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e–mail: francesco.caravenna@math.unizh.ch

Giambattista Giacomin

Laboratoire de Probabilités de P 6 & 7 (CNRS U.M.R. 7599)
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Abstract

We consider continuous and discrete (1+1)–dimensional wetting models which undergo a lo-
calization/delocalization phase transition. Using a simple approach based on Renewal Theory
we determine the precise asymptotic behavior of the partition function, from which we obtain
the scaling limits of the models and an explicit construction of the infinite volume measure
in all regimes, including the critical one.
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1 Introduction

1.1 Definition of the model

The building blocks of our model are a σ–finite measure µ on R (the single site a priori measure)
and a function V : R 7→ R ∪ {+∞} (the potential). We allow two possible choices of µ:

• Continuous set–up: µ = dx is the Lebesgue measure on R. In this case we require that
exp(−V (·)) be bounded and continuous.

• Discrete set–up: µ is the counting measure on Z .

In both settings we assume that V (0) < ∞ and that

κ :=
∫

R
e−V (y) µ(dy) < ∞ .

Additional assumptions on V (·) will be stated in the next subsection.

For ε ≥ 0, N ∈ N our model is defined by the following probability measure on (R+)N :=
[0,∞)N :

Pa
ε,N (dx) :=

1
Za

ε,N

exp(−Ha
N (x))

N∏
i=1

(
1(xi>0) µ(dxi) + εδ0(dxi)

)
, (1.1)

where Za
ε,N is the normalizing constant (partition function), a is a label that stands for f (free)

or c (constrained) and the corresponding Hamiltonians are defined by

H f
N (x) :=

N−1∑
i=0

V (xi+1 − xi) x0 := 0 ,

Hc
N (x) :=

N∑
i=0

V (xi+1 − xi) x0 := xN+1 := 0 .

We interpret Pa
ε,N as an effective model for a (1+1)–dimensional interface above an impenetrable

wall that, when ε > 0, attracts it (see Figure 1 ad the relative caption).

Remark 1.1. We stress that the assumption V (0) < ∞ has been made only for simplicity
and can be removed at the price of some heavier notation. Also notice that in the definition
(1.1) of our model we have chosen to impose the positivity constraint (xi > 0) instead of
the more customary nonnegativity one (xi ≥ 0). Of course this makes a real difference only
in the discrete set–up, and also in this case the difference is unessential, since choosing the
nonnegativity constraint amounts to switching ε → 1 + ε in the r.h.s. of (1.1). However dealing
with the positivity constraint allows to analyze the continuous and discrete set–ups in a unified
way, and this is the reason of our choice.
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Figure 1: A trajectory of the walk (or interface) above the wall. The last step may be constrained
or free, according to the model. The walk is rewarded when it enters the gray thin layer close to
the wall. The competition between the energetic gain coming from this reward and the entropic
repulsion due to the presence of the wall leads to a nontrivial behavior. Such a model has been
proposed at several instances for the study of interfaces and polymers, we refer to [20] for details
and references.

1.2 A random walk viewpoint

We introduce a sequence (Yi)i∈N of IID random variables with law P such that

P(Y1 ∈ dx) :=
1
κ

exp(−V (x)) µ(dx) ,

and we denote by (Sn)n≥0 the associated random walk: S0 := 0, Sn := Y1 + . . . + Yn.

The basic assumption we make on the potential V (·) is the following one:

(H) The truncated variance t 7→ V(t) := E
[
|Y1|21{|Y1|≤t}

]
is slowly varying at infinity and

E
[
Y1

]
= 0 .

We recall that a function L(·) is said to be slowly varying at infinity if for every c > 0 one
has L(ct)/L(t) → 1 as t → ∞. This entails that L(x)/xα → 0 as x → ∞, for every α > 0, cf.
[4, Prop. 1.3.6]. Notice that if the truncated variance is slowly varying, then we have P

[
|Y1| ≥

t
]
≤ V(t)/t2 for large t, cf. [4, Th. 8.3.1], hence all the moments of Y1 of order less than 2 are

automatically finite.

Of course assumption (H) holds whenever Y1 is centered and has a finite variance, that is when
E
[
Y1

]
= 0 and E

[
|Y1|2

]
=: σ2 < ∞ . Allowing the truncated variance to be slowly varying turns

out to be a very natural generalization: indeed assumption (H) is a necessary and sufficient
condition for (Sn)n≥0 to be in the domain of attraction (without centering) of the Gaussian law,
see Appendix A.1 for more on this issue (cf. also [4, Th. 8.3.1]).

