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Abstract

This paper concerns random bipartite planar maps which are defined by assigning
weights to their faces. The paper presents a threefold contribution to the theory.
Firstly, we prove the existence of the local limit for all choices of weights and describe
it in terms of an infinite mobile. Secondly, we show that the local limit is in all cases
almost surely recurrent. And thirdly, we show that for certain choices of weights
the local limit has exactly one face of infinite degree and has in that case spectral
dimension 4/3 (the latter requires a mild moment condition).
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1 Introduction and main results

A planar map is a finite connected graph embedded in the 2-sphere. Motivated by
questions of universality, Marckert and Miermont [30] introduced a class of probability
distributions on bipartite planar maps, where a weight qd/2 is given to each face of
degree d. (A bipartite map is one in which all faces have even degree, hence d/2 is an
integer.) Due to the discovery of certain bijections between planar maps and labeled
trees [8, 34] progress on this model of random planar maps has been tremendous, see
e.g. [25] for a recent review. Much of the focus has been on the scaling limit where
the map is rescaled by some power of its size and one studies the limit in the Gromov–
Hausdorff sense of the corresponding metric space, see e.g. [17, 26, 27, 28, 32]. Other
papers focus on the local limit, where one does not rescale the graph and the limiting
object, when it exists, is an infinite graph, see e.g. [3, 9, 10, 23, 31] for results on
special cases and related models. So far the local limit has been shown to exist only for
certain choices of the weights qi.

This paper presents three main contributions to the theory of local limits of planar
maps (precise definitions and statements appear in the following subsections). Our first
main result is the existence, and a description, of the local limit for arbitrary choices
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Recurrence of bipartite planar maps

of the weigths qi, see Theorem 1.1. We show this by using a connection to simply gen-
erated trees, and a recent general limit theorem due to Janson for the latter object
[16]. The approach is similar to the one of Chassaing and Durhuus [9] and later Curien,
Ménard and Miermont [10] in the case of quadrangulations. Our second main result
is that the limit map is almost surely recurrent for all choices of the weights qi, see
Theorem 1.2. This is proved using a recent general result of Gurel-Gurevich and Nach-
mias [13], and relies on establishing exponential tails of the degrees in the local limit
(Theorem 4.2). Our third main result focuses on finer properties of random walk in the
local limit, for parameters in a certain ‘condensation phase’. In this phase, the local
limit almost surely has a face of infinite degree. Under an additional moment condition,
we show that the spectral dimension of the map in this case is almost surely 4/3 (see
Theorem 1.3). Roughly speaking this follows from the fact that, from the point of view
of a simple random walk, the map is tree-like (although it is in general not a tree). This
result relies on recent general methods for expressing the spectral dimension in terms
of volume and resistance growth due to Kumagai and Misumi [24]. We now define the
model more precisely.

1.1 Planar maps

A planar map is a finite, connected graph embedded in the 2-sphere and viewed up
to orientation preserving homeomorphisms of the sphere. A connected component of
the complement of the edges of the graph is called a face. The degree of a face f ,
denoted by deg(f) is the number of edges in its boundary; the edges are counted with
multiplicity, meaning that the same edge is counted twice if both its sides are incident
to the face. We sometimes consider rooted and pointed planar maps: the root is then a
distinguished oriented edge e = (e−, e+), and the point is a fixed marked vertex, which
will be denoted by ρ. All maps we consider are bipartite; this is equivalent to each face
having an even degree. We denote the set of finite bipartite, rooted and pointed planar
maps byM∗f , and we denote the subset of maps with n edges byM∗n. For a planar map
m we denote the set of vertices, edges and faces by V (m), E(m) and F (m) respectively.
For a map m ∈ M∗f and an integer r ≥ 0, let Br(m) denote the planar subgraph of m
spanned by the set of vertices at a graph distance ≤ r from the origin e− of the root
edge. Note that Br(m) is a planar map; for r ≥ 1 it is rooted, and it is pointed if the
vertex ρ is at a graph distance ≤ r from e−. Define a metric onM∗f by

dM(m1,m2) = (1 + sup {r : Br(m1) = Br(m2)})−1
, m1,m2 ∈M∗f .

This metric on rooted graphs was introduced in [6]. Denote byM∗ the completion ofM∗f
with respect to dM. ThusM∗ is a metric space, which we further make into a measure
space by equipping it with the Borel σ-algebra. The elements ofM∗ which are not finite
are called infinite planar maps and the set of infinite planar maps is denoted byM∗∞. An
infinite planar map m can be represented by an equivalence class of sequences (mi)i≥0

of finite planar maps having the property that for each r ≥ 0, Br(mi) is eventually the
same constant for every representative. We then call m the local limit of the sequence
(mi)i≥0. The equivalence class defines a unique infinite rooted graph, which may or
may not be pointed.

We will consider probability measures on M∗ which are defined via a sequence
(qi)i≥1 of non-negative numbers, as follows. Define a sequence of probability measures
(µn)n≥1 onM∗ by first assigning to each finite map m a weight

W (m) =
∏

f∈F (m)

qdeg(f)/2
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Recurrence of bipartite planar maps

and setting

µn(m) =
W (m)∑

m′∈M∗n
W (m′)

, if m ∈M∗n (otherwise 0). (1.1)

This definition was first introduced by Marckert and Miermont [30].

1.2 Main results

Our first main result establishes a weak limit of (µn)n≥1 in the topology generated by
dM. In order to exclude the trivial case when all faces have degree two we demand that
qi > 0 for some i ≥ 2. Certain qualitative properties of the limit map can be determined
by the value of a quantity κ which we will now define. For convenience, we will define
a new sequence (wi)i≥0, expressed in terms of the parameters (qi)i≥1 as

wi =

(
2i− 1

i− 1

)
qi, for i ≥ 1 (1.2)

and we let w0 = 1. The reason for this definition will become clear when we explain the
connection between the maps and simply generated trees in Section 3.3. Denote the
generating function of (wi)i≥0 by

g(z) =

∞∑
i=0

wiz
i

and denote its radius of convergence by R. If R > 0 define

γ = lim
t↗R

tg′(t)

g(t)
(1.3)

and if R = 0 let γ = 0. Note that the ratio in (1.3) is continuous and increasing in t

by [16, Lemma 3.1]. Next define the number τ ≥ 0 to be

1. the (unique) solution t ∈ (0, R] to tg′(t)/g(t) = 1, if γ ≥ 1; or

2. τ = R, if γ < 1.

Then define the probability weight sequence (πi)i≥0 by

πi =
τ iwi
g(τ)

(1.4)

and let ξ be a random variable distributed by (πi)i≥0. We will view ξ as an offspring
distribution of a Galton–Watson process and we denote its expected value by κ. One
easily finds that

κ = min{γ, 1} ≤ 1

i.e. ξ is either critical or sub-critical. These definitions come from [16, Theorem 7.1],
restated below as Theorem 3.3.

Here is a brief remark about how our notation relates to that of [30], see also [17,
Appendix A] for a discussion about this. Instead of our generating function g, Marckert
and Miermont consider f = fq given by f(z) =

∑
k≥0 wk+1z

k. Thus g(z) = 1 + zf(z),
and the radius of convergence R of g equals that of f (called Rq in [30]). In [30] the
weights (qi)i≥1 are called admissible if there is a solution z ∈ (0,∞) to f(z) = 1 − 1/z,
which in our notation becomes z = g(z). In the case γ ≥ 1 we have τg′(τ) = g(τ), which
is equivalent to τ2f ′(τ) = 1, the form used in [30]. In this case Marckert and Miermont
refer to the weights (qi)i≥1 as critical, and their Zq equals our τ .

Before stating the first theorem we recall some definitions. Firstly an infinite graph
is said to be one-ended if the complement of every finite connected subgraph contains
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Recurrence of bipartite planar maps

exactly one infinite connected component. Secondly, we recall the construction of the
uniform infinite plane tree (UIPTree). It is the infinite plane tree distributed by the
weak local limit, as n → ∞, of the uniform measures on the set of all plane trees
with n edges. An explicit construction (when wi = 1 for all i) is given in Section 3.3.
The UIPTree can also be viewed as the weak local limit of a Galton–Watson tree with
offspring distribution 2−i−1 conditioned to survive.

Theorem 1.1. For all choices of weights (qi)i≥1 the measures µn converge weakly to
some probability measure µ (in the topology generated by dM). The infinite map with
distribution µ is almost surely one-ended and locally finite. If κ = 1 all faces are of finite
degree. If κ < 1 the map contains exactly one face of infinite degree. If κ = 0 the limit
is the UIPTree.

Special cases of this result have been established previously, see [9, 10, 23] for the
case of uniform quadrangulations. Other related results in the case of non-bipartite
graphs have been established for uniform triangulations [3] and uniform maps [31].

The proof of Theorem 1.1 appears at the end of Section 2 and relies on two bijec-
tions: first a bijection due to Bouttier, Di Francesco and Guitter (BDG) [8] from M∗f to
a class of labelled trees called mobiles, and then a bijection which maps random mo-
biles of the form we consider to simply generated trees. In [16], Janson established
a general convergence result for simply generated trees, which allows us to deduce
the corresponding convergence result for planar maps. This correspondence was pre-
viously used by Janson and Stefánsson to study scaling limits of planar maps in [17].
We note here that one may deduce more details about the structure of the limiting map
than those stated in Theorem 1.1 from the upcoming Theorem 3.1. The latter result con-
cerns the local limit of the mobiles along with the procedure of constructing the maps
out of the mobiles. The local limit of the mobiles has an explicit description in terms of
a multi-type Galton–Watson process as will be explained in Section 3.1. We expect that,
similarly to the case of quadrangulations [10], one may recover the infinite mobile from
the infinite map. We remark here that the bipartite case, on which we focus, is easier
since the BDG bijection has a particularly simple form in this case, which directly gives
the correspondence with simply generated trees. In [8] bijections between trees and
more general types of maps are described, see also [33].

Throughout the paper, we will let M denote the infinite random map distributed by
µ from Theorem 1.1. Recall that simple random walk on a locally finite graph G is a
Markov chain starting at some specified vertex, which at each integer time step moves
to a uniformly chosen neighbour. Recall also that G is recurrent if simple random walk
returns to its starting point with probability 1. Our second main result is the following,
and is proved in Section 4:

Theorem 1.2. For all choices of the weights qi, the map M is almost surely recurrent.

The proof relies on a recent result on recurrence of local limits [13]. To be able to
apply this result we show that the degree of a typical vertex in M has an exponential
tail, see Theorem 4.2. We note here that the degree of a typical face need not have
exponential tails (even in the case κ = 1).

Our third main result concerns the case κ < 1, when M has a unique face of infinite
degree. This phase has been referred to as the condensation phase in the correspond-
ing models of simply generated trees [16, 18]. Our results concern the asymptotic
behaviour of the return probability of a simple random walk after a large number of
steps. Let pG(n) be the probability that simple random walk on G is back at its starting
point after n steps. The spectral dimension of G is defined as

ds(G) = −2 lim
n→∞

log(pG(2n))

log n
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Figure 1: A simulation of a planar map with κ = 0.66 and wi ∼ i−3. The map has 794
vertices and 579 faces. The drawing is non-isometric and non-proper.

provided the limit exists. It is simple to check that the limit is independent of the initial
location of the walk if G is connected. Let ξ be the random variable defined below (1.4)
and recall that κ = E(ξ).

Theorem 1.3. If κ < 1 and if there exists β > 5/2 such that E(ξβ) < ∞ then almost
surely ds(M) = 4/3.

Recall that M is the UIPTree when κ = 0. It was shown in [12] (see also [4, 11, 20])
that the spectral dimension of the UIPTree (and even the more general class of critical
Galton–Watson trees with finite variance conditioned to survive) is almost surely 4/3.
Our results in the case κ = 0 are therefore in agreement with those results. When
0 < κ < 1 the map M is however no longer a tree but we show that from the point
of view of the random walk it is still tree–like (see also [7] for the phenomenon that
maps with a unique large face are tree-like). This is perhaps not surprising in view of
recent results in [17], where it is shown, for regular enough weights, that as n → ∞
the scaling limit of the maps, with the graph metric rescaled by n−1/2, is a multiple
of Aldous’ Brownian tree. In this sense, the maps are globally tree like although they
contain a number of small loops, see Fig. 1 for an example. The condition β > 5/2 is
probably not optimal but is the best that can be obtained with our methods. We suspect
that β > 1 suffices.

It is worth noting here that the value 4/3 for the spectral dimension is also encoun-
tered in critical percolation clusters of Zd for d large enough. It was conjectured by
Alexander and Orbach [2] that the spectral dimension of the incipient infinite cluster
for percolation on Zd (d ≥ 2) should be 4/3. This conjecture is generally believed to be
true for d > 6 (but false for d ≤ 6) and has been proven for d ≥ 19 and for d > 6 when
the lattice is sufficiently spread out [22].
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Finally, Theorem 1.3 may be seen as a refinement of Theorem 1.2 (for κ < 1) in
the sense that if a graph G is recurrent, and the spectral dimension ds(G) exists, then
ds(G) ≤ 2. We do not prove the existence of ds(M) other than in the case covered by
Theorem 1.3.

1.3 Outline

The paper is organized as follows. In Section 2 we introduce rooted plane trees and
mobiles and explain how they may be related to planar maps via the BDG bijection.
In Section 3 we prove Theorem 1.1 on the existence and characterization of the local
limit, and in Section 4 we prove Theorem 1.2 on recurrence. Section 5 is devoted to
the spectral dimension in the condensation phase when κ < 1 (Theorem 1.3). In order
to improve the readability of the main text we collect proofs of some lemmas in the
Appendix.

