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Abstract

We consider a special case of the generalized Pólya’s urn model introduced in [3].
Given a finite connected graph G, place a bin at each vertex. Two bins are called
a pair if they share an edge of G. At discrete times, a ball is added to each pair of
bins. In a pair of bins, one of the bins gets the ball with probability proportional to
its current number of balls. A question of essential interest for the model is to under-
stand the limiting behavior of the proportion of balls in the bins for different graphs
G. In this paper, we present two results regarding this question. If G is not balanced-
bipartite, we prove that the proportion of balls converges to some deterministic point
v = v(G) almost surely. If G is regular bipartite, we prove that the proportion of balls
converges to a point in some explicit interval almost surely. The question of conver-
gence remains open in the case when G is non-regular balanced-bipartite.
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1 Introduction and statement of results

As a special case of the generalized Pólya’s urn model introduced in [3], the model
with linear reinforcement is defined as follows. Let G = (V,E) be a finite connected
graph with V = [m] = {1, . . . ,m} and |E| = N , and assume that on each vertex i there
is a bin initially with Bi(0) ≥ 1 balls. Consider the random process of adding N balls to
these bins at each step, according to the following law: if the numbers of balls after step
n − 1 are B1(n − 1), . . . , Bm(n − 1), step n consists of adding, for each edge {i, j} ∈ E,
one ball either to i or to j, and the probability that the ball is added to i is

P [i is chosen among {i, j} at step n] =
Bi(n− 1)

Bi(n− 1) +Bj(n− 1)
· (1.1)

Let N0 =
∑m
i=1Bi(0) denote the initial total number of balls, and let

xi(n) =
Bi(n)

N0 + nN
, i ∈ [m], (1.2)

be the proportion of balls at vertex i after step n. Let x(n) = (x1(n), . . . , xm(n)). We are
interested in the limiting behavior of x(n) for different graphs G.
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Generalized Pólya’s urn: convergence at linearity

We call G balanced-bipartite if there is a bipartition V = A∪B with #A = #B. In [3],
the authors proved that when G is not balanced-bipartite, the limit of x(n) exists, and
it can only take finitely many possible values. Here, we improve this result and prove
that almost surely the limit of x(n) is in fact one deterministic point, thus confirming
the conjecture in Section 11 of [3].

Theorem 1.1. Let G be a finite, connected, not balanced-bipartite graph. Then there
exists a deterministic point v = v(G) such that x(n) converges to v almost surely.

In the proof of this theorem, we will give a characterization of v(G), that enables us
to explicitly compute its value for some graphs, like regular nonbipartite graphs, star
graphs, and other small graphs. Hence, Theorem 1.1 will imply Theorems 1.1(a) and
1.5(a) of [3].

When G is regular bipartite, the authors in [3] proved that the limit set of x(n) is
contained in Ω where Ω is the subset of the (m− 1)-dimensional closed simplex defined
as follows: if V = A ∪B is the bipartition of G, then

Ω = {(x1, . . . , xm) : ∃ p, q ≥ 0, p+ q = 2/m, s.t. xi = p on A, xi = q on B}. (1.3)

Nevertheless, the question whether x(n) has a limit was left open (see Problem 11.2 in
[3]). The following theorem provides the answer to this question.

Theorem 1.2. Let G be a finite, regular and bipartite graph. Then x(n) almost surely
converges to a point in Ω.

The question of the distribution of this random limit in Ω is left open.
The main technique used in [3] is the dynamical system approach (see e.g. [1, 2]),

by which one can analyze the limiting behavior of x(n) via an approximating ordinary
differential equation (ODE). Under some conditions on x(n) and on the ODE, it was
shown that the limit set of x(n) is contained in the equilibria set of the ODE. Depending
on G, the equilibria set can be either finite or infinite. By a probabilistic argument,
the authors in [3] also proved that x(n) has probability zero to converge to an unstable
equilibrium (see Definition 2.5).

