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Abstract

In this article, we prove that the inverse of the Malliavin matrix belongs to Lp(Ω,P)
for a class of degenerate stochastic differential equation(SDE). The conditions re-
quired are similar to Hörmander’s bracket condition, but we don’t need all coeffi-
cients of the SDE are smooth. Furthermore, we obtain a locally uniform estimate for
the Malliavin matrix and a gradient estimate. We also prove that the semigroup gen-
erated by the SDE is strong Feller. These results are illustrated through examples.
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1 Introduction and Notations

In this article, we consider the following degenerate stochastic differential equa-
tions(SDE) 

xt = x+

∫ t

0

a1(xs, ys)ds,

yt = y +

∫ t

0

a2(xs, ys)ds+

∫ t

0

b(xs, ys)dWs.

(1.1)

In the above x ∈ Rm, y ∈ Rn, b ∈ Rn×d, Ws is a d-dimensional standard Brownian
motion. Eq.(1.1) is a model for many physical phenomenons. For example, xt represents
the position of an object and yt represents the momentum of the object. When a random
force affects the object, first the momentum of the object changes, then that will lead
to the change of position. To understand the long time behavior of the movement of
the object, we need to study the ergodicity of Eq.(1.1). For this reason, the gradient
estimate of the semigroup and the strong Feller property associated to the solution
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should be considered. Furthermore, the solution is ergodic if one also knows that the
solution is topologically irreducible and has an invariant probability measure.

Let Px,y be the law of the solution to Eq.(1.1) with initial value (x, y), and Pt be the
transition semigroup of Eq.(1.1)

Ptf(x, y) := Ex,yf(xt, yt), f ∈ Bb(R
m ×Rn;R),

where Bb(R
m ×Rn;R) denotes the collection of bounded Borel measurable functions.

Consider general SDE

Xt = x+

∫ t

0

V0(Xs)ds+

d∑
j=1

∫ t

0

Vj(Xs) ◦ dWj(s), x ∈ Rm+n. (1.2)

Let V = (V1, · · · , Vd). The Hörmander’s bracket condition (H) for (V0, V ) is that the
vector space spanned by the vector fields

(H) V1, · · · , Vd, [Vi, Vj ], 0 6 i, j 6 d, [[Vi, Vj ], Vk], 0 6 i, j, k 6 d, · · · ,

at point x is Rm+n. The coefficients are infinitely differentiable functions with bounded
partial derivatives of all order. If the Hörmander’s bracket condition (H) holds for any
x ∈ Rm+n , then Xt has smooth density and the transition semigroup of Eq.(1.2) is
strong Feller (see [10], [12], [15], [18] etc). Bell and Mohammed [1, Theorem 1.0 and
Theorem 1.1] proved the hypoellipticity of a large class of highly degenerate second
order differential operators, where the Hörmander’s bracket condition may fail on a
collection of hypersurfaces.

Let Pt(x, ·) be the transition probabilities of the Xt in Eq.(1.2). When V V ∗ is uni-
formly elliptic, two-sided bounds of the density for Pt(x, ·) were given in Sheu [19] by
using stochastic control tools. There are many other excellent works in such direction.

Also, there are many works in the hypoelliptic setting. For the case V0 ≡ 0, Kusuoka
and Stroock [12] gave the two-sided bounds of the density for Pt(x, ·) under some con-
ditions which require certain uniformity on V1, · · · , Vd. Recently, Delarue and Menozzi
[5] considered the following SDE,

X1
t = x1 +

∫ t

0

F1(s,X1
s , · · · , Xn

s )ds+

∫ t

0

b(s,X1
s , · · · , Xn

s )dWs,

X2
t = x2 +

∫ t

0

F2(s,X1
s , · · · , Xn

s )ds,

X3
t = x3 +

∫ t

0

F3(s,X2
s , · · · , Xn

s )ds,

...

Xn
t = xn +

∫ t

0

Fn(s,Xn−1
s , Xn

s )ds.

(1.3)

If the spectrum of the A(t, x) = [bb∗](t, x) is included in [Λ−1,Λ] for some Λ > 1 and
Dxi−1

Fi(t, xi−1, xi, · · · , xn) is non-degenerate, uniformly in space and time, they gave
two-sided bounds of the density for to the solution to Eq.(1.3). Cattiaux et al. [3]
considered the SDE as

Xi
t = xi +W i

t , ∀i ∈ [1, n], Xn+1
t = xn+1 +

∫ t

0

|X1,n
s |kds, (1.4)

here X1,n
s = (X1

s , · · · , Xn
s ) and they gave two-sided bounds estimation for the transition

function p(t, x, ·). There are also many other results on the special case of Eq.(1.1), such
as [14], [11], [21] etc.
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In most of the above works, the coefficients are smooth or some uniform conditions
are needed. Since our aim in this article is to prove the strong Feller property and
give a gradient estimate of the semigroup, we don’t need the smooth conditions for all
the coefficients or some uniform conditions. Instead of the Hörmander’s bracket condi-
tions, we give some new conditions, which are equivalent to the Hörmander’s bracket
condition if the coefficients are smooth. We prove that the inverse of the Malliavin ma-
trix is Lp integrable for any p ≥ 0. Furthermore, our conditions also ensure that we can
obtain a gradient estimate and the strong Feller property. We haven’t investigated the
smoothness of density or the two-sided bounds of density when smoothness or some
uniform conditions on the coefficients are absent.

We introduce some notations. For j ∈ N, let Cj(Rm × Rn;Rl) be the collection of
functions which have continuous derivatives up to order j, Cjb (Rm ×Rn;Rl) the collec-
tion of functions in Cj(Rm ×Rn;Rl) with bounded derivatives. Sometimes, we will use
Cjb and Cj for convenience. For l ∈ N, k = (k1(x, y), · · · , kl(x, y))∗ ∈ C1(Rm × Rn;Rl),

x = (x1, · · · , xm)∗, y = (y1, · · · , yn)∗,

∇xik =

(
∂k1
∂xi

, · · · , ∂kl
∂xi

)∗
, i = 1, · · · ,m, ∇xk = (∇x1k, · · · ,∇xmk),

∇yjk =

(
∂k1
∂yj

, · · · , ∂kl
∂yj

)∗
, j = 1, · · · , n, ∇yk = (∇y1k, · · · ,∇ynk),

and ∇k = (∇xk,∇yk), where "*" denotes the transpose of vector or matrix. If a1 ∈
Cj0(Rm ×Rn;Rm) for some j0 ∈ N, we define vector fields:

A1 =
{
∇yja1, j = 1, · · · , n

}
,

Al =
{
∇yjk, j = 1, · · · , n, −∇xa1 · k +∇xk · a1 : k ∈ Al−1

}
, l = 2, · · · , j0.

Assume a1 = (a11, · · · , am1 )∗, a2 = (a12, · · · , an2 )∗, a = (a∗1, a
∗
2)∗. N = {1, · · · }. Let det(A) be

the determinant of the matrix A = (aij), ‖A‖2 =
∑
ij a

2
ij . Let 〈·, ·〉 be the Euclidean inner

product and | · | be the Euclidean norm. For any x0 ∈ Rm+n and R > 0, B(x0, R) = {x ∈
Rm+n, |x − x0| 6 R}, B◦(x0, R) = {x ∈ Rm+n, |x − x0| < R} and BR := B(0, R), B◦R :=

B◦(0, R). ‖ · ‖∞ denotes the essential supreme norm. We use C(d) or ε0(d) to denote
a positive and finite constant depending on d, ‖∇a‖∞ and ‖∇b‖∞. This constant may
change from line to line. Sometimes, we will use C instead of C(d) for the convenience
of writing. Without specified, (xt, yt) is the solution for Eq.(1.1) and (x, y) is its initial
value. Let Mt be the Malliavin matrix of (xt, yt). It is known that (c.f. [15])

Mt = Jt

∫ t

0

J−1s

( 0

b(xs, ys)

)( 0

b(xs, ys)

)∗
(J−1s )∗dsJ∗t , (1.5)

here J−1t satisfies

J−1t = Im+n −
∫ t

0

J−1s

( 0 0

∇xbj ∇ybj

)
(xs, ys)dWj(s)

−
∫ t

0

J−1s

[( ∇xa1 ∇ya1
∇xa2 ∇ya2

)
(xs, ys)

−
d∑
j=1

( 0 0

∇ybj∇xbj ∇ybj∇ybj

)
(xs, ys)

]
ds,

(1.6)
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and Jt satisfies

Jt = Im+n +

∫ t

0

(∇xa1 ∇ya1
∇xa2 ∇ya2

)
(xs, ys)Jsds

+

d∑
j=1

∫ t

0

( 0 0

∇xbj ∇ybj

)
(xs, ys)JsdWj(s).

(1.7)

Our article is organized as follows. In section 2, we prove detM−1t ∈ Lp(Ω,P),∀ p > 1

in Theorem 2.2 under Hypothesis 2.1. In the Hypothesis 2.1, we need a2 ∈ C1
b , b ∈

C2 ∩ C1
b and a1 ∈ Cj0+2 ∩ C1

b for some j0 ∈ N. Compared with Hörmander’s bracket
condition, the ąğ functions a2 and b are only required to be C1

b and C1
b ∩C2 respectively.