Now let us look more closely to our model. For ε = 0 we have the following random walk
interpretation: Pf

0,N is just the law of (S1, . . . , SN ) under the positivity constraint {S1 > 0, S2 >
0, . . . , SN > 0}, while Pc

0,N is the law of the same random vector under the further constraint
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{SN+1 = 0}. Then by the weak convergence toward Brownian meander and Brownian excursion
we have that the Pa

0,N–typical height of the interface in the bulk is of order
√

N , hence very far
from the interface (delocalized regime). On the other hand, when ε > 0 the interface receives an
ε–reward each time it touches the wall and intuitively one expects that if ε is large enough this
attractive effect should be able to beat the entropic repulsion, leading to a localized regime. As
we are going to see, this scenario is correct.

1.3 The phase diagram and the scaling limits

The model we are considering has been studied in [16] in the discrete set–up, for the special
choice exp(−V (x)) = v

2 1(|x|=1) + r 1(x=0), with v > 0, r ≥ 0 and v + r = 1, and more recently
in [9] in the continuous set–up with finite variance (that is when E

[
|Y1|2

]
< ∞). In both cases

it has been proven that:

(i) There is a phase transition at ε = εc > 0, between a delocalized regime (ε ≤ εc) in which
the interface is repelled by the wall and a localized regime (ε > εc) in which the interface
sticks close to the wall. A convenient definition of (de)localization may be given for instance
in terms of the free energy, that is by looking at the Laplace asymptotic behavior of the
partition function, cf. [9, § 2.2].

(ii) More quantitatively, Brownian scaling limits hold, inducing a further distinction in the
delocalized regime. More precisely, the linearly interpolated diffusive rescaling of Pa

ε,N

converges in distribution as N →∞:

– when ε < εc (strictly delocalized regime), to the Brownian meander if a = f or to the
normalized Brownian excursion if a = c;

– when ε = εc (critical regime), to the reflecting Brownian motion if a = f or to the
reflecting Brownian bridge if a = c;

– when ε > εc (localized regime), to the law concentrated on the function taking the
constant value 0 for both a = f and a = c.

The proof of these results in [16] has been obtained by exploiting some very peculiar properties
enjoyed by walks with increments in {−1, 0,+1}. On the other hand, the more general approach
adopted in [9] is based on bounds on the asymptotic behavior of the partition function Za

ε,N

as N →∞.

1.4 Outline of the results

The purpose of this note is to present a simple approach based on Renewal Theory, which
is applicable in complete generality in both the continuous and discrete cases, that allows to
determine the precise asymptotic behavior of the partition function Za

ε,N in all regimes. This
yields a considerable simplification of several steps in [9] and allows the extension of the above
results (i) and (ii) to the general continuous and discrete set–ups in a straightforward way.

Another important byproduct of our approach, and possibly the main result presented here, is
the infinite volume limit of our model, that is the weak convergence of Pa

ε,N without rescaling,
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as a probability measure on (R+)N. This issue has been already considered in [9] but only for
the localized regime. Here we show that the weak limit as N → ∞ of Pa

ε,N exists in complete
generality, namely in both the continuous and discrete cases, for both a = f and a = c and
in all the regimes (that is for all values of ε), cf. Theorem 4.1. This will come with an explicit
description of the limit measure, whose properties differ considerably in the strictly delocalized,
critical and localized regimes, in complete analogy to the above mentioned scaling limits.

The exposition is organized as follows:

– In Section 2 we describe a Renewal Theory approach to our model.

– This will lead to the determination of the precise asymptotic behavior of the partition
function (Section 3), to be compared to [9, Lemma 3].

– These results, in turn, are the key to proving the existence of the infinite volume limit in
Section 4 in all regimes.

– Finally, in Section 5 we give the main ingredients to extend the proof of the scaling limits
given in [9] to our general setting.

2 A Renewal Theory viewpoint

In this section we make explicit the link with Renewal Theory, showing that a suitable modifi-
cation of the constrained partition function Zc

ε,N can be interpreted as the (generalized) Green
function associated with a probability measure q(·) that we define below. We also give a simple
relation linking Zf

ε,N and Zc
ε,N . Throughout the paper, we write for positive sequences (an)n and

(bn)n:
an ∼ bn ⇐⇒ lim

n→∞
an/bn = 1.

2.1 The constrained case

Let us consider first the ε = 0 case. We claim that
Zc

0,N

κN+1
∼ C√

2π

L(N)
N3/2

(N →∞), (2.1)

where C is a positive constant and L(·) is a slowly varying function. The proof of this relation
is deferred to Appendix A, where C and L(·) are given explicitly. We stress that in the case of
finite variance we have L(·) ≡ σ−1.