2 Trees and mobiles

The study of planar maps is intimately tied up with the study of trees, as will be
explained in the following sections. In this section we introduce our main definitions and
tools for studying trees. As a ‘reference’ we will use a certain infinite tree T∞, whose
vertex set is V (T∞) =

⋃
nZ

n i.e. the set of all finite sequences of integers. The tree
T∞ is closely related to the standard Ulám–Harris tree (which has vertex set

⋃
nN

n),
and is defined as follows. Firstly, the concatenation of two elements u, v ∈ V (T∞) is
denoted by uv. The unique vertex in Z0 (the empty sequence) is called the root (not to
be confused with the root edge of a map) and is denoted by ∅. The edges in T∞ are
defined by connecting every vertex vi, i ∈ Z, v ∈ V (T∞), to the corresponding vertex
v. In this case v is said to be the parent of vi and vi is said to be the child of v. More
generally, v is said to be an ancestor of v′ if v′ = vu for some u ∈ V (T∞) and in that case
v′ is said to be a descendant of v. We denote the genealogical relation by ≺ i.e. v ≺ v′

if and only if v is an ancestor of v′. The generation of v is defined as the number of
elements in the sequence v or equivalently as the graph distance of v from the root, and
is denoted by |v|.

2.1 Rooted plane trees

A rooted, plane tree T , with vertex set V (T ), is defined as a subtree of T∞ containing
the root ∅ and having the following property: For every vertex v ∈ V (T ) there is a
number out(v) ∈ {0, 1, . . .} ∪ {∞}, called the outdegree of v, such that vi ∈ V (T ) if and
only if b−out(v)/2c < i ≤ bout(v)/2c, see Fig. 2. The degree of a vertex v is denoted by
deg(v) and defined as deg(v) = out(v) + 1 if v 6= ∅ and deg(∅) = out(∅). For each vertex
v we order its children from left to right by declaring that vi is to the left of vj if

• i = 0 (v0 is the leftmost child) or

• ij > 0 and i < j or

• i > 0 and j < 0.

Our definition of a rooted plane tree is equivalent to the conventional definition (see
e.g. [16]) if the tree is locally finite, i.e. out(v) < ∞ for all v ∈ V (T ). However, it
differs slightly if the tree has a vertex v of infinite degree since in our case v both has
a leftmost and a rightmost child whereas conventionally it would only have a leftmost
child. It will be important to have this property when describing planar maps in the
so-called condensation phase. All trees we consider in this paper will be plane trees
and we will from now on simply refer to them as trees.
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0 1 2 -1-2

0,0 0,1 2,0 2,1

0,1,0 0,1,1

-1,0

2,1,0 2,1,10,1,-1

0,1,0,0 0,1,0,1

0,1,2

Figure 2: An example of a plane tree T . The subtree T [3] is indicated by dashed edges
and gray vertices.

Denote the set of trees with n edges by Γn and the set of all finite trees by Γf =⋃
n Γn. In this paper we will only consider infinite trees T which have either of the two

properties:

1. T is locally finite and there is exactly one infinite self-avoiding path starting at the
root called an infinite spine; or

2. Exactly one vertex in T has infinite degree and T contains no infinite spines. The
unique self-avoiding path from the root to the vertex of infinite degree is in this
case called a finite spine.

Denote the set of such infinite trees by Γ∞ and let Γ = Γf ∪ Γ∞. A tree satisfying (1)
or (2) can be embedded in the plane in such a way that all vertices are isolated points,
no edges cross and so that the ordering of its vertices is preserved. When we refer to
embeddings of trees later on we will always assume that these properties hold.

When an infinite tree has a spine (finite or infinite, as above) we will denote the
sequence of vertices on the spine, ordered by increasing distance from the root, by
∅ = S0, S1, . . .. When there is a vertex of infinite degree we will denote it by s and we
will denote its children by si, i ∈ Z orderered from left to right in the same way as
before.

One may define a metric on Γ in much the same way as we did for M∗, as follows.
For every R ≥ 0 define the set

V [R] =

R⋃
n=0

{b−R/2c+ 1, b−R/2c+ 2, . . . , bR/2c − 1, bR/2c}n

and for T ∈ Γ let T [R] be the finite subtree of T with vertex set V (T ) ∩ V [R], see Fig. 2.
Define the metric

dΓ(T1, T2) =
(

1 + sup
{
R : T

[R]
1 = T

[R]
2

})−1

, T1, T2 ∈ Γ.

The set Γ is equipped with the Borel σ-algebra generated by dΓ.

2.2 Mobiles

It will be convenient to emphasise the distinction between vertices in a tree that
belong to odd and even generations, respectively. For each tree T ∈ Γ we therefore
colour the root and vertices in every even generation white and we colour vertices in
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every odd generation black. The set of black (resp. white) vertices in the tree T will be
denoted by V •(T ) (resp. V ◦(T )). Let Γ�∞ be the subset of Γ∞ where only black vertices
can have infinite degree and define Γ� = Γf ∪ Γ�∞.

For a finite tree T ∈ Γn, define the left contour sequence (c
(L)
i )i≥0 of vertices in T as

follows:

• c
(L)
0 = ∅,

• For each j < 2n, the element in (c
(L)
i )i≥0 following c(L)

j is the leftmost child of c(L)
j

which has still not appeared in the sequence or if all its children have appeared it
is the parent of c(L)

j .

• The sequence is extended to i > 2n by 2n periodicity.

Similarly define the right contour sequence (c
(R)
i )i≥0 by replacing leftmost with right-

most in the above definition. Next, define the contour sequence (ci)i∈Z by

ci =

{
c
(L)
i if i ≥ 0

c
(R)
−i if i < 0.

(2.1)

We will refer to each occurrence of a vertex v in the contour sequence as a corner of v.
Note that v has deg(v) number of corners. We extend the above definitions to elements
in Γ∞ in the obvious way (there is only one infinite period); this is possible due to how
the infinite trees are constructed and how the children of the vertex of infinite degree
are ordered. Note that for a tree T in Γ, the contour sequence visits all vertices. We will
sometimes use the term clockwise (respectively, counterclockwise) contour sequence,
which refers to progressing through the contour sequence ci by increasing (respectively,
decreasing) the index i.

Define the white contour sequence (c◦i )i∈Z by c◦i = c2i for all i ∈ Z. Note that every
white vertex appears in this sequence. Similarly, for a tree with a (finite or infinite)
spine let (S◦i )i≥0 be a sequence of the white vertices on the spine defined by S◦i = S2i.

For trees T ∈ Γ�, we will consider integer labels (`(v))v∈V ◦(T ) assigned to the white
vertices of T , and which obey the following rules.

1. For all i ∈ Z, `(c◦i+1) ≥ `(c◦i ) − 1 (for every black vertex u, the labels of the white
vertices adjacent to u can decrease by at most one in the clockwise order around
u).

2. If T has an infinite spine then infi≥0 `(S
◦
i ) = −∞.

3. If T has a vertex of infinite degree then
infi≥0 `(si) = infi<0 `(si) = −∞.

A tree T along with the labels ` which obey the above rules is called a mobile and will
typically be denoted by θ = (T, `). If the root has label k ∈ Z, the set of such mobiles

with n edges will be denoted by Θ
(k)
n , the set of finite mobiles by Θ

(k)
f , the set of infinite

mobiles obtained by labeling trees in Γ�∞ by Θ
(k)
∞ and finally Θ(k) := Θ

(k)
f ∪ Θ

(k)
∞ . As

explained in the next subsection, mobiles are an essential tool in the study of planar
maps.

For a finite tree T there is a useful alternative way of describing rule (1) for the
labels on T , see e.g. [27]. For this purpose we introduce, for each r ≥ 1, the set

Er =
{

(x1, x2, . . . , xr) ∈ {−1, 0, 1, 2, . . .}r :

r∑
i=1

xi = 0
}
. (2.2)

Let u be a black vertex in T of degree r, and denote its white parent by u(0) and its
white children by u(1), u(2), . . . , u(r−1), ordered from left to right. Assign to u an element
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(x1(u), . . . , xr(u)) from Er. Having done this for all black vertices u, label the white
vertices of T recursively as follows. First label the root by some fixed k. If for a black
vertex u we have that `(u(0)) = y0 then let

`(u(j)) = y0 +

j∑
i=1

xi(u), 1 ≤ j ≤ r − 1. (2.3)

The elements from Er thus provide the increments of the labels of the white vertices
clockwise around each black vertex. Note that the minimum allowed increment is −1,
in accordance with rule (1).

The finite sequence (`(u(j)))0≤j≤r is called a discrete bridge of length r. From this
description it is easy to count the number λ(T ) of different allowed labellings of the
finite tree T . By a standard ‘balls-and-boxes’ argument, the number of elements in Er
is
(

2r−1
r−1

)
. Therefore, the number of ways of labeling T , given that its root has a fixed

label, is

λ(T ) =
∏

u∈V •(T )

(
2 deg(u)− 1

deg(u)− 1

)
. (2.4)

We conclude this subsection by defining a metric also on the set Θ(0). For a mobile
θ = (T, `), let θ[R] be the labeled tree consisting of T [R] and the labels ` restricted to the
white vertices in T [R]. Note that θ[R] is in general not a mobile since the labels do not
necessarily satisfy the rules listed above. We define a metric dΘ on Θ(0) by

dΘ(θ1, θ2) =
(

1 + sup
{
R : θ

[R]
1 = θ

[R]
2

})−1

, θ1, θ2 ∈ Θ(0) (2.5)

and we equip Θ(0) with the Borel σ-algebra.

2.3 The Bouttier–Di Francesco–Guitter bijection

We will recall the rooted and pointed version of the Bouttier-Di Francesco-Guitter
(BDG) bijection between mobiles and planar maps [8]. Consider a finite mobile θ =

(T, `) ∈ Θ
(0)
n and embed T in the plane. Let (c◦i )i∈Z be its white contour sequence and

for each i define the successor of i as

σ(i) = inf{j > i : `(c◦j ) = `(c◦i )− 1} (2.6)

with the convention that inf{∅} =∞. Add a point ρ to the complement of T in the plane
and define c◦∞ = ρ. Define the successor of a white vertex c◦i as

σ(c◦i ) = c◦σ(i). (2.7)

Note that every white vertex in the mobile has a unique successor. A planar map m ∈
M∗n is constructed from θ, along with a variable ε ∈ {−1, 1}, as follows: Draw an arc
from each corner of a white vertex in θ to its successor (in such a way that no arcs
cross). Then delete all black vertices and edges belonging to θ. The white vertices of θ
along with the external point ρ are the vertices of m and ρ takes the role of the marked
vertex. The arcs between white vertices take the role of the edges of m. The root edge
of m is defined as the arc from c◦0 to σ(c◦0) and its direction is determined by the value
of ε. If ε = 1 (ε = −1) it is directed towards (away from) c◦0.

The faces in m correspond to the black vertices in θ, the degree of a face being twice
the degree of the corresponding black vertex. Furthermore, the labels of the vertices
in m inherited from the labels in θ carry information on distances to the marked point
ρ. Namely, if dgr is the graph distance on m and v 6= ρ is a vertex in m then

dgr(v, ρ) = `(v)−min{`(u) : u ∈ V (m)}+ 1.
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The above construction defines a mapping Φ : Θ
(0)
f × {−1, 1} → M∗f which is a

bijection. For the inverse construction of Φ, see [8]. The mapping Φ can be extended to
infinite elements in Θ(0) by a similar description, as follows. If θ = (T, `) is an infinite
mobile we embed T in the plane such that its vertices are isolated points, as described
in Section 2.1. Recall that if T has a spine then infi≥0 `(S

◦
i ) = −∞ and if it has a vertex of

infinite degree then infi≥0 `(si) = −∞. Therefore, every white vertex in the mobile still
has a unique successor which is also a white vertex in the mobile. (The other condition,
infi<0 `(si) = −∞, ensures that the resulting embedded graph is locally finite.) The
construction of the arcs and the root edge is the same as before and due to the fact
that every successor is contained in the mobile, no external vertex ρ is needed. The
resulting embedded graph, which we call Φ(θ, ε), is thus rooted but not pointed.

In the following proposition we give Θ(0) the topology of (2.5), and {−1, 1} the dis-
crete topology. The set Θ(0) × {−1, 1} is given the product topology.

Proposition 2.1.

1. If θ ∈ Θ
(0)
∞ then Φ(θ, ε) ∈M∗∞. Thus Φ extends to a function Θ(0) × {−1, 1} →M∗.

2. If θ ∈ Θ
(0)
∞ then Φ(θ, ε) is non-pointed and one-ended. It has a unique face of

infinite degree if and only if θ has a vertex of infinite degree.

3. The function Φ : Θ(0) × {−1, 1} →M∗ is continuous.

Proof. Let θ = (T, `) be a mobile in Θ
(0)
∞ . In the case when T has a unique infinite spine

the proof is nearly identical to that of [10, Proposition 2], which deals with quadran-
gulations and labelled trees. The difference in the case when T has a unique vertex of
infinite degree is first of all that the left and right contour sequences are independent.
Here we need to use the condition that infi≥0 `(si) = infi<0 `(si) = −∞ cf. Section 2.2.
Using this the proof of (1) and (3) proceeds in the same way as in [10]. Secondly, when
T has a unique vertex of infinite degree it is not one–ended in the usual sense. How-
ever, for each R ≥ 0 the complement of the truncated tree T [R] has exactly one infinite
connected component and this property along with how the edges in the corresponding
map are constructed from θ, guarantees that Φ(θ, ε) is one-ended. We leave the details
to the reader.

2.4 Random mobiles

In this subsection we define a sequence (µ̃n)n≥1 of probability measures on Θ(0) ×
{−1, 1} which corresponds, via Φ, to the sequence (µn)n≥1 onM∗. We start by defining
a sequence of probability measures (ν̃n)n≥1 on the set of trees Γ� which we then relate
to (µ̃n)n≥1.

Let (wi)i≥0 be as in (1.2) and assign to each finite tree T ∈ Γf a weight

W̃ (T ) =
∏

v∈V •(T )

wdeg(v)

and define

ν̃n(T ) =
W̃ (T )∑

T∈Γn
W̃ (T )

, if T ∈ Γn (0 otherwise). (2.8)

Recall that λ(T ), defined in (2.4), denotes the number of ways one can assign labels to
the white vertices of a finite tree T . For each ((T, `), ε) ∈ Θ(0) × {−1, 1} and each n ≥ 1,
define

µ̃n((T, `), ε) = ν̃n(T )/(2λ(T )). (2.9)

The following result is then well-known [30].
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Lemma 2.2. For each n ≥ 1, the measure µn is the image of µ̃n by the mapping Φ.

