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Abstract

Fragmentation processes of exchangeable partitions have already been studied by several
authors. This paper deals with fragmentations of exchangeable compositions, i.e. partitions
of N in which the order of the blocks matters. We will prove that such a fragmentation is
bijectively associated to an interval fragmentation. Using this correspondence, we then study
two examples : Ruelle’s interval fragmentation and the interval fragmentation derived from
the standard additive coalescent.
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1 Introduction

Random fragmentations describe objects that split as time goes on. Two types of fragmentation
have received a special attention: fragmentations of partitions of N and mass-fragmentations,
i.e. fragmentations on the space S = {s1 ≥ s2 ≥ . . . ≥ 0,

∑
i si ≤ 1}. Berestycki [3] has proved

that to each homogeneous fragmentation process of exchangeable partitions, we can canonically
associate a mass fragmentation. More precisely, let π = (π1, π2, . . .) be an exchangeable random
partition of N (i.e. the distribution of π is invariant under finite permutations of N) whose blocks
(πi)i≥1 are ordered by increasing of their least elements. According to the work of Kingman and
Pitman [15, 16], the asymptotic frequency of the i-th block πi, fi = limn→∞

Card{πi∩{1,...,n}}
n ,

exists for every i a.s. We denote by (|πi|↓)i∈N the sequence (fi)i∈N after a decreasing rearrange-
ment. If (Π(t), t ≥ 0) is a fragmentation of exchangeable partitions, then (|Πi(t)|↓i∈N, t ≥ 0) is a
mass fragmentation. Conversely, a fragmentation of exchangeable partitions can be built from
a mass fragmentation via a ”paintbox process”.

One goal of this paper is to develop a similar theory for fragmentations of exchangeable com-
positions and interval fragmentations. Let us recall that a composition of a natural number
n is an ordered collection of natural numbers (n1, . . . , nk) with sum n. Here we will also use
the definition of Gnedin [11]: a composition of the set {1, . . . , n} is an ordered collection of
disjoint nonempty subsets γ = (A1, . . . , Ak) with ∪Ai = {1, . . . , n}. The vector of class size
of γ, (]A1, . . . , ]Ak) is a composition of n and is called the shape of γ. Hence, there is a one
to one correspondence between measures on compositions of n and measures on exchangeable
compositions of the set {1, . . . , n}. Gnedin proved a theorem analogous to Kingman’s Theorem
in the case of exchangeable compositions: for each probability measure P that describes the law
of a random exchangeable composition, we can find a probability measure on the space of open
subsets of [0,1], such that P can be recovered via a ”paintbox process”. This is why it seems
very natural to look for a correspondence between fragmentations of compositions and interval
fragmentations.

The first part of this paper develops the relation between probability laws of exchangeable com-
positions and laws of random open subsets, and its extension to infinite measures. Then we
prove that there exists indeed a one to one correspondence between fragmentations of compo-
sitions and interval fragmentations. The next part gives some properties and characteristics of
these processes and briefly presents how this theory can be extended to time-inhomogeneous
fragmentations and self-similar fragmentations. Finally, as an application of this theory, the last
section describes two well known interval fragmentations: first, the interval fragmentation intro-
duced by Ruelle [2, 7, 9, 19] and second, the fragmentation derived from the standard additive
coalescent [1, 4].

2 Exchangeable compositions and open subsets of ]0, 1[

2.1 Probability measures

In this section, we define exchangeable compositions following Gnedin [11], and recall some useful
properties. For n ∈ N, let [n] be the set of integers {1, . . . , n}.
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Definition 2.1. For n ∈ N, a composition of the set [n] is an ordered sequence of disjoint, non
empty subsets of [n], γ = (A1, . . . , Ak), with ∪Ai = [n]. We denote by Cn the set of compositions
of [n].

Let kn : Cn → Cn−1 be the restriction mapping from compositions of the set [n] to compositions
of the set [n − 1] and let C be the projective limit of (Cn, kn). We endow C with the product
topology, it is then a compact set. The composition of [n] (resp. N) with a single nonempty
block will be denoted by 1n (resp. 1N) and we will write C∗n for Cn\{1n}. In the sequel, for
n ∈ N ∪ {∞}, γ ∈ Cn and A ⊂ [n], γA will denote the restriction of γ to A. Hence, for m ≤ n,
γ[m] will denote the restriction of γ to [m]. We say that a sequence (Pn)n∈N of measures on
(Cn)n∈N is consistent if, for all n ≥ 2, Pn−1 is the image of Pn by the projection kn, i.e., for all
γ ∈ Cn−1, we have

Pn−1(Γ[n−1] = γ) =
∑

γ′∈Cn:kn(γ′)=γ

Pn(Γ[n] = γ′).

By Kolmogorov’s Theorem, such a sequence (Pn)n∈N determines the law of a random composition
of N.

A random composition Γ of N is called exchangeable if for all n ∈ N, for every permutation σ of
[n] and for all γ ∈ Cn, we have

P(Γ[n] = γ) = P(σ(Γ[n]) = γ),

where σ(Γ[n]) is the image of the composition Γ[n] by σ. Hence, given an exchangeable random
composition Γ, we can associate a function defined on finite sequences of integers by

∀k ∈ N,∀n1, . . . , nk ∈ Nk, p(n1, . . . , nk) = P(Γ[n] = (B1, . . . , Bk)),

where (B1, . . . , Bk) is a composition of the set [n] with shape (n1, . . . , nk) and n = n1 + . . .+nk.
This function determines the law of Γ and is called the exchangeable composition probability
function (ECPF) of Γ.

Notation 2.2. Let γ be a composition of N. For (i, j) ∈ N2, we will use the following notation:

• i ∼ j, if i and j are in the same block.

• i ≺ j, if the block containing i precedes the block containing j.

• i � j, if the block containing i follows the block containing j.

Let U be the set of open subsets of ]0, 1[. For u ∈ U , let

χu(x) = min{|x− y|, y ∈ uc}, x ∈ [0, 1],

where uc = [0, 1]\u. We also define a distance on U by:

d(u, v) = ||χu − χv||∞.

This makes U a compact metric space.
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Definition 2.3. Let u be an open subset of [0, 1]. We construct a random composition of N in
the following way: we draw (Xi)i∈N iid random variables with uniform law on [0, 1] and we use
the following rules:

• i ∼ j, if i = j or if Xi and Xj belong to the same component interval of u.

• i ≺ j, if Xi and Xj do not belong to the same component interval of u and Xi < Xj.

• i � j, if Xi and Xj do not belong to the same component interval of u and Xi > Xj.

This defines an exchangeable probability measure on C that we shall denote P u; the projection
of P u on Cn will be denoted by P u

n . If ν is a probability measure on U , we denote by P ν the law
on C whose projections on Cn are:

P ν
n (·) =

∫
U

P u
n (·)ν(du).

Let us recall here a useful theorem from Gnedin [11]:

Theorem 2.4. [11] Let Γ be an exchangeable random composition of N, Γ[n] its restriction
to [n]. Let (N1, . . . , Nk) be the shape of Γ[n] and N0 = 0. For i ∈ {0, . . . , k}, we write Mi =∑i

j=0 Nj. Define Un ∈ U by:

Un =
k⋃

i=1

]
Mi−1

n
,
Mi

n

[
.

Then Un converges almost surely to a random element U ∈ U . The conditional law of Γ given
U is PU . As a consequence, if P is an exchangeable probability measure on C, then there exists
a unique probability measure ν on U such that P = P ν .

Hence, with each exchangeable composition Γ, we can associate a random open set that we
will call asymptotic open set of Γ and denote UΓ. We shall also write |Γ|↓ for the decreasing
sequence of the lengths of the interval components of UΓ. More generally, for u ∈ U , u↓ will be
the decreasing sequence of the interval component lengths of u.