We set for convenience Zc
ε,0 := exp(−V (0)). We recall that L(x)/xα → 0 as x →∞ for every α >

0, because L(·) is slowly varying. Then from equation (2.1) it follows that γ :=
∑

n≥1 Zc
0,n−1/κn <

∞, hence we can define a probability distribution q(·) on N by setting

q(n) :=
1
γ

Zc
0,n−1

κn
(n ≥ 1) ,

and we have for some positive constant cq:

q(n) ∼ cq
L(n)
n3/2

(n →∞) . (2.2)
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Next we pass to the ε > 0 case. It is convenient to switch from the parameter ε to δ := γε and
to make a change of scale, by setting for N ≥ 1

Z̃c
δ,N :=

(δ/γ) Zc
(δ/γ),N−1

κN
Z̃f

δ,N :=
(δ/γ) Zf

(δ/γ),N

κN
. (2.3)

Then from the very definition of the partition function Zc
ε,N it follows that Z̃c

δ,N+1 satisfies the
following recurrence relation (cf. [9, Lemma 2]):

Z̃c
δ,0 := 1 , Z̃c

δ,N = δ

N∑
t=1

q(t) Z̃c
δ,N−t , (N ≥ 1) . (2.4)

This is nothing but the (generalized) renewal equation driven by δ q(·), see [3], and it is easily
checked that its unique solution is given by

Z̃c
δ,N =

∞∑
k=0

δk qk∗(N), (2.5)

where qk∗ denotes the k–fold convolution of q with itself (by convention q0∗(n) := 1(n=0)). Notice
that the infinite sum in the right hand side of (2.5) is in fact a sum from 0 to N .

It will be shown in the next section (but it is somewhat clear from (2.5)) that the asymptotic
behavior of Z̃c

δ,N is radically different according to whether δ S 1, and since δ = γε it is natural
to set (cf. equation (4) in [9, § 1.2])

εc :=
1
γ

=
1∑

n≥1 Zc
0,n−1/κn

. (2.6)

We will see that the three regimes ε < εc, ε = εc and ε > εc correspond indeed to the strictly
delocalized, critical and localized regimes mentioned in the introduction. It is also interesting to
observe that in the discrete set–up equation (2.6) gives the explicit formula εc = 1/P(H1 = 0),
where H1 is the first weak descending ladder height of the random walk (Sn)n≥0, see Ap-
pendix A.3.

Remark 2.1. We point out that this approach can be generalized via the so–called Markov
Renewal Theory [3], allowing to study periodically inhomogeneous models, that is the case in
which ε is substituted by εi ∈ R and εi = εi+T for some T ∈ N and every i. This has been
recently worked out in [8], in the context of models of copolymers with adsorption.

2.2 The free case.

From the definition of Zf
ε,N , conditioning on the last epoch when the interface touches the wall,

we have the following simple relation for the modified free partition function (cf. equation (18)
in [9, § 2.3]):

Z̃f
δ,N =

N∑
t=0

Z̃c
δ,t P (N − t) , (2.7)
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where P (n) is the probability that the unperturbed random walk (Si)i stays positive up to
epoch n:

P (n) := P(Si > 0, i = 1, . . . , n) , P (0) := 1 . (2.8)

It is worth recalling that if we set

L′(n) :=
√

n P (n) , (2.9)

then assumption (H) yields that L′(·) is slowly varying at infinity, cf. for instance [11]. We note
that, by the standard theory of stability [4], this is equivalent to saying that the first descending
ladder epoch T 1 (see Appendix A.3) is in the domain of attraction of the positive stable law of
index 1/2, like in the simple random walk case.

3 Sharp asymptotic behavior of the partition function

In this section we specialize the theory of the renewal equation [3] to our heavy–tailed setting,
see (2.2), in order to find the asymptotic behavior of Z̃c

δ,N and Z̃f
δ,N . The result is radically

different in the three regimes δ S 1, that we consider separately.

3.1 The strictly delocalized regime (δ < 1).

The following lemma gives the asymptotic behavior of the partition function in the strictly
delocalized regime. To get some intuition we observe that Z̃c

δ,N when δ < 1 is the Green function
of a renewal process with defective interarrival distribution δ q(·), as it follows from (2.5).

Lemma 3.1. If δ < 1 and relations (2.2) and (2.9) hold, then

Z̃c
δ,N ∼ δ cq

(1− δ)2
L(N)
N3/2

(N →∞) , (3.1)

Z̃f
δ,N ∼ 1

1− δ

L′(N)
N1/2

(N →∞) . (3.2)

Proof. From (2.5) we have that

n3/2

L(n)
Z̃c

δ,n =
∞∑

k=1

δk n3/2

L(n)
qk∗(n) . (3.3)

We claim that

lim
n→∞

n3/2

L(n)
qk∗(n) = k cq, ∀ k ≥ 1. (3.4)

We argue by induction, the case k = 1 being true by (2.2). Suppose that we have proven (3.4)
for k = 1, . . . ,m, then we have:

n3/2

L(n)
q(m+1)∗(n) =

bn/2c∑
i=1

+
n−1∑

bn/2c+1

 n3/2

L(n)
qm∗(i) q(n− i) =

=
bn/2c∑
i=1

qm∗(i)
(

n3/2

L(n)
q(n− i)

)
+

dn/2e−1∑
i=1

(
n3/2

L(n)
qm∗(n− i)

)
q(i),
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and by dominated convergence the claim follows.