Our results and proofs in this paper are continuation of those in [3]. To prove The-
orem 1.1, the main work is to prove the uniqueness of a non-unstable equilibrium for
any not balanced-bipartite G. The difficulty is that for a general graph, there is no ex-
plicit formula for the equilibria and hence it is impossible to calculate eigenvalues of the
jacobian matrix at equilibria. We overcome this difficulty by constructing a Lyapunov
function. To prove Theorem 1.2, one main difficulty is that the limit set Ω attracts expo-
nentially in the interior, but not at its two endpoints. Thus one cannot directly apply the
theorem proved in [4] for dealing with the case where there is a uniform exponential
attractor. Then our strategy to prove the convergence in Theorem 1.2 is to treat the
convergence to the two endpoints of Ω and to its interior separately. More precisely,
we will prove that the random process (interpolated process) has to converge to some
point in the interior of Ω if it does not converge to the endpoints of Ω. The proof uses
ideas similar to shadowing techniques [4, 5, 9]. One main reason for our technique to
work is due to the special structure of Ω, which is a segment of equilibria that loses ex-
ponential attraction only at its two endpoints. Naturally, our technique can be applied
to a setting where a segment of equilibria attracts exponentially everywhere but not at
finitely many points.

The organization of this paper is as follows. In Section 2, we do some preparation
work for the later proofs: we describe the dynamical system approach in our setting
and cite the necessary results from [3]. In Sections 3 and 4, we prove Theorem 1.1 and
1.2 respectively. In Section 5, we discuss the model on non-regular balanced-bipartite
graphs.
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Generalized Pólya’s urn: convergence at linearity

2 Some results from [3]

We will first describe the evolution of the model in a way that highlights the under-
lying deterministic ODE. Let Fn = σ(x(i) : 0 ≤ i ≤ n) be the filtration generated by x(i)

up to step n. Then we have the following lemma, which was proved in Sections 2 and 3
of [3].

Lemma 2.1. The evolution of {x(n)}n≥0 follows a recursive equation of the form

x(n+ 1)− x(n) = γn [F (x(n)) + u(n)] , (2.1)

where F : Rm → Rm is a deterministic map, u(n) is a random sequence of vectors with
zero conditional mean (E(u(n)|Fn) = 0) and γn is a normalizing factor with γn = O(1/n).

Proof. Recall that xi(n) is the fraction of the total number of balls contained in the i-th
bin at time n:

xi(n) =
Bi(n)

N0 + nN
, i ∈ [m]. (2.2)

Let δi←j(n + 1) be the indicator of the event that the new ball added on the edge {i, j}
at step n+ 1 is added to the i-th bin. By the definition of the process, we have

E [δi←j(n+ 1)|Fn] =
xi(n)

xi(n) + xj(n)
· (2.3)

Now observe that

xi(n+ 1)− xi(n) =
Bi(n) +

∑
j∼i δi←j(n+ 1)

N0 + (n+ 1)N
− Bi(n)

N0 + nN

=
−Nxi(n) +

∑
j∼i δi←j(n+ 1)

N0 + (n+ 1)N

=
1

N0/N + (n+ 1)

−xi(n) +
1

N

∑
j∼i

xi(n)

xi(n) + xj(n)


+

1

N0/N + (n+ 1)
· 1

N

∑
j∼i

(
δi←j(n+ 1)− xi(n)

xi(n) + xj(n)

)
·

Let

γn =
1

N0

N + (n+ 1)
· (2.4)

Thus, defining the sequence of random vectors u(n) = (ui(n))i∈[m] ⊂ Rm by

ui(n) =
1

N

∑
j∼i

(
δi←j(n+ 1)− xi(n)

xi(n) + xj(n)

)
(2.5)

and F = (F1, . . . , Fm) by

Fi(x1, . . . , xm) = −xi +
1

N

∑
j∼i

xi
xi + xj

, (2.6)

our random process takes the form

x(n+ 1)− x(n) = γn [F (x(n)) + u(n)] , (2.7)

where E(u(n)|Fn) = 0, which concludes the proof of Lemma 2.1.
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Generalized Pólya’s urn: convergence at linearity

Following a limit set theorem (see e.g. [1]), we can analyze the limiting behavior of
x(n) by considering its underlying ODE dv/dt = F (v), v ∈ Rm:

dv1(t)

dt
= −v1(t) +

1

N

∑
j∼1

v1(t)

v1(t) + vj(t)

...
dvm(t)

dt
= −vm(t) +

1

N

∑
j∼m

vm(t)

vm(t) + vj(t)
·

(2.8)

Let us specify the domain of the vector field F . Fix c < 1/N , and let ∆ be the set of
m-tuples (x1, . . . , xm) ∈ Rm such that:

(1) xi ≥ 0 and
∑m
i=1 xi = 1, and

(2) xi + xj ≥ c for all {i, j} ∈ E.