Let us notice that this theorem is the analogue of Kingman’s Theorem for the representation of
exchangeable partitions. Actually, let Π = (Π1,Π2, . . .) be an exchangeable random partition of
N (the blocks of Π are listed by increase of their least elements). Pitman [16] has proved that
each block of Π has almost surely a frequency, i.e.

∀i ∈ N fi = lim
n→∞

Card{Πi ∩ [n]}
n

exists almost surely.

One calls fi the frequency of the block Πi. Therefore, for all exchangeable random partitions,
we can associate a probability on S = {s = (s1, s2, . . .), s1 ≥ s2 ≥ . . . ≥ 0,

∑
i si ≤ 1} which will

be the law of the decreasing rearrangement of the sequence of the partition frequencies.

Conversely, given a law ν̃ on S, we can construct an exchangeable random partition whose law
of its frequency sequence is ν̃ (cf. [15]): we pick S ∈ S with law ν̃ and we draw a sequence of
independent random variables Vi with uniform law on [0, 1]. Conditionally on S, two integers i
and j are in the same block of Π iff there exists an integer k such that

∑k
l=1 Sl ≤ Vi <

∑k+1
l=1 Sl
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and
∑k

l=1 Sl ≤ Vj <
∑k+1

l=1 Sl. We denote by ρν̃ the law of this partition (and by a slight abuse
of notation, ρs denotes the law of the partition obtained with ν̃ = δs). Kingman’s representation
Theorem states that any exchangeable random partition can be constructed in this way.

Let ℘1 be the canonical projection from the set of compositions C to the set of partitions P
and ℘2 the canonical projection from the set U to the set S that associates to an open set u
the decreasing sequence u↓ of the lengths of its interval components. To sum up, we have the
following commutative diagram between probability measures on P, C, S, U :

(C, P ν) Gnedin←−−−−→ (U , ν)
℘1

y ℘2

y
(P, ρν̃)

Kingman←−−−→ (S, ν̃).

2.2 Representation of infinite measures on C

In this section, we show how Theorem 2.4 can be extended to a class of infinite measures on C.

Definition 2.5. Let µ be a measure on C. We call µ a fragmentation measure if the following
conditions hold:

• µ is exchangeable.

• µ(1N) = 0.

• µ({γ ∈ C, γ[2] 6= 12}) <∞.

Notice that by exchangeability, the last condition implies that, for all n ≥ 2, we have µ({γ ∈
C, γ[n] 6= 1n}) < ∞. We will see in the sequel that such a measure can always be associated to
a fragmentation process and conversely.

Definition 2.6. A measure ν on U is called a dislocation measure if:

ν(]0, 1[) = 0,

∫
U

(1− s1)ν(du) <∞,

where s1 is the length of the largest interval component of u.

In the sequel, for any ν measure on U , we define the measure P ν on C by

P ν =
∫
U

P uν(du).

Notice that if ν is a dislocation measure, then P ν is a fragmentation measure. In fact, the
measure P ν is exchangeable since P u is an exchangeable measure. For u 6=]0, 1[, we have
P u(1N) = 0, and as ν(]0, 1[) = 0, we have also P ν(1N) = 0. We now have to check that
P ν({γ ∈ C, γ[n] 6= 1n}) <∞ for all n ∈ N. Let us fix u ∈ U . Set u↓ = s = (s1, s2, . . .).

P u({γ ∈ C, γ[n] 6= 1n}) = 1−
∞∑
i=1

sn
i ≤ 1− sn

1 ≤ n(1− s1)
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and so P ν({γ ∈ C, γ[n] 6= 1n}) <∞.

Let εi
l be the composition of N given by ({i}, N \ {i}) and εl =

∑
i δεi

l
. Let εi

r be the composition
of N given by (N \ {i}, {i}) and εr =

∑
i δεi

r
. It is easy to check that εl and εr are also two

fragmentation measures.

Theorem 2.7. If µ is a fragmentation measure, there exists two unique nonnegative numbers
cl and cr, called coefficients of erosion, and a unique dislocation measure ν on U such that:

µ = clεl + crεr + P ν .

Besides, we have 1{γ∈C, Uγ=]0,1[}µ = clεl + crεr and 1{γ∈C, UΓ 6=]0,1[}µ = P ν .

Recall that in the case of fragmentation measures on partitions, Bertoin [6] proved the following
result: let ε̃i be the partition of N,

{
{i}, N\{i}

}
and define the measure ε̃ =

∑
i δε̃i . Let µ̃ be an

exchangeable measure on P such that µ({N}) = 0 and µ̃(π ∈ P, πn 6= {[n]}) is finite for all n ∈ N.
Then there exists a measure ν̃ on S such that ν̃((1, 0, 0, . . .)) = 0 and

∫
S(1− s1)ν(ds) <∞, and

a nonnegative number c such that:
µ̃ = ρν̃ + cε̃.

Fragmentation measures on partitions fit in a more general framework of exchangeable semifinite
measures on partitions as developed by Kerov (see [14], Chapter 1, Section 3).

Hence, Theorem 2.7 is an analogous decomposition in the case of fragmentation measures on
compositions, except that, in this case, there are two coefficients of erosion, one characterizing
the left side erosion and the other the right side erosion.

Proof. We adapt a proof due to Bertoin [6] for the exchangeable partitions to our case. Set
n ∈ N. Set µn = 1{Γ[n] 6=1n}µ, therefore µn is a finite measure. Let −→µn be the image of µn by the
n-shift, i.e.

i

→n
Γ
≺ j ⇔ i + n

Γ
≺ j + n, i

→n
Γ∼ j ⇔ i + n

Γ∼ j + n, i

→n
Γ
� j ⇔ i + n

Γ
� j + n.

Then −→µn is exchangeable since µ is, and furthermore it is a finite measure. So, we can apply
Theorem 2.4:

∃ ! νn finite measure on U such that −→µn(dγ) =
∫
U

P u(dγ)νn(du).

According to Theorem 2.4, since −→µn is an exchangeable finite measure, −→µn-almost every compo-
sition has an asymptotic open set and so µn-almost every composition has also an asymptotic
open set, and as µn ↑ µ, µ-almost every composition has also an asymptotic open set. Besides,
we have

∀A ⊂ U , µn(|γ|↓ ∈ A) = −→µn(|γ|↓ ∈ A) = νn(A).

Hence, since µn ≤ µn+1, we deduce that νn ≤ νn+1. Set ν = limn→∞ ↑ νn. Furthermore, we
have

µn(n + 1 � n + 2 | UΓ = u) = −→µn(1 � 2 | UΓ = u) = P u(1 � 2) = 1−
∑

si ≥ 1− s1.
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So
µn(n + 1 � n + 2) ≥

∫
(1− s1)νn(du).

Since

µn(n + 1 � n + 2) ≤ µ(n + 1 � n + 2) = µ(1 � 2) <∞,we deduce
∫

(1− s1)ν(du) <∞.

Hence ν is a dislocation measure. Set γk ∈ Ck.

µ(Γ[k] = γk, UΓ 6=]0, 1[) = lim
n→∞

µ(Γ[k] = γk,Γ{k+1,...,k+n} 6= 1n, UΓ 6=]0, 1[)

= lim
n→∞

µ(
→n
Γ [k] = γk,Γ[n] 6= 1n, UΓ 6=]0, 1[)

= lim
n→∞

−→µn(Γ[k] = γk, UΓ 6=]0, 1[)

=
∫
U∗

P u(Γ[k] = γk)ν(du) with U∗ = U\{]0, 1[}.

Thus we have
µ( · , Uγ 6=]0, 1[) =

∫
P u( · )ν(du).