By the uniform convergence property of slowly varying sequences [4, Th. 1.2.1] we have that
L(xt)/L(t) → 1 as t →∞ uniformly in x ∈ [α, 1/α], for every α > 0. In particular, there exists a
positive constant c1 such that L(xt) ≤ c1 L(t) for all x ∈ [1/2, 1] and for all t ≥ 1. Then, setting
c := 5/2 + log2(c1), we claim that there exists C > 0 such that

qk∗(n) ≤ C kc L(n)
n3/2

, ∀k, n ∈ N . (3.5)

Again, we argue by induction: by (2.2) the case k = 1 holds for some positive constant C. If (3.5)
holds for all k < 2m, m ∈ N, then we get:

q2m∗(n) ≤ 2
bn/2c∑
i=1

qm∗(i) qm∗(n− i) ≤ 2
bn/2c∑
i=1

qm∗(i) C mc L(n− i)
(n− i)3/2

≤ 2 C mc c1 L(n)
(n/2)3/2

bn/2c∑
i=1

qm∗(i) ≤ C mc (25/2c1)
L(n)
n3/2

= C (2m)c L(n)
n3/2

.

The case k = 2m + 1 follows similarly and consequently (3.5) holds. Therefore we can apply
dominated convergence in (3.3) (we recall that δ ∈ (0, 1)), getting

n3/2

L(n)
Z̃c

δ,n =
∞∑

k=1

n3/2

L(n)
qk∗(n) δk n→∞−−−→

∞∑
k=1

k cq δk =
δ

(1− δ)2
cq.

and (3.1) is proven. Finally equation (3.2) follows by (2.7) and (2.9) applying again dominated
convergence:

n1/2

L′(n)
Z̃f

δ,n =
n∑

t=0

Z̃c
δ,t

n1/2

L′(n)
P (n− t) n→∞−−−→

∞∑
t=0

Z̃c
δ,t =

∞∑
k=0

δk =
1

1− δ
,

where in the equality before the last we have used (2.5).

3.2 The critical case (δ = 1).

We treat now the case δ = 1.

Lemma 3.2. If δ = 1 and relations (2.2) and (2.9) hold, then

Z̃c
1,N ∼ 1

2π

1
cq L(N)

√
N

(N →∞) , (3.6)

Z̃f
1,N ∼ L′(N)

2 cq L(N)
(N →∞) . (3.7)

Proof. When δ = 1 it is clear from (2.5) that Z̃c
1,N is the Green function of the renewal process

with step distribution q(·). More explicitly, if we set

ξk := T1 + · · ·+ Tk , (Ti)i IID , P(Ti = n) = q(n) , n ∈ N , (3.8)
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then the law of ξk is qk∗(·) and it is immediate to check that Z̃c
1,N = P(∃k : ξk = N). Then the

asymptotic behavior (3.6) is a result of Doney’s [10, Th. B].

To prove (3.7), we split the sum in (2.7) in three parts:

L(n)
L′(n)

Z̃f
1,n =

( bαnc∑
t=0

+
b(1−α)nc−1∑
t=bαnc+1

+
n∑

t=b(1−α)nc

) (
L(n)
L′(n)

Z̃c
1,t P (n− t)

)
. (3.9)

Combining the asymptotic relations (2.9) and (3.6) with the uniform convergence property of
slowly varying sequences mentioned before equation (3.5), it is easy to check that the second
sum above converges as n →∞ to the integral

1
2π cq

∫ 1−α

α

dy√
y(1− y)

.

On the other hand the fact that
∑k

i=1 L(i)/
√

i ∼ 2L(k)
√

k as k →∞, cf. [4, Prop. 1.5.8], entails
that the limits as n → ∞ of the first and third sums in (3.9) are vanishing as α → 0, and
equation (3.7) follows.

3.3 The localized case (δ > 1).

Let δ > 1. By continuity there exists fδ > 0 such that

δ

∞∑
t=1

q(t) exp(−fδ t) = 1.

We set qδ(t) := δ q(t) exp(−fδt), t ∈ N, so that qδ(·) is a probability measure on N. Notice that
µδ :=

∑
t t qδ(t) < ∞.

Lemma 3.3. If δ > 1 then

Z̃c
δ,N ∼ 1

µδ
exp(N fδ) (N →∞) , (3.10)

Z̃f
δ,N ∼

(
1
µδ

∞∑
t=0

e−fδt P (t)

)
exp(N fδ) (N →∞) . (3.11)

Proof. From (2.5) it is immediately seen that

e−fδN Z̃c
δ,N =

∞∑
k=0

qδ
k∗(N) .