We equip ∆ with the distance d induced by the L1 norm in Rm. Note that ∆ is positively
invariant (see Lemma 3.4 in [3] for a detailed proof), and that the restriction of F to ∆

is Lipschitz. A point x ∈ ∆ is called an equilibrium if F (x) = 0. Let Λ be the equilibria
set of F in ∆. The following result gives the relation between the limit set of x(n) and
Λ.

Proposition 2.2. [3, Theorem 3.3] The limit set of {x(n)}n≥0 is a connected subset of
Λ almost surely.

For the sake of completeness, we sketch the proof of this proposition. It requires
the construction of a Lyapunov function. Let U ⊂ Rm be a closed set and F : U → Rm

be a continuous vector field with unique integral curves.

Definition 2.3 (Lyapunov function). A (strict) Lyapunov function for W ⊂ U is a con-
tinuous map L : U → R which is (strictly) monotone along any integral curve of F in
U \W .

Proof of Proposition 2.2. We refer the reader to Section 3 of [3] for a detailed
proof. We will use the limit set theorem stated therein, which requires the following
conditions:

(i) for any T > 0,

lim
n→∞

(
sup

{k:0≤τk−τn≤T}

∥∥∥∥∥
k−1∑
i=n

γiu(i)

∥∥∥∥∥
)

= 0 a.s.

where τn =
∑n−1
i=0 γi, and

(ii) F admits a strict Lyapunov function L for Λ.

We remark that (i) controls the noise perturbation between the random process x(n) and
its associated ODE, and (ii) guarantees the convergence of the ODE to its equilibria.

For (i), let Mn =
∑n
i=0 γiu(i). {Mn}n≥0 is a martingale with bounded quadratic

variation, hence it converges almost surely to a finite random vector (see e.g. Theorem
5.4.9 of [6]). In particular, it is a Cauchy sequence and so (i) holds almost surely.

For (ii), let L : ∆→ R be given by

L(v1, . . . , vm) = −
m∑
i=1

vi +
1

N

∑
{i,j}∈E

log (vi + vj). (2.9)
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Generalized Pólya’s urn: convergence at linearity

Thus

dvi
dt

= vi

−1 +
1

N

∑
i∼j

1

vi + vj

 = vi
∂L

∂vi
· (2.10)

If v = (v1(t), . . . , vm(t)), t ≥ 0, is an integral curve of F , then (2.10) implies

d

dt
(L ◦ v) =

m∑
i=1

∂L

∂vi

dvi
dt

=

m∑
i=1

vi

(
∂L

∂vi

)2

≥ 0.

In particular, the last expression is zero if and only if vi
(
∂L
∂vi

)2

= 0 for all i ∈ [m], which

is equivalent to F (v) = 0. Hence, L is a strict Lyapunov function for Λ.

The rest of the proof is a straightforward application of the limit set theorem.

Define a face ∆S of ∆ as its subset such that vi = 0 if and only if i /∈ S ⊂ [m]. Let
L|∆S

be the restriction of L to ∆S . Since an equilibrium v satisfies vi(∂L/∂vi) = 0 for
any i ∈ [m], we can decompose the equilibria set Λ into the union of the sets of critical
points of L|∆S

over all faces ∆S .

When G is not balanced-bipartite, L is strictly concave (see Corollary 1.3 in [3]).
So for any face ∆S , L|∆S

is strictly concave, and hence has at most one critical point.
Therefore, Λ is finite. Then it immediately follows from Proposition 2.2 that the limit of
x(n) exists in this case. We have the corollary below.

Corollary 2.4. [3, Corollary 1.3] Let G be a finite, connected, not balanced-bipartite
graph. Then Λ is finite and x(n) converges to an element of Λ almost surely.

After proving that the limit set of x(n) is contained in Λ in Proposition 2.2, we want to
understand which equilibrium x(n) can actually converge to. First we give the following
definition.