Note from (2.9) that a random element ((T, `), ε) ∈ Θ(0) × {−1, 1} distributed by the
measure µ̃n can be constructed by:

1. Selecting a tree T according to the measure ν̃n.

2. Given the tree T , labeling its root by 0 and

(a) assigning a labeling ` to the white vertices of T uniformly from the set of
allowed labelings; or equivalently

(b) for every r ≥ 1 assigning independent uniform elements from Er to each
black vertex of degree r and defining ` recursively as described in and above
(2.3).

3. Selecting independently an element ε uniformly from {−1, 1}.

Note that the only ‘part’ of the measure (µ̃n)n≥1 which depends on the parameters
(wi)i≥0 of the model is the ‘tree part’ (ν̃n)n≥1. We will therefore first focus our attention
on the latter.

Also note, for future reference, that step (2b) above has the following alternative
description. Let X1, X2, . . . be independent, all with the same distribution given by

P(Xj = k) = 2−k−2, k = −1, 0, 1, 2, . . . . (2.10)

A uniformly chosen element ofEr has the same distribution as the sequence (X1, X2, . . . , Xr)

conditioned on
∑r
j=1Xj = 0.

3 The local limit

This section is devoted to the proof of Theorem 1.1. We start by describing the
weak limit of the unlabelled mobiles, that is the sequence (ν̃n)n≥1, see Theorem 3.1.
We then describe in Section 3.2 how to ‘put the labels back on’, and this gives us a
proof of Theorem 1.1. The proof of Theorem 3.1 in turn relies on the theory of simply
generated trees, which is described in Section 3.3. The proof of Theorem 3.1 is given
in Section 3.5.

3.1 Weak convergence of unlabelled mobiles

In this subsection we state a convergence theorem for the measures ν̃n which we
prove in Section 3.5. Recall that vertices in odd generations are coloured black and
even generations white. Recall also the definition of (πi)i≥0 and ξ from (1.4).

Let ξ◦ and ξ• be random variables in {0, 1, 2 . . .} with distributions given by

P(ξ◦ = i) = π0(1− π0)i, i ≥ 0

and (when π0 < 1)

P(ξ• = i) = πi+1/(1− π0), i ≥ 0.

(These appear in [30, Proposition 7], where the law of ξ◦ is denoted µ0 and the law of
ξ• is denoted µ1.) Also, let ξ̂◦ and ξ̂• be random variables in {1, 2, . . .} ∪ {∞} having
distributions given by

P(ξ̂◦ = i) = π2
0i(1− π0)i−1, i ≥ 1

and

P(ξ̂• = i) =

{
iπi+1/π0 if 1 ≤ i <∞

(1− κ)/π0 if i =∞.
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Thus ξ̂◦ is the sized-biased version of ξ◦, and similarly for ξ̂• in the case κ = 1. We now
define a probability measure ν̃ on infinite trees, by describing a random tree T̃ with law
ν̃. We let T̃ be a modified multi-type Galton–Watson tree having four types of vertices:
normal black and white vertices and special black and white vertices. The root is white
and is declared to be a special white vertex. Vertices have offspring independently ac-
cording to the following description. Special white vertices give birth to black vertices,
their number having the law of ξ̂◦; one of the black children is chosen uniformly at ran-
dom to be special and the rest are declared normal. Special black vertices give birth
to white vertices, their number having the law of ξ̂•. If the number of white children
is finite, one of them is chosen uniformly to be declared special and the rest normal. If
the number of white children is infinite, all of them are declared to be normal. Normal
white vertices give birth to normal black vertices, their number having the law of ξ◦,
and normal black vertices give birth to normal white vertices, their number having the
law of ξ•.

We will now describe how a typical tree T̃ looks like depending on the parameters
(wi)i. Define

κ̃ = (κ+ π0 − 1)/π0

and note that κ̃ ≤ 1, and that κ̃ < 1 if and only if κ < 1. First of all, the special vertices
define a spine which is infinite if and only if κ̃ = 1. If κ̃ < 1 the spine ends with a black
vertex of infinite degree, which has only normal white children. In that case its length
L̃ (number of edges) has a geometric distribution:

P(L̃ = 2n+ 1) = (1− κ̃)κ̃n, n ≥ 0. (3.1)

The normal children of the vertices on the spine are root vertices of independent two-
type Galton–Walton processes where white (resp. black) vertices have offspring dis-
tributed as ξ◦ (resp. ξ•). We will call these Galton–Watson processes outgrowths from
the spine. If π0 < 1 the mean number of offspring in two consecutive generations in an
outgrowth is given by

E(ξ◦)E(ξ•) =
1− π0

π0

κ− 1 + π0

1− π0
= κ̃.

Thus the outgrowths are critical if κ̃ = 1 and sub-critical otherwise. In both cases they
are almost surely finite and therefore the tree T̃ is at most one ended.

To summarize, we have the two following qualitatively different cases. In the case
κ̃ = 1 the tree T̃ has an infinite spine consisting of special white and black vertices. The
outgrowths from the spine are independent critical two-type Galton–Watson processes
as described above. In the case κ̃ < 1 the tree T̃ has a finite spine with geometrically
distributed length (3.1). The spine consists of special black and white vertices and has
outgrowths, which are independent, sub-critical two-type Galton–Watson processes. In
the extreme case κ̃ = 0 we have π0 = 1 and thus κ = 0. In this case T̃ is determinis-
tic and consists of a white root having a single black vertex of infinite degree and all
outgrowths empty.

We have the following.

Theorem 3.1. The sequence of measures (ν̃n)n≥1 on Γ� converges weakly to ν̃ (the
law of T̃ ) as n→∞ in the topology generated by dΓ.

The proof uses the theory of simply generated trees and is therefore deferred until
Section 3.5.

3.2 Weak convergence of labelled mobiles

We will now use Theorem 3.1 to construct an infinite random mobile ϑ in Θ(0) and
show that it appears as the limit of the sequence (θn)n≥1 distributed by (µ̃n)n≥1. Recall
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that µ̃n is obtained from ν̃n by ‘putting on the labels’ and also sampling the direction ε

of the root edge.
To construct ϑ start with the random tree T̃ with law ν̃. Given T̃ , assign inde-

pendently to each of its black vertices v of finite degree r an element B(v) selected
uniformly from Er. If T̃ has a black vertex s of infinite degree, assign to that vertex a
sequence of independent random variables (Xi)i∈Z which are independent of the B(v)

and with the law (2.10). Define the labels `(v) by first labelling the root `(∅) = 0, and
then letting the B(v) determine the increments around v as described above (2.3), and
in addition letting the increments around s be given by the sequence (Xi)i∈Z.

Let ε ∈ {−1,+1} be uniformly chosen and independent of the random variables in
the paragraph above. Finally, let ϑ = (T̃ , `) be the corresponding infinite mobile.

Lemma 3.2. Writing µ̃ for the law of the pair (ϑ, ε) we have that µ̃n ⇒ µ̃.

Proof. Let θn = ((Tn, `n), εn) have law µ̃n. Since Tn ⇒ T̃ it suffices to show that `n ⇒ `

where ` is the labeling of ϑ above. In both θn and ϑ, the label increments around
different black vertices are independent. The increments around a black vertex of finite
degree are in both cases uniformly chosen from the set Er in (2.2), and we are thus
done if we show that the increments around a vertex of degree ω(n) → ∞ converge
to the corresponding sequence (Xi)i∈Z. This follows from the following claim, which is
easily verified by explicit ‘balls-in-boxes’ enumeration and Stirling’s approximation.

Claim: Let X1, X2, . . . be independent and with law given in (2.10). Then for each
fixed R ≥ 1 and all a1, . . . , aR ∈ {−1, 0, 1, . . . } we have that

lim
n→∞

P
(
X1 = a1, . . . , XR = aR

∣∣∣ n∑
j=1

Xj = 0
)

= P (X1 = a1, . . . , XR = aR).

Now we can prove the weak convergence of the probability measures µn on planar
maps:

Proof of Theorem 1.1. By Lemma 2.2 we have that µn = Φ(µ̃n), and by Proposition 2.1
that Φ is continuous. The weak convergence of µn towards µ follows from Lemma 3.2.
The limit is one–ended by Proposition 2.1 and the presence of a face of infinite degree
when κ < 1 follows from the existence of a black vertex of infinite degree in T̃ . When
κ = 0 the tree T̃ is deterministic and consists of a single black vertex of infinite degree
with white neighbours of degree 1, and can be seen as the local limit as r → ∞ of
a single black vertex of degree r with white neighbours of degree 1. The labels are
determined by a uniformly chosen element of Er, and it follows that the corresponding
map is a uniformly chosen plane tree with r + 1 vertices.

3.3 Simply generated trees

In this section we describe the model of simply generated trees and state a general
convergence theorem by Janson [16]. In the following section we then describe a bijec-
tion Ψ : Γf → Γf which relates the probability measures (ν̃n)n≥1 (defined in (2.8)) to the
simply generated trees. We then extend Ψ to a mapping Ψ : Γ→ Γ� and show that it is
continuous. This will allow us to use the convergence results for the simply generated
trees to prove Theorem 3.1.

Simply generated trees are random trees defined by a sequence of probability mea-
sure (νn)n≥1 on Γ as follows. Let (wi)i≥0 be a sequence of non-negative numbers and
assign to each finite tree T a weight

W (T ) =
∏

v∈V (T )

wdeg(v)−1
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and define

νn(T ) =
W (T )∑

T ′∈Γn
W (T ′)

, if T ∈ Γn (otherwise 0). (3.2)

We assume that the weight sequence (wi)i≥0 is defined as in and above (1.2). Janson
obtained a general convergence theorem for simply generated trees in the local topol-
ogy which applies for every choice of weight sequence [16]. Before stating the theorem
we need a few definitions.

Let πi be defined as in (1.4) and as before let ξ be a random variable distributed by
(πi)i≥0 with mean κ ∈ [0, 1]. In the extreme case κ = 0 one has simply πi = δi,0. Define
a random variable ξ̂ on {0, 1, . . .} ∪ {∞} by

P(ξ̂ = k) =

{
kπk if k <∞
1− κ if k =∞. (3.3)

We will now construct a modified Galton–Watson tree T which arises as the local limit
of the simply generated trees. We will denote the law of T by ν. The tree was originally
defined by Kesten [20] (for κ = 1) and Jonsson and Stefánsson [18] (for κ < 1) but here
we follow Janson’s construction [16].

In T there will be two types of vertices, called normal vertices and special ver-
tices. The root is declared to be special. Normal vertices have offspring independently
according to the distribution ξ whereas special vertices have offspring independently
according to the distribution ξ̂. All children of normal vertices are normal and if a spe-
cial vertex has infinite number of children they are all normal. (In our case we assume
that the infinite number of children is ordered from left to right as explained in the
beginning of Section 2 whereas conventionally they are ordered as N. This small differ-
ence will clearly not affect the main result). Otherwise, all children of a special vertex
are normal except for one which is chosen uniformly to be special.

The tree T has different characteristics depending on whether ξ is critical (κ = 1)
or sub–critical (κ < 1). In the critical case T has a unique infinite spine composed of
the special nodes and the outgrowths from the normal children of the vertices on the
spine are independent critical Galton–Watson trees distributed by ξ. In the sub–critical
case the linear graph composed of the special nodes is almost surely finite ending with
a special node having infinite number of normal children. It is thus a finite spine and it
has a length L distributed by P(L = i) = (1 − κ)κi for i ≥ 0. The outgrowths from the
normal children of the vertices on the spine are then sub–critical Galton–Watson trees
distributed by ξ. In the extreme case κ = 0, T has a spine of length 0 and the root has
an infinite number of normal children which have no children themselves. In this case
the tree is therefore deterministic.

Since the UIPTree appears repeatedly in this paper it is useful to note that T ∼
UIPTree when wi = 1 for all i in which case κ = 1. In this case πi = 2−i−1.

Theorem 3.3 (Janson [16]). For any sequence (wi)i≥0 such that w0 > 0 and wk > 0 for
some k ≥ 2 the sequence of measures (νn)n≥1 on Γ converges weakly towards ν (the
distribution of T ) with respect to the topology generated by dΓ.

The case when κ = 1 was first proved implicitly by Kennedy [19] and later by Aldous
and Pitman [1]. The special case when 0 < κ < 1 and wi ∼ ci−β , c > 0, β > 2 was
originally proved by Jonsson and Stefánsson [18]. Janson, Jonsson and Stefánsson also
proved a special case when κ = 0 [15].

3.4 The bijection Ψ

The mapping Ψ : Γf → Γf which we describe now will map the model of simply
generated trees onto the unlabelled mobiles. In order to describe it we will temporarily
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violate our colouring convention of Section 2. Instead of coulouring even generations
white and odd generations black, we will now colour vertices of degree one (that is,
leaves) white and all other vertices black. The mapping Ψ will then precisely map the
white vertices to even generations and black vertices to odd generations.

Start with a finite tree T ∈ Γn having n ≥ 1 edges and colour the vertices as de-
scribed above. Let v be a white vertex (leaf) and note that v appears exactly once in the
contour sequence (ci)i∈Z (up to periodicity). Thus v = cj(v) for some j(v). Define

η(v) = max{k : cj(v) � cj(v)+1 � · · · � cj(v)+k−1 � cj(v)+k}

and define the sequence (bi(v))1≤i≤η(v) by bi(v) = cj(v)+η(v)−i+1. In words, η(v) is given
by following the contour sequence (clockwise) from v for as long as this coincides with
the ancestry line of v. Then b1(v) is the earliest ancestor of v on this part of the contour
sequence and (bi)1≤i≤η(v) traces the ancestry line from b1(v) to the parent bη(v)(v) of
v. By definition all the vertices in (bi(v))1≤i≤η(v) are black and it is straightforward to
check that ⋃

v : deg(v)=1

{v, b1(v), b2(v), . . . , bη(v)(v)} = V (T ).

Now, construct a new tree T ′ from T by drawing an arc from each white vertex v to the
corresponding black vertices in (bi(v))1≤i≤η(v). Then throw away the edges from T and
let the arcs just drawn become the edges of T ′. The root of T ′ is defined as the first
white vertex in the right contour sequence. The left to right ordering of the children of
a white vertex in T ′ is inherited from the ordering of (bi(v))1≤i≤η(v). See Fig. 3 for an
example.