Arguing as in the proof of Lemma 3.2 we have that the r.h.s. above is the Green function of the
renewal process with step distribution qδ(·). However this distribution has finite mean µδ and
therefore equation (3.10) is nothing but the standard Renewal Theorem [3].

Finally, to prove (3.11) we resort to (2.7):

exp(−fδ N) Z̃f
δ,N =

N∑
t=0

(
e−fδ(N−t)Z̃c

δ,N−t

)
e−fδtP (t) N→∞−−−−→ 1

µδ

∞∑
t=0

e−fδt P (t) ,

having applied (3.10) and dominated convergence.
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4 Infinite volume measures

Now we apply the asymptotic results obtained in the preceding section to the issue of the
infinite volume limit. Although Pf

ε,N and Pc
ε,N have been defined as measures on (R+)N , it is

convenient to extend them to (R+)N in an arbitrary way (for example by multiplying them by∏∞
i=N+1 δ0(dxi) ). Our main result is the following theorem.

Theorem 4.1. For every ε ≥ 0 both Pf
ε,N and Pc

ε,N as measures on (R+)N converge weakly as
N →∞ to the same limit Pε, law of an irreducible Markov chain which is:

1. positive recurrent if ε > εc (localized regime)

2. transient if ε < εc (strictly delocalized regime)

3. null recurrent if ε = εc (critical regime)

Let us introduce the times (τk)k≥0 at which the interfaces touches the wall:

τ0 := 0 τj := inf{n > τj−1 : xn = 0} x ∈ (R+)N ,

and the excursions (ek(·))k≥0 of the interface above the wall:

ek(i) := {xτk+i : i = 0, . . . , τk+1 − τk} x ∈ (R+)N .

We also set ιN := sup{k : τk ≤ N}. The law of (τk)k≤ιN under Pa
ε,N can be viewed as a

probability measure pa
ε,N on the class AN of subsets of {1, . . . , N}: indeed for A ∈ AN , writing

A = {t1, . . . , t|A|}, 0 =: t0 < t1 < · · · < t|A| ≤ N, (4.1)

we can set
pa

ε,N (A) := Pa
ε,N (τi = ti, i ≤ ιN ). (4.2)

From the inclusion of AN into {0, 1}N, the family of all subsets of N, pa
ε,N can be viewed as a

measure on {0, 1}N.

The fundamental observation, that follows from the very definition (1.1) of our model, is that
under Pa

ε,N and conditionally on {ιN , (τk)k≤ιN } the excursions (ek)0≤k≤ιN−1 are independent
and their (conditional) laws are the same as under the random walk measure P. Therefore, if
we can prove that pa

ε,N has a weak limit on {0, 1}N, then it is easily checked that the measure
Pa

ε,N on (R+)N converges weakly too, and the limiting measure Pε is constructed by pasting
the excursion over the limit zero set. If the limit zero set has a finite number of zeros, the last
excursion has infinite length and has to be drawn according the law of the random walk (S,P)
conditioned to stay positive, as it is defined in [2]. Therefore the analysis is completed by the
following result.

Proposition 4.2. For every ε ≥ 0 both pf
ε,N and pc

ε,N as measures on {0, 1}N converge to the
same limit pε, under which (τk)k≥0 is:

1. for ε > εc a renewal process with interarrival probability qδ(·) (see §3.3).
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2. for ε < εc a terminating renewal process with defective interarrival probability δ q(·)

3. for ε = εc a renewal process with interarrival probability q(·).

Proof. For all ε ≥ 0 and a = f, c, we have by the Markov property:

Pa
ε,N (τ1 = k1, τ2 = k2, . . . , τj = kj) =

[
j∏

i=1

δ q(ki − ki−1)

]
Z̃a

δ, N+1(a=c)−kj

Z̃a
δ, N+1(a=c)

,

for all 0 =: k0 < k1 < · · · < kj ≤ N (the factor 1(a=c) in the partition functions is due to
definition (2.3)). Letting N →∞, we obtain the thesis by Lemmas 3.1-3.2-3.3.

4.1 More on the strictly delocalized regime

If ε < εc, i.e. δ < 1, then under Pε the number of returns to 0 and the last return to 0 are a.s.
finite random variables. Their distributions are given in the following proposition, whose proof
is a straightforward consequence of Proposition 4.2.

Proposition 4.3. Let N := #{i ∈ N : xi = 0} and L := sup{i ∈ N : xi = 0}. Then for ε < εc:

Pε(N = k) = (1− δ) δk, k = 0, 1, . . . (4.3)

Pε(L = k) = (1− δ) Z̃c
δ,k, k = 0, 1, . . . (4.4)

5 Scaling limits

We finally turn to the scaling limits of our model. We denote by
(
XN

t

)
t∈[0,1]

the linear interpola-

tion of
(
Si/N ·L(N)/

√
N
)
i=0,...,N

, the choice of the norming sequence being the natural one, see
Appendix A.1. We are interested in the weak convergence in C([0, 1]) of the law of

(
XN

t

)
t∈[0,1]

under Pa
ε,N . This problem has been solved in [9] in the finite variance continuous set–up, but for

ε 6= εc the techniques can be adapted in a straightforward way to treat the general continuous
and discrete settings considered here.