Our approach is mainly along the lines of [15], but has some differences and needs more
complicated computation. These differences depend heavily on the special form of the

Eq.(1.1). In [15], J−1t is regarded as a whole. In our proof, we divide J−1t into

(
At Bt
Ct Dt

)
and do more elaborate estimates.

In section 3, we give a local uniform estimate for Malliavin matrix under Hypothesis
3.1, and then give a gradient estimate in Theorem 3.2. The local uniform estimate for
Malliavin matrix is a key point to prove Theorem 3.2.

In Theorem 3.2, we prove that Pt is strong Feller under some conditions which re-
quires all coefficients of Eq.(1.1) to be C2

b . Since there are bounded conditions on the
coefficients and their derivatives, it seems too strong to apply, for example, the Hamil-
tonian systems, so we weaken this bounded conditions in Theorem 4.2 in section 4. In
Theorem 4.2, we use the localization method to prove Pt is strong Feller under Hypothe-
sis 4.1, which doesn’t need bounded conditions on the coefficients and their derivatives.
Actually, we prove that the law of (xt, yt) is continuous in initial value (x, y) with respect
to the total variation distance in Theorem 4.2.

In section 5, we apply the above results to examples, such as the Lagevin SDEs, the
stochastic Hamiltonian systems and high order stochastic differential equations.

2 The Lp Integrability of the Inverse of Malliavin Matrix

In this section, (xt, yt) is the solution for Eq.(1.1) with initial value (x, y), Mt is the
Malliavin matrix of (xt, yt).

2.1 The Main Theorem and Its Relations with Hörmander Theorem

Hypothesis 2.1. (x, y) ∈ Rm ×Rn and there exists a j0 := j0(x, y) ∈ N such that:

(i) a1 ∈ C1
b (Rm ×Rn;Rm) ∩ Cj0+2(Rm ×Rn;Rm), a2 ∈ C1

b (Rm ×Rn;Rn);

(ii) b ∈ C1
b (Rm ×Rn;Rn ×Rd) ∩ C2(Rm ×Rn;Rn ×Rd), det(b(x, y) · b∗(x, y)) 6= 0;

(iii) The vector space spanned by ∪j0k=1Ak at point (x, y) has dimension m.

Theorem 2.2. Assume Hypothesis 2.1, T > 0, then det(M−1T ) ∈ Lp(Ω,Px,y) for any
p > 0.

Remark 2.3. (i) The condition det(b(x, y) · b∗(x, y)) 6= 0 in Hypothesis 2.1 is necessary.
For example, consider SDE

dxt =
(1 0

0 1

)
ytdt,

dyt =
(1 1

0 1

)
ytdt+

(1

1

)
dWt.
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That is

a1(x, y) =

(
y1
y2

)
, a2(x, y) =

(
y1 + y2
y2

)
, b(x, y) =

(
1

1

)
,

and furthermore

A1 =

{(
1

0

)
,

(
0

1

)}
.

Therefore, the (i) (iii) in the Hypothesis 2.1 hold. But Malliavin matrix of (xt, yt) is
singular almost surely(For details, please to see Appendix A).

(ii) A natural but difficult question is, can we replace the condition det(b(x, y)·b∗(x, y)) 6=
0 by some type of Hörmander’s bracket condition? Higher regularity on b may be
needed.

Remark 2.4. If the coefficients a1, a2, b in Eq.(1.1) also depend on t and for any T > 0,
t → (a1(t, 0), a2(t, 0)) and t → b(t, 0) are bounded on [0, T ], then Theorems 2.2, 3.2 and
4.2 also hold.

There is a natural relation between Hörmander’s bracket condition (H) and Hypoth-
esis 2.1 from the well-known geometric interpretation of Hörmander’s bracket condi-
tion. Also, it can be proved directly by calculations.

Remark 2.5. Assume a1 ∈ C∞(Rm × Rn;Rm), a2 ∈ C∞(Rm × Rn;Rn), b ∈ C∞(Rm ×
Rn;Rn ×Rd), det(b(x, y) · b∗(x, y)) 6= 0. Then the Hörmander’s bracket condition (H) is
equivalent to Hypothesis 2.1.

Hypothesis 2.1 is weaker than Hörmander’s bracket condition, the followings are
two examples.

Example 2.6. Consider the following stochastic differential equation
dx1(t) = x2(t)dt+ ytdt

dx2(t) = x1(t)dt

dx3(t) = x2(t)dt+ x3(t)dt

dyt = a2(xt, yt)dt+ bdWt

,

where xt = (x1(t), x2(t), x3(t))∗ ∈ R3, yt ∈ R1, a2(x1, x2, x3, y) only has one order deriva-
tives and b ∈ R1 \ {0} is a constant, then Hypothesis 2.1 holds, but the Hörmander’s
bracket conditions (H) can’t be applied directly.

Proof. Set a1(x1, x2, x3, y) = (x2 + y, x1, x2 + x3)∗, then

∇xa1 =

0 1 0

1 0 0

0 1 1

 , ∇ya1 =

1

0

0


In this example, by calculation,

A1 = ∇ya1, A2 = −∇xa1∇ya1, A3 = +(∇xa1)2∇ya1,

and

∇ya1 =

1

0

0

 , −∇xa1∇ya1 = −

0

1

0

 , + (∇xa1)2∇ya1 =

1

0

1

 .

Therefore the vector space spanned by {Aj , j = 1, 2, 3} at any point (x, y) is R3.
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The following example is a special case for the SDE considered in [5] with n = 3.

Example 2.7. Consider the SDE (1.3) with n = 3. If det(σ(0, x1, x2, x3)σ∗(0, x1, x2, x3)) 6=
0, by calculating,

A1 =

{(∇x1
F2

0

)}
, A2 =

{(∇x1x1
F2

0

)
,
( G(x1, x2, x3)

∇x2
F3 · ∇x1

F2

)}
,

for some function G. The condition in [5] is ∇x1
F2 ·∇x2

F3 6= 0. So the (iii) in Hypothesis
2.1 is the same as that in [5]. Because of lack of smooth in [5], the Hörmander’s bracket
condition (H) can’t be applied directly.

2.2 Proof of Theorem 2.2

In [15], the inverse of Jacobian matrix J−1t is regarded as a whole. In this subsection,

we divide J−1t into four parts

(
At Bt
Ct Dt

)
and do more elaborate estimates, we obtain

det(M−1T ) ∈ Lp(Ω,Px,y), ∀p, T > 0 under Hypothesis 2.1. Our approach is mainly along
the lines of [15], but has some differences and needs more complicated computation.
The differences depend heavily on the special form of the Eq.(1.1). Before we give the
proof of Theorem 2.2, we introduce some notations and list the Lemmas which will be
used in the proof of Theorem 2.2.

Assume J−1t =

(
At Bt
Ct Dt

)
, At is a matrix with dimension m×m, then



dAt = −
d∑
j=1

Bt∇xbjdWj(t)− (At∇xa1 +Bt∇xa2)dt+

d∑
j=1

Bt∇ybj∇xbjdt,

dBt = −
d∑
j=1

Bt∇ybjdWj(t)− (At∇ya1 +Bt∇ya2)dt+

d∑
j=1

Bt∇ybj∇ybjdt,

dCt = −
d∑
j=1

Dt∇xbjdWj(t)− (Ct∇xa1 +Dt∇xa2)dt+

d∑
j=1

Dt∇ybj∇xbjdt,

dDt = −
d∑
j=1

Dt∇ybjdWj(t)− (Ct∇ya1 +Dt∇ya2)dt+

d∑
j=1

Dt∇ybj∇ybjdt.

(2.1)

For the vector space spanned by ∪j0k=1Ak at point (x, y) has dimension m, then there
exist two positive constants R1 and c such that

j0∑
j=1

∑
V ∈Aj

(v∗V (x′, y′))2 > c (2.2)

holds for all v ∈ Rm, |v| = 1 and |(x′, y′)− (x, y)| 6 R1.
Fix R2 = 1

100 , define the stopping time as

S = S(x, y) := inf
{
s > 0 : sup

06u6s
|(xu, yu)− (x, y)| > R1 or sup

06u6s
|J−1u − Im+n| > R2

}
,

(2.3)

here Im+n denotes the identity matrix with dimension m+n. Define the adapted process

λ(s) = inf
|v|=1
{v∗b(xs, ys)b∗(xs, ys)v}. (2.4)

EJP 19 (2014), paper 73.
Page 6/26

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3120
http://ejp.ejpecp.org/


Malliavin matrix of degenerate SDE and gradient estimate

For | infv av − infv bv| 6 supv |av − bv|, we have

|λ(s)− λ(t)| 6 ‖b(xs, ys)b∗(xs, ys)− b(xt, yt)b∗(xt, yt)‖. (2.5)

Then λ(s) is continuous with respect to s. Since det(b(x, y)b∗(x, y)) 6= 0, λ(0) > 0. For
R3 = λ(0)/2, we define the stopping times

τ ′ = inf{s > 0 : |λ(s)− λ(0)| > R3}, (2.6)

τ = τ ′ ∧ S ∧ T. (2.7)

Let j0 be as in Hypothesis 2.1. v = (v∗1 , v
∗
2)∗ ∈ Rm ×Rn with |v| = 1. Fix q > 8 and set

F =

{
j=d∑
j=1

∫ T

0

|(v∗1Bs + v∗2Ds)bj |2ds 6 εq
3j0+6

}
,

Ej =

{ ∑
K∈Aj

∫ τ

0

|(v∗1As + v∗2Cs)K(xs, ys)|2ds 6 εq
3j0+3−3j

}
, j = 1, · · · , j0,

E = F ∩ E1 ∩ E2 · · · ∩ Ej0 .