We let the vertices of T ′ inherit the colours of the corresponding vertices in T and
note that T ′ then has a white root and that every even generation is white and every
odd generation is black, as claimed previously. The black vertices in T ′ have degree
equal to their original outdegree, i.e. their degree is reduced by one. (This is true also
for the black root if one attaches a half-edge to it, as represented in Fig. 3.) The degree
of the white vertex v′ in T ′ corresponding to the vertex v in T is

deg(v′) = η(v). (3.4)

This construction defines a bijection Ψ from Γf to itself. For the inverse construction
see [17].

Define Γ̃ to be the set of trees in Γ whose right contour sequence visits infinitely
many vertices of degree 1 (that is, leaves). We consider the latter condition to be
satisfied for a finite tree by periodicity of the contour sequence. It is straightforward
to see that the measures (νn)n≥1 and ν are all supported on Γ̃. The function Ψ can be
extended to a function Ψ : Γ̃ → Γ� by exactly the same construction as in the finite
case.

Proposition 3.4. The extended mapping Ψ : Γ̃→ Γ� is continuous.

Proof. Let T, T1, T2, . . . ∈ Γ̃ with Tn → T in the local topology, i.e. for each R ≥ 0 there
is an n0 such that

T [R]
n = T [R] (3.5)

for all n ≥ n0. If T is finite it follows immediately that Ψ(Tn) → Ψ(T ), hence we
assume that T is infinite. First look at the case when T has an infinite spine S =

(Sk)k≥0. Denote by (Ski)i≥0 the subsequence of vertices on the spine which have the
property that their rightmost child is not on the spine (the outgrowth to the right of
it is nonempty). Furthermore, for each Ski , let vi be the first white vertex following it
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Figure 3: An example of the bijection Ψ. The original tree (containing 9 vertices num-
bered 1-9) is drawn on the left hand side in solid lines. The tree obtained by Ψ is drawn
on top of it in in dashed lines and on the right hand side in solid lines. The roots (vertices
1 and 9 on the left and right respectively) are indicated by half-edges.

in the right contour sequence (it is necessarily in the nonempty outgrowth to the right
of Ski). The sequences (Ski)i≥0 and (vi)i≥0 are infinite due to the definition of Γ̃ and
v0, Sk0 , v1, Sk1 , . . . is the infinite spine in Ψ(T ).

To prove the continuity of Ψ we need to show that for any fixed R ≥ 0 the se-
quence Ψ(Tn)[R] is eventually constant. We choose an R′ large enough such that T [R′]

contains vdR/2e and the vertices S0, S1, . . . , SkdR/2e on the spine along with their (finite)

outgrowths. Then any vertex of T not in T [R′] maps outside Ψ(T )[R], and thus Ψ(T )[R] ⊆
Ψ(T [R′]). Similarly, if n is large enough that T [R′]

n = T [R′] then Ψ(Tn)[R] ⊆ Ψ(T
[R′]
n ). Thus

for such n we have

Ψ(Tn)[R] = Ψ(T [R′]
n )[R] = Ψ(T [R′])[R] = Ψ(T )[R].

When T has a vertex of infinite degree the proof goes along the same lines and is left to
the reader.

The next result is originally from [17] and the proof follows directly from the con-
struction of the bijection Ψ on the set of finite trees.

Lemma 3.5 ([17]). Let (wi)i≥0 be defined as in and above (1.2) and let (ν̃n)n≥1 be the
sequence of measures defined in (2.8). Let (νn)n≥1 be as in (3.2). Then for each n ≥ 1,
ν̃n is the image of νn by the mapping Ψ.

3.5 Proof of Theorem 3.1

Let (Tn)n≥1 be a sequence of trees distributed by (ν̃n)n≥1. By Theorem 3.3 and
Lemma 3.5 it holds that Tn → Ψ(T ) in distribution. The only thing left is to show
that Ψ(T ) = T̃ in distribution. In this proof we follow the colouring convention of the
previous subsection, that is vertices of degree one in T are white and the rest black.

Firstly, it is straightforward to see that Ψ(T ) has a (unique) infinite spine if and only
if T has an infinite spine, and that Ψ(T ) has a (unique) vertex of infinite degree if and
only if T has a vertex of infinite degree. Indeed, if T has a vertex of infinite degree then
(the image of) this vertex has infinite degree also in Ψ(T ). If T has an infinite spine
S0, S1, . . . then the infinite spine of Ψ(T ), call it S′, may be found as follows. The black
vertices in S′ are the black vertices in S whose rightmost children are not special and
their order in S′ is inherited from their order in S . A white vertex in S′ preceding a
given black vertex v′ in S′ is the first white vertex in the right contour sequence of T
which appears after the first occurrence of the black vertex in T corresponding to v′.

We start by checking that the black vertices have the correct outdegree distribution
in Ψ(T ), then that Ψ(T ) has the independence structure of a (modified) Galton–Watson
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tree, and finally that the white vertices have the right outdegree distribution. We will
divide the black vertices in T into three categories:

1. Normal black vertices.

2. Special black vertices which have a special child as the rightmost child.

3. Special black vertices which do not have a special child as the rightmost child.

The vertices belonging to (1) and (2) correspond exactly to the normal black vertices in
Ψ(T ), and the vertices in (3) correspond to the special black vertices. Indeed, a vertex
of type (1) has outdegree in T taking value i ≥ 1 with probability

P(ξ = i | ξ > 0) = πi/(1− π0)

and the probability that a vertex of type (2) has outdegree i ≥ 1 in T equals the condi-
tional probability that a special vertex in T has i children given that the rightmost child
is special, which is

P(ξ̂ = i)/i∑∞
j=1P(ξ̂ = j)/j

= πi/(1− π0). (3.6)

Since the mapping Ψ reduces the degree of black vertices by 1 we see that the outde-
gree of the black vertices in Ψ(T ) corresponding to (1) and (2) takes value i ≥ 0 with
probability πi+1/(1− π0), in agreement with the distribution of ξ•.

The probability that a vertex of type (3) has outdegree 1 ≤ i < ∞ in T equals the
conditional probability that a special vertex in T has i children given that the rightmost
child is not special, which is

P(ξ̂ = i)(1− 1/i)

1−
∑∞
j=1P(ξ̂ = j)/j

= (i− 1)πi/π0. (3.7)

Similarly, vertices of type (3) have infinite degree with probability P (ξ̂ = ∞)/π0 =

(1− κ)/π0. Again, by shifting by one we find that this agrees with the distribution of ξ̂•.
We now consider the white vertices. For a white vertex v in T we recall the defini-

tions of η(v) and (bi(v))1≤i≤η(v) from Section 3.4. We will suppress the argument v in
the following for easier notation. The white vertex in Ψ(T ) corresponding to v in T will
be denoted by v′. If v′ = ∅ then its offspring (in Ψ(T )) correspond exactly to the black
vertices b1, . . . , bη in T , whereas if v′ 6= ∅ then its offspring correspond to b2, . . . , bη,
with b1 corresponding to the parent of v′. Conditioning on the number of offspring of a
white vertex v′ ∈ Ψ(T ) thus corresponds to conditioning on the length of a ‘rightmost’
ancestry path in T . From this it is easy to see that the children of v′ have independent
numbers of offspring in Ψ(T ), and furthermore that the same holds for the white ver-
tices forming the following generation in Ψ(T ). This implies that Ψ(T ) has the correct
independence structure.

It remains to check that the white vertices have the correct offspring distribution.
Starting with the root ∅, its offspring in Ψ(T ), ordered from left to right, consist of:
firstly, some number i ≥ 0 of black vertices of type (2) above; next, one vertex of type
(3); and finally some number j ≥ 0 of vertices of type (1). The number of offspring of ∅
is then k = i+ j + 1, and this occurs with probability

(1− π0)iπ0(1− π0)jπ0 = π2
0(1− π0)k−1.

Here the first factors (1−π0)iπ0 are due to the occurrence, in the sequence (bi)1≤i≤η, of
i special vertices each of whose rightmost child is not special, followed by one special
vertex whose rightmost child is special. The remaining factors (1−π0)jπ0 are due to the
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occurrence of j normal vertices with at least one offspring each, followed by one with
no offspring. Summing over the possible values of i gives the probability kπ2

0(1−π0)k−1

of ∅ having k offspring, in agreement with the distribution of ξ̂◦. Note that, given the
outdegree (number of offspring) of ∅, the black child of type (3) is uniformly distributed.

Having dealt with the root of Ψ(T ), the remaining white vertices v in T are divided
into two categories:

1. either η = 1, or η > 1 and b2 is normal;

2. η > 1 and b2 is special.

White vertices v in category (1) correspond exactly to the normal white vertices in
Ψ(T ). In this case, each black vertex in (bi)2≤i≤η is normal and has at least one child in
T , whereas v has no child in T . Thus, by (3.4) the outdegree of the white vertex v′ in
Ψ(T ) satisfies

P(out(v′) = i) = P(η − 1 = i) = (1− π0)iπ0, i ≥ 0,

agreeing with the distribution of ξ◦.
Case (2) is handled in the same way as the case v′ = ∅, showing that the outdegree

in Ψ(T ) is distributed as ξ̂◦. Thus we have shown that Ψ(T ) = T̃ in distribution.

4 Recurrence

In this section we prove Theorem 1.2. As mentioned previously, we will rely on a
general result established in [13], which we begin by describing. Suppose (Gn)n≥1 is
a sequence of finite graphs, and that in each graph Gn is singled out a root vertex on.
One may define a local limit of such a sequence of rooted graphs (Gn, on) in much the
same way as in Section 1.1: (Gn, on) converges locally to (G, o) if for each r, the graph
ball of (Gn, on) centered at on with radius r eventually equals the corresponding graph
ball of (G, o). Now suppose that each (Gn, on) is a random, planar graph, viewed up to
isomorphism of rooted graphs. We say that the root on has the stationary distribution
if, given Gn, the probability that on is some fixed vertex v of Gn is proportional to
the degree of v. Building on results by Benjamini and Schramm [6], who considered
the case when the maximum degree in Gn is uniformly bounded, Gurel-Gurevich and
Nachmias proved the following:

Theorem 4.1 ([13]). Let (Gn, on) be a sequence of finite, random planar graphs such
that on has the stationary distribution for each n, and such that (Gn, on) converge
weakly to (G, o) in the local topology. If the degree distribution of o in G has an ex-
ponential tail, then G is almost surely recurrent.

In applying this result to our situation, we take the root vertex on to be the origin e−
of the root edge e. There are two main steps to applying Theorem 4.1: firstly, proving
that e− has the stationary distribution under each µn; and secondly, proving that the
degree of e− has an exponential tail under µ.

The claim that e− has the stationary distribution is equivalent to the statement that
the directed edge e is chosen uniformly among all directed edges of m. By a simple
calculation, this follows from the fact that the probability assigned by µn to a rooted
map does not depend on the choice of root edge. To prove Theorem 1.2 it therefore
suffices to show that e− has an exponential tail under µ.

4.1 Bound on the degrees in M

Recall from Sections 3.1–3.2 the infinite mobile ϑ = ((T̃ , `), ε) which (via the BDG
bijection) defines the map M . The tree T̃ consists of a spine of special black and white
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vertices, with finite normal trees attached on the left and right sides. In this section we
will describe a slightly different way of constructing ϑ which will let us deduce bounds
on the degrees of the vertices in M .

Recall the random variables ξ• and ξ◦ of Section 3.1; they have the distribution of
the outdegree of normal black and white vertices in T̃ , respectively. We will assume in
this section that π0 < 1, or equivalently that κ > 0. When π0 = 1, M is the UIPTree and
its degree distribution (and the fact that it is recurrent) is well known. It is essential
for our argument that ξ◦ is geometrically distributed: P(ξ◦ = i) = π0(1 − π0)i for i ≥ 0.
Also recall that for each normal black vertex v of T̃ with outdegree r ≥ 1, the clockwise
label increments around v form a discrete bridge (X

(r)
1 , . . . , X

(r)
r+1) with law described

just below (2.10). We shall be particularly interested in the event that X(r)
r+1 ≥ 1; that is

to say, the last increment in the clockwise order is 1 or more, or equivalently the first
increment in the anticlockwise order is −1 or less. For reasons that will become clear
soon, we define

p := (1− π0)

∞∑
r=1

P(ξ• = r)P(X
(r)
r+1 ≥ 1).

The sum equals the probability that a normal black vertex has outdegree at least 1 and
that the last clockwise increment is at least 1. Let ζ, ζ1, ζ2, . . . be independent random
variables, having the geometric distribution P(ζ = k) = p(1− p)k−1 for k ≥ 1. Also let

p′ := (1− π0)

∞∑
r=1

P(ξ• = r)P(X
(r)
1 = −1),

and let ζ ′ be independent of the ζ:s with geometric distribution P(ζ ′ = k) = p′(1−p′)k−1

for k ≥ 1. Since π0 < 1 and since we always assume that qi > 0 for some i ≥ 2 we have
that p > 0 and p′ > 0.

Finally recall the concept of stochastic domination: a random variable X is stochas-
tically dominated by a random variable Y if there is a coupling P of X and Y such that
P(X ≤ Y ) = 1. Let ξ◦1 , ξ

◦
2 be independent copies of ξ◦, independent also of the ζi and ζ ′.

This section is devoted to the following result:

Theorem 4.2. If κ > 0 the the degree of the root e− in M is stochastically dominated
by the sum

ζ ′ +

2+ξ◦1+ξ◦2∑
j=1

(1 + ζj). (4.1)

Theorem 4.2 immediately gives that the degree of the root inM has exponential tails,
and as explained above, Theorem 1.2 therefore follows once we prove Theorem 4.2.