Consequently we focus on the critical case ε = εc. In fact in this regime the result proven in [9]
for a = c is not optimal, the reason being that the authors were not aware of Doney’s result [10,
Th. B] which yields (3.6). In this section we show that the sharp asymptotic relations (3.6) and
(3.7) allow to simplify significantly the arguments in [9], proving the following

Theorem 5.1. If δ = 1 then the process
(
XN

t

)
t∈[0,1]

under Pa
ε,N converges in distribution to the

reflecting Brownian motion on [0, 1] for a = f and to the reflecting Brownian bridge on [0, 1] for
a = c.

In the preceding section we have shown that, under the measure Pa
ε,N , there is a remarkable

decoupling between the zero level set (that is the set of points where the interface touches the
wall) and the excursions of the interface above the wall. Namely, conditionally on the zero level
set, the excursions are an independent family and their (conditional) laws are the same as under
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the initial measure P. Since our basic assumption (H) entails that the measure P is attracted to
the Gaussian law, it is not a surprise that the law of the rescaled excursion under P converges
weakly to the law of the Brownian excursion. The proof of this fact in the continuous set–up
can be found for instance in [9] (for the case of finite variance, but it can be easily adapted to
the general case). On the other hand, it appears that in the literature there is no general proof
of this fact for the discrete set–up (for the case of walks with increments in {±1, 0} one can
use the result in [17]). However a proof can be given exploiting the local limit theorem recently
obtained in [5] and [6]: the details (in a more general setting) are carried out in [7].

Therefore we focus our attention to the law of the rescaled zero level set. More precisely we
introduce Aa

N , a random subset of [0, 1], by setting P (Aa
N = A/N) = pa

εc,N (A), a = f, c, for
A ⊆ {0, . . . , N} (recall the notation introduced in (4.2)). If we can prove the weak convergence
of the zero set Aa

N , then, in view of the convergence of the excursions mentioned above, the
weak convergence of the full measure Pa

ε,N follows arguing like in Section 8 of [9]. Therefore
Theorem 5.1 is a consequence of the following proposition, first proven in [9, Prop. 10] (in the
finite variance continuous case and with an additional assumption for a = c).

Proposition 5.2. As N →∞ we have that:

(i) Af
N converges in law to {t ∈ [0, 1] : B(t) = 0},

(ii) Ac
N converges in law to {t ∈ [0, 1] : β(t) = 0},

where B is a standard Brownian motion and β is a Brownian bridge over [0, 1].

The basic notions about the convergence in law of random sets are recalled in Appendix B (for
more details see [14, § 3] and [18]).

It is convenient to introduce a simpler random set AN , to which the random sets Af
N and Ac

N

are strictly linked. Namely we consider again the renewal process ξk = T1 + · · · + Tk, where
(Ti)i is IID and P(T = n) = q(n), n ∈ N, and we set AN := {ξk/N : k ∈ N} ∩ [0, 1]. Then the
asymptotic relation (2.2) for q(·) implies the following basic result, first proven in [9, Lemma
5] for the case in which L(·) is a constant (but the proof extends to our general set–up in a
straightforward way).

Lemma 5.3. The sequence (AN )N converges in law to {t ∈ [0, 1] : B(t) = 0}.

We point out that the proof of this result given in [9] uses in an essential way the theory of
regenerative sets and their connection with subordinators (we refer to [14] for more on this
subject). In view of the importance of this result, in Appendix B we sketch an alternative and
more direct proof, which is built on the basic relation (3.6).

Proof of Proposition 5.2. Let us first consider the free case a = f. It is easy to see that the
laws of Af

N and AN are equivalent, more precisely for every bounded measurable functional Φ
we have

E
[
Φ(Af

N )
]

= E
[
Φ(AN ) f f

N (supAN )
]
, f f

N (t) :=
P (N (1− t))

Z̃f
1,N ·Q (N (1− t))

, t ∈ [0, 1] ,

where Q(n) :=
∑∞

t=n+1 q(t). The asymptotic behavior of q(·) being given by (2.2), it follows
from [4, Prop. 1.5.10] that Q(n) ∼ 2cqL(n)/

√
n as n → ∞. Hence by (2.9) and (3.7) one sees
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that limN→∞ f f
N (t) = 1 uniformly in t ∈ [0, γ], for every γ ∈ (0, 1), and then (i) is an easy

consequence of Lemma 5.3.