Remark 2.8. In the definition of S in (2.3) , R2 = 1
100 is chosen only for technical

convenience, there are other possible choices. In the Lemma 2.22, we essentially need
R2 small enough, and be finite in other places. Here, R1, R3 and c depend on (x, y).

Due to (2.2) and the definition of S, it holds that for any s 6 S and v ∈ Rm with
|v| = 1,

j0∑
j=1

∑
V ∈Aj

(v∗V (xs, ys))
2 > c. (2.8)

Lemma 2.9. ([9, Lemma 6.14]). Let f : [0, T0] → R be continuous differentiable and
α ∈ (0, 1]. Then

‖∂tf‖∞ = ‖f‖1 6 4 ‖ f ‖∞ max
{ 1

T0
, ‖ f ‖−

1
1+α
∞ ‖ ∂tf ‖

1
1+α
α

}
,

where ‖f‖α = sup
s,t∈[0,T0],s6=t

|f(t)−f(s)|
|t−s|α .

Lemma 2.10. ([15, Corollary 2.2.1]). Assume Hypothesis 2.1, then for any p, T > 0,
there exists a finite constant C(T, p, x, y) such that

E
{

sup
06t6T

|(xt, yt)|p
}
6 C(T, p, x, y).

Lemma 2.11. Assume Hypothesis 2.1, then for any p, T > 0, there exists a finite con-
stant C(T, p, x, y) such that

E
{

sup
06s6T

‖J−1s ‖p
}
6 C(T, p, x, y),

E
{

sup
06s6T

‖Js‖p
}
6 C(T, p, x, y).

Proof. It directly follows from (1.6) (1.7) and [15, Lemma 2.2.1].

Lemma 2.12. Assume Hypothesis 2.1, then for any p > 0, there exists a finite constant
C(p, x, y) such that

P{S < ε} 6 C(p, x, y)εp, ∀ε > 0.
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Proof. With the same argument as the estimation of P{S < εβ} in [15, Theorem 2.3.3],
one can get its proof. For more details, please to see [15, Page139].

Lemma 2.13. Assume Hypothesis 2.1, then for any p > 0, there exists a finite constant
C(p, T, x, y) such that

P{τ < ε} 6 C(p, T, x, y)εp, ∀ε > 0.

Proof. According to Lemma 2.12 and the fact

P{τ < ε} 6 P{S < ε}+ P{τ ′ < ε}+ P{T < ε},

we only need to estimate P{τ ′ < ε}. For any p > 0

P{τ ′ < ε} 6 P
{

sup
06r6ε

|λ(s)− λ(0)| > R3

}
6 C(p, x, y)E

{
sup

06s6ε
|λ(s)− λ(0)|2p

}
.

(2.9)

Due to inequality | infv av − infv bv| 6 supv |av − bv|,

E
{

sup
06s6ε

|λ(s)− λ(0)|2p
}

6 C(p)
∑

i,k=1,··· ,n
j=1,··· ,d

E
{

sup
06s6ε

∣∣∣bkj(xs, ys)bij(xs, ys)− bkj(x, y)bij(x, y)
∣∣∣2p}. (2.10)

Noting that

bkj(xs, ys)bij(xs, ys)− bkj(x, y)bij(x, y)

= (bkj(xs, ys)− bkj(x, y))(bij(xs, ys)− bij(x, y))

+ bkj(x, y)(bij(xs, ys)− bij(x, y)

+ bij(x, y)(bkj(xs, ys)− bkj(x, y)),

and by (2.9)(2.10),

P{τ ′ < ε} 6 C(p, x, y)

[
E
{

sup
06s6ε

|bij(xs, ys)− bij(x, y)|2p
}

+ E
{

sup
06s6ε

|bij(xs, ys)− bij(x, y)|4p
}]
.

Hence this Lemma follows from Burkholder’s and Hölder’s inequalities and the fact

bij(xs, ys)− bij(x, y) = 〈∇bij(ξ, η), (xs, ys)− (x, y)〉,

here (ξ, η) is some point depending on (xs, ys) and (x, y).

Lemma 2.14. Let σ be a finite stopping time with bound cσ <∞, and there exists p̃ >
0 such that

P{σ < ε} 6 C(cσ, p̃)ε
p̃, ∀ε > 0,

holds for some constant C(cσ, p̃). Assume γ(t) = (γ1(t), ..., γd(t)), u(t) = (u1(t), ...ud(t))

are continuous adapted processes, W (t) = (W1(t), · · · ,Wd(t))
∗ is a d-dimensional stan-

dard Wiener process, a(t), ỹ(t) ∈ R and for t ∈ [0, cσ],

a(t) = α+

∫ t

0

β(s)ds+

∫ t

0

γ(s)dW (s),

ỹ(t) = ỹ +

∫ t

0

a(s)ds+

∫ t

0

u(s)dW (s).
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Suppose for some p, c̃ > 0,

E
{

sup
06t6σ

(|β(t)|+ |γ(t)|+ |a(t)|+ |u(t)|)p
}
6 c̃ <∞. (2.11)

Then for any three positive numbers (q, r, v) satisfying 2q−36r−9v > 16, there exists ε0 =

ε0(cσ, q, r, v) such that for any ε < ε0,

P

(∫ σ

0

ỹ(t)2dt < εq,

∫ σ

0

(|a(t)|2 + |u(t)|2)dt > ε

)
6 c̃εrp + exp (−ε− v4 ) + C(cσ, p̃)ε

p̃.

The proof of Lemma 2.14 is postponed to Appendix B.

Lemma 2.15. Let σ be a finite stopping time with bound cσ < ∞, and there exists
p̃ > 2, such that

P{σ < ε} 6 C(cσ, p̃)ε
p̃, ∀ε > 0

holds for some constant C(cσ, p̃). Consider the following one dimensional stochastic
differential equation

ỹ(t) = ỹ +

∫ t

0

a(s)ds+

∫ t

0

u(s)dW (s), t ∈ [0, cσ],

where u(s) = (u1(s), · · · , ud(s)) is a continuous adapted process,W (t) = (W1(t), · · · ,Wd(t))
∗

is a d-dimensional standard Wiener process. a(t), u(t) satisfy

E
{

sup
06t6σ

(|a(t)|+ |u(t)|)p
}
6 c̃ <∞,

for some p, c̃ > 0.
Then for any three positive numbers (q, r, v) satisfying 2q > 8 + 20r + v, there exists

ε0 = ε0(cσ, q, r, v) such that for any ε 6 ε0,

P

(∫ σ

0

ỹ(t)2dt < εq,

∫ σ

0

|u(t)|2dt > ε

)
6 c̃εrp + exp{−ε− v4 }+ C(cσ, p̃)ε

p̃.

The proof of Lemma 2.15 is postponed to Appendix B. Denote

‖v∗1B. + v∗2D.‖21
4

:= sup
s,r∈[0,τ ]

∣∣∣(|v∗1Bs + v∗2Ds|2 − |v∗1Br + v∗2Dr|2
)∣∣∣

|s− r| 14
. (2.12)

Lemma 2.16. Assume Hypothesis 2.1 and denote C0 = 2/λ(0), then for any p > 0, there
exists a constant C = C(p, T, x, y, q) such that

P
{
‖v∗1B. + v∗2D.‖21

4
>

1

4
5
4C

1
4
0

ε−
q3j0+6

8

}
6 C(p, T, x, y, q)εp, ∀ε > 0.

Proof. By (2.1) and Itô’s formula,

d|v∗1Bs + v∗2Ds|2 = −2〈(v∗1Bs + v∗2Ds), (v
∗
1Bs + v∗2Ds)∇ya2〉ds

− 2〈(v∗1Bs + v∗2Ds), (v
∗
1As + v∗2Cs)∇ya1〉ds

− 2

d∑
j=1

〈(v∗1Bs + v∗2Ds), (v
∗
1Bs + v∗2Ds)∇ybj〉dWj(s)

+ 2

d∑
j=1

〈(v∗1Bs + v∗2Ds), (v
∗
1Bs + v∗2Ds)∇ybj∇ybj〉ds

+

d∑
j=1

〈(v∗1Bs + v∗2Ds)∇ybj , (v∗1Bs + v∗2Ds)∇ybj〉ds.
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By Burkholder-Davis-Gundy inequality and Lemma 2.11, the above equation implies that
for any p > 0, there exists a constant C = C(p, T, x, y) such that for any s, r ∈ [0, T ],

E
[
|v∗1Bs + v∗2Ds|2 − |v∗1Br + v∗2Dr|2

]2p
6 C|s− r|p.