Proof. Recall that the root e− of M is either the same vertex as the root ∅ of ϑ (if
ε = −1) or it is the successor of ∅ (if ε = +1). We will show that in the first case the
degree is bounded by the smaller number

2+ξ◦1+ξ◦2∑
j=1

(1 + ζj), (4.2)

and in the second case by (4.1).
We begin with the case ε = −1 when e− = ∅. Our argument (and bound on the

degree) in this case actually applies slightly more generally, to any vertex in M which
corresponds to a vertex ‘in a fixed position in ϑ’. We will describe what we mean by
this below. The argument relies on a construction of ϑ which proceeds progressively
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through the counterclockwise contour sequence (see Section 2.2). We start by defining
a ‘template’ ϑ(0) of ϑ, by letting ϑ(0) denote the mobile obtained by sampling the spine
and all white vertices adjacent to the spine, as well as the labels of all these white
vertices (subject to ∅ having label 0, say). For convenience we slightly modify ϑ(0) by
placing a ‘half-edge’ at ∅, which allows us to distinguish between the ‘left’ and ‘right’
sides of ∅. We denote the white contour sequence of ϑ(0) by (c◦i (0))i∈Z. This is defined
as in Section 2.2, except that (due to the half-edge) ∅ is repeated one extra time.

Here is a summary of the main idea; details will follow. Let ε1, ε2, . . . be independent
Bernoulli variables taking value 1 with probability 1 − π0, and note that ξ◦ + 1 has the
law of the smallest k such that εk = 0. The procedure starts at some white vertex w, and
each time a white vertex, say v, is visited the next value εi is examined to determine
whether v has ‘another’ black child. If so, the number of white children of this new black
vertex is sampled (along with their labels) and we proceed to the next white vertex in
the counterclockwise contour order. This procedure will create the part of ϑ which lies
after the initial vertex w in the counterclockwise contour sequence, and will therefore
let us examine the number of white vertices in ϑ which have w as their successor.

w

start

ε1 = 1
ξ•1 = 2

ε2 = 0

ε3 = 1ξ•3 = 0

ε4 = 1

ξ•4 = 0
ε5 = 0

ε6 = 0
next

Figure 4: The first 6 steps of the construction starting at a vertex w on the spine. Labels
on white vertices are not shown.

Here is a more detailed description, see also Fig. 4 for an illustration. Let ξ•1 , ξ
•
2 , . . .

be independent, distributed as ξ•. We take all the ζ ′, ζi, εi and ξ•i to be independent of
each other. We now describe the construction starting at a white vertex w of ϑ(0). We
start our construction at the last visit of the (clockwise) contour sequence to w; that is,
the largest i ∈ Z such that c◦i (0) = w. By shifting the indices, we may (and will) assume
that this smallest index is i = 0. We now examine ε1. If ε1 = 1 we do the following. First
attach a black vertex to c◦0(0). Then examine the value of ξ•1 ; if ξ•1 = r ≥ 1 we attach
to this black vertex r further white vertices. Finally sample the labels of the new white
vertices by sampling an independent copy of the discrete bridge (X

(r)
1 , . . . , X

(r)
r+1). We

denote the mobile thus obtained by ϑ(1). If, on the other hand, ε1 = 0 then we just let
ϑ(1) = ϑ(0). We let (c◦i (1))i∈Z denote the white contour sequence of ϑ(1), indexed so
that c◦i (1) = c◦i (0) for all i ≥ 0. Thus the new white vertices are placed immediately
counterclockwise (in the contour sequence) from our starting point c◦0(0).

We now proceed to the next white vertex c◦−1(1) in the counterclockwise contour
sequence of ϑ(1), and repeat the same procedure, with ε1 and ξ•1 replaced by ε2 and ξ•2 ,
respectively. Note that c◦−1(1) is

• the same vertex as w if ε1 = 1 and ξ•1 = 0, or

• one of the white vertices just added if ε1 = 1 and ξ•1 > 0, or
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• another vertex belonging to the template ϑ(0) if ε1 = 0.

We thus obtain a new mobile ϑ(2) and a new white contour sequence (c◦i (2))i∈Z, which
we index so that c◦i (2) = c◦i (1) for all i ≥ −1.

The procedure is then carried out inductively. In this way we obtain (in the limit) a
mobile whose counterclockwise contour sequence, started at w, agrees in distribution
with that of ϑ. We now explain how this construction, started at the white vertex w,
allows us to bound the degree of w in M . By the BDG bijection, the neighbours of w in
M are either successors of w, or have w as a successor. The successors of w are easy to
count in the procedure above: each new visit to w corresponds to exactly one successor.
For a normal white vertex w the number of visits to w has the law of 1 + ξ◦, while for a
special white vertex the number of visits is the sum of two independent copies of 1 + ξ◦.
(The first corresponding to the visits to w on the ‘left side’ of the spine, and the second
to the visits on the ‘right side’.) Thus, the successors of w account for the ‘1+’ in the
summand of (4.2).

It remains to count the number of times w appears as the successor of other white
vertices. If v has w as a successor we will call v a predecessor of w, and we count
the predecessors of w with multiplicity. By shifting the labels we may assume that w
has label 0, and hence the predecessors all have label 1. We group the predecessors
v of w by how many times we have visited w before we visit v. (This is well-defined as
we will never visit w between visits to v.) The numbers of predecessors in the various
groups are independent, and we claim that the number of predecessors in each group
is stochastically bounded by ζ. This will establish (4.2).

In order to establish the claim we define a certain ‘stopping event’ A. Suppose at
stage i ≥ 2 in the construction we visit a white vertex v with label 1. Thus v is a potential
predecessor of w. Let Ai be the event that (i) εi = 1, (ii) ξ•i = r ≥ 1, and (iii) X(r)

r+1 ≥ 1.
If this event occurs, then the next vertex visited in the construction is a recently added
vertex with label 0 or less. Thus, until we visit w again, any white vertex we visit which
has label 1 cannot have w as successor: there must be a vertex with label 0 occurring
before v in the (clockwise) contour sequence. The number of ‘attempts’ before an event
Ai occurs has the distribution of ζ (although in general we may get fewer predecessors
in a group since we may return to w before there is a successful ‘attempt’). This proves
that the bound (4.2) applies to any white vertex w in the ‘template’ ϑ(0), in particular
to ∅.

Before proceeding to the case ε = +1 we note that, although we have assumed that
w is a white vertex on or adjacent to the spine, it is clear that each time a white vertex
is visited for the first time in the construction above, the exact same procedure starts
afresh at that vertex. Thus we may speak of starting the construction at an arbitrary
white vertex w of ϑ. Such a vertex is what was referred to above as a vertex in a ‘fixed
position in ϑ’, and the bound (4.2) applies to the degree of any such vertex. We will
not describe formally what we mean by ‘fixed position’, but essentially the construction
above may be translated into a deterministic coordinate system in which each white
vertex w has a fixed coordinate. If ε = +1 the root has a random position in this
coordinate system and we require an additional argument to bound its degree, which
we now describe.

We now show that the degree of e− is bounded by (4.1) when ε = +1, that is when
e− is the successor of ∅. Our description for this case will be slightly less detailed.
Again we start with the template ϑ(0). Denote the half-edge attached to ∅ by h, and
note that the predecessors of e− fall into the following three categories depending on
their location in ϑ:

1. those between h and the first occurrence of e− in the clockwise contour sequence,
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2. those between h and the first occurrence of a vertex labelled −1 in the counter-
clockwise contour sequence, and

3. those which are descendants of e− in ϑ.

(The vertex labelled−1 in case (2) may be e− itself if it is a special vertex of ϑ.) To bound
the number of predecessors in category (2) we may apply a similar scheme as above,
constructing the part of ϑ counterclockwise from h until the stopping event A occurs.
That is, each time we encounter a white vertex v labelled 0 we add this to the list of
possible predecessors of e−, stopping if v has a black child u of outdegree r ≥ 1 and the
first child of u in the counterclockwise order has label −1 or less. Thus category (2) has
size dominated by ζ.

To bound category (1) we apply a similar scheme, but proceed in the clockwise
order starting at h. Each time we visit a white vertex v it has ‘another’ black child u

with probability 1 − π0, in which case we sample the outdegree r of u and then the
label increments (X

(r)
1 , . . . , X

(r)
r+1) around u. This time we stop if: v has label 0, r ≥ 1,

and X
(r)
1 = −1. Again, the number of white vertices labelled 0 that we encounter

before stopping is geometrically distributed, independent of our bound in case (2), but
this time with parameter p′. Note that we do not stop before encountering e− in the
clockwise contour sequence, hence the number in category (1) is dominated by ζ ′.

Having thus, in the course of case (1), located e−, we note that some of the predeces-
sors in category (3) may have already been counted in our bounds for cases (1) and (2).
However, we obtain an upper bound on category (3) if we assume this not to be the case.
We may apply a similar argument as when e− = ∅ to deduce that the number in cate-

gory (3) is dominated by
∑ξ◦1+ξ◦2+1
i=1 ζi. (Here the number of groups to be considered is

dominated by ξ◦1 + ξ◦2 + 1 since one group was already covered by cases (1)–(2).) Finally,
taking into account that e− has ξ◦1 + ξ◦2 + 2 successors, we arrive at the bound (4.1).

5 The spectral dimension when κ < 1

In this section we focus on the case when κ < 1, i.e. when M has a face of infinite
degree. Let ϑ = (T̃ , `) be the mobile with distribution µ̃, and M = Φ(ϑ, ε) the corre-
sponding map. (See Sections 3.1–3.2 for the definition of ϑ and Section 2.3 for Φ.) By
Theorem 1.1, the law of M is µ. Denote the graph metric of M by d. The black ver-
tex of infinite degree in ϑ will be denoted by s as before. We will use recent results
by Kumagai and Misumi [24] which allow us to calculate the spectral dimension of M
and thereby prove Theorem 1.3. Their methods involve establishing suitable bounds on
resistance and volume growth. Shortly we will give the necessary definitions and state
the results we need from [24], but here is a rough outline of the argument.

Intuitively, our arguments rely on showing that the resistance and volume growth
in M are governed by s, in the sense that if we truncate ϑ by removing everything
except s and its white nearest neighbours, then the volume and resistance growth are
largely unaffected. The map associated via the BDG bijection with the truncated mobile
is the UIPTree (cf. Theorem 1.1) so the spectral dimension of M should be that of the
UIPTree, which is 4/3. For our argument to work, apart from the main assumption
E(ξ) = κ < 1 we also need the technical assumption that there exists a β > 5/2 such
that E(ξβ) <∞. We will assume these properties to hold in the remainder of this section
unless otherwise stated.

We begin by discussing some results that allow us to make precise the idea that the
vertex of infinite degree ‘dominates’ the structure of the mobile ϑ.
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5.1 Decorations

Recall that the neighbours of s in ϑ are denoted (si)i∈Z, and ordered as in Sec-
tion 2.1. Thus s0 is the parent of s, and hence also the last vertex on the finite spine
of ϑ. For i 6= 0, the vertex si is the root of a subcritical (modified) Galton–Watson tree
consisting of the descendants of si; we call these trees decorations and denote them
by Di. Also s0 may be viewed as the root of a tree, consisting of all vertices which are
not descendants of s0. This tree consists of a spine of geometrically distributed length
with subcritical Galton–Watson trees attached to it, see Section 3.1. We denote this
tree by D0 and call it the bad decoration since it is considerably larger than the other
decorations. If v ∈ V ◦(Di) we will write v? = si and D(v?) = D(v) = D(si) = Di.

Denote the number of vertices in decoration i by |Di| = |V (Di)|. The first lemma
explains how the moment condition on ξ provides corresponding moment conditions on
|Di|. A proof is given in the Appendix.

Lemma 5.1. If E(ξr) <∞ for some r ≥ 1 then E(|Di|r) <∞ for i 6= 0 and E(|D0|r−1) <

∞.

The next lemma is from [17, Lemma 2.1] and relates the maximum displacement of
labels in a decoration to the number of vertices it contains.

Lemma 5.2. Write
∆`(Di) = max

y∈V ◦(Di)
|`(si)− `(y)|.

For any r > 0 there is a constant C(r) such that

E(∆`(Di)r | Di) ≤ C(r)|Di|r/2.

For easier notation we will sometimes write ∆`i = ∆`(Di).

5.2 Resistance and volume

As mentioned above we will prove Theorem 1.3 by proving bounds on volume and
resistance growth in M and then appealing to the results of [24]. We first recall the
basic definitions of electrical networks, see e.g. [29] for more details.

Let G = (V,E) be a locally finite graph, with vertex set V and edge set E. Eventually
we will consider G = M . A resistance is a function r : E → [0,∞], and the resistance
of an edge e will be written as re = r(e). The associated conductance function c : E →
[0,∞] is given by ce = c(e) = 1/re. (The case when some of the ce are infinite can be
reduced to the case when all the ce are finite by identifying adjacent vertices x, y such
that cxy = ∞.) For the conductance c fixed, and any function f : V → R, we define the
Dirichlet energy

E(f) :=
∑
xy∈E

cxy(f(x)− f(y))2

(where ∞ · 0 = 0). For two disjoint sets A,B ⊆ V we define the effective resistance
Reff

(G,c)(A,B) by

Reff
(G,c)(A,B)−1 := inf{E(f) : f(a) = 1 ∀a ∈ A, f(b) = 0 ∀b ∈ B}. (5.1)

In the case when all ce = 1 we also write Reff
G for the effective resistance. We write

Reff
G ({x}, {y}) = Reff

G (x, y) etc.
Let ϑ? be the truncated mobile obtained from ϑ by throwing away all vertices except

s and (si)i∈Z, keeping the labels of these vertices. Let M? = Φ(ϑ?, ε) and note that M?

is the UIPTree. The directed root edge in M? obtained by the BDG construction will be
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denoted by (r, r1) and we will use the convention that r is the root of M? and that r1 is
the leftmost child of r. The infinite spine in M? will be denoted by S? and the vertex in
S? at a distance i from r will be denoted by S?i . Denote the graph metric on M? by d?.
Note that in the case κ = 0 we have M = M? almost surely.

The results of [24] are formulated in terms of an arbitrary metric on the vertex set
of the graph under consideration (not necessarily the graph metric). Recall that we
identify V (M) with V ◦(T̃ ). We will be using the metric d# on V ◦(T̃ ) defined by

d#(u, v) = d?(u?, v?) + (1− δu,u?) + (1− δv,v?), (5.2)

where δa,b is the Kronecker delta. Denote by M# the graph whose vertex set is V ◦(T̃ )

and with edges between vertices at d#-distance one. It is clear that M# is a tree and
that it contains M? as a subtree. However, M? is not in general a subgraph of M .
In the following, we will take r to be the reference vertex in M , M? and M# when
referring to graph balls and resistance (r corresponds to the vertex 0 defined in [24,
above Eq. (1.3)]).