Definition 2.5 (Unstable/non-unstable equilibrium). An equilibrium x is called unsta-
ble if at least one of the eigenvalues of JF (x), the jacobian matrix of F at x, has positive
real part. Otherwise, we call it non-unstable.

The following lemma rules out the possibility that x(n) converges to an unstable
equilibrium.

Lemma 2.6. Let G be a finite and connected graph. Let v be an unstable equilibrium.
Then

P
[

lim
n→∞

x(n) = v
]

= 0. (2.11)

The proof of Lemma 2.6 follows from Lemma 5.2 in [3] and the characterization of
an unstable equilibrium as shown in the following lemma.

Lemma 2.7. An equilibrium v is unstable if and only if there exists some coordinate
i ∈ [m] with vi = 0 and ∂L/∂vi > 0.

Lemma 2.7 was proved in Section 5 of [3]. For the sake of completeness, we give its
proof here.
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Generalized Pólya’s urn: convergence at linearity

Proof. We look at the jacobian matrix JF (v):

∂Fi
∂vj

=



vi
∂2L

∂vi∂vj
if i ∼ j,

∂L

∂vi
+ vi

∂2L

∂v2
i

if i = j,

0 otherwise.

Without loss of generality, assume that vi = 0 iff 1 ≤ i ≤ k (k can be zero). Thus

JF (v) =

[
A 0

C B

]
(2.12)

where A is a k × k diagonal matrix with aii = ∂L/∂vi, i ∈ [k]. The spectrum of JF (v)

is the union of the spectra of A and B. With respect to the inner product (x, y) =∑m
i=k+1 xiyi/vi, B is self-adjoint and negative semidefinite (by the concavity of L), hence

the eigenvalues of B are real and nonpositive. Therefore, JF (v) has at least one real
positive eigenvalue if and only if at least one of the aii is positive.

Let w = (w1, . . . , wm) be a non-unstable equilibrium. Let P = {i ∈ [m] : wi > 0} and
Z = {i ∈ [m] : wi = 0} = [m] \ P denote the coordinates of w with strictly positive and
zero values respectively. Notice that Z can be empty. By the definition of equilibrium
and (2.10), if i ∈ P then ∂L/∂vi|w = 0. By Lemma 2.7, if i ∈ Z then ∂L/∂vi|w ≤ 0.
Hence, w is non-unstable if and only if it satisfies

∂L

∂vi

∣∣∣∣
w

≤ 0, ∀i ∈ Z;
∂L

∂vi

∣∣∣∣
w

= 0, ∀i ∈ P. (2.13)

It can also be seen from these conditions that only boundary equilibria can be unstable.

3 Not balanced-bipartite graphs: Proof of Theorem 1.1

By Corollary 2.4, if G is not balanced-bipartite, then the limit of x(n) exists almost
surely and is contained in Λ, i.e.∑

v∈Λ

P
[

lim
n→∞

x(n) = v
]

= 1. (3.1)

By Lemma 2.6, the probability that x(n) converges to an unstable equilibrium of F is
zero. Then there exists at least one non-unstable equilibrium. To prove Theorem 1.1, it
suffices to prove its uniqueness, which is given by the following lemma.

Lemma 3.1. Let G be a finite, connected, not balanced-bipartite graph. Then all but
exactly one equilibrium are unstable.

Proof. The proof uses properties of the vector field F only (the random sequence {x(n)}n≥0

plays no role). Let w = (w1, . . . , wm) be a non-unstable equilibrium. We claim that for
any v0 ∈ int(∆), the orbit {v(t)}t≥0 with v(0) = v0 converges to w. Clearly, this implies
the uniqueness of w.

Recall the definition of P in the end of the previous section. We prove the claim by
constructing a Lyapunov function H : {v ∈ ∆ : vi > 0, ∀i ∈ P} → R,

H(v) =
∑
i∈P

wi log vi. (3.2)
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Generalized Pólya’s urn: convergence at linearity

It is worth noting that int(∆) ⊂ {v ∈ ∆ : vi > 0, ∀i ∈ P} and that H(v) ≤ 0 in ∆. Set
c0 =

∑
i∈P wi log vi(0), and consider H−1[c0, 0] = {v ∈ ∆ : H(v) ≥ c0}. Observe that

there exists some small c̃ > 0 such that

H−1[c0, 0] ⊂ {u ∈ ∆ : ui ≥ c̃, i ∈ P}.