Set γ = 2p, ε = p− 1 and T0 = T in [17, Theorem 2.1], then for any p > 2,

Cp,T,x,y := E
[
‖v∗1B. + v∗2D.‖21

4

]2p
<∞.

Thus, ∀ε > 0, ∀p′ > 0

P
{
‖v∗1B. + v∗2D.‖21

4
>

1

4
5
4C

1
4
0

ε−
q3j0+6

8

}
6 C(p′)ε

q3j0+6

8 p′E
[
‖v∗1B. + v∗2D.‖21

4

]p′
.

(2.13)

Then this Lemma is obtained by setting p′ = 8p
q3j0+6 in (2.13),

Lemma 2.17. Assume Hypothesis 2.1, then for any p > 0 there exists a constant
C(p, T, x, y, q) such that

P
{
F ∩

{
sup
s∈[0,τ ]

|v∗1Bs + v∗2Ds|2 > ε
q3j0+6

10

}}
6 C(p, T, x, y, q)εp, ∀ε > 0.

Proof. Due to τ 6 τ ′ and ω ∈ F, for the constant C0 = 2/λ(0),∫ τ

0

|v∗1Bs + v∗2Ds|2(ω)ds 6 C0ε
q3j0+6

.

Set f(s) =
∫ s
0
|v∗1Bu + v∗2Du|2du, T0 = τ(ω) and α = 1

4 in Lemma 2.9, then

sup
s∈[0,τ ]

|v∗1Bs + v∗2Ds|2 6

max

{
4

τ

∫ τ

0

|v∗1Bu + v∗2Du|2du, 4
{∫ τ

0

|v∗1Bu + v∗2Du|2du
} 1

5
(
‖v∗1B. + v∗2D.‖21

4

) 4
5

}
.

Thus

P
{
F ∩

{
sup
s∈[0,τ ]

|v∗1Bs + v∗2Ds|2 > ε
q3j0+6

10

}}
6 P

{∫ τ

0

|v∗1Bs + v∗2Ds|2ds 6 C0ε
q3j0+6

, sup
s∈[0,τ ]

|v∗1Bs + v∗2Ds|2 > ε
q3j0+6

10

}
6 P

{
‖v∗1B. + v∗2D.‖21

4
>

1

4
5
4C

1
4
0

ε−
q3j0+6

8

}
+ P

(
τ < 4C0ε

9
10 q

3j0+6
)
. (2.14)

Due to (2.14), Lemma 2.13 and Lemma 2.16, for any p > 0, there exists a constant
C(p, T, x, y, q) such that

P
{
F ∩

{
sup
s∈[0,τ ]

|v∗1Bs + v∗2Ds|2 > ε
q3j0+6

10

}}
6 C(p, T, x, y, q)εp, ∀ε > 0.
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Lemma 2.18. Assume Hypothesis 2.1, then for any p > 0, there exists a positive con-
stant C(p, T, x, y, q) such that

P

{ d∑
j=1

∫ T

0

|(v∗1Bs + v∗2Ds)bj |2ds 6 εq
3j0+6

,

∫ τ

0

|(v∗1As + v∗2Cs)∇ya1|2ds > εq
3j0

}
6 C(p, T, x, y, q)εp, ∀ε > 0.

Proof. By (2.1),

d(v∗1Bs + v∗2Ds)

= −(v∗1Bs + v∗2Ds)∇ya2ds− (v∗1As + v∗2Cs)∇ya1ds

−
d∑
j=1

(v∗1Bs + v∗2Ds)∇ybjdWj(t) +

d∑
j=1

(v∗1Bs + v∗2Ds)∇ybj∇ybjds.

By noting that det(b(x, y)b∗(x, y)) 6= 0 and the definition of τ , if

d∑
j=1

∫ T

0

|(v∗1Bs + v∗2Ds)bj |2(ω)ds 6 εq
3j0+6

,

then for constant C = 2
λ(0) ,∫ τ

0

|v∗1Bs + v∗2Ds|2(ω)ds 6 Cεq
3j0+6

. (2.15)

Define

ỹ(s) : = (v∗1Bs + v∗2Ds) +

∫ s

0

(v∗1Bu + v∗2Du)∇ya2du−
d∑
j=1

∫ s

0

(v∗1Bu + v∗2Du)∇ybj∇ybjdu,

(2.16)

then

dỹ(s) = −(v∗1As + v∗2Cs)∇ya1ds−
d∑
j=1

(v∗1Bs + v∗2Ds)∇ybjdWj(s).

Due to Hölder inequality, (2.15) and (2.16), there exists a constant C(T, x, y) such that∫ τ

0

|ỹ(s)|2ds 6 C(T, x, y)

∫ τ

0

|v∗1Bs + v∗2Ds|2ds

This implies that{
d∑
j=1

∫ T

0

|(v∗1Bs + v∗2Ds)bj |2ds 6 εq
3j0+6

,

∫ τ

0

|v∗1As + v∗2Cs)∇ya1||2ds > εq
3j0

}

⊆

{∫ τ

0

|ỹ(s)|2ds 6 C(T, x, y)εq
3j0+6

,

∫ τ

0

|v∗1As + v∗2Cs)∇ya1|2ds > εq
3j0

}
.

The probability of the above event can be estimated by Lemma 2.14 and Lemma 2.13.

Lemma 2.19. Assume Hypothesis 2.1, then for any p > 0, there exists constants C =

C(p, T, x, y, q), ε0 = ε0(q, x, y) such that for j = 1, · · · , j0 − 1,

P{F ∩ Ej ∩ Ecj+1} 6 C(p, T, x, y, q)εp, ∀ε 6 ε0.
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From the definitions of F,Ej , the sets F,Ej depend on ε actually. In order to simplify
the proof of Lemma 2.19, first, we recall some definitions given in [9, Page40] and then
give a proposition.

Definition 2.20. Given a collection H = {Hε}ε61 of subsets of the probability space
Ω, we will say that "H is a family of negligible events" if, for every p > 1 there exists a
constant Cp such that P(Hε) 6 Cpε

p for every ε 6 1.

Given events {Φεj}16j6`,06ε, and for each j, ε,Φεj ⊆ Ω. We will say: the implication

Φεj ⇒ Φεj+1

holds modulo a family of negligible events, if

P
(

Φεj ∩ (Φεj+1)c
)
6 Cpε

p, ∀ε 6 1,∀p > 1.

Proposition 2.21. Given events {Φεj}16j6`,06ε . If for j = 1, · · · , `− 1, the implication

Φεj ⇒ Φεj+1

holds modulo a family of negligible events, then the implication

Φε1 ⇒ Φε`

holds modulo a family of negligible events.

We are now in a position to give

Proof. The Proof of Lemma 2.19: For any K ∈ Aj , by calculating,

d(v∗1As + v∗2Cs)K(xs, ys)

=
[
−

d∑
i=1

〈(v∗1Bs + v∗2Ds)∇xbi,∇yKbi〉+

d∑
i=1

(v∗1Bs + v∗2Ds)∇ybi∇xbiK(xs, ys)
]
ds

+

d∑
i=1

(
(v∗1As + v∗2Cs)∇yK(xs, ys)bi − (v∗1Bs + v∗2Ds)∇xbiK(xs, ys)

)
· dWi(s)

+
[
(v∗1As + v∗2Cs)∇yK(xs, ys)a2(xs, ys)− (v∗1Bs + v∗2Ds)∇xa2K(xs, ys)

]
ds

+ (v∗1As + v∗2Cs)
(
−∇xa1(xs, ys)K(xs, ys) +∇xK(xs, ys)a1(xs, ys)

)
ds

+
1

2
(v∗1As + v∗2Cs)

d∑
i=1

(
∇y(∇yK · bi)bi

)
ds.

:= I1(s)ds+

d∑
i=1

Hi(s)dWi(s) + I2(s)ds+ I3(s)ds+ I4(s)ds,

and denote I(s) =
∑4
`=1 I`(s), H(s) = (H1(s), · · · , Hd(s)). By Lemma 2.14 and definitions

of F and Ej , the implication

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

|H(s)|2ds 6 εq
3j0+2−3j

]
,

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

I(s)2ds 6 εq
3j0+2−3j

] (2.17)
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holds modulo a family of negligible events. In the following, we will prove: for some
constant C, the following implications hold modulo a family of negligible events,

F ∩ Ej ⇒
[ ∫ τ

0

I1(s)2ds 6 Cεq
3j0+6

]
, (2.18)

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

|(v∗1As + v∗2Cs)∇yK|2ds 6 Cεq
3j0+2−3j

]
, (2.19)

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

I2(s)2ds 6 Cεq
3j0+1−3j

]
, (2.20)

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

I4(s)2ds 6 Cεq
3j0+1−3j

]
. (2.21)

If these have been proved, then due to I3(s)2 6 2[I(s)2 + I1(s)2 + I2(s)2 + I4(s)2] and
(2.17) (2.18) (2.20) (2.21), the implication

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

I3(s)2ds 6 εq
3j0−3j

]
(2.22)

holds modulo a family of negligible events. Hence, combining (2.19) and (2.22), we get
the desired result.