For v ∈ V ◦(T̃ ), let ω(v) be the number of edges adjacent to v in M and extend ω to
a measure on V ◦(T̃ ). Define

B(R; d#) = {v ∈ V ◦(T̃ ) : d#(r, v) < R},

and write ω(R) for ω(B(R; d#)).
We will be using the following result from [24]. For each λ > 1 define the random

set

J(λ) = {R ∈ [0,∞] : λ−1R2 ≤ ω(R) ≤ λR2,

Reff
M (r, B(R; d#)c)) ≥ λ−1R,

∃y ∈ B(R; d#) : Reff
M (r, y) ≤ λd#(r, y)}.

By [24, Theorem 1.5], if there are λ0 > 1 and c, q > 0 such that

P(J(λ) 3 R) ≥ 1− cλ−q, for all R ≥ 1, λ ≥ λ0, (5.3)

then ds(M) = 4/3 almost surely.
Here is an outline of the rest of this section. To prove (5.3) we will treat each of

the four inequalities defining J(λ) separately, in a sequence of lemmas. Bounds on the
volume ω(R) will be treated in Section 5.3 (Lemmas 5.5 and 5.6). In Section 5.4 we
establish an upper bound on the probability that ∃y ∈ B(R; d#) : Reff

M (r, y) > λd#(r, y)

(Lemma 5.8). Finally, in Section 5.5 we deal with the hardest part of the argument,
which is to establish an upper bound on the probability that Reff

M (r, B(R; d#)c)) < λ−1R

(Lemma 5.9). For this result we will use a technique of ‘projecting long bonds’, inspired
by methods previously applied to long-range percolation models in [24, Proposition 2.1]
and [5, Lemma 3.8].

5.3 Bounds on the volume

We begin with the upper bound on the volume. We will need two preliminary lem-
mas. First we state the following result on the labels in ϑ? which will also be used in
the bounds on resistance growth. A proof is given in the Appendix.

Lemma 5.3. Assume `(s0) = 0 and define

i+(R) = inf{i ≥ 0 : `(si) = −R} and (5.4)

i−(R) = inf{i ≥ 0 : `(s−i) ≤ −R}. (5.5)
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There is a constant C > 0 such that for all R, λ ≥ 1 we have

P (i±(R) > λR2) ≤ C log(λ)λ−1/2.

The second lemma bounds the minimum label in B(R; d#).

Lemma 5.4. Define

m(R) = min

{
`(v) : v ∈

⋃
−i−(R−1)<i≤i+(R)

V ◦(Di)

}
.

Let r > 1 and define α = min{2r − 2, 2r/3}. If E(ξr) < ∞ then there is a constant c > 0

and a λ0 > 1 such that
P(|m(R)| > λR) < c log(λ)λ−α

for every R ≥ 1 and λ > λ0.

Proof. Define N(x) = i+(x) + i−(x − 1) − 1. We have for any i satisfying −i−(R − 1) <

i ≤ i+(R) that
min{`(v) : v ∈ V ◦(Di)} ≥ `(si)−∆`i ≥ −R−∆`i

and therefore
|m(R)| ≤ R+ max{∆`i : − i−(R− 1) < i ≤ i+(R)}.

Thus, for any γ > 0

P(|m(R)| > λR) ≤ P
(
max{∆`2ri : 0 ≤ i ≤ N(R)} > ((λ− 1)R)2r

)
≤ P

(
γR2∑
i=0

∆`2ri > ((λ− 1)R)2r

)
+ P(N(R) > γR2).

(5.6)

In the first term in the last expression, we treat separately the contribution of the bad
decoration and the sum of the others. For any 0 < δ < 1 the first term may be bounded
by

P

(
γR2∑
i=1

∆`2ri > (1− δ)((λ− 1)R)2r

)
+ P(∆`2r−2

0 > δ
r−1
r ((λ− 1)R)2r−2)

≤ γE(∆`2r1 )

(1− δ)(λ− 1)2r
+

E(∆`2r−2
0 )

δ
r−1
r (λ− 1)2r−2

(5.7)

where we used Markov’s inequality on both terms along with R2−2r ≤ 1. By Lemmas
5.1 and 5.2, both expected values in the last expression are finite since E(ξr) < ∞.
Applying Lemma 5.3 to the second term on the right hand side of (5.6) we finally obtain

P(|m(R)| > λR) ≤ c1γλ−2r + c2λ
−2r+2 + c3 log(γ)γ−1/2, (5.8)

where c1, c2, c3 > 0 are constants. The choice γ = λ4r/3 optimizes the inequality.

Finally, we arrive at the upper bound on the volume.

Lemma 5.5. Let r > 1 and define α′ = min
{ r(r−1)

2r2−1 ,
r

2(r+2)

}
. If E(ξr) < ∞ then there is

a constant c′ > 0 and a λ0 > 1 such that

P(ω(R) > λR2) ≤ c′ log(λ)λ−α
′

for every R ≥ 1 and λ ≥ λ0.
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Proof. We argue on the event when ε = −1 in which case `(r) = 0. The other case is
treated in a similar way, the difference being that `(r) = −1 and therefore one has to
shift labels accordingly in the arguments. Define

H(R) =
⋃

−i−(|m(R−1)|)<j≤i+(|m(R−1)|+1)

V ◦(Dj).

We claim that a vertex in the set B(R; d#) is not connected by an edge in M to any
vertex outside the set H(R). To see this, first observe that

min{`(v) : v ∈ B(R; d#)} ≥ m(R− 1).

The successor of a vertex in B(R; d#) as defined in (2.6) can therefore not be in the part
of the white contour sequence strictly beyond the vertex si+(|m(R−1)|+1) (the connection
has to ‘go through’ this vertex). Similarly, no vertex before s−i−(|m(R−1)|) in the white
contour sequence can have a successor in B(R; d#) which completes the proof of the
claim.

This implies that |H(R)| ≥ ω(R) and thus

P(ω(R) > λR2) ≤ P(|H(R)| > λR2).

As before, let N(x) = i+(x) + i−(x− 1)− 1. Then for any γ > 0

P(|H(R)| > λR2) ≤ P(N(|m(R− 1)|) > γR2) + P
( γR2∑
i=0

|Di| > λR2
)
. (5.9)

Since i+ and i− are increasing functions, then for any η > 0 the first term may be
estimated from the above by

P(N(|m(R− 1)|) > γR2) ≤ P(N(ηR) > γR2) + P(|m(R− 1)| > ηR)

≤ c1 log(γ/η2)ηγ−1/2 + c2 log(η)η−α (5.10)

where c1, c2 > 0 are constants and α = min{2r−2, 2r/3}. In the last step, the estimate of
the first term was obtained using Lemma 5.3 and the second estimate came from using
Lemma 5.4. The second term on the right hand side of (5.9) is estimated by separating
the bad decoration from the rest as in the proof of Lemma 5.4 and we obtain for any
0 < δ < 1

P
( γR2∑
i=0

|Di| > λR2
)
≤ P

( γR2∑
i=1

|Di| > (1− δ)λR2
)

+ P(|D0| > δλR2)

≤
E
(∑γR2

i=1 |Di|
)r

(1− δ)rλrR2r
+

E(|D0|r−1)

δr−1λr−1R2(r−1)

≤ γrE(|D1|r)
(1− δ)rλr

+
E(|D0|r−1)

δr−1λr−1

where we used Markov’s inequality and then Minkowski’s inequality. By Lemma 5.1
both expected values in the last expression are finite since E(ξr) <∞. Thus, we finally
have

P(|H(R)| > λR2) ≤ c1 log(γ/η2)ηγ−1/2 + c2 log(η)η−α + c3γ
rλ−r + c4λ

−r+1 (5.11)

where c3, c4 > 0 are constants. Choosing η as a positive power of γ and γ as a positive
power of λ allows one to deduce that the exponent α′ gives the optimal bound.
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The following result gives the lower bound on the volume.

Lemma 5.6. There exists a λ0 > 1 and a constant c > 0 such that

P(ω(R) < λ−1R2) ≤ e−cλ
1/2

for every R ≥ 1 and λ ≥ λ0.

Proof. The result follows from comparing B(R; d#) to the graph ball in M?

B(R; d?) := {v ∈ V (M?) : d?(r, v) < R}.

From the definition of ω and d# it follows that ω(R) ≥ |B(R; d#)| ≥ |B(R; d?)| and one
has the bound

P(|B(R; d?)| < λ−1R2) ≤ e−cλ
1/2

for the UIPTree M?, see e.g. [11, 12].

5.4 Upper bound on the resistance

For any vertex v in M define the successor geodesic from v to infinity as γ(v) =

(v, σ(v), σ(σ(v)), . . .) where σ is defined in (2.7). For vertices u, v in M? denote the
unique geodesic (i.e. shortest path in M?) between u and v by γ?(u, v) and denote the
successor geodesic of v in M? by γ?(v). Let 〈v, u〉 be the vertex in γ?(v) ∩ γ?(u) closest
to v (and u) in M?. If u = si and v = sj , i ≤ j, define the closed interval [u, v] =

{si, si+1, . . . , sj}. Furthermore, define si ∧ sj = si∧j . The next lemma demonstrates how
close the metric d is to the metric d? measured in terms of the size of the maximum
displacement of labels in the decorations. It resembles Lemma 5.2 in [17] with a very
similar proof which we give in the Appendix.

Lemma 5.7. For all v, w ∈ V (M)

d(v, w) ≤ d?(v?, w?) + 20 max{∆`(D(u)) : u ∈ [v? ∧ w?, 〈v?, w?〉]}+ 8.

We are now equipped to establish an upper bound on the resistance provided in the
following lemma.

Lemma 5.8. Let r > 1 and define α = min{2r − 2, 2r/3}. If E(ξr) < ∞ then there is a
constant c(r) > 0 and a λ0 > 1 such that

P
(
∃v ∈ B(R; d#) : Reff(r, v) > λd#(r, v)

)
< c(r) log(λ)λ−α

′
(5.12)

for every R ≥ 1 and λ ≥ λ0.

Proof. First observe that d(r, v) ≥ Reff(r, v) for all v ∈ V (M). We may rule out the case
that the vertex v in (5.12) is equal to r and we note that d#(r, v) ≥ max{d?(r, v?), 1} when
v 6= r. Using these facts together with Lemma 5.7 one can thus estimate the probability
in (5.12) from the above by

P

(
max

v∈B(R;d#)

20 max{∆`(D(u)) : u ∈ [r ∧ v?, 〈r, v?〉]}
max{d?(r, v?), 1}

> λ− 9

)
. (5.13)

Since B(R; d#) is finite, the outermost maximum is attained at some vertex, say v̄(R)

(which may clearly be chosen to be in M?). Then, for any γ > 0 we may estimate (5.13)
from the above by

P

(
202r max{∆`2ri : 0 ≤ i ≤ γmax{d?(r, v̄(R)), 1}2}

max{d?(r, v̄(R)), 1}2r
> (λ− 9)2r

)
+ P

(
|[r ∧ v̄(R), 〈r, v̄(R)〉]| − 1 > γmax{d?(r, v̄(R)), 1}2

)
. (5.14)
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The expression in the first line of (5.14) may be estimated from the above by first esti-
mating the maximum in the numerator by the sum of all the terms and then separating
the bad decoration (first term in the sum) from the rest exactly as was done in the esti-
mate of (5.6) in the proof of Lemma 5.4. Conditioning on d?(r, v̄(R)) and using Lemma
5.2 along with similar arguments as in Lemma 5.4 yields the following upper bound on
the first term

c1γλ
−2r + c2λ

−2r+2. (5.15)

where c1, c2 > 0 are constants.
We may use Lemma 5.3 to estimate the expression in the second line of (5.14). In

the case ε = −1, writing d?(r, 〈r, v̄(R)〉) = D, one has

|[r ∧ v̄(R), 〈r, v̄(R)〉]| ≤ i+(D) + i−(D)

and max{d?(r, v̄(R)), 1} ≥ D. This yields the upper bound,

P
(
i+(D) + i−(D)− 1 > γD2

)
≤ c3 log(γ)γ−1/2. (5.16)

where c3 > 0 is a constant. The case ε = 1 is treated in the same way taking into
account that labels are shifted. Combining the estimates (5.15) and (5.16) and choosing
γ = λ4r/3 gives an optimal upper bound on (5.14) and yields the exponent α.

5.5 Lower bound on the resistance

The only remaining bound needed for (5.3), and hence for proving Theorem 1.3, is
the lower bound on the resistance. This is given by the following lemma.

Lemma 5.9. Let β > 5/2 and assume E(ξβ) <∞. For 0 < q < min(1, 2β−5) there exists
a constant c(q) > 0 and a λ0 > 1 such that

P(Reff
M (r, B(R; d#)c) < λ−1R) ≤ c(q)λ−q

for every R ≥ 1 and λ ≥ λ0.

To prove this lemma we will compare resistances in M with resistances in the tree
M# with certain non-constant conductances. In this section we write e = uv ∈M if e is
an edge of M with endpoints u and v. Define |e|? = d?(u?, v?), and for xy an edge of M?

let Axy be the set of edges e = uv of M such that xy lies on the (unique) path from u? to
v? in M?. For an edge xy of M#, define

cxy =

{ ∑
e∈Axy

|e|?, if x, y ∈M?,

∞, otherwise.
(5.17)

We claim that for all A ⊆ V (M) = V (M#),

Reff
M (r, A) ≥ Reff

(M#,c)(r, A). (5.18)

To see this, we note that the network (M#, c) can be obtained by modifyingM according
to the following procedure. Let e = uv be an arbitrary edge of M and for convenience
assume that e is directed from u to v. If u? = v? we ‘short’ e by identifying u and v.
Otherwise, subdivide e into |e|? series resistors each with resistance 1/|e|? so that the
total resistance is still 1. Then ‘short’ this network by identifying the origin of the first
resistor with u? (if u 6= u?) and by identifying the endpoint of the jth resistor with the
endpoint of the jth step on the geodesic from u? to v? in M? (the last identification is
only necessary if v 6= v?), see Fig. 5. By the series- and parallel laws, this gives the
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Figure 5: A part of M# is shown on the left where the black solid part is M? and the
decorations from vertices u and v are shown in gray. The thick dashed edge e = uv

is an edge in M . The dotted lines represent how the edge e is projected down on the
geodesic from u? to v? by shorting.

conductance (5.17); by the ‘shorting law’ we obtain (5.18).
By (5.18) we have

Reff
M (r, B(R; d#)c) ≥ Reff

(M#,c)(r, B(R; d#)c) ≥ Reff
(M?,c)(r, B(R− 1; d?)c).