We turn now to a = c. Here it is more convenient to study the Radon-Nikodym derivative of the
law of Ac

N ∩ [0, 1/2] w.r.t. the law of AN ∩ [0, 1/2]. This time the Radon–Nikodym derivative is
given by (cf. [9, Proof of (32), Step 1])

E [Φ(Ac
N ∩ [0, 1/2])] = E

[
Φ(AN ∩ [0, 1/2]) f c

N

(
sup

(
AN ∩ [0, 1/2]

))]
,

f c
N (t) :=

∑N/2
n=0 Z̃c

1,n q(N + 1−Nt− n)

Z̃c
1,N+1 Q(bN/2c −Nt)

, t ∈ [0, 1/2] .

By (2.2), (2.9) and (3.6) we see that:

lim
N→∞

f c
N (t) =

∫ 1/2
0 y−1/2 (1− t− y)−3/2 dy

2 (1/2− t)−1/2
=

1√
2

1
1− t

,

uniformly in t ∈ [0, γ], for any γ ∈ (0, 1/2). Then (ii) follows from Lemma 5.3 by the same
arguments used in [9, Proof of (32), Step 3].

A An asymptotic relation

We are going to prove that relation (2.1) holds true.

A.1 A Local Limit Theorem

We recall that, by our basic assumption (H), one has the weak convergence

under P :
L(n)√

n
Sn ⇒ 1√

2π
e−x2/2 dx (n →∞) , (A.1)

where L(·) is a slowly varying function satisfying the relation L(x) ∼ 1/
√
V(
√

x/L(x)) as x →∞.
More explicitly, this function can be defined as L(x) :=

√
x/g−1(x) , where g(·) is any increasing

function such that g(x) ∼ x2/V(x) as n → ∞ (the existence of such g(·) is guaranteed by [4,
Th. 1.5.3], where an explicit definition is given).

We point out that equation (A.1) expresses the most general instance in which a random walk is
attracted (without centering) to the Gaussian law, which in turn happens if and only if condition
(H) holds, cf. [13, §IX.8 & §XVII.5]. Of course in the special case σ2 := E

[
|Y1|2

]
< ∞ we have

L(t) ≡ σ−1 by the Central Limit Theorem.

Let us denote by fn(x) the density (resp. the mass function) of Sn under P, in the continuous
set–up (resp. in the discrete set–up). Then the Local Limit Theorem for Densities, cf. [15, §46],
(resp. Gnedenko’s Local Limit Theorem, cf. [4, §8.4]) yields the asymptotic relation

fn(0) ∼ 1√
2π

L(n)√
n

(n →∞) . (A.2)
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A.2 The continuous case

We follow the proof given in [9] in the case of finite variance. Introducing the set Cn := {x1 >
0, . . . , xn > 0}, the very definition of Zc

0,n gives

Zc
0,n =

∫
Cn

e−Hc
n(x1,...,xn) dx1 · · ·dxn . (A.3)

On the other hand for the density of Sn+1 under P we have

fn+1(0) =
∫

Rn

e−Hc
n(x1,...,xn)

κn+1
dx1 · · ·dxn .

Next we introduce the linear transformation Tn : Rn → Rn defined by

Tn(x1, . . . , xn) := (x2 − x1, x3 − x1, . . . , xn − x1, −x1) .

Notice that Tn preserves Lebesgue measure, that (Tn)n+1 is the identity map on Rn and that
Hc

n is invariant along the orbits of Tn, namely Hc
n(Tn(x)) = Hc

n(x). Moreover, the n + 1 sets
{(Tn)k(Cn) , k = 0, . . . , n} are disjoint and their union differs from the whole Rn only by a set
of zero Lebesgue measure. These considerations yield

fn+1(0) =
n∑

k=0

∫
(Tn)k(Cn)

e−Hc
n(x)

κn+1
dx = (n + 1)

∫
Cn

e−Hc
n(x)

κn+1
dx ,

and comparing with (A.3) we get

Zc
0,n

κn+1
=

1
n + 1

fn+1(0) .

Therefore it suffices to apply (A.2) to show that relation (2.1) holds with C = 1.

A.3 The discrete case

For S = (Sn)n≥0 ∈ RN we introduce the weak descending ladder epochs

T 0 := 0 T k+1 := inf{n > Tk : Sn ≤ STk
}

and the corresponding ladder heights Hk := −ST k
(if T k = +∞ we set Hk := +∞). The reason

why these quantities are of interest to us is that the definition of Zc
0,n yields

Zc
0,n

κn+1
= P

(
T 1 = n + 1, H1 = 0

)
. (A.4)

Notice in particular that by (2.6) we have ε−1
c =

∑
n≥0 Zc

0,n/κn+1 = P(H1 = 0).