(i) The proof of (2.18). For the constant C = 2
λ(0) ,

ω ∈ F ⇒
∫ τ

0

|(v∗1Bs + v∗2Ds)|2(ω)ds 6 Cεq
3j0+6

. (2.23)

Hence, for some constant C, the following implication holds

ω ∈ F ⇒
∫ τ

0

I1(s)2ds 6 Cεq
3j0+6

.

(ii) The proof of (2.19). Noting that, for some constant C

|(v∗1As + v∗2Cs)∇yKb|2 6 2|H(s)|2 + C|v∗1Bs + v∗2Ds|2,

and combining it with (2.17)(2.23), the implication

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

d∑
i=1

|(v∗1As + v∗2Cs)∇yK · bi|2ds 6 3εq
3j0+2−3j

]
(2.24)

holds modulo a family of negligible events. Due to the definition of τ and (2.24), for the
constant C = 3 · 2

λ(0) = 6
λ(0) , the implication

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

|(v∗1As + v∗2Cs)∇yK|2ds 6 Cεq
3j0+2−3j

]
holds modulo a family of negligible events.

(iii) The proof of (2.20). Combining (2.19) with (2.23), for some constant C, the
implication

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

I2(s)2ds 6 Cεq
3j0+1−3j

]
holds modulo a family of negligible events.

(iv) The proof of (2.21). In the process of obtaining (2.24), substitute ∇yK · bi for K,
then for some constant C and every i, the implication

F ∩
[ ∫ τ

0

|(v∗1As + v∗2Cs)∇yK · bi|2ds 6 3εq
3j0+2−3j

]
⇒ F ∩

[ d∑
`=1

∫ τ

0

|(v∗1As + v∗2Cs)∇y(∇yK · bi)b`|2ds 6 Cεq
3j0+1−3j

] (2.25)
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holds modulo a family of negligible events. Due to (2.24)(2.25) and Proposition 2.21,
for some constant C, the implication

F ∩ Ej ⇒ F ∩
[ ∫ τ

0

I4(s)2ds 6 Cεq
3j0+1−3j

]
holds modulo a family of negligible events.

Lemma 2.22. Assume Hypothesis 2.1, then there exists a constant ε0 = ε0(q, x, y) such
that

E ∩ {τ > εq} ∩
{

sup
s∈[0,τ ]

|v∗1Bs + v∗2Ds| 6 ε
q3j0+6

10

}
= ∅, ∀ε < ε0.

Proof. If ω ∈ E ∩ {τ > εq} ∩
{

sup
s∈[0,τ ]

|v∗1Bs + v∗2Ds| 6 ε
q3j0+6

10

}
, by (2.8), for some c > 0,

j0∑
j=1

∑
V ∈Aj

∫ τ

0

∣∣(v∗1As + v∗2Cs)V (xs, ys)(ω)
∣∣2ds

=

∫ τ

0

j0∑
j=1

∑
V ∈Aj

( (v∗1As + v∗2Cs)∣∣v∗1As + v∗2Cs
∣∣ V (xs, ys)(ω)

)2
· |v∗1As + v∗2Cs|

2
ds

> c

∫ τ

0

∣∣v∗1As + v∗2Cs
∣∣2ds.

(2.26)

For ω ∈
{

sups∈[0,τ ] |v∗1Bs + v∗2Ds| 6 ε
q3j0+6

10

}
, let s = 0,

|v2| 6 ε
q3j0+6

10 6
1

100
, |v1| =

√
1− |v2|2 >

9

10
.

This, together with the fact when s 6 τ , ‖As − Im‖ 6 1
100 and ‖Cs‖ 6 1

100 , implies∫ τ

0

∣∣v∗1As + v∗2Cs
∣∣2ds > 1

8
τ >

1

8
εq. (2.27)

By (2.26) and (2.27),

j0∑
j=1

∑
V ∈Aj

∫ τ

0

∣∣(v∗1As + v∗2Cs)V (xs, ys)(ω)
∣∣2ds > c

8
εq. (2.28)

In the following part, we will prove (2.28) is impossible when ε is small enough. Set
ε0 = ε0(q, x, y) such that when ε < ε0,

ε
q3j0+6

10 6
1

100
,

j0∑
j=1

εq
3j0+3−3j

<
c

8
εq.

For ω ∈ E ⊆ Ej , then∑
K∈Aj

∫ τ

0

∣∣(v∗1As + v∗2Cs)K(xs, ys)(ω)
∣∣2ds 6 εq

3j0+3−3j

,

hence when ε < ε0,

j0∑
j=1

∑
V ∈Aj

∫ τ

0

∣∣(v∗1As + v∗2Cs)V (xs, ys)(ω)
∣∣2ds 6 j0∑

j=1

εq
3j0+3−3j

<
c

8
εq,

this contradicts with (2.28).

Thus E ∩ {τ > ε} ∩
{

sups∈[0,τ ] |v∗1Bs + v∗2Ds|2 6 ε
q3j0+6

10

}
= ∅ as ε < ε0.
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We are now in a position to give

Proof. The proof of Theorem 2.2: Since

MT = JT M̃TJ
∗
T , (2.29)

where

M̃T =

∫ T

0

J−1s

( 0

b(xs, ys)

)( 0

b(xs, ys)

)∗
(J−1s )∗ds, (2.30)

we only need to prove the Lp integrability of det(M̃−1T ). For this purpose, we need to
prove for any p > 0, there exists constant C(p), such that

sup
|v|=1

P{v∗M̃T v 6 ε} 6 C(p)εp, ∀ε > 0. (2.31)

It is easy to check that (2.31) is equivalent to for any p > 0, v ∈ Rm+n, |v| = 1, there
exists positive constants ε0(p), C(p) such that

P{v∗M̃T v 6 ε} 6 C(p)εp, ∀ε 6 ε0(p). (2.32)

Assume v = (v∗1 , v
∗
2)∗ ∈ Rm ×Rn, J−1(s) =

(
As Bs
Cs Ds

)
. Due to (2.30),

v∗M̃T v =

d∑
j=1

∫ T

0

|(v∗1Bs + v∗2Ds)bj |2ds.

Here, we recall the definitions of E,F,Ej , τ which are given in the beginning of subsec-
tion 2.2. Then (2.32) is equivalent to for any p > 0 and v ∈ Rm+n, |v| = 1, there exists
constants C(p) and ε0(p) such that

P(F ) 6 C(p)εp, ∀ε 6 ε0(p).

Since

F ⊆ (F ∩ Ec1) ∪ (F ∩ E1 ∩ Ec2) ∪ (F ∩ E2 ∩ Ec3) ∪ · · · ∪ (F ∩ Ej0−1 ∩ Ecj0) ∪ E,

it holds that

P(F ) 6 P(E) +

j=j0−1∑
j=1

P(F ∩ Ej ∩ Ecj+1) + P(F ∩ Ec1). (2.33)

By Lemma 2.18 and Lemma 2.19, for any p > 0 and v ∈ Rm+n, |v| = 1, there exists
positive constants C(p, T, x, y, q), ε0(q, x, y) such that for any ε 6 ε0(q, x, y),

j=j0−1∑
j=1

P(F ∩ Ej ∩ Ecj+1) + P(F ∩ Ec1) 6 C(p, T, x, y, q)εp. (2.34)

For estimating P(E), we note that

P(E) 6 P
(
E ∩ {τ > εq}

)
+ P(τ < εq)

6 P
(
F ∩ {τ > εq} ∩ { sup

s∈[0,τ ]
|v∗1Bs + v∗2Ds| > ε

q3j0+6

10 }
)

+ P
(
E ∩ {τ > εq} ∩

{
sup
s∈[0,τ ]

|v∗1Bs + v∗2Ds| 6 ε
q3j0+6

10

})
+ P (τ < εq) .
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Therefore, due to Lemma 2.17, Lemma 2.22 and Lemma 2.13, there exists constants
C(p, T, x, y, q) and ε0 = ε0(q, x, y) such that

P(E) 6 C(p, T, x, y, q)εp, ∀ε 6 ε0. (2.35)

Due to (2.33), (2.34) and (2.35), for any p > 0 and v ∈ Rm+n with |v| = 1, there exists
constants C(p, T, x, y, q) and ε0(q, x, y) such that

P(F ) 6 C(p, T, x, y, q)εp, ∀ε 6 ε0(q, x, y).

Since T, x, y, q are fixed, this theorem has been proved.