The last inequality holds because the boundary of B(R − 1; d?) separates r from the
boundary of B(R; d#). This estimate is not useful when R = 1 but one may easily
treat that case separately by noting that B(1; d#) consists of S?1 and the vertices in
the decoration D(r). In what follows we will be considering resistances of the form
Reff

(M?,c)(r, B(R, d?)c). Our objective will be to show that for 0 < q < min(1, 2β − 5) there
is a constant c > 0 such that

E[Reff
(M?,c)(r, B(R; d?)c)−q] ≤ cR−q. (5.19)

This will prove Lemma 5.9 since by Markov’s inequality

P(Reff
M (r, B(R; d#)c) < λ−1R) ≤ P(Reff

(M?,c)(r, B(R− 1; d?)c)−q > λqR−q)

≤
E[Reff

(M?,c)(r, B(R− 1; d?)c)−q]

λqR−q
.

We start by finding a vertex zR in M? which separates r from the boundary of
B(R; d?). Recall that S? is the spine in M?. Denote the subgraph of M? consisting
of S?i and the collection of finite outgrowths from the normal children of S?i by W ?

i .
Thus W ?

i is a tree, and we denote the collection of vertices in generation n of W ?
i by

W ?
i (n) (where W ?

i (0) = {S?i }). Let zR = S?` for 0 ≤ ` ≤ R/2 chosen maximal such that
for all j < `, we have W ?

j (R − j) = ∅ (ie, the tree W ?
j does not reach level R in M?).

Note that every path from r to level R in M? goes through zR.
Define LR = d?(r, zR) (thus LR = ` in the above). The distribution of LR is easy to

compute. Recall the construction of T in Section 3.3 and that T ∼ M? when wi = 1 for
all i. Let (Yn)n≥0 denote a random sequence with the same distribution as (|W ?

i (n)|)n≥0.
Thus Yn is the size of the n:th generation in the modified Galton–Watson process defined
as follows. Firstly, Y0 = 1 and the zeroth generation offspring distribution is given by
P(Y1 = i) = (i + 1)πi+1 where πi = 2−i−1. For all later generations the offspring
distribution is (πi)i≥0. We collect a few facts about (Yn)n≥ in the Appendix. Using
(6.12), we have for k < bR/2c that

P(LR = k) = P(YR−k > 0)

k−1∏
j=0

P(YR−j = 0) =
2R− 2 k + 1

(R+ 1)
2 (5.20)

and

P(LR = bR/2c) =

bR/2c−1∏
j=0

P(YR−j = 0) =

(
R− bR/2c+ 1

R+ 1

)2

. (5.21)
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Turning now to (5.19), we begin by considering the case LR > 0. Since zR separates
r from B(R; d?)c we have

Reff
(M?,c)(r, B(R, d?)c)1{LR>0} ≥ Reff

(M?,c)(r, zR)1{LR>0}

=

LR∑
k=1

c(S?k−1, S
?
k)−11{LR>0},

where in the second step we used the series law. Let q ∈ (0, 1) and write Ak = AS?
k−1,S

?
k

for the set of edges uv of M such that the edge (S?k−1, S
?
k) of M? lies on the path from

u? to v? in M?. It follows that

E[Reff
(M?,c)(r, B(R, d?)c)−q1{LR>0}] ≤ E

[( LR∑
k=1

c(S?k−1, S
?
k)−1

)−q
1{LR>0}

]
≤ E

[
L−q−1
R

LR∑
k=1

( ∑
e∈Ak

|e|?
)q

1{LR>0}

]

≤ E
[
L−q−1
R

LR∑
k=1

E
[ ∑
e∈Ak

|e|q?
∣∣LR]1{LR>0}

]
.

(5.22)

Here we used Hölder’s inequality in the second step and subadditivity in the third step,
before conditioning on LR. On the event LR > 0 we have that

E
[ ∑
e∈Ak

|e|q?
∣∣LR] =

∑
n≥1

nqE
[
A

(n)
k | LR

]
(5.23)

where A(n)
k denotes the number of edges e = uv ∈ Ak such that |e|? = d?(u?, v?) = n. We

aim to show that (still on the event LR > 0) the sum in (5.23) is bounded by a constant.
It is easy to check, using (5.20) and (5.21), that E[L−qR 1{LR>0}] is of the order R−q for
q ∈ (0, 1). Thus finiteness of (5.23) will give (5.19) in the case LR > 0.

Now we turn to the case LR = 0. Writing x ∼ y if x, y are adjacent vertices in M?,
we can use the simple fact that

Reff
(M?,c)(r, B(R, d?)c) ≥ Reff

(M?,c)(r, B(1, d?)c) =
(∑
x∼r

cr,x

)−1

.

We have that

E[Reff
(M?,c)(r, B(R, d?)c)−q1{LR=0}] ≤ E[Reff

(M?,c)(r, B(1, d?)c)−q1{LR=0}]

≤ P(LR = 0)E
[∑
x∼r

∑
e∈Arx

|e|q?
∣∣∣LR = 0

]
= P(LR = 0)

∑
n≥1

nqE
[∑
x∼r

A
(n)
rx

∣∣∣LR = 0
]
.

Here A
(n)
rx denotes the number of edges e = uv ∈ Arx such that |e|? = d?(u?, v?) = n.

Since P(LR = 0) is of order R−1 this will establish (5.19) in the case LR = 0 provided
we show that the sum ∑

n≥1

nqE
[∑
x∼r

A
(n)
rx

∣∣∣LR = 0
]

(5.24)

is bounded by a constant.
We thus need bounds on A

(n)
k and A

(n)
rx . The strategy will be to bound firstly the

number of edges in M from the decoration Di to the decoration Dj , and secondly the
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number of pairs i and j such that a given edge lies on the path from si to sj in M?. This
is the contents of the following two lemmas.

For the first lemma we recall that, for x, y ∈ M?, 〈x, y〉 denotes the first vertex of
M? on the successor geodesics of both x and y. Recall the definition of a corner, just
below (2.1). Denote the set of corners around white vertices in a decoration Di by Ci
and note that |Ci| = |Di|. For two corners u and v we write uv ∈M if there is an edge in
M between the vertices corresponding to u and v.

Lemma 5.10. Let si, sj ∈ M be such that i < j, n := d?(si, sj) ≥ 2, and write m :=

d?(si, 〈si, sj〉). For any r, r′ > 0 there is a constant C > 0 such that

E[#{u ∈ Ci, v ∈ Cj : uv ∈M} |M?] ≤ C E(|Di|r/2+1)

(m− 1 + δm,1)r
E(|Dj |r

′/2)

(n−m+ δm,n)r′
.

To simplify the counting of geodesics in M?, we use the convention that the geodesic
between si and sj is directed from i to j if and only if i < j. Writing n = d?(si, sj) and
m = d?(si, 〈si, sj〉), note that 0 < m ≤ n and that the labels will first decrease for the

first m steps from si to sj and increase for the remaining n −m steps. Let Γ
(k)
n,m be the

number of (directed) geodesics which (i) contain the edge (S?k−1, S
?
k), (ii) are of length

n, and (iii) have decreasing labels on exactly the first m steps.
Note that in the definition of Γ

(k)
n,m, the endpoints si and sj are not fixed. We will

consider separately the case when one of the endpoints is fixed to be s0, and thus
is the root of the bad decoration. The reason is that the optimal exponent r or r′ in
Lemma 5.10 is worse when the corresponding decoration is the bad decoration D0,
but this will be countered by the fact that the number of geodesics is smaller when
one of the endpoints is fixed. We define Γ̂

(k,α)
n,m , α ∈ {1, 2}, to be the number of directed

geodesics satisfying (i)–(iii) and in addition that si = s0 (resp. sj = s0) if α = 1 (resp. α =

2).

Lemma 5.11. There is a constant c > 0 such that for any ` ≥ 1 and 0 ≤ k ≤ ` we have

E(Γ(k)
n,m | LR = `) ≤ cn2, (5.25)

E(Γ̂(k,1)
n,m | LR = `) ≤ c(1 + (n−m)1{m∈{`,`+1}}), (5.26)

E(Γ̂(k,2)
n,m | LR = `) ≤ c(1 +m1{n−m∈{`,`+1}}). (5.27)

The same bounds apply to E(
∑
x∼r Γ

(rx)
n,m | LR = 0) but we leave the details to the

reader. One small difference in the proof is that one must use the fact that the number
of neighbours of r in M? has finite second moment, but apart from this it is very similar
to the proof of Lemma 5.11.

Before proving Lemmas 5.10 and 5.11 we show how they give (5.19) and hence
Lemma 5.9.

Proof of (5.19). We need to show that the two sums (5.23) and (5.24) are bounded by
constants. We start with (5.23), assuming until further notice that LR > 0. Clearly
E(A

(n)
k | LR) = E

(
E(A

(n)
k |M?) | LR

)
. We can write

E(A
(n)
k |M?) =

n∑
m=1

∑′

i<j

E[#{u ∈ Ci, v ∈ Cj : uv ∈M} |M?], (5.28)

where the primed sum is over all integers i < j such that

• d?(si, sj) = n,
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• the edge (S?k−1, S
?
k) lies on the geodesic from si to sj in M?, and

• the labels on the first m steps on this geodesic are decreasing.

Note that Lemma 5.11 bounds the number of terms in this sum, whereas Lemma 5.10
bounds the summand.

First note that we may assume that n ≥ 2: for n = 1 the sum (5.28) consists of a
single term which we may bound by a constant. For n ≥ 2 we split the primed sum
in (5.28) into three parts: firstly, the sum over j > 0 with i = 0 fixed, secondly the sum
over i < 0 with j = 0 fixed, and thirdly the sum over i and j both not equal to 0. This
will allow us to apply the corresponding bounds of Lemma 5.11.

We apply Lemma 5.10 with the following choices of r, r′: r = 2β−2 if i 6= 0, r = 2β−4

if i = 0, r′ = 2β if j 6= 0, and r′ = 2β − 2 if j = 0. By Lemma 5.1, and since E(ξβ) < ∞,
the expectations in Lemma 5.10 are finite for these choices and may be bounded by the
same constant. On applying Lemma 5.11 we therefore find that (for n ≥ 2) there is a
c > 0 such that

E(A
(n)
k |M?) ≤ c

n∑
m=1

[ n2

(m− 1 + δm,1)2β−2(n−m+ δm,n)2β

+
1 + (n−m)

(m− 1 + δm,1)2β−4(n−m+ δm,n)2β

+
1 +m

(m− 1 + δm,1)2β−2(n−m+ δm,n)2β−2

]
.

Note that for a, b > 1,

n∑
m=1

1

(m− 1 + δm,1)a(n−m+ δm,n)b
≤ c
( 1

na
+

1

nb

)
for some c > 0. We deduce that, for some constant c′ > 0,

E(A
(n)
k | LR) ≤ c′ 1

n2β−4
,

and hence in (5.23) ∑
n≥1

nqE(A
(n)
k | LR) ≤ c′

(
1 +

∑
n≥2

1

n2β−4−q

)
.

This is finite for 0 < q < 2β − 5, as required. The argument for (5.24), when LR = 0, is
the same using the remark immediately below Lemma 5.11.

Proof of Lemma 5.10. Writing z = 〈si, sj〉, note that

`(z) = `(si)−m, and thus `(sj) = `(si)− 2m+ n.

Note that the (m− 1)st successor σm−1(si) of si in M? appears before sj in the contour
sequence of the mobile ϑ. For there to be an edge from u ∈ Ci to v ∈ Cj it cannot be the
case that the label of σm−1(si) is strictly smaller than that of u. Thus

`(u) ≤ `(σm−1(si)) = `(si)−m+ 1.

Furthermore, if uv ∈M then

`(v) = `(u)− 1 ≤ `(si)−m = `(sj) +m− n,

EJP 19 (2014), paper 31.
Page 32/40

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3102
http://ejp.ejpecp.org/


Recurrence of bipartite planar maps

Figure 6: The vertical path represents the spine in M? and only the outgrowths T1 and
T2 are drawn. In Case (1) a geodesic starts at level n1 in T1 and ends at level n4 in
the right hand part of T2. In Case (2) a geodesic starts in the left hand part of T2 and
ends at level n1 in T1. The + and − signs indicate whether the labels on the geodesic
increase (+) or decrease (−) when one follows the direction of the geodesic.

so that ∆`j ≥ `(sj) − `(v) ≥ n −m. Thus, using that Di and Dj are independent of M?

and of each other,

E[#{u ∈ Ci,v ∈ Cj : uv ∈M} |M?]

≤ E[1{∆`j≥n−m}#{u ∈ Ci : `(u) ≤ `(si)−m+ 1} |M?]

≤ P(∆`j ≥ n−m)E(|Di|1{∆`i≥m−1})

= P(∆`j ≥ n−m)E
[
|Di|P(∆`i ≥ m− 1 | Di)

]
.

The result now follows from Lemma 5.2 and Markov’s inequality.

Proof of Lemma 5.11. Start by considering (5.25). We treat two cases separately, Case
(1) when the part of the geodesic intersecting the spine is directed away from the root
and Case (2) when it is directed towards the root. Write Γ

(k)
n,m = Γ

(k,1)
n,m + Γ

(k,2)
n,m where

Γ
(k,α)
n,m denotes the number of geodesics in case (α), α ∈ {1, 2}. See Fig. 6.