Hence if the orbit v(t) is located in the set H−1[c0, 0], it is legitimate to take the deriva-
tive of H(v) along it:

dH(v(t))

dt
=

d

dt

(∑
i∈P

wi log vi

)

=
∑
i∈P

wi
1

vi

−vi +
1

N

∑
j∼i

vi
vi + vj


=

∑
i∈P

wi

−1 +
1

N

∑
j∼i

1

vi + vj

 ·
Since wi = 0 for i ∈ Z, it follows from above that

dH(v(t))

dt
=

m∑
i=1

wi

−1 +
1

N

∑
j∼i

1

vi + vj


= −1 +

1

N

m∑
i=1

wi

∑
j∼i

1

vi + vj


= −1 +

1

N

∑
{i,j}∈E

wi + wj
vi + vj

· (3.3)

By Lemma 3.2 below, (3.3) is non-negative with equality if and only if v = w. This
immediately implies that H−1[c0, 0] is positively invariant, and that v(t) converges to w.
This completes the proof of the claim.

In the proof of Lemma 3.1, we made use of the following lemma.

Lemma 3.2. Let G be a finite, connected, not balanced-bipartite graph. If w is a non-
unstable equilibrium, then

f(v1, . . . , vm) =
∑
{i,j}∈E

wi + wj
vi + vj

≥ N, ∀(v1, . . . , vm) ∈ ∆,

with equality if and only if v = w.

Proof. The proof of Lemma 3.2 follows from the following two claims:

(a) w is a strict local minimum of f(·) in ∆;

(b) f(·) is strictly convex in ∆.

Let’s prove (a).
Let ε = (ε1, . . . , εm). Observe that we can write any point in a neighborhood of w as

wε = (w1 + ε1, . . . , wm + εm) with
∑m
i=1 εi = 0. By the following elementary inequality

x

x+ ε
− 1 ≥ − ε

x
, ∀x > 0, ε > −x,
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we have

f(wε)− f(w) =
∑
{i,j}∈E

[
wi + wj

wi + εi + wj + εj
− 1

]
≥ −

∑
{i,j}∈E

εi + εj
wi + wj

= −
m∑
i=1

εi
∑
j∼i

1

wi + wj
· (3.4)

Since wε ∈ ∆, we must have εi ≥ 0 for any i ∈ Z. By (2.13),
m∑
i=1

εi
∑
j∼i

1

wi + wj
=

∑
i∈P

εi
∑
j∼i

1

wi + wj
+
∑
i∈Z

εi
∑
j∼i

1

wj

=
∑
i∈P

εi ·N +
∑
i∈Z

εi
∑
j∼i

1

wj

≤
∑
i∈P

εi ·N +
∑
i∈Z

εi ·N

= N

m∑
i=1

εi = 0.

Then it follows that f(wε)− f(w) ≥ 0.
Notice that (3.4) has equality if and only if

εi + εj = 0, ∀{i, j} ∈ E. (3.5)

If G is a non-bipartite graph, it has an odd cycle, then (3.5) implies ε = 0. If G is
bipartite but not balanced-bipartite, (3.5) together with

∑m
i=1 εi = 0 implies ε = 0. In

both cases, i.e. if G is not balanced-bipartite, then f(wε) − f(w) > 0 for all small ε 6= 0.
This completes the proof of (a).

Now we will prove (b).
For any u, v ∈ ∆ and 0 < t < 1, by the convexity of the function 1

x (x > 0),

f(tu+ (1− t)v) =
∑
{i,j}∈E

[
wi + wj

(tui + (1− t)vi) + (tuj + (1− t)vj)

]

≤
∑
{i,j}∈E

[
t
wi + wj
ui + uj

+ (1− t)wi + wj
vi + vj

]
≤ tf(u) + (1− t)f(v). (3.6)

Notice that (3.6) has equality if and only if

ui + uj = vi + vj , ∀{i, j} ∈ E. (3.7)

Set g(i) = ui − vi. Then (3.7) implies

g(i) + g(j) = (ui − vi) + (uj − vj) = 0, ∀{i, j} ∈ E. (3.8)

By a similar argument as before, if G is not balanced-bipartite then

f(tu+ (1− t)v)− (tf(u) + (1− t)f(v)) < 0, ∀u 6= v.