We now have to study µ on the event {Uγ =]0, 1[}. Let µ̃ = 1{1�2,Uγ=]0,1[}µ. Let
→
µ̃ be the image

of µ̃ by the 2-shift. The measure
→
µ̃ is finite and exchangeable and its asymptotic open set is

almost surely ]0, 1[, so
→
µ̃ = aδ]0,1[ where a is a nonnegative number. So µ̃ = c1δγ1 + . . . + c10δγ10

where γ1, . . . , γ6 are the six possible compositions build from the blocks {1}, {2}, N\{1, 2},
γ7 = ({1}, N\{1}), γ8 = ({2}, N\{2}), γ9 = (N\{1}, {1}), γ10 = (N\{2}, {2}). We must have
c1 = . . . = c6 = 0, otherwise, by exchangeability, we would have µ({1}, {n}, N\{1, n}) = c > 0
and this would yield µ(C∗2) =∞. By exchangeability, we also have c7 = c8 and c9 = c10 and so,
by exchangeability,

µ1{Uγ=]0,1[} = cl

∑
i

δεi
l
+ cr

∑
i

δεi
r
.

As in Section 2.1, we can now establish connections among fragmentation measures on C and P
and dislocation measures on U and S. Let us recall that ℘1 is the canonical projection from C
to P, and denote q : (U , R+, R+) 7→ (S, R+) the operation defined by q(u, a, b) = q(u↓, a + b).
Then we have the following commutative diagram:

(C, µ) Theorem 2.7←−−−−−−→
(
U , (ν, cl, cr)

)
℘1

y q

y
(P, µ̃) Bertoin←−−−−−−−→

(
S, (ν̃, cl + cr)

)
.

Proof. It remains to prove that µ̃ = ρν̃ + (cl + cr)ε̃. Set µ̃ = ρν + cε̃. Since µ̃ is the image by ℘1

of µ, we have
µ̃(ε̃1) = µ(ε1l ) + µ(ε1r) and then c = cr + cl.
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Let us fix n ∈ N and π ∈ Pn\{1n}. Set A = {γ ∈ Cn, ℘1(γ) = π}. Remark now that for all
u, v ∈ U such that u↓ = v↓, we have P u(A) = P v(A). Moreover we have P u(A) = ρs(π) if
s = u↓. So

P ν(A) =
∫
S

P u(A)ν(u, u↓ = ds) =
∫
S

ρs(π)ν̃(ds) = ρν̃(π).

We get

µ(A) = P ν(A) + clεl(A) + crεr(A) = ρν̃(π) + (cl + cr)ε̃(A) = ρν(π) + (cl + cr)ε̃(A) = µ̃(π).

So we deduce that ν = ν̃.

3 Fragmentation of compositions and interval fragmentation

3.1 Fragmentation of compositions

Definition 3.1. Let us fix n ∈ N and γ ∈ Cn with γ = (γ1, . . . , γk). Let γ(.) = (γ(i), i ∈
{1, . . . , n}) with γ(i) ∈ Cn for all i. Set mi = min γi. We denote γ̃(i) the restriction of γ(mi) to
the set γi. So γ̃(i) is a composition of γi. We consider now γ̃ = (γ̃(1), . . . , γ̃(k)) ∈ Cn. We denote
by FRAG(γ, γ(.)) the composition γ̃. If Γ(.) is a sequence of i.i.d. random compositions with law
p, p-FRAG(γ, ·) will denote the law of FRAG(γ, Γ(.)).

We remark that the operator FRAG has some useful properties. First, if 1(.) denotes the
constant sequence equal to 1n, we have FRAG(γ,1(.)) = γ. Furthermore, the fragmentation
operator is compatible with the restriction i.e., for every n′ ≤ n,

FRAG(γ, γ(.))[n′] = FRAG(γ[n′], γ
(.)).

This implies that FRAG is a consistent operator and we can extend this definition to the
compositions of N. Notice that we have this equality since we take care of fragmenting the block
γi by γ(mi). Indeed, if we have fragmented the block γi by γ(i), the operator FRAG would
not be anymore compatible with the restriction. For example, take n = 3, γ = ({3}, {1, 2}),
γ(1) = ({1, 2, 3}) and γ(2) = ({1}, {2}, {3}).
Besides, the operator FRAG preserves the exchangeability. More precisely, let (Γ(i), i ∈
{1, . . . , n}) be a sequence of random compositions which is doubly exchangeable, i.e. for each
i, Γ(i) is an exchangeable composition, and moreover, the sequence (Γ(i), i ∈ {1, . . . , n}) is
also exchangeable. Let Γ be an exchangeable composition of Cn independent of Γ(·). Then
FRAG(Γ,Γ(.)) is an exchangeable composition. Let us prove this property. We fix a permuta-
tion σ of [n] and we shall prove that

FRAG(Γ,Γ(.)) law= σ(FRAG(Γ,Γ(.))).

Let k be the number of blocks of Γ and denote by m1, . . . ,mk the minima of Γ1, . . . ,Γk. Let us
define now m′

1, . . . ,m
′
k the minima of σ(Γ1), . . . , σ(Γk). and Γ′(·) = (Γ′(i), i ∈ {1, . . . , n}) by

Γ′(m
′
i) = σ(Γ(mi)) for 1 ≤ i ≤ k,
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Γ′(j) = σ(Γ(f(j))) for j ∈ {1, . . . , n} \ {m′
i, 1 ≤ i ≤ k},

where f is the increasing bijection from {1, . . . , n}\{m′
i, 1 ≤ i ≤ k} to {1, . . . , n}\{mi, 1 ≤ i ≤ k}.

We get
σ(FRAG(Γ,Γ(.))) = FRAG(σ(Γ),Γ′(.)).

Since σ(Γ) law= Γ and Γ′(.) law= Γ(.) and Γ′(.) remains independent of Γ, we get

FRAG(σ(Γ),Γ′(.)) law= FRAG(Γ,Γ(.)).

We can now define the notion of exchangeable fragmentation process of compositions.

Definition 3.2. Let us fix n ∈ N and let (Γn(t), t ≥ 0) be a (possibly time-inhomogeneous)
Markov process on Cn which is continuous in probability. We call Γn an exchangeable fragmen-
tation process of compositions if:

• Γn(0) = 1n a.s.

• Its semi-group is described in the following way: there exists a family of probability mea-
sures on exchangeable compositions (Pt,s, t ≥ 0, s > t) such that for all t ≥ 0, s > t the
conditional law of Γn(s) given Γn(t) = γ is the law of Pt,s-FRAG(γ, ·).

The fragmentation is homogeneous in time if Pt,s depends only on s − t. A Markov process
(Γ(t), t ≥ 0) on C is called an exchangeable fragmentation process of compositions if, for all
n ∈ N, the process (Γ[n](t), t ≥ 0) is an exchangeable fragmentation process of compositions on
Cn.

Hence, in our definition we impose that the blocks split independently by the same rule ( the
”branching property”). This hypothesis is crucial for most of the following results (see however
Section 4.5 where more general processes are considered).

In the sequel, a c-fragmentation will denote an exchangeable fragmentation process on compo-
sitions.

Proposition 3.3. The semi-group of transition of a time-homogeneous c-fragmentation has the
Feller property.

Proof. Let φ : C → R be a continuous function (recall that C is compact, so φ is bounded). Then
the function γ → E

(
φ(FRAG(γ, Γ(.)(t)))

)
is also continuous on C since FRAG is compatible

with the restriction. Furthermore, for all n ∈ N, limt→0 P(Γ[n](t) = 1n) = 1, so we have also

lim
t→0

E
(
φ(FRAG(γ, Γ(.)(t)))

)
= φ(γ).
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3.2 Interval fragmentation

In this section we recall the definition of a homogeneous1 interval fragmentation [5]. We consider
a family of probability measures (qt,s, t ≥ 0, s > t) on U . For every interval I =]a, b[⊂]0, 1[, we
define the affine transformation gI :]0, 1[→ I given by gI(x) = a + x(b − a). We still denote
gI the induced map on U , so, for V ∈ U , gI(V ) is an open subset of I. We define then qI

t,s as
the image of qt,s by gI . Hence qI

t,s is a probability measure on the space of open subsets of I.
Finally, for W ∈ U with interval decomposition (Ii, i ∈ N), qW

t,s is the distribution of ∪Xi where
the Xi are independent random variables with respective laws qIi

t,s.