In Case (1), the geodesic starts in an outgrowth from a vertex, say r1, on the spine.
Denote the collection of outgrowths from r1 by T1. It then proceeds m steps in the
direction of decreasing labels. Since it crosses the edge S?k−1, S

?
k on the spine, then

after m steps it must enter an outgrowth from a vertex on the spine, say r2, which is
different from r1. Denote the collection of outgrowths from r2 by T2. By the definition
of the direction of the geodesic it has to enter T2 on the right hand side of the spine. We
cut the geodesic into four parts. The first part is from the starting point until it hits r1,
call the length of that part n1. The next part is from r1 to the vertex S?k , call its length
n2 ≥ 1. The third part is from S?k to r2, call its length n3 and the final part is from r2 to
the end, call its length n4. Then

n1 + n2 + n3 = m (5.29)

n4 = n−m (5.30)

d?(r1, r) = k − n2

d?(r2, r) = k + n3
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Conditional on LR the distributions of T1 and T2 are given by

T1 = (W ?
k−n2

| W ?
k−n2

(R− k + n2) = ∅)

and

T2 =


(W ?

k+n3
| W ?

k+n3
(R− k − n3) = ∅) if k + n3 < LR

(W ?
k+n3

| W ?
k+n3

(R− k − n3) 6= ∅) if k + n3 = LR < R/2

W ?
k+n3

if k + n3 = LR = R/2

or k + n3 > LR.

It follows that

E(Γ(k,1)
n,m | LR) ≤

∑
n1+n2+n3=m

n2≥1,n3≤LR−k−1

E(Yn1
| YR−k+n2

= 0)E(Yn4
| YR−k−n3

= 0)

+
(
E(Yn4

| YR−LR
> 0)1{LR<R/2} + E(Yn4

)1{LR=R/2}
)

×
∑

n1+n2=m−LR+k
n2≥1

E(Yn1
| YR−k+n2

= 0)

+ E(Yn4)
∑

n1+n2+n3=m
n2≥1,LR−k+1≤n3≤m

E(Yn1 | YR−k+n2 = 0).

(5.31)

The inequality sign is only due to the fact that we replace the number of elements at
level n4 in the part of T2 on the right hand side of the spine by the total number of
elements at level n4 in T2. Using Lemma 6.1 and recalling that n4 = n −m we get the
upper bound

E(Γ(k,1)
n,m | LR) ≤ k1m

2 + k2(n−m)m

where k1 and k2 are positive constants.

In Case (2) we have a similar picture. The geodesic starts from the part of T2 which
lies to the left of the spine and ends in T1. In this case (5.29) and (5.30) are replaced by
the conditions

n1 + n2 + n3 = n−m (5.32)

n4 = m, (5.33)

but everything else is the same. We thus get

E(Γ(k,2)
n,m | LR) ≤ k3(n−m)2 + k4(n−m)m

where k3 and k4 are positive constants.

Now turn to (5.26). In this case the origin of the geodesic is s0 and thus contains the
bad decoration. Recall that ε denotes the direction of the root edge in the BDG bijection.
When ε = −1 the root edge is directed away from s0 and thus by the definition of r, r =

s0. We may then go trough the same argument as for (5.25), Case (1) except now n1 = 0,
n2 = k and one does not have to take the distribution of T1 into account. Similarly,
when ε = +1, s0 is the leftmost child of r and in this case n1 = 1 and n2 = k. Using
these values, (5.31) may be estimated by the expression stated in (5.26). Finally, (5.27)
follows in the same way but corresponds to Case (2) in (5.27) and thus m is replaced by
n−m.
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6 Appendix

In this section we prove Lemmas 5.1, 5.3 and 5.7 and conclude by collecting a few
results on the modified Galton Watson process (Yn)n≥0 defined above (5.20).

Proof of Lemma 5.1. Let Z be a Galton–Watson tree with offspring distribution ξ and
denote the total number of vertices in Z by N . First consider the case i 6= 0. Then the

bijection between simply generated trees and mobiles shows that |Di|
d
= N .

We can interpret N as a first-passage time in a random walk with drift, according to
the following standard ‘depth-first-search’ construction of Z. First sample the number
ξ1 of children of the root. If ξ1 = 0 we are done (and the tree has size 1). Otherwise
pick the ‘leftmost’ of the children of the root and independently of ξ1 sample its number
ξ2 of children. If ξ2 > 0 we repeat this for the new leftmost child, otherwise we repeat
the procedure for the leftmost of the remaining ξ1 − 1 children of the root that have not
yet been ‘investigated’. The same procedure is repeated until the entire tree has been
constructed. By considering the number of vertices left to investigate after k steps in
this construction we see that N is the smallest value of k such that the random walk

k∑
j=1

(ξj − 1)

reaches level −1. (This random walk is sometimes called the Lukasiewicz path of Z.)
Since E(ξi − 1) = κ− 1 < 0 it follows from [14, Theorem 3.3.1] that

E(Nr) <∞ provided E(ξr) <∞, (6.1)

as required.
The argument for D0 is similar, but the bijection from simply generated trees has a

more complex result this time. The vertices of D0 consist both of the outgrowth from
the infinite degree vertex in T which is immediately to the right of the spine, as well as
the vertices of finite degree on the spine of T , along with their outgrowths. The length
L of the spine satisfies P(L = i) = κi(1 − κ). The number of outgrowths of a vertex of
finite degree on the spine is distributed as ξ̃, where

P(ξ̃ = k) = P(ξ̂ − 1 = k | ξ̂ <∞) =
(k + 1)πk+1

κ

(see (3.3)). Thus for all s ≥ 0

E(ξ̃s) ≤ 1

κ
E(ξs+1). (6.2)

Let (ξ̃i)i≥1 be independent copies of ξ̃, and let N and (Ni,j)i,j≥1 be independent
copies of N above, all independent of each other and of L. It follows from the descrip-
tion above that for all s ≥ 0

E(|D0|s) ≤ E
[(
N +

L∑
i=1

ξ̃i∑
j=1

Ni,j

)s]
. (6.3)

Let s = r − 1. If s ≥ 1 it follows from (6.3) (conditioning on L and the ξ̃i, and using
Minkowski’s inequality), that

‖|D0|‖s ≤ ‖N‖s
(
1 + ‖L‖s‖ξ̃‖s

)
,

which is finite by (6.1) and (6.2). Similarly, if 0 < s < 1 then by using subadditivity and
Jensen’s inequality we get that

E(|D0|s) ≤ E(Ns) + E(L)E(N)sE(ξ̃s),

which is finite by (6.1) and (6.2).
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Proof of Lemma 5.3. Note that i+(R) and i−(R) can be written in terms of first passage
times of the random walk Sn =

∑n
i=1Xi with the i.i.d. jump distribution Xi described

at (2.10):

i+(R) = inf{n ≥ 0 : Sn = −R} = inf{n ≥ 0 : Sn ≤ −R},
i−(R) = inf{n ≥ 0 : Sn ≥ R}.

For this random walk the distributions of such first passage times can be computed
explicitly (using an exponential martingale argument). However, we use a more general
argument based on approximating the random walk with Brownian motion, and well-
known results for first passage times of the latter.

Let S(t) denote the process obtained from Sn by linear interpolation between integer
times. The Xi of (2.10) have mean 0 and variance 2, so the Komlós–Major–Tusnády
theorem [21] tells us that we may couple (S(t) : t ≥ 0) with a standard Brownian motion
(W (t) : t ≥ 0) in such a way that for some constants c, ε > 0 and all T, x > 0 we have

P
(

max
0≤t≤T

|S(t)/
√

2−W (t)| > c log T + x
)
≤ e−εx. (6.4)

Let K(λ) = K ′ log λ, with the constant K ′ chosen large enough that

K(λ)R > 2c logR+ (c+ 1/ε) log λ, for all R, λ ≥ 1.

We have that

P(i−(R) > λR2) = P
(

max
0≤n≤λR2

Sn < R
)

≤ P
(

max
0≤t≤λR2

W (t) < (K(λ) + 1/
√

2)R
)

+ P
(

max
0≤t≤λR2

|W (t)− S(t)/
√

2| > K(λ)R
)
.

The first term is at most

2√
2π

(K(λ) + 1/
√

2)R(λR2)−1/2 ≤ K ′′ log λ

λ1/2

by standard results for Brownian motion (by the reflection principle, the probability
that W has not exceeded a by time t equals 2P(W (t) > a)). By (6.4) the second term is
at most

P
(

max
0≤t≤λR2

|W (t)− S(t)/
√

2| > c log(λR2) + 1
ε log λ

)
≤ λ−1.

This proves the bound for i−(R). The bound for i+(R) is similar.

Proof of Lemma 5.7. We will need the following easily proved result. If v ∈ γ(u) then

d(u, v) = `(u)− `(v). (6.5)

If u = si and v = sj with i < j define ]u, v[ = {si+1, si+1, . . . , sj−1}.
Consider first the case v? = w?. Let λ denote the minimal label in D(v) and let x

denote the first white vertex in the contour sequence which, firstly, occurs after the last
occurrence of v?, and, secondly, has label `(x) = λ− 1. Then γ(v) and γ(w) both contain
x, so by (6.5)

d(v, w) ≤ d(v, x) + d(w, x)

= `(v)− (λ− 1) + `(w)− (λ− 1) ≤ 2 + 4∆`(D(v)).
(6.6)
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Consider now the case v? 6= w?. Without loss of generality we may assume that
v? ∧ w? = v?. First assume that w? ∈ γ?(v?) in which case [v? ∧ w?, 〈v?, w?〉] = [v?, w?].
Then

`(u) > `(w?) (6.7)

for all u ∈]v?, w?[. Define A =
⋃
u∈]v?,w?[ V

◦(D(u)) and let λ = minu∈A `(u), assuming
that the minimum is attained at the vertex y (possibly among others). Then y? ∈]v?, w?[

and by (6.7) it holds that

λ = `(y) ≥ `(y?)−∆`(D(y)) ≥ `(w?) + 1−∆`(D(y)). (6.8)

Consider the successor geodesics γ(v?) and γ(w?) in M . They will meet at the first time
at a vertex, say z, with label `(z) = λ− 1. Then, by (6.5) and (6.8)

d(w?, z) = `(w?)− `(z) ≤ ∆`(D(y)). (6.9)

Finally,

d(v, w) ≤ d(v, v?) + d(v?, z) + d(z, w?) + d(w?, w)

= d(v, v?) + `(v?)− `(z) + `(w?)− `(z) + d(w?, w)

= d?(v?, w?) + 2(`(w?)− `(z)) + d(v, v?) + d(w,w?)

≤ d?(v?, w?) + 2∆`(D(y)) + 4∆`(D(v)) + 4∆`(D(w)) + 4.

(6.10)

In the first line we used the triangle inequality, in the second line (6.5), in the third line
the fact that w? ∈ γ?(v?) implies d?(v?, w?) = `(v?) − `(w?), and in the fourth line (6.9)
as well as (6.6).

Finally consider the case when w? /∈ γ?(v?). Write z = 〈v?, w?〉. Then z = z? ∈
γ?(v?) ∩ γ?(w?) and d(v, w) ≤ d(v, z) + d(w, z). Applying (6.10) to both terms and using
the fact that d?(v?, z) + d?(w?, z) = d?(v?, w?) we arrive at the claimed bound.

6.1 The process (Yn)n≥0

We collect here a few results which we need on the process (Yn)n≥0 which is defined
above (5.20). Recall that πi = 2−i−1. Define the generating functions

f(x) =

∞∑
i=0

πix
i and gn(x) =

∞∑
i=0

P(Yn = i)xi.

Clearly, g0(x) = x and assume in the following that n ≥ 1. By standard generating
function arguments and using induction one finds that

gn(x) = f ′(fn−1(x)) =

(
n− (n− 1)x

n+ 1− nx

)2

(6.11)

where f0(x) = x and fn(x) = f(fn−1(x)). By (6.11) one immediately gets

P(Yn = 0) = gn(0) =

(
n

n+ 1

)2

. (6.12)

The following Lemma is used in the proof of Lemma 5.11.

Lemma 6.1. For all i, j ≥ 1 we have that E(Yi | Yj = 0) ≤ 2 and that E(Yi | Yj > 0) ≤
4i+ 4.
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Proof. We use the fact that for each fixed i ≥ 0, both E(Yi | Yj = 0) and E(Yi | Yj > 0)

are non-decreasing in j. We thus obtain an upper bound by letting j → ∞. Since the
process (Yi)i≥0 dies out with probability 1 we have that limj→∞E(Yi | Yj = 0) = E(Yi) =

g′i(1) = 2 by (6.11). We also have that

E(Yi | Yj > 0) =
g′i(1)− P(Yj−i = 0)g′i(P(Yj−i = 0))

1− P(Yj = 0)
→ 4i+ 4

as j →∞ where the convergence follows from (6.11) and (6.12).
The monotonicity in j used above may be proved as follows. Consider first E(Yi |

Yj > 0) and start with the case j ≤ i. Then we have

E(Yi | Yj > 0) =
E(Yi1{Yj>0})

P (Yj > 0)
=

E(Yi)

P (Yj > 0)
,

since {Yj = 0} ⊆ {Yi = 0}. Clearly P (Yj > 0) ≤ P (Yj−1 > 0), so the statement holds for
all j up to i.

Now consider the case j ≥ i. Write pj(k) = P (Yi = k | Yj > 0). Then we have

E(Yi | Yj+1 > 0) =
∑
k≥1

kpj+1(k) =
∑
k≥0

kpj(k)
pj+1(k)

pj(k)
= E

[
Yihj(Yi) | Yj > 0

]
,

where

hj(k) =
pj+1(k)

pj(k)
.

We may rewrite

hj(k) =
P (Yj+1 > 0 | Yi = k)

P (Yj > 0 | Yi = k)

P (Yj > 0)

P (Yj+1 > 0)
= cj

1− qkj+1−i

1− qkj−i
,

where cj = P (Yj > 0)/P (Yj+1 > 0) and qr is the probability that an individual present at
time i has no offspring at time i+r. Since qr+1 ≥ qr we have that hj(k) is non-decreasing
in k. It follows from Harris’ inequality that

E(Yi | Yj+1 > 0) ≥ E(Yi | Yj > 0)E(hj(Yi) | Yj > 0) = E(Yi | Yj > 0),

as required, since

E(hj(Yi) | Yj > 0) =
∑
k≥0

pj+1(k)

pj(k)
pj(k) = 1.

The argument for E(Yi | Yj = 0) is similar, using the increasing function (qj+1−i/qj−i)
k

in place of hj(k).
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