3 Gradient Estimate

In this section, we give a gradient estimate. The Hypothesis and Theorem in this
section is

Hypothesis 3.1. There exists j0 ∈ N and R > 0 such that

(i) a1 ∈ C2
b (Rm ×Rn;Rm) ∩ Cj0+2(Rm ×Rn;Rm), a2 ∈ C2

b (Rm ×Rn;Rn);

(ii) b ∈ C2
b (Rm×Rn;Rn×Rd), det(b(x, y) · b∗(x, y)) 6= 0, ∀(x, y) ∈ Rm×Rn with |(x, y)| 6

R;

(iii) ∀(x, y) ∈ Rm ×Rn, |(x, y)| 6 R, the vector space spanned by ∪j0k=1Ak at point (x, y)

has dimension m.

Theorem 3.2. Assume Hypothesis 3.1, then for any t > 0, then there exists a constant
C = C (R, t) such that for any f ∈ C1

b (Rm ×Rn,R), (x, y) ∈ Rm ×Rn with |(x, y)| 6 R,

|∇Ptf (x, y) | 6 C (R, t) ‖f‖∞.

In order to prove this Theorem, we need the following Lemmas. These Lemmas give
some estimates of Jt, J

−1
t , (xt, yt) and Mt. Especially, we give a uniform estimate of Mt

in Lemma 3.5. In the end of this section, we give the proof of Theorem 3.2. The method
to prove Theorem 3.2 is standard.

We introduce some notations first. D(xt, yt) denotes the Malliavin derivative of
(xt, yt) and H = L2([0,∞), ds). δ denotes the divergence operator.

Lemma 3.3. Assume Hypothesis 3.1, then for any T, p > 0,

sup
|(x,y)|6R

Ex,y

{
sup
t∈[0,T ]

|(xt, yt)|p
}
<∞, (3.1)

sup
|(x,y)|6R

Ex,y

{
sup
t∈[0,T ]

‖Jt‖p
}
<∞, (3.2)

sup
|(x,y)|6R

Ex,y

{
sup
t∈[0,T ]

‖J−1t ‖p
}
<∞, (3.3)

sup
|(x,y)|6R

Ex,y‖MT ‖p <∞, (3.4)

Proof. For any (x, y) fixed, Ex,y
{

sups∈[0,T ] |(xs, ys)|p
}
<∞. Since function

h(x, y) := Ex,y
{

sup
t∈[0,T ]

|(xt, yt)|p
}

is continuous with respect to (x, y), (3.1) holds.
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For any p > 2, set f(t) = Ex,y
{

sups∈[0,t] ‖Js‖p
}

. Due to (1.7), there exists constants
C(p), C(p, T ) such that

f(t) 6 C(p) + C(p, T )

∫ t

0

f(s)ds, ∀t ∈ [0, T ].

Then, (3.2) follows from the Gronwall inequality and the proof of (3.3) is similar.
(3.4) follows from (3.1) (3.2) (3.3) and (1.5) .

Lemma 3.4. Assume Hypothesis 3.1, then for any T, p > 0,

sup
|(x,y)|6R

sup
r∈[0,T ]

Ex,y

{
sup
t∈[r,T ]

‖Dr(xt, yt)‖p
}
<∞, (3.5)

sup
|(x,y)|6R

sup
r∈[0,T ]

Ex,y

{
sup
t∈[r,T ]

∥∥DrJ
−1
t

∥∥p} <∞, (3.6)

sup
|(x,y)|6R

sup
r∈[0,T ]

Ex,y

{
sup
t∈[r,T ]

∥∥DrJt
∥∥p} <∞, (3.7)

sup
|(x,y)|6R

sup
r1,r2∈[0,T ]

Ex,y

{
sup

r1∨r26t6T
‖Dr1,r2X(t)‖p

}
<∞. (3.8)

Proof. (3.5), (3.8) are given in [15, Theorem 2.2.1, Theorem 2.2.2]. The other two esti-
mations are similar.

Lemma 3.5. Assume Hypothesis 3.1, then for any p, T > 0, there exists a constant
C(T, p,R) such that

sup
|(x,y)|6R

Ex,y
∣∣det(M−1T )

∣∣p 6 C(p,R, T ) <∞.

Proof. Due to (2.30), it only need to show

sup
|(x,y)|6R

sup
|v|=1

Px,y{v∗M̃T v 6 ε} 6 C(p,R, T )εp, ∀ε > 0,∀p > 0. (3.9)

The proof of (3.9) is similar to the proof of Theorem 2.2 in subsection 2.2, but it also has
some changes. In the following paragraphs, we will list these changes. These changes
come from that we need to show the constants appeared in subsection 2.2 depending
on R but independent of the (x, y) ∈ BR under the Hypothesis 3.1.

(1) R1 in (2.2)(2.3), c in (2.2) and Lemma 2.22. Define

Λ(x, y) := inf
|v|=1

( j0∑
j=1

∑
V ∈Aj

(v∗V (x, y)V ∗(x, y)v)
)
.

For Λ(x, y) is continuous with respect to (x, y) (c.f.(2.5)) and Λ(x, y) > 0,∀(x, y) ∈ BR,
then there exists R1 > 0 such that

inf
|(x,y)|6R+R1

Λ(x, y) > c :=
1

2
inf

|(x,y)|6R
Λ(x, y) > 0. (3.10)

Then the following inequality holds,

j0∑
j=1

∑
V ∈Aj

(
v∗V (x′, y′)

)2
> c, ∀(x′, y′) ∈ B((x, y), R1), ∀(x, y) ∈ BR, ∀|v| = 1.

(2) R3 in (2.6), C0 in Lemma 2.17 and Lemma 2.16. Set

R3 =
1

C0
:=

1

2
inf

(x,y)∈BR
inf
|v|=1

(v∗b(x, y)b∗(x, y)v) > 0.
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By the choosing of R3, definition of τ ′ and Hypothesis 3.1, it holds that

|v|2 6 C0

d∑
j=1

|v∗bj(xs, ys)|2, ∀v ∈ Rn,∀(x, y) ∈ BR,∀s 6 τ ′,

here (xs, ys)|s=0 = (x, y). Hence, the equalities (2.15)(2.19) hold with C = 3
C0

actually.
(3) Lemma 2.13. Due to Lemma 3.3, for the constants appeared in Lemma 2.12 and

Lemma 2.13, we can choose them depending on R but independent of the (x, y) ∈ BR.
(4) The using of Lemma 2.14 and Lemma 2.15. For example, in Lemma 2.18, we need

to estimate the following probability for some constant C(R),

P

{∫ τ

0

‖ỹ(s)‖2ds 6 (1 + T 2C(R))εq
3j0+6

,

∫ τ

0

|(v∗1As + v∗2Cs)∇ya1|2ds > εq
3j0

}
,

here

dỹ(s) = −(v∗1As + v∗2Cs)∇ya1ds−
d∑
j=1

(v∗1Bs + v∗2Ds)∇ybj · dWj(s).

When we use the Lemma 2.14, it needs to show that we can choose the constant c̃ in
(2.11) depending on R but independent of the (x, y) ∈ BR. This is due to Lemma 3.3 and
the fact when s 6 τ , |(x, y)| 6 R and |(xs, ys)| 6 R+R1.

(5) Other constants appeared in subsection 2.2. We can also choose them depending
on R but independent of the (x, y) ∈ BR.

We are now in a position to give

Proof. The proof of Theorem 3.2: For any ξ ∈ Rm+n,

〈∇Ptf (x, y) , ξ〉 = Ex,y∇f (xt, yt) Jtξ.

Assume xt = (x1t , · · · , xmt ) and yt = (y1t , · · · , ynt ), then by [15, (2.29),(2.30)],

Ex,y

{
∇if (xt, yt) Jtξ

}
=

m∑
k=1

E
{
f(xt, yt)δ

(
Jtξ(M

−1
t )i,kxkt

)}
+

m+n∑
k=m+1

E
{
f(xt, yt)δ

(
Jtξ(M

−1
t )i,kyk−mt

)}
.

Then, this Theorem follows from Lemma 3.3, Lemma 3.4, Lemma 3.5 and [15, Proposition
1.5.8].

In the end of this section, we give a Proposition which is supplementary to this
article.

Proposition 3.6. Assume Hypothesis 2.1 and a1, a2, b ∈ C2
b , then the law of (xt, yt) with

initial value (x, y) is absolutely continuous with respect to Lebesgue measure and its
density function p(t, (u, v)) is continuous with respect to (u, v) ∈ Rm × Rn for fixed t.
Furthermore, the following estimation holds

sup
(u,v)∈Rm×Rn

|p(t, (u, v))| <∞.

Proof. It directly follows from Theorem 2.2 and [18, Theorem 5.9].
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4 Strong Feller Property

In this section, we prove that the semigroup Pt associated with Eq.(1.1) is strong
Feller without the bounded conditions on the coefficients and their derivatives. By
Theorem 3.2, Pt is strong Feller under some conditions which need all coefficients for
Eq.(1.1) are in C2

b . But in the Hamiltonian systems, the diffusion and drift part are
polynomial growth, therefore the Theorem 3.2 can’t apply directly. But if the SDE has
global solution, we can also prove Pt is strong Feller without the bounded conditions.

The followings are the Hypothesis and Theorem in this section.