Definition 3.4. A process (U(t), t ≥ 0) on U is called a homogeneous interval fragmentation if
it is a Markov process that fulfills the following properties:

• U is continuous in probability and U(0) =]0, 1[ a.s.

• U is nested i.e. for all s > t we have U(s) ⊂ U(t).

• There exists a family (qt,s, t ≥ 0, s > t) of probability measures on U such that:

∀t ≥ 0, ∀s > t, ∀A ⊂ U , P(U(s) ∈ A| U(t)) = q
U(t)
t,s (A).

In the sequel, we abbreviate an interval fragmentation process as an i-fragmentation.

We remark that if we take the decreasing sequence of the sizes of the interval components of an
i-fragmentation, we obtain a mass-fragmentation, denoted here a m-fragmentation (see [6] for a
definition of m-fragmentations).

3.3 Link between i-fragmentation and c-fragmentation

From this point of the paper and until Section 4.4, the fragmentation processes we consider will
always be homogeneous in time, i.e. qt,s depends only on s− t, hence we will just write qs−t to
denote qt,s.

Let (U(t), t ≥ 0) be a process on S. Let (Vi)i≥0 be a sequence of independent random variables
uniformly distributed on ]0,1[. Using the same process as in Definition 2.3 with U(t) and (Vi)i≥1,
we define a process (ΓU (t), t ≥ 0) on C.

Theorem 3.5. There is a one to one correspondence between laws of i-fragmentations and laws
of c-fragmentations. More precisely:

• If a process (U(t), t ≥ 0) is an i-fragmentation, then (ΓU (t), t ≥ 0) defined as above is a
c-fragmentation and we have UΓU (t) = U(t) a.s. for each t ≥ 0.

• Let (Γ(t), t ≥ 0) be a c-fragmentation. Then (UΓU (t), t ≥ 0) is an i-fragmentation.

1In [5], Bertoin defines more generally self-similar interval fragmentations with index α. Here, the term
homogeneous means that we only consider the case α = 0.
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Proof. We start by proving the first point. For the sake of clarity, we will write in the sequel
Γ(t) instead of ΓU (t). We have by Theorem 2.4, UΓ(t) = U(t) a.s. for each t ≥ 0. Let us
fix n ∈ N and t ≥ 0. We are going to prove that, for s > t, the conditional law of Γ[n](s)
given Γ[n](t) = (Γ1, . . . ,Γk) is the law of FRAG(Γ[n](t),Γ(·)), where Γ(·) is a sequence of i.i.d.
exchangeable compositions with law Γ[n](s− t). Since (U(s), s ≥ 0) is a fragmentation process,
we have U(t + s) ⊂ U(t). By construction of Γ[n](t), it is then clear that Γ[n](t + s) is a finer
composition than Γ[n](t). Hence, each singleton of Γ[n](t) remains a singleton of Γ[n](t + s). For
1 ≤ i ≤ k, fix l ∈ Γi and define

ai = sup{a ≤ Vl, a /∈ U(t)}, bi = inf{b ≥ Vl, b /∈ U(t)}.

Notice that ai and bi do not depend on the choice of l ∈ Γi. Furthermore, we have ai < bi if Γi

is not a singleton. We also define

Y i
j =

(
Vj − ai

bi − ai

)
j ∈ Γi, i ∈ J,

where J = {1 ≤ i ≤ k, Γi is not a singleton}.
Conditionally on Γ[n](t), the random variables (Y i

j )j∈Γi,i∈J are independent and uniformly dis-
tributed on ]0, 1[. Besides, (]ai, bi[)i∈J are ]J distinct interval components of U(t). Since U(t)
is a fragmentation process, the processes(

U i(s) =
1

bi − ai
(U]ai,bi[(s)− ai), s ≥ t

)
i∈J

are ]J independent i-fragmentations with law (U(s − t), s ≥ t) and are also independent of
the singletons of Γ(t). For i ∈ J , let Γ(i)(s) be the composition of Γi obtained from U i(s)
and (Y i

j )j∈Γi using Definition 2.3; for i /∈ J , we set Γ(i) = 1Γi . Hence, Γ(i)(s) has the law of
ΓΓi(s− t) and the processes (Γ(i)(s), s ≥ t)1≤i≤k are independent. Furthermore, by construction
we have Γ[n](t + s) = FRAG(Γ[n](t),Γ(·)(s)). Hence, (Γ[n](t), t ≥ 0) has the expected transition
probabilities.

Let us now prove the second point. In the sequel, we will write Ut to denote UΓ(t). First, we
prove that for all s > t, Us ⊂ Ut. Fix x /∈ Ut, we shall prove x /∈ Us. We have χUt(x) =
min{|x − y|, y ∈ U c

t } = 0. Let Un
t be the open subset of ]0, 1[ corresponding to Γ[n](t) as in

Theorem 2.4. So we have limn→∞ d(Un
t , Ut) = 0. Fix ε > 0. Hence, there exists N ∈ N such

that, for all n ≥ N , χUn
t
(x) ≤ ε. This implies that:

∀n ≥ N,∃yn /∈ Un
t such that |yn − x| ≤ ε.

Besides, as (Γ(t), t ≥ 0) is a fragmentation, we have for all n ∈ N, Un
s ⊂ Un

t . Hence, we have
also

∀n ≥ N, yn /∈ Un
s ,

and so χUn
s
(x) ≤ ε for all n ≥ N . We deduce that χUs(x) = 0 i.e. x /∈ Us.

We now have to prove the branching property. Fix t > 0. We consider the decomposition of Ut

in disjoint intervals:
Ut =

∐
k∈N

Ik(t).

Set Fk(s) = Ut+s ∩ Ik(t). We want to prove that, given Ut:
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• ∀l ∈ N, F1, . . . , Fl are independent processes.

• Fk has the following law:

∀A open subset of ]a, b[, P((Fk(s), s ≥ 0) ∈ A |Ik(t) =]a, b[) = P((Us, s ≥ 0) ∈ (b−a)A+a).

For all k ∈ N, there exists ik ∈ N such that, if Jn
ik

(t) denotes the interval component of Un
t

containing the integer ik, then Jn
ik

(t) n→∞−→ Ik(t). Let Bk be the block of Γ(t) containing ik. As
Bk has a positive asymptotic frequency, it is isomorphic to N. Let f be the increasing bijection
from the set of elements of Bk to N. Let us re-label the elements of Bk by their image by f .
The process (UΓBk

(t+s), s ≥ 0) has then the same law as (Us, s ≥ 0) and is independent of the
rest of the fragmentation. Besides, given Ik(t) =]a, b[, Fk(s) = a + (b− a)UΓBk

(t+s), so the two
points above are proved.

Hence, this result complements an analogous result due to Berestycki [3] in the case of m-
fragmentations and p-fragmentation (i.e. fragmentations of exchangeable partitions). We can
again draw a commutative diagram to represent the link between the four kinds of fragmentation:

(
C, (Γ(t), t ≥ 0)

) Theorem 3.5←−−−−−−→
(
U , (UΓ(t), t ≥ 0)

)
℘1

y ℘2

y(
P, (Π(t), t ≥ 0)

) Berestycki←−−−−−−→
(
S, (U↓

Γ(t), t ≥ 0)
)
.

4 Some general properties of fragmentations

In this section, we gather general properties of i and c-fragmentations. Since the proofs of these
results are simple variations of those in the case of m and p-fragmentations [6], we will be a bit
sketchy.