Now we are going to use a fundamental combinatorial identity discovered by Alili and Doney,
that for k, n ∈ N and x ≥ 0 reads as

P
(
T k = n, Hk = x

)
=

k

n
P
(
Hk−1 ≤ x < Hk, Sn = x

)
,
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cf. [1, Eq. (3)] (the interchange between < and ≤ with respect to that formula is due to the fact
that they consider strong instead of weak ladder variables). Plugging this identity into (A.4)
and arguing as in the step (i) of the proof of Proposition 6 in [1], we get

Zc
0,n

κn+1
=

1
n + 1

P
(
H1 > 0, Sn = 0

)
∼ 1

n
P
(
H1 > 0

)
P
(
Sn = 0

)
∼

P
(
H1 > 0

)
√

2π

L(n)
n3/2

,

where we have applied (A.2), and equation (2.1) is proved with C = P(H1 > 0).

B The critical zero level set

We want to sketch here an alternative proof of Lemma 5.3. For the purpose of this section it is
convenient to consider the random set AN of Section 5 on the whole positive real line instead
of the interval [0, 1]. More precisely, introducing the renewal process ξk = T1 + · · · + Tk, where
(Ti)i∈N is IID and P(T1 = n) = q(n), we set AN := {ξk/N : k ∈ N}.

Let us first recall some basic facts on the convergence of closed sets. We denote by F the family
of all closed sets of R+, and we endow it with the topology of Matheron, cf. [18] and [14, § 3],
which in our setting can be conveniently described as follows. For F ∈ F and t ∈ R+ we set
dt(F ) := inf

(
F ∩ (t,∞)

)
. Notice that t 7→ dt(F ) is a right–continuous function and that the

set F can be actually identified with the function d(·)(F ), because F = {t ∈ R+ : dt−(F ) = t}.
Then in terms of d(·)(F ) the Matheron topology is the standard Skorohod topology on càdlàg
functions taking values in R+ := R+ ∪ {+∞}. We point out that with this topology the space
F is metrizable, separable and compact, hence in particular Polish. Moreover the Borel σ–field
on F coincides with the σ–field generated by the maps {dt(·), t ∈ R+}.

Let us denote respectively by PN and P(BM) the laws of the random closed sets AN and {t ∈
R+ : B(t) = 0}, where B(·) is a standard Brownian motion. These laws are probability measure
on F , and our goal is to prove that PN converges weakly to P(BM) as N → ∞. Thanks to the
compactness of F , we can focus on the convergence of the marginal distributions. More precisely,
it is sufficient to show that for every n ∈ N and for all t1 < . . . < tn ∈ R+ one has the weak
convergence of the image laws on (R+)n:

PN ◦ (dt1 , . . . , dtn)−1 =⇒ P(BM) ◦ (dt1 , . . . , dtn)−1 (N →∞) , (B.1)

and the weak convergence PN ⇒ P(BM) follows, because the distributions of (dt1 , . . . , dtn) de-
termine laws on F .

The validity of (B.1) can be obtained by direct computation. For simplicity we will only consider
the case n = 1, the general case follows along the same line. We recall that for any t > 0, the
law of dt under P(BM) is given by

P(BM)
(
dt ∈ dy

)
=

t1/2

π y(y − t)1/2
1(y>t) dy =: ρt(y) dy ,

cf. [19], hence we have to show that for every x ∈ R+

lim
N→∞

PN

(
dt ≥ x

)
=
∫ ∞

x
ρt(y) dy .
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Using the Markov property for the renewal process (ξk) we get

PN

(
dt ≥ x

)
=
∑
k∈N

P
(
ξk ≤ Nt , ξk+1 ≥ Nx

)
=

bNtc∑
i=1

∞∑
j=dNxe

(∑
k∈N

P
(
ξk = i

))
P
(
ξ1 = j − i

)

=
bNtc∑
i=1

(∑
k∈N

q∗k(i)

) ∞∑
j=dNxe

q(j − i) =
bNtc∑
i=1

Z̃c
1,i Q

(
dNxe − i− 1

)
,

where we have applied (2.5). We recall the notation Q(n) :=
∑∞

k=n+1 q(k), introduced in the
proof of Proposition 5.2, and the fact that Q(n) ∼ 2cqL(n)/

√
n as n →∞, as it follows from (2.2)

applying [4, Prop. 1.5.10]. Since the asymptotic behavior of the constrained partition function
in the critical case is given by (3.6), we obtain

PN

(
dt ≥ x

)
∼

bNtc∑
i=1

1
2π

1
cq L(i)

√
i

2cqL
(
dNxe − i− 1

)√
dNxe − i− 1

(N →∞) .

Now using the fact that L(ct)/L(t) → 1 as t → ∞ uniformly in t ∈ [α, 1/α], for every α > 0
(cf. [4, Th. 1.2.1]), and the convergence of the Riemann sums to the corresponding integral we
easily get

∃ lim
N→∞

PN

(
dt ≥ x

)
=

1
π

∫ t

0
ds

1√
s

1√
x− s

=
∫ ∞

x
dz ρt(z) ,

that is what was to be proven.
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