This implies that f(·) is strictly convex. We completes the proof of (b).

By (3.1) and Lemma 3.1, x(n) then converges almost surely to a unique non-unstable
equilibrium w. Hence, Theorem 1.1 holds with v(G) = w, which is characterized by the
conditions in (2.13).
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4 Regular bipartite graphs: Proof of Theorem 1.2

Let x(t) denote the interpolated process of x(n):

x(t) =
∑
n≥0

(
x(n) +

t− τn
γn

(x(n+ 1)− x(n))

)
1[τn,τn+1)(t),

where τn =
∑n−1
k=0 γk. To prove the convergence of x(n) in Theorem 1.2, it suffices to

prove the convergence of x(t).
Let Φ = Φt(x) be the semiflow induced by (2.6) where t ≥ 0 is the time parameter

and Φ0(x) = x. Then the following lemma gives a quantitative estimate on how well the
interpolated process can be approximated by the semiflow Φ.

Lemma 4.1. [2, Proposition 8.3] Almost surely,

sup
T>0

lim sup
t→∞

1

t
log

(
sup

0≤h≤T
d(x(t+ h),Φh(x(t)))

)
≤ −1/2.

The right-hand side of the inequality above depends on the decrease rate of γn1. In
[3], the authors proved that when G is regular bipartite, the distance between x(n) and
Ω converges to zero.

Lemma 4.2. [3, Theorem 1(b)] LetG be a finite, regular, connected and bipartite graph,
then limn→∞ d(x(n),Ω) = 0 almost surely.

When G is r−regular and bipartite, one can explicitly calculate JF (v), the jacobian
matrix of F at a point v = (p, . . . , p, q, . . . , q) ∈ Ω. Let A and B denote the bipartition of
G as before. If we label the vertices of A from 1 to m/2, the vertices of B from 1 to m/2,
and if we let M = (mij) be the m/2 × m/2 adjacency matrix of the edges connecting
vertices of A to vertices of B (i.e. mij = 1 when the i-th vertex of A is adjacent to the
j-th vertex of B), then JF (v) takes the form

JF (v) = −I +
m

2r

 rqI −pM

−qM t rpI

 ·
Let l be the vector in the tangent space of ∆ with coordinates

li =

{
1 if i ∈ A,
−1 if i ∈ B.

Then it is easy to check that JF (v) · l = 0 for any v ∈ Ω. This implies that the jacobian
matrix has zero eigenvalue along the direction of Ω. Let v±∞ denote the two endpoints
of Ω. One can easily see that JF (v±∞) has multiple zero eigenvalues. In the interior of
Ω, the authors in [3] proved that in any direction transverse to Ω, the eigenvalues have
negative real part.

Lemma 4.3. [3, Lemma 10.1] Let v ∈ int(Ω). Any eigenvalue of JF (v) different from 0

has negative real part, and 0 is a simple eigenvalue of JF (v).

Lemma 4.3 says that the interior of Ω attracts exponentially along any direction
transverse to Ω. This is a strong property about Ω, and it enables us to effectively
work with the dynamics of the ODE at the interior of Ω. For a fixed interval J ⊂ Ω

not containing v±∞, and a small neighborhood U of J in ∆, by Lemma 4.3, there is a
submanifold Fx for each x ∈ U such that:

1More specifically, it equals 1
2
lim supn→∞

log γn
τn

. If γn = O(1/n), then 1
2
lim supn→∞

log γn
τn

= − 1
2

.
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• Fx t Ω is one point. We denote this point by π(x).

• The dynamics of the ODE on Fx is exponentially contracting to π(x). The speed of
convergence depends on the non-zero eigenvalues of JF (π(x)).

This follows from the theory of invariant manifolds for normally hyperbolic sets (see
Theorem 4.1 of [7]).