4.1 Rate of a fragmentation process

Let (Γ(t), t ≥ 0) be a c-fragmentation. As in the case of p-fragmentation [6], for n ∈ N and
γ ∈ C∗n, we define a jump rate from 1n to γ:

qγ = lim
s→0

1
s
P
(
Γ[n] (s) = γ

)
.

With the same arguments as in the case of p-fragmentation, we can also prove that the family
(qγ , γ ∈ C∗n, n ∈ N) characterizes the law of the fragmentation (you just have to use that distinct
blocks evolve independently and with the same law). Furthermore, observing that we have

∀n < m, ∀γ′ ∈ C∗n, qγ′ =
∑

γ∈Cm,γ[n]=γ′

qγ ,

and that
∀n ∈ N, ∀σ permutation of [n], ∀γ ∈ C∗n, qγ = qσ(γ),
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we deduce that there exists a unique exchangeable measure µ on C such that µ(1N) = 0 and
µ(Q∞,γ) = qγ for all γ ∈ C∗n and n ∈ N, where Q∞,γ = {γ′ ∈ C, γ′[n] = γ}. Furthermore, the
measure µ characterizes the law of the fragmentation. We call µ the rate of the fragmentation.

We remark also that if a measure µ is the rate of a fragmentation process, we have for all n ≥ 2,

µ({γ ∈ C, γ[n] 6= 1n}) =
∑
γ∈C∗n

qγ <∞.

So we can apply Theorem 2.7 to µ and we deduce the following result:

If µ is the rate of a c-fragmentation, then there exist a dislocation measure ν and two nonnegative
numbers cl and cr such that:

• µ1{Uγ 6=]0,1[} = P ν .

• µ1{Uγ=]0,1[} = clεl + crεr.

With a slight abuse of notation, we will write sometimes in the sequel that µ = (ν, cl, cr) when
µ = P ν + clεl + crεr.

4.2 The Poissonian construction

We notice that if µ is the rate of a c-fragmentation, then µ is a fragmentation measure in the
sense of Definition 2.5. Conversely, we now prove that, if we consider a fragmentation measure
µ, we can construct a c-fragmentation with rate µ.

We consider a Poisson measure M on R+ × C × N with intensity dt ⊗ µ ⊗ ], where ] is the
counting measure on N. Let Mn be the restriction of M to R+ ×C∗n × {1, . . . , n}. The intensity
measure is then finite on the interval [0, t], so we can rank the atoms of Mn according to their
first coordinate. For n ∈ N, (γ, k) ∈ C × N, let ∆(.)

n (γ, k) be the composition sequence of Cn
defined by:

∆(i)
n (γ, k) = 1n if i 6= k and ∆(k)

n (γ, k) = γ[n].

We construct then a process (Γ[n](t), t ≥ 0) on Cn in the following way:
Γ[n](0) = 1n.
(Γ[n](t), t ≥ 0) is a pure jump process that only jumps at times when an atom of Mn appears.

More precisely, if (s, γ, k) is an atom of Mn, set Γ[n](s) = FRAG(Γ[n](s−),∆(.)
n (γ, k)). We can

check that this construction is compatible with the restriction; hence, this defines a process
(Γ(t), t ≥ 0) on C.

Proposition 4.1. Let µ be a fragmentation measure. The construction above of a process on
compositions from a Poisson point process on R+ × C × N with intensity dt ⊗ µ ⊗ ], where ] is
the counting measure on N, yields a c-fragmentation with rate µ.

Proof. The proof is an easy adaptation of the Poissonian construction of p-fragmentations (cf.
[6]). As the sequence ∆(.)

n (γ, k) is doubly exchangeable, we also have that Γ[n](t) is an exchange-
able composition for each t ≥ 0. Looking at the jump rates of the process Γ[n](t), it is then easy
to check that the constructed process is a c-fragmentation with rate µ.
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A Poissonian construction of an i-fragmentation with no erosion is also possible with a Poisson
measure on R+ × U × N with intensity dt ⊗ ν ⊗ ]. The proof of this result is not as simple as
for compositions because it cannot be reduced to a discrete case as above. In fact, to prove
this proposition, we must take the image of the Poisson measure M above by an appropriate
application. For more details, we refer to Berestycki [3] who has already proved this result for
m-fragmentation and the same approach works in our case.

To conclude this section, we turn our interest on how the two erosion coefficients affect the
fragmentation. Let (U(t), t ≥ 0) be an i-fragmentation with parameter (0, cl, cr). Set c = cl +cr.
We have:

U(t) =
]cl

c
(1− e−tc), 1− cr

c
(1− e−tc)

[
a.s.

Indeed, consider a c-fragmentation (Γ(t), t ≥ 0) such that UΓ(t) = U(t) a.s. We define µcl,cr =
clεl + crεr. Hence (Γ(t), t ≥ 0) is a fragmentation with rate µcl,cr . Recall that the process
(Γ(t), t ≥ 0) can be constructed from a Poisson measure on R+×C×N with intensity dt⊗µcl,cr⊗].
By the form of µcl,cr , we remark that, for all t ≥ 0, Γ(t) has only one non-singleton block.
Furthermore, for all n ∈ N, the integer n is a singleton at time t with probability 1 − e−tc,
and, given n is a singleton of Γ(t), {n} is before the infinite block of Γ(t) with probability cl/c
and after with probability cr/c. By the law of large numbers, we deduce that the proportion
of singletons before the infinite block of Γ(t) is almost surely cl

c (1− e−tc) and the proportion of
singletons after the infinite block of Γ(t) is almost surely cr

c (1− e−tc).

Remark 4.2. Berestycki [3] has proved a similar result for the m-fragmentation. He also proved
that if (F (t), t ≥ 0) is a m-fragmentation with parameter (ν, 0), then F̃ (t) = e−ctF (t) is a m-
fragmentation with parameter (ν, c). There is no simple way to extend Berestycki’s result to the
case of an i-fragmentation since the Lebesgue measure of cU(t) squeezed between two successive
interval components of U(t) depends on the time where the two component intervals split.

4.3 Projection from U to S

We know that if (U(t), t ≥ 0) is an i-fragmentation, then its projection on S, (U↓(t), t ≥ 0) is
an m-fragmentation. More precisely, we can express the characteristics of the m-fragmentation
in terms of the characteristics of the i-fragmentation.

Proposition 4.3. The ranked sequence of the lengths of an i-fragmentation with rate (ν, cl, cr)
is a m-fragmentation with parameter (ν̃, cl + cr) where ν̃ is the image of ν by the projection
U → |U |↓.

Proof. Let (Γ(t), t ≥ 0) be a c-fragmentation with rate µ = (ν, cl, cr). Let (Π(t), t ≥ 0) be its
image by ℘1. The process (Π(t), t ≥ 0) is then a p-fragmentation. Set n ∈ N and π ∈ P∗n. We
have

qπ = lim
s→0

1
s
P(Π[n](s)) = π)

= lim
s→0

1
s
P
(
Γ[n](s)) ∈ ℘−1(π)

)
= µ̃(π),
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where µ̃ is the image of µ by ℘1. Besides we have already proved that µ̃ = (ν̃, cl + cr). We
consider now the i-fragmentation (UΓ(t), t ≥ 0) with rate (ν, cl, cr). We get that the process
(U↓

Γ(t), t ≥ 0) is a.s. equal to the m-fragmentation (|Π(t)|↓, t ≥ 0) with rate (ν̃, cl + cr).

According to Proposition 4.3 and using the theory of m-fragmentation (see [6]), we deduce then
the following results:

• Let (Γ(t), t ≥ 0) be a c-fragmentation with parameter (ν, cl, cr). We denote by B1 the
block of Γ(t) containing the integer 1. Set σ(t) = − ln |B1(t)|. Then (σ(t), t ≥ 0) is a
subordinator. If we denote ζ = sup{t > 0, σt < ∞}, then there exists a non-negative
function φ such that

∀q, t ≥ 0, E[exp(−qσt), ζ > t] = exp(−tφ(q)).

