2L, 2L]) > c

for some fixed c > 0, regardless of the control.
For any ` = L, . . . , 1, from time n` to n`−1 we use the strategy provided by Lemma

2.6 for K = 2`. Then with probability at least c(1− ε)L ≈ nlog4(1−ε) we have Sn = 0. This
yields the required lower bound.

3 Concluding remark

Motivated by the structure of the optimal control in the continuous time-and-space
analogue of our control problem, see [2], one could attempt to improve on the lower
bound in (1.4) by using a bang-bang control of the type ui = q if (Sui , i) ∈ D ⊂ Z ×
[0, n] and ui = 0 otherwise, where D is a domain whose boundary is determined by an
appropriate (roughly parabolic) curve. The analysis of that control is somewhat tedious,
and proceeding in that direction we have only been able to show the lower bound in (1.4)
with σ−(q) < 1/2 when q is sufficiently large. It would be interesting to check whether
an analysis of the dynamic programming equation associated with the control problem,
in line with its continuous time analogue in [2, 4], could yield that estimate, and more
ambitiously, show the equality of σ−(q) and σ+(q) in (1.4). 1

One could also consider the dual problem of minimizing the probability of hitting 0

at time n, that is, in the setup of Theorem 1.3, of evaluating

inf
u∈Uq

P (Sun = 0) . (3.1)

1This has now been established, see [3].
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One can adapt the proof of the lower bound in Theorem 1.3 (replacing in the sub-optimal
control “fast” by “slow”) to obtain a polynomial upper bound in (3.1) that has exponent
larger than 1/2. Similarly (using the invariance principle for martingales), one shows
that there is α = α(q) such that the controlled walk with |Su0 | < 2K satisfies |SαK2 | ≤ K
with positive (depending only on q and independent of K) probability, and from this a
polynomial lower bound in (3.1) follows. We omit further details.

Acknowledgement We thank Bruno Schapira for pointing out [6] to us, and Charlie
Smart for his crucial comments [11].
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