Hypothesis 4.1. There exists j0 ∈ N such that:

(i) a1 ∈ Cj0+2(Rm ×Rn;Rm), a2 ∈ C2(Rm ×Rn;Rn);

(ii) b ∈ C2(Rm ×Rn;Rn ×Rd), det(b(x, y) · b∗(x, y)) 6= 0, ∀(x, y) ∈ Rm ×Rn;

(iii) ∀(x, y) ∈ Rm ×Rn, the vector space spanned by ∪j0k=1Ak at point (x, y) has dimen-
sion m;

(iv) The solution to Eq.(1.1) exists globally for any initial value (x, y) ∈ Rm ×Rn.

Theorem 4.2. Assume Hypothesis 4.1 and let (xt, yt) be the solution to Eq.(1.1) with
initial value (x, y), then the law of (xt, yt) is continuous in variable (x, y) with respect to
the total variation distance. In particular, the semigroup (Pt)t>0 has the strong Feller
property, i.e., for any t > 0 and f ∈ Bb(Rm+n),

(x, y) ∈ Rm+n 7→ Ex,yf(xt, yt) is continuous.

Remark 4.3. If there exists a Liapunov function W such that LW 6 cW for some c > 0,
then the (iv) in Hypothesis 4.1 holds by [13, Theorem 5.9]. Here

L =

m∑
i=1

ai1
∂

∂xi
+

n∑
i=1

ai2
∂

∂yi
+

1

2

n∑
i,j=1

(b · b∗)i,j
∂2

∂yi∂yj
.

Remark 4.4. Under Hörmander’s bracket condition, it is well known that Pt is strong
Feller. In Theorem 4.2, we give a stronger result: the law of (xt, yt) is continuous in
variable (x, y) with respect to the total variation distance.

For the convenience of writing, we will use x instead of (x, y) in the rest of this
section. Let Xx

t = (xt, yt) be the solution of Eq.(1.1) with initial value x ∈ Rm ×Rn. In
the following part, we will use the localization to prove Theorem 4.2.

For any fixed ` ∈ N, set a(x) = (a∗1(x), a∗2(x))∗, a`(x) = h`(x)a(x), b`(x) = h`(x)b(x), h`(x) ∈
R is a smooth function with compact support and h`(x) = 1 on B◦` . Let X`

s(x) be the so-
lution to the following equation,

X`
s(x) = x+

∫ s

0

a`(X
`
r(x))dr +

∫ s

0

(
0

b`(X
`
r(x))

)
dWr. (4.1)

Define a sequence of stopping time

S`(x) = inf{s > 0, X`
s(x) 6∈ B◦` }, ` > 1.

If Hypothesis 4.1 holds, then for any x ∈ Rm+n, the following properties holds a.s.

S`(x) < S`+1(x), (4.2)

X`
s(x) = X`+1

s (x), ∀s ∈ [0, S`(x)), (4.3)

Xx
s = X`

s(x), ∀s ∈ [0, S`(x)), (4.4)

sup
`
S`(x) =∞. (4.5)

In order to prove Theorem 4.2, we also need the following Lemmas.
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Lemma 4.5. Assume Hypothesis 4.1, then for any x0 ∈ Rm+n, ` > 2, t > 0

lim sup
x→x0

I{t>S`(x)} 6 I{t>S`−1(x0)}, a.s.

Proof. There exists a measurable set Γ such that P(Γc) = 0 and for any ` and ω ∈ Γ,
X`
s(x, ω) is continuous with respect to x and s. We will prove that for ω ∈ Γ,

lim sup
x→x0

I{t>S`(x)}(ω) = 0 or I{t>S`−1(x0)}(ω) = 1,

which implies the desired result. Assume that ω ∈ Γ and

lim sup
x→x0

I{t>S`(x)}(ω) = 1 and I{t>S`−1(x0)}(ω) = 0. (4.6)

We will prove that this is impossible. If ω ∈ Γ and satisfies (4.6), then

t < S`−1(x0), (4.7)

and there exist {xn} ⊂ Rm+n with xn → x0 as n→∞, such that for n large enough

sup
s∈[0,t]

|X`
s(xn, ω)| > `. (4.8)

By (4.7),

sup
s∈[0,t]

|X`−1
s (x0, ω)| 6 `− 1.

By t < S`−1(x0), (4.3) and sups∈[0,t] |X`−1
s (x0, ω)| 6 `− 1,

sup
s∈[0,t]

|X`
s(x0, ω)| 6 `− 1. (4.9)

For X`
s(x, ω) is continuous with respect to s and x and [0, t]×B(0, 1) ⊆ [0,∞)×Rm+n is

a compact set, therefor for ε0 = 1
2 there exists δ0 > 0 such that for any |x− x0| 6 δ0 and

s ∈ [0, t]

|X`
s(x0, ω)−X`

s(x, ω)| 6 1

2
.

This means that when |x− x0| 6 δ0,

sup
s∈[0,t]

|X`
s(x, ω)| 6 sup

s∈[0,t]
|X`

s(x0, ω)|+ 1

2
,

Therefore, by (4.9), for any x with |x− x0| 6 δ0,

sup
s∈[0,t]

|X`
s(x, ω)| 6 `− 1 +

1

2
= `− 1

2
,

which contradicts with (4.8).

Let {P `t }t>0 be the transition semigroup of (4.1).

Lemma 4.6. Assume Hypothesis 4.1, then for any x ∈ B`,

lim
y→x

sup
‖f‖∞61

E
[
f(X`

t (y))− f(X`
t (x))

]
= 0.
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Proof. Since a` = a := (a1, a2) and b` = b on B`, hence (a`, b`) satisfies Hypothesis 3.1

with R = `. In the proof of Theorem 3.2, let R = `, substitute a` for a and b` for b, then

|∇P `t f(y)| 6 C(`, t)‖f‖∞, ∀f ∈ Cb,∀y ∈ B`. (4.10)

From (4.10), we can obtain this Lemma.

We are now in a position to give

Proof. The proof of Theorem 4.2: For any x, y ∈ Bo`

E[f(Xt(x))− f(Xt(y))] 6 E[f(Xt(x))1t<τ`(x) − f(Xt(y))1t<τ`(y)]

+ ‖f‖∞P(t > τ`(x)) + ‖f‖∞P(t > τ`(y))

6 E[f(X`
t (x))1t<τ`(x) − f(X`

t (y))1t<τ`(y)]

+ ‖f‖∞P(t > τ`(x)) + ‖f‖∞P(t > τ`(y))

6 E[f(X`
t (x))− f(X`

t (y))]

+ 2‖f‖∞P(t > τ`(x)) + 2‖f‖∞P(t > τ`(y)).

By Lemma 4.6

lim
y→x

sup
‖f‖∞61

E[f(X`
t (x))− f(X`

t (y))] = 0. (4.11)

By (4.11) and Lemma 4.5,

lim
y→x

sup
‖f‖∞61

E[f(Xt(x))− f(Xt(y))] 6 2P(t > τ`(x)) + 2 lim sup
y→x

P(t > τ`(y))

6 2P(t > τ`(x)) + 2P(t > τ`−1(x)),

let `→∞ in the above inequality, we obtain that

lim
y→x

sup
‖f‖∞61

E[f(Xt(x))− f(Xt(y))] = 0.

Remark 4.7. For the Eq.(1.3), [5, Thoerem 1.1] proved that Xt has a density p(t, x, y)

and gave the upper and lower bounds of p(t, x, y) if the spectrum of the matrix-valued
function A = σ ·σ∗ is included in [Λ−1,Λ] for some Λ > 1. In this article, we can’t obtain
such strong results since our condition is det

(
σ(x) · σ∗(x)

)
6= 0, which is weaker than

that in [5].

5 Some Applications

The strong Feller property is very useful when we prove the uniqueness of invariant
measure. If Xt ∈ Rn, t ∈ [0,+∞), n ∈ N is a continuous Markov process. The following
theorem is classical.

Theorem 5.1. (c.f. [20] [6] [7] etc.) Let Pt be the semigroup associated with Xt, and

(i) the Markov process Xt is irreducible, i.e,

Pt(x,A) > 0, for all t > 0, x ∈ Rn, open set A,

(ii) Pt is strong Feller,

then Pt exists at most one invariant measure.

Remark 5.2. The conditions in Theorem 5.1 can be weaken, such as [9, Corollary 1.4].
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5.1 The Langevin Equation

This example is extended from the one in [14]. Let Wt, t ≥ 0 be a standard d-
dimensional Brownian Motion and F : Rd → R, σ ∈ Rd×d invertible. Consider the
Langevin SDE for q, p ∈ Rd the position and momenta of particle of unit mass, namely{

dq = pdt,

dp = −γpdt−∇F (q)dt+ σdWt.
(5.1)

Proposition 5.3. Assume that F ∈ C3(Rd,R) and satisfies

(i) F (q) > 0 for all q ∈ Rd;

(ii) There exists an α > 0 and β ∈ (0, 1) such that

1

2
〈∇F (q), q〉 > βF (q) + γ2

β(2− β)

8(1− β)
||q||2 − α.

Then the semigroup Pt associated with the Langevin SDE is strong Feller and has a
unique invariant measure.