We call φ the Laplace exponent of σ and we have:

φ(q) = (cl + cr)(q + 1) +
∫
U

(1−
∞∑
i=1

|Ui|q+1)ν(dU),

where (|Ui|)i≥0 is the sequence of the lengths of the component intervals of U .

• An (ν, cr, cl) i-fragmentation (U(t), t ≥ 0) is proper (i.e. for each t, U(t) has almost surely
a Lebesgue measure equal to 1) iff

cl = cr = 0 and ν

(∑
i

si < 1

)
= 0.

4.4 Extension to the time-inhomogeneous case

We now briefly expose how the results of the preceding sections can be transposed in the case of
time-inhomogeneous fragmentation. We will not always provide the details of the proofs since
they are very similar to the homogeneous case. In the sequel, we shall focus on c-fragmentation
(Γ(t), t ≥ 0) fulfilling the following properties:

• for all n ∈ N, let τn be the time of the first jump of Γ[n] and λn be its law. Then λn

is absolutely continuous with respect to Lebesgue measure with continuous and strictly
positive density.

• for all γ ∈ C∗n, hn
γ (t) = P(Γ[n](t) = γ | τn = t) is a continuous function of t.

Remark that a time homogeneous fragmentation always fulfills these two conditions. Indeed, in
that case, λn is an exponential random variable and the function hn

γ (t) does not depend on t.
As in the case of fragmentation of exchangeable partitions [2], for n ∈ N and γ ∈ C∗n, we can
define an instantaneous rate of jump from 1n to γ:

qγ,t = lim
s→0

1
s
P
(
Γ[n] (τn) = γ & τn ∈ [t, t + s] | τn ≥ t

)
.
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With the same arguments as in the case of fragmentations of exchangeable partitions [2], we
can prove that, for each t > 0, there exists a unique exchangeable measure µt on C such that
µt(1N) = 0 and µt(Q∞,γ) = qγ,t for all γ ∈ C∗n and n ∈ N, where Q∞,γ = {γ′ ∈ C, γ′n = γ}.
Furthermore, the family of measures (µt, t ≥ 0) characterizes the law of the fragmentation. We
call µt the instantaneous rate at time t of the fragmentation. We remark also that if (µt, t ≥ 0)
is the family of rates of a fragmentation process, we have for all n ≥ 2,

µt({γ ∈ C, γ[n] 6= 1n}) =
∑
γ∈C∗n

qγ,t <∞ and
∫ t

0
µu({γ ∈ C, γ[n] 6= 1n} = − ln(λn(]t,∞[)) <∞.

So we can apply Theorem 2.7 to µt and we deduce the following proposition:

Corollary 4.4. Let (µt, t ≥ 0) be the family of rates of a c-fragmentation. Then there exist a
family of dislocation measures (νt, t ≥ 0) and two families of nonnegative numbers (cl,t, t ≥ 0),
(cr,t, t ≥ 0) such that:

• µt1{Uπ 6=]0,1[} = P νt.

• µt1{Uπ=]0,1[} = cl,tεl + cr,tεr.

Besides we have for all T ≥ 0,∫ T

0

∫
U

(1− s1) νt (dU) dt <∞ and
∫ T

0
(cl,t + cr,t)dt <∞.

Proof. The first part of the proposition comes from Theorem 2.7. For the second part, use that∫
U

(1− s1) νt (dU) ≤ µt

(
{π ∈ P, π[2] 6= 12}

)
.

For the upper bound concerning the erosion coefficients, we remark that:

ct + c′t = µt ({1}, N \ {1}) + µt (N \ {1}, {1}) .

In the same way as for homogeneous fragmentation, we define a family of fragmentation measures
as a family (µt, t ≥ 0) of exchangeable measures on C such that, for each t ∈ [0,∞[, we have:

• µt(1N) = 0.

• ∀n ≥ 2, µt({γ ∈ C, γ[n] 6= 1n}) <∞ and
∫ t
0 µu({γ ∈ C, γ[n] 6= 1n})du <∞.

• ∀n ∈ N, ∀A ⊂ C∗n, µt(A) is a continuous function of t.

Proposition 4.5. Let (µt, t ≥ 0) be a family of fragmentation measures. A c-fragmentation with
rate (µt, t ≥ 0) can be constructed from a Poisson point process on R+ × C × N with intensity
dt ⊗ µt ⊗ ], where ] is the counting measure on N in the same way as for time-homogeneous
fragmentation.
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It is very easy to check that the proof of the homogeneous case applies here too. Of course, a
Poissonian construction of a time-inhomogeneous i-fragmentation with no erosion is also possible
with a Poisson measure on R+ × U × N with intensity dt ⊗ νt ⊗ ]. Concerning the law of the
tagged fragment, if one defines σ(t) = − ln |B1(t)|, with B1 the block containing the integer
1, we have now that σ(t) is a process with independent increments. And so, if we denote
ζ = sup{t > 0, σt < ∞}, then there exists a family of non-negative functions (φt, t ≥ 0) such
that

∀q, t ≥ 0, E[exp(−qσt), ζ > t] = exp(−
∫ t

0
φu(q)du).

We call φt the instantaneous Laplace exponent of σ at time t and we have

φt(q) = (cl,t + cr,t)(q + 1) +
∫
U

(1−
∞∑
i=1

|Ui|q+1)νt(dU),

where (|Ui|)i≥0 is the sequence of the lengths of the component intervals of U . Furthermore, an
(νt, ct, c

′
t)t≥0 i-fragmentation (U(t), t ≥ 0) is proper iff

∀t > 0, cl,t = cr,t = 0 and νt(
∑

i

si < 1) = 0).

4.5 Extension to the self-similar case

A notion of self-similar fragmentations has been also introduced [5]. We recall here the definition
of a self-similar p-fragmentation, the reader can easily adapt this definition to the three other
instances of fragmentations.

Definition 4.6. Let Π = (Π(t), t ≥ 0) be an exchangeable process on P. We order the blocks of
Π by their least elements. We call Π a self-similar p-fragmentation with index α ∈ R if

• Π(0) = 1N a.s.

• Π is continuous in probability

• For every t ≥ 0, let Π(t) = (Π1,Π2, . . .) and denote by |Πi| the asymptotic frequency of the
block Πi. Then for every s > 0, the conditional distribution of Π(t + s) given Π(t) is the
law of the random partition whose blocks are those of the partitions Π(i)(si)∩Πi for i ∈ N,
where Π(1), . . . is a sequence of independent copies of Π and si = s|Πi|α.

Notice that an homogeneous p-fragmentation corresponds to the case α = 0.

We have still the same correspondence between the four types of fragmentation. In fact, a
self-similar fragmentation can be constructed from a homogeneous fragmentation with a time
change:

Proposition 4.7. [5] Let (U(t), t ≥ 0) be an homogeneous interval fragmentation with disloca-
tion measure ν. For x ∈]0, 1[, we denote by Ix(t) the interval component of U(t) containing x.
We define

Tα
t (x) = inf{u ≥ 0,

∫ u

0
|Ix(r)|−αdr > t} and Uα(t) = U(Tα

t ) =
⋃

Ix(Tα
t (x)).

Then (Uα(t), t ≥ 0) is a self-similar interval fragmentation with index α.
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A self-similar i-fragmentation (or c-fragmentation) is then characterized by a quadruple
(ν, cl, cr, α) where ν is a dislocation measure on U , cl and cr are two nonnegative numbers
and α ∈ R is the index of self-similarity.