Thus we have a map π : U → Ω. Notice that π is not a projection (it is not even
linear), but Fx depends smoothly on x. Hence if U is small, then π is 2-Lipschitz:

d(π(x), π(y)) ≤ 2d(x, y),∀x, y ∈ U. (4.1)

Now fix a small parameter ε > 0 and reduce U , if necessary, so that

U = {x ∈ ∆ : π(x) ∈ J and d(x, π(x)) < ε}. (4.2)

Let c = max{Re(λ) : λ 6= 0 is eigenvalue of JF (x), x ∈ J}. By Lemma 4.3 , c < 0. Thus
there is K > 0 such that

d(Φt(x), π(x)) ≤ Kectd(x, π(x)),∀x ∈ U,∀ t ≥ 0. (4.3)

Let x(t) be an orbit that does not converge to v±∞. By Lemma 4.2, this orbit has an
accumulation point in the interior of Ω. Let J ⊂ Ω be an interval containing this point
but not v±∞, and U as in (4.2).

Lemma 4.4. Let x(t) ∈ U . If t, T are large enough, then

(i) d(π(x(t+ T )), π(x(t))) < 2e−
t
4 .

(ii) x(t+ T ) ∈ U .

Proof. To simplify the notation, denote x(t) by x and x(t+ T ) by x(T ).
Let’s prove (i). Since π(ΦT (x)) = π(x), and π is 2-Lipschitz,

d(π(x(T )), π(x)) = d(π(x(T )), π(ΦT (x))) ≤ 2d(x(T ),ΦT (x)).

By Lemma 4.1, d(x(T ),ΦT (x)) ≤ e−
t
4 for large t, therefore d(π(x(T )), π(x)) ≤ 2e−

t
4 for

large t. This proves (i). Note that (i) implies that π(x(T )) ∈ J for large t.
For (ii), we just need to estimate d(x(T ), π(x(T ))). By the triangular inequality, (4.1)

and (4.3), we have:

d(x(T ), π(x(T ))) ≤ d(x(T ),ΦT (x)) + d(ΦT (x), π(ΦT (x))) +

d(π(ΦT (x)), π(x(T )))

≤ 3d(x(T ),ΦT (x)) + d(ΦT (x), π(x))

≤ 3e−
t
4 +KecT d(x, π(x))

≤ 3e−
t
4 +KecT ε

< ε (4.4)

whenever 3e−
t
4 < ε

2 and KecT < 1
2 .

Note that Lemma 4.4(ii) allows us to iteratively apply Lemma 4.4 to the points xk :=

x(t+ kT ), k ∈ N. Hence d(π(xk+1), π(xk)) < 2e−
t+kT

4 for all k ≥ 0. Because
∑
k e
− t+kT

4 <

∞, it follows that π(xk) converges. In the above iterative argument, we implicitly used

the fact that
∑
k e
− t+kT

4 can be made arbitrarily small if t and T are large enough.
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This fact guarantees that the total drift of π(xk) from π(x) is arbitrarily small so that
π(xk) ∈ J for all k ≥ 0, and thus the iterative argument works.

Also note that (4.4) holds for all k ≥ 0:

d(xk, π(xk)) ≤ 3e−
t+(k−1)T

4 +KecT d(xk−1, π(xk−1)). (4.5)

Let λ = KecT . Iterating (4.5), we get

d(xk, π(xk)) ≤ 3e−
t
4

(
e−

(k−1)T
4 + λe−

(k−2)T
4 + · · ·+ λk−1

)
+ λkd(x, π(x))

≤ 3e−
t
4 k
(

max
{
e−

T
4 , λ

})k−1

+ λkd(x, π(x)).

When T is large, max
{
e−

T
4 , λ

}
< 1, hence d(xk, π(xk))→ 0 as k →∞.

Let x0 ∈ J be the limit of π(xk). By the triangular inequality

d(xk, x0) ≤ d(xk, π(xk)) + d(π(xk), x0).

When k tends to infinity, we have just proved that both d(π(xk), x0) and d(xk, π(xk)) go
to zero, thus d(xk, x0) goes to zero. This proves that limk→∞ xk exists, with limk→∞ xk =

x0 ∈ J .
For any s ∈ [t+ kT, t+ (k + 1)T ), by the triangular inequality and Lemma 4.1

d(x(s), x0) = d(x(s),Φs−(t+kT )(x0))

≤ d(x(s),Φs−(t+kT )(xk)) + d(Φs−(t+kT )(xk),Φs−(t+kT )(x0))

≤ e−
t+kT

4 + c(T )d(xk, x0),

where c(T ) > 0 is the supremum of the Lipschitz constants of Φδ, δ ∈ [0, T ]. Therefore,
limt→∞ x(t) = x0. This completes the proof of Theorem 1.2.