Proof. First, Hypothesis 4.1 holds for j0 = 1, hence Pt is strong Feller by Theorem 4.2.
Second, Pt is irreducible by [14, Lemma 3.4] . Therefore, Pt has at most one invariant
measure. Third, the invariant measure for Pt exists by [14, Corollary A.5].

5.2 Stochastic Hamiltonian Systems

This example is extended from the one in [21]. Consider a stochastic differential
system of the type

Xt = X0 +

∫ t

0

∂yH(Xs, Ys)ds,

Yt = Y0 −
∫ t

0

[
∂xH(Xs, Ys) + F (Xs, Ys)∂yH(Xs, Ys)

]
ds+Wt,

(5.2)

where Xt, Yt,Wt belong to Rd.
In the following Proposition, we don’t need F and H ∈ C∞ as in [21].

Proposition 5.4. Assume there exists strictly positive numbers ν,M, δ, and there exits
a function R(x, y) on R2d with second derivatives having polynomial growth at infinity,
such that

(i) F ∈ C2, H ∈ C4;

(ii) 0 < ν|ξ|2 6
∑d
i,j=1 ∂yiyjH(x, y)ξiξj , ∀x, y, ξ;

(iii) H(x, y) +R(x, y) +M > δ(|x|ν + |y|ν);

(iv) LH(x, y) + LR(x, y) 6 −δ(H(x, y) +R(x, y)) +M ;

(v) |∂yH(x, y) + ∂yR(x, y)|2 6M(H(x, y) +R(x, y) + 1).

then the semigroup Pt associated with the equation (5.2) is strong Feller and has a
unique invariant measure.

Proof. First, Hypothesis 4.1 holds for j0 = 1 by (ii). Thus Pt is strong Feller by Theorem
4.2. Second, Pt is irreducible by [21, Lemma 2.2]. Hence the invariant measure for Pt is
at most one. Third, the invariant measure for Pt exists by [21, Lemma 2.1 and Corollary
2.1].
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5.3 High Order Stochastic Differential Equations

Consider the following Stochastic Differential Equations with order n,

x
(n)
t = f(x

(n−1)
t , · · · , xt) + b(x

(n−1)
t , · · · , xt)Ḃt, (5.3)

where x(k)t = dkxt
dtk

, k = 1, · · · , n, xt ∈ Rm, b ∈ Rm×d, Bt ∈ Rd.
Set yi(t) = x

(i−1)
t , 1 6 i 6 n, then yt = (y1(t), · · · , yn(t)) satisfy the following stochas-

tic differential equation:
dy1(t) = y2(t)dt,
...
dyn−1(t) = yn(t)dt,

dyn(t) = f(yn, yn−1, · · · , y1)dt+ b(yn, yn−1 · · · , y1)dBt.

(5.4)

Proposition 5.5. Let xxt be the solution of equation (5.3) with initial value x = (x0, · · · , x(n−1)0 ) ∈
Rm×n, Pt be the semigroup associated with (5.3),

(1) If f ∈ C2
b (Rm×n;Rm), b ∈ C2

b (Rm×n;Rm) and det(b(x)b∗(x)) 6= 0, then the law of
xxt is absolutely continuous with respect to Lebesgue measure, and its density
p(t, x, y) is continuous with respect to y and supy |p(t, x, y)| <∞.

(2) If f ∈ C2(Rm×n;Rm), b ∈ C2(Rm×n;Rm) and for any x ∈ Rm×n, det(b(x)b∗(x)) 6= 0

and the solution to equation (5.3) with initial value x is globally exists, then the
semigroup Pt is strong Feller.

Proof. Hypothesis 4.1 holds for j0 = 1, hence (1) follows from Proposition 3.6. And (2)

follows from Theorem 4.2,.

Specially, if we consider the following stochastic differential equation

x
(n)
t + an−1(xt)x

(n−1)
t + · · ·+ a0(xt)xt + c(xt) +

b(xt)dBt
dt

= 0, (5.5)

where x(k)t = dkxt
dtk

, xt ∈ Rm, Bt ∈ Rd, b(xt) ∈ Rm×d, c ∈ Rm, a0, · · · , an−1 ∈ Rm×m.

Corollary 5.6. Let xxt be the solution of equation (5.5) with initial value x = (x0, · · · , x(n−1)0 ) ∈
Rm×n.

(1) If a0, · · · , an−1 ∈ C2
b (Rm;Rm×m), b ∈ C2

b (Rm;Rm×d), c ∈ C2
b (Rm;Rm), and det(b(x0)b∗(x0)) 6=

0, then the law of xxt is absolutely continuously with respect to Lebesgue measure,
and its density p(t, x, y) is continuous with respect to y and supy |p(t, x, y)| <∞.

(2) If a0, · · · , an−1 ∈ C2(Rm;Rm×m), b ∈ C2(Rm;Rm×d), c ∈ C2(Rm;Rm), and for any

x = (x0, · · · , x(n−1)0 ) ∈ Rm×n, det(b(x0)b∗(x0)) 6= 0 and xxt is globally exists, then
the semigroup Pt is strong Feller.

Proof. It can be obtained by Proposition 5.5.

Appendix A

If we set

V =


0 0 1 1

2 2 1 −1

2 −3 1 −1

1 0 −1 1

 and


X

1

t

X
2

t

Y
1

t

Y
2

t

 = V


X1
t

X2
t

Y 1
t

Y 2
t

 ,

then it can be shown that Y
2

t ≡ 0, hence the Malliavin matrix for (X
1

t , X
2

t , Y
1

t , Y
2

t ) sin-
gular a.s.. For V is invertible, therefor the the Malliavin matrix for (Xt, Yt) is singular
also.
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Appendix B: Proof of Lemma 2.14 and Lemma 2.15

The proof of Lemma 2.14 and Lemma 2.15 are very similar to the Norris’s proof of
Kusuoka-Stroock Lemma (c.f. [15, Lemma 2.3.1]), we only give the proof of Lemma 2.15

here.

Proof. Proof of Lemma 2.15: Define stopping time as

ζ = inf

{
t > 0 : sup

06s6t
(|a(s)|+ |u(s)|) > ε−r

}
∧ σ,

then

B =

{∫ σ

0

ỹ(t)2dt < εq,

∫ σ

0

|u(t)|2dt > ε

}
⊆ A1 ∪A2 ∪A3,

where

A1 =

{∫ σ

0

ỹ(t)2dt < εq,

∫ σ

0

|u(t)|2dt > ε, ζ = σ, σ > ε

}
,

A2 = {ζ < σ} ,
A3 = {σ < ε} .

Obviously,

P{A2} 6 c̃εrp, P{A3} 6 C(cσ, p̃)ε
p̃,

therefore we only need to estimate P(A1).
Introduce the following notation

Nt =

d∑
i=1

∫ t

0

ỹ(s)ui(s)dWi(s),

Mt =

d∑
i=1

∫ t

0

ui(s)dWi(s),

B =

{
〈N〉σ < ρ1, sup

06s6σ
|Ns| > δ1

}
,

where ρ1 = εq−2r, δ1 = ε
q
2−r−

v
4 .

We will prove that there exists ε0 = ε0(cσ, q, r, v), such that

A1 ⊆ B, for all ε 6 ε0.

If this has been proved, then

P{A1} 6 P{B} 6 2 exp{− δ21
2ρ1
} 6 exp{−ε− v4 },

and this Lemma holds.
In the below, we will to prove: there exists ε0 = ε0(cσ, q, r, v), such that

A1 ⊆ B, for all ε 6 ε0.

Set ε0 = ε0(cσ, q, r, v), such that for ε 6 ε0(cσ, q, r, v), the following inequalities hold.

εq + 2cσ(
√
cσε

q
2−r + δ1) 6 ε

q
2−r−

v
4 (1 + 2cσ),

ε
q
4−

r
2−

v
8 (1 + 2cσ) + ε

5q
4 −

5r
2 −

v
8 < ε.
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We only need to prove for any ε 6 ε0(cσ, q, r, v), ω ∈ Bc implies ω ∈ Ac1.
Let ω ∈ Bc,

∫ σ
0
ỹ(t)2dt < εq, σ(ω) = ζ(ω) > ε, then similar to the estimations of

sup
06s6T

∣∣∣ ∫ t0 YsdYs∣∣∣, ∫ T0 〈M〉tdt and 〈M〉T in the proof of Lemma 2.3.2 in [15], we can obtain

sup
t6σ

∣∣∣ ∫ t

0

ỹsdỹs

∣∣∣ 6 √cσε q2−r + δ1,∫ σ

0

〈M〉tdt 6 ε
q
2−r−

v
4 (1 + 2cσ),

〈M〉σ 6 γ−1ε
q
2−r−

v
4 (1 + 2cσ) + γε−2r, ∀γ ∈ (0, σ). (5.6)

Let γ = ε
1
2 ( q2−r−

v
4 ) < ε 6 σ in (5.6). Since 2q > 8 + 20r + v, we have 〈M〉σ < ε, i.e.

ω ∈ Ac1.
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