5 Examples

5.1 Interval components in exchangeable random order

In this section we introduce the notion of random open set with interval components in ex-
changeable random order. In the next section, we will give an example of an i-fragmentation
whose dislocation measure has its interval components in exchangeable random order.

Definition 5.1. [13] Let s ∈ S such that
∑

si = 1. Let (Vi)i∈N be iid random variables uniform
on [0, 1]. We denote then U the random open subset of ]0, 1[ such that, if the decomposition of
U in disjoint open intervals ranked by their length is

∐∞
i=1 Ui, we have

• For all i ∈ N, |Ui| = si.

• For all i, j ∈ N, Ui ≺ Uj ⇔ Vi < Vj.

Since we have
∑

i si = 1, there exists almost surely a unique open subset of ]0, 1[ fulfilling these
two conditions. We denote by Qs the distribution of U .

Let ν̃ be a measure on S such that ν̃(
∑

i si < 1) = 0. We denote by ν̂ the measure on U defined
by:

ν̂ =
∫
S
Qsν̃(ds).

A measure on U which can be written in that form is said to have interval components in
exchangeable random order.

Proposition 5.2. Let (U(t), t ≥ 0) be an i-fragmentation with rate (ν, 0, 0) and such that for
all t ≥ 0, U(t) has interval components in exchangeable random order. Then ν has also interval
components in exchangeable random order.

Proof. Let (F (t), t ≥ 0) be the projection of (U(t), t ≥ 0) on S. We know that F is then an
m-fragmentation with rate (ν̃, 0) where ν̃ is the image of ν by the canonical projection U → S.
Let γ ∈ Cn. Let π ∈ Pn be the image of γ by the canonical projection ℘1 from C to P. Let us
now remark that we have

qγ =
1
s

lim
s→0

P(Γ[n](s) = γ) =
1
k!

qπ,

where k is the number of blocks of γ and qπ the jump rate of the p-fragmentation. Let ν̂ be the
measure on U obtained in Definition 5.1 from ν. Let us recall that Q∞,γ = {γ′ ∈ C, γ′[n] = γ}
and define also P∞,π = {π′ ∈ P, π′[n] = π}. We then have

P bν(Q∞,γ) =
1
k!

P ν̃(P∞,π) =
1
k!

qπ = qγ = P ν(Q∞,γ).

So we get that ν = ν̂ and hence ν has interval components in exchangeable random order.
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Let us notice that the proof uses the identity qγ = 1
k!qπ, so if we want to extend this proposition to

the time-inhomogeneous case, then we must suppose not only that U(t) has interval components
in exchangeable random order, but more generally that for all s > t ≥ 0, the probability measure
q
]0,1[
t,s governing the transition probabilities of U from time t to time s (see Definition 3.4 ), has

interval components in exchangeable random order.

Conversely, we may wonder: if (U(t), t ≥ 0) is an i-fragmentation with rate (ν, 0, 0) and ν
has interval components in exchangeable random order, does this imply that U(t) has interval
components in exchangeable random order? The answer is clearly negative. Indeed, let ν be the
following measure:

ν = δU1 + δU2 with cU1 =
{1

3
,
2
3

}
and cU2 =

{1
2

}
.

Then ν has interval components in exchangeable random order, but U(t) does not have this
property since we have

P
(

cU(t) =
{1

3
,
1
2
,
2
3

})
> 0

and

P
(

cU(t) =
{1

6
,
1
2
,
5
6

})
= 0.

5.2 Ruelle’s fragmentation

In this section, we give the semi-group of Ruelle’s fragmentation seen as an interval fragmenta-
tion. Let us recall the construction of this i-fragmentation [8].

Let (σ∗t , 0 < t < 1) be a family of stable subordinators such for every 0 < tn < . . . < t1 < 1,
(σ∗t1 , . . . , σ

∗
tn) law= (σt1 , . . . , σtn) where σti = τα1 ◦ . . . ◦ ταi and (ταi , 1 ≤ i ≤ n) are n independent

stable subordinators with indices α1, . . . , αn such that ti = α1 . . . αi. Fix t0 ∈]0, 1[ and for
t ∈]t0, 1[ define Tt by:

σ∗t (Tt) = σ∗t0(1).

Then consider the open set:

U(t) =
]
0, 1
[∖{ σ∗t (u)

σ∗t0(1)
, 0 ≤ u ≤ Tt

}cl

.

Bertoin and Pitman [8] proved that (U(t), t ∈ [t0, 1[) is an i-fragmentation (with initial state
U(t0) 6=]0, 1[ a.s.) and the transition probabilities of U(t) from time t to time s of the m-
fragmentation (U↓(t), t ∈ [t0, 1[) is PD(s,−t)-FRAG where PD(s,−t) denotes the Poisson-
Dirichlet law with parameter (s,−t) (see [18] for more details about the Poisson-Dirichlet laws).
Moreover, the instantaneous dislocation measure of this m-fragmentation at time t is 1

t PD(t,−t)
(cf. [2]). We would like now to calculate the dislocation measure of the i-fragmentation (U(t), t ∈
[t0, 1[).
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Lemma 5.3. Let us define P̂D(t, 0) as the measure on U obtained from PD(t, 0) by Definition
5.1. The distribution at time t of U(t) is P̂D(t, 0).

Proof. For t ∈]t0, 1[, we have σ∗t0 = σ∗t ◦ τα where αt = t0 and τα is a stable subordinator with
index α and independent of σ∗t . Hence we get

U(t) =
]
0, 1
[∖{ σ∗t (u)

σ∗t (τα(1))
, 0 ≤ u ≤ τα(1)

}cl

.

We can thus write

U(t) =
]
0, 1
[∖{σt(x)

σt(a)
, x ∈ [0, a[

}cl

,

where σt is a stable subordinator with index t and a is a random variable independent of σt.
If we denote by (ti, si)i≥1 the time and size of the jump of σt in the interval [0, a[ ranked by
decreasing order of the size of the jumps, this family has the same law of (tτ(i), si)i≥1 for any τ
permutation of N.

Proposition 5.4. The semi-group of transition of Ruelle’s interval fragmentation from time t to
time s is P̂D(s,−t)-FRAG and the instantaneous dislocation measure at time t is 1

t P̂D(t,−t).

Proof. We would like now to apply Proposition 5.2 to determine the instantaneous measure
of dislocation of Ruelle’s fragmentation, but this proposition holds only for time-homogeneous
fragmentation. If the fragmentation is inhomogeneous in time, we must also check that, for all
s > t ≥ 0, the probability measure q

]0,1[
t,s on U governing the transition probabilities of U from

time t to time s (see Definition 3.4 ), has interval components in exchangeable random order.
Fix t ≥ 0 and s > t. Fix y ∈]0, 1[ and denote by I(t) the interval component of U(t) containing
y. We shall prove that U(s) ∩ I(t) has its interval components in exchangeable random order.
By the construction of U(t), there exists x ∈]0, Tt[ such that

I(t) =
]σ∗t (x−)

σ∗t0(1)
,
σ∗t (x)
σ∗t0(1)

[
.

We have σ∗t = σ∗s ◦ τt/s where τt/s is a stable subordinator with index t/s and is independent of
σ∗t+s. Hence, we get:

U(s) ∩ I(t) = I(t)
∖{ σ∗s(y)

σ∗t0(1)
, τt/s(x

−) ≤ y ≤ τt/s(x)
}cl

.

Since τt/s is independent of σ∗s , the jump of σ∗s on the interval ]τt/s(x−), τt/s(x)[ are in exchange-
able random order. Since, as m-fragmentation, the semi-group of transition is PD(s,−t)-FRAG,
we deduce that, as i-fragmentation, the semi-group is P̂D(s,−t)-FRAG. To prove that the dis-
location measure at time t is 1

t P̂D(t,−t), we just have to apply the Proposition 5.2.