5 Non-regular balanced-bipartite graphs

We now discuss non-regular balanced-bipartite graphs. It is the only family of graphs
that we do not have precise information on the convergence of x(n).

Lemma 5.1. Let G be a non-regular balanced-bipartite graph. Then Λ∩ int(∆) is either
empty or an interval.

Proof. For a non-regular balanced-bipartite graph, the corresponding ODE can a priori
have either no or at least one interior equilibrium in ∆. Now suppose that the ODE has
an interior equilibrium v. Let V = A ∪ B be the bipartition of G. Then for any η with
−mini∈A vi < η < mini∈B vi, the points uη = (uη1 , . . . , u

η
m) defined by

uηi =

{
vi + η if i ∈ A,
vi − η if i ∈ B, (5.1)

form an interval of interior equilibria.
Furthermore, if h is another interior equilibrium, we will prove that h is contained

in this interval. Recall that

L(v) = L(v1, . . . , vm) = −
m∑
i=1

vi +
1

N

∑
{i,j}∈E

log (vi + vj).

By (2.10), h and v are critical points of L. Since L is concave, h and v are global maxima
of L in ∆ and L(h) = L(v). Then for any 0 < c < 1, the following holds:

L(ch+ (1− c)v) = cL(h) + (1− c)L(v). (5.2)
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Since the log function is strictly concave, (5.2) yields hi+hj = vi+vj for every {i, j} ∈ E,
i.e.

hi − vi = −(hj − vj) , ∀ {i, j} ∈ E. (5.3)

Hence, there exists η ∈ (−mini∈A vi,mini∈B vi), such that

hi =

{
vi + η if i ∈ A,
vi − η if i ∈ B,

which completes the proof.

Observe that the proof of Lemma 5.1 works for any balanced-bipartite graph. Thus,
we have proved that for a balanced-bipartite graph, the corresponding F either does
not have an interior equilibrium, or has an interval of interior equilibria.

Corollary 5.2. Let G be a non-regular balanced-bipartite graph. Assume that F does
not have an interior equilibrium, then Λ is finite, and x(n) converges to an element of Λ

almost surely.

Proof. By Proposition 2.2, we just need to prove that Λ is finite. Since Λ is the union of
the sets of critical points of L|∆S

over all faces ∆S and the total number of faces is finite,
it suffices to prove that for each face ∆S with S 6= [m], L|∆S

is strictly concave. Fix a
face ∆S with S 6= [m]. Let u, v ∈ ∆S and c ∈ (0, 1). If L(cu+(1−c)v) = cL(u)+(1−c)L(v),
then ui + uj = vi + vj for every {i, j} ∈ E, i.e.

ui − vi = (−1)(uj − vj) , ∀ {i, j} ∈ E. (5.4)

Since S 6= [m] and u, v ∈ ∆S , there exists some i /∈ S such that ui − vi = 0. Because G is
connected, (5.4) implies that ui − vi = 0 for all i ∈ [m], i.e. u = v. This proves that L|∆S

is strictly concave. We complete the proof of the corollary.

Notice that the proof of Corollary 5.2 is general and only uses the assumption that
F does not have an interior equilibrium. We just proved that for any finite connected
graph G, L|∆S

with S 6= [m] is strictly concave, and hence the corresponding F has at
most finitely many boundary equilibria.

For a non-regular balanced-bipartiteG, if F does not have an interior equilibrium, by
Corollary 5.2, we conjecture that there is a unique non-unstable equilibrium of F such
that x(n) almost surely converges to it. If F has an interval of interior equilibria, unlike
the case of regular bipartite graphs, we are not able to prove a result similar to Lemma
4.3, and hence not able to prove the convergence of x(n). But we also conjecture
that this convergence holds. Combining the results we already proved, we make the
conjecture below.

Conjecture 5.3. Let G be a finite and connected graph. Then there exists either a
point v(G) such that x(n) almost surely converges to v(G) or an interval Ω(G) such that
x(n) almost surely converges to a point in Ω(G).

Remark 5.4. We just learned that the convergence of x(n) for non-regular balanced-
bipartite graphs was proved in [8], and hence Conjecture 5.3 was confirmed.
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