We can also give the semi-group from time t to time s of the corresponding c-fragmentation.
Indeed, the EPPF of a partition whose frequency law is a Poisson-Dirichlet law is well known
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(see [16, 17]), and since the blocks are in exchangeable random order, the semi-group from time
t to time s of the c-fragmentation is qt,s-FRAG(Γ(t), ·) with

∀n ∈ N,∀(A1, . . . , Ak) ∈ Cn, qt,s(Γ[n] = (A1, . . . , Ak)) =
[−t/s]k
k![−t]n

k∏
i=1

−[−s]ni ,

where ]Ai = ni and [x]n =
∏n

i=1(x + i− 1).

5.3 Dislocation measure of the Brownian fragmentation

We consider the m-fragmentation introduced by Aldous and Pitman [1] to study the standard
additive coalescent. Bertoin [4] gave a construction of an i-fragmentation (U(t), t ≥ 0) whose
projection on S is this fragmentation. More precisely, let ε = (εs, s ∈ [0, 1]) be a standard
positive Brownian excursion. For every t ≥ 0, we consider

ε(t)
s = ts− εs, S(t)

s = sup
0≤u≤s

ε(t)
u .

We define U(t) as the constancy intervals of (S(t)
s , 0 ≤ s ≤ 1). Bertoin [5] proved also that

(U↓(t), t ≥ 0) is an m-fragmentation with index of self-similarity 1/2, with no erosion and its
dislocation measure is carried by the subset of sequences

{s = (s1, s2, . . .) ∈ S, s1 = 1− s2 and si = 0 for i ≥ 3}

and is given by
ν̃AP (s1 ∈ dx) =

(
2πx3(1− x)3

)−1/2
dx for x ≥ 1/2.

Proposition 5.5. The i-fragmentation derived from a Brownian motion [4] has dislocation
measure νAP such that:

• νAP is supported by the sets of the form ]0, X[∪]X, 1[, so we shall identify each such set
with X and write νAP (dx) for its distribution.

• For all x ∈]0, 1[, νAP (dx) = (2πx(1− x3))−1/2dx.

Notice that we have νAP (dx) = xν̃AP (s1 ∈ dx or s2 ∈ dx) for all x ∈]0, 1[. Hence, given that the
m-fragmentation splits in two blocks of size x and 1 − x, the left block of the i-fragmentation
will be a size-biased pick from {x, 1− x}.

Proof. The first part of the proposition is straight forward since we have ν̃AP (s1 = 1− s2) = 1.
For the second part, let us use Theorem 9 in [4] which gives the distribution ρt of the leftmost
fragment of U(t):

ρt(dx) = t
1√

2πx(1− x)3
exp

(
− xt2

2(1− x)

)
dx for all x ∈]0, 1[.

We get

νAP (dx) = lim
t→0

1
t
ρt(dx) =

dx√
2πx(1− x)3

.
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We can also give a description of the distribution at time t > 0 of U(t). Recall the result obtained
by Chassaing and Janson [10]. For a random process X on R and t ≥ 0, we define `t(X) as the
local time of X at level 0 on the interval [0, t], i.e.

`t(X) = lim
ε→0+

1
2ε

∫ t

0
1{|Xs|<ε}ds,

whenever the limit makes sense.

Let Xt be a reflected Brownian bridge conditioned on `1(Xt) = t. We define θ ∈]0, 1[ such that

`θ(Xt)− tθ = max
0≤u≤1

`u(Xt)− tu.

It is well known that this equation has almost surely a unique solution. Let us define the process
(Zt(s), 0 ≤ s ≤ 1) by

Zt(s) = Xt(s + θ [mod 1]).

Chassaing and Janson [10] have proved that for each t ≥ 0

U(t) law= ]0, 1[\{x ∈ [0, 1], Zt(x) = 0}.

Besides, as the inverse of the local time of Xt defined by

Tx = inf{u ≥ 0, `u(Xt) > x}

is a stable subordinator with Lévy measure (2πx3)−1/2dx conditioned to Tt = 1, we deduce the
following description of the distribution of U(t):

Corollary 5.6. Let t > 0. Let T be a stable subordinator with Lévy measure (2πx3)−1/2dx
conditioned to Tt = 1. Let us define m as the unique real number in [0, t] such that

tTm− −m ≤ tTu − u for all u ∈ [0, t],

where Tm− = limx→m− Tx. We set:

T̃x = Tm+x − Tm− for 0 < x < t−m,
Tm+x−t − Tm− + 1 for t−m ≤ x ≤ t.

Then
U(t) law= ]0, 1[\{T̃x, x ∈ [0, t]}cl.

Proof. It is clear that {u, Xt(u) = 0} coincides with {Tx, x ∈ [0, t]}cl when T is the inverse of
the local time of Xt. Hence, we just have to check that if we set m = `θ(Xt), then m verifies
the equation tTm− −m ≤ tTu − u for all u ∈ [0, t]. Since Xt(θ) = 0, we have Tm− = θ, thus we
get:

tTm− −m = tθ − `θ(Xt) ≤ tv − `v(Xt) for all v ∈ [0, 1].

Let us fix u ∈ [0, t]. Since `v(Xt) is a continuous function, there exists v ∈ [0, 1] such that
`v(Xt) = u. Besides we have T−

u ≤ v ≤ Tu, so we get

tTm− −m ≤ tTu − u.

415



Hence, the distribution of [0, 1] \ U(t) can be obtained as the closure of the shifted range of a
stable subordinator (Ts, 0 ≤ s ≤ t) with index 1/2 and conditioned on Tt = 1 (recall also that
Chassaing and Janson [10] have proved that the leftmost fragment of U(t) is size-biased picked).

Remark 5.7. There exists another way to construct an i-fragmentation from a Brownian ex-
cursion [5]. Let ε = (ε(r), 0 ≤ r ≤ 1) be a Brownian excursion with unit duration. We
consider U(t) = {r ∈]0, 1[, ε(r) > t}. Bertoin has proved that the process (U(t), t ≥ 0) is an i-
fragmentation whose rate as m-fragmentation is (0, 2ν̃AP ) and index of self-similarity α = −1/2.
Let us define the open set V (t) = {x ∈]0, 1[, (1−x) ∈ U(t)}. Since (ε(1− r), 0 ≤ r ≤ 1) has also
the law of a Brownian excursion with unit duration, we deduce that (V ↓(t), t ≥ 0) is also an m-
fragmentation with the same characteristics as (U↓(t), t ≥ 0). Besides, if νε (resp. νε′ )denotes
the dislocation measure of the i-fragmentation U (resp. V ), we must have νε(dx) = νε′(1− dx)
(recall that since ν̃AP is binary, we write νε(dx) to denote the distribution of ]0, x[∪]x, 1[). Hence,
we deduce that νε(dx) = νε(1 − dx) and using that 2ν̃AP (s1 ∈ dx) = νε(dx) + νε(1 − dx) for
x ∈]1/2, 1[, we get

νε(dx) =
1√

2πx3(1− x)3
dx for x ∈]0, 1[,

and νε has interval components in exchangeable random order.

Acknowledgments. I would like to thank the referee for the careful reading of the first draft of
this work and his helpful suggestions.

References

[1] D. Aldous and J. Pitman. The standard additive coalescent. Ann. Probab., 26(4):1703–1726,
1998. MR1675063

[2] A.-L. Basdevant. Ruelle’s probability cascades seen as a fragmentation process. Markov
Process. Related Fields, 2005. To appear.

[3] J. Berestycki. Ranked fragmentations. ESAIM, 6:157, 2002. MR1943145

[4] J. Bertoin. A fragmentation process connected to Brownian motion. Probab. Theory Related
Fields, 117(2):289–301, 2000. MR1771665

[5] J. Bertoin. Self-similar fragmentations. Ann. Inst. H. Poincaré Probab. Statist., 38(3):319–
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