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Abstract

For normally reflected Brownian motion and for simple random walk on independently
growing in time d-dimensional domains, d ≥ 3, we establish a sharp criterion for
recurrence versus transience in terms of the growth rate.
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1 Introduction.

There has been much interest in studies of random walks in random environment (see
[13]). Of particular challenge are problems in which the walker affects its environment,
as in reinforced random walks. In this context even the most fundamental question
of recurrence versus transience is often open. For example, in case of linearly edge-
reinforced random walks (LRRW), the existence of phase transition between a.s. recurrence
for large enough reinforcement strength and a.s. transience for small enough strength
has just been recently shown (see [2, 24] for the recurrence under large reinforcement
of LRRW on graphs of bounded degrees, [2] for its transience under small reinforcement
for non-amenable graphs, and [8] for such transience in case of the LRRW on Zd, d ≥ 3).
The question of M. Keane whether once edge-reinforced random walk (ORRW) on Z2 is
recurrent, remains widely open (for any reinforcement strength), as does the conjecture
by the last author that the recurrence of ORRW on Zd, d ≥ 3, exhibits a phase transition
with respect to its reinforcement strength. In contrast, the motion of walker excited
towards the origin on the boundary of its range is recurrent in any dimension regardless
of the strength of the excitation, see [17, Section 2] and [18], while as shown in [3],
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excitation by means of a drift in ~e1 direction results in transience for any strength of the
drift in any dimension d ≥ 2 (Cf. [16] for results in one dimension, related excitation
models, and open problems).

The case where the walk does not affect the time evolution of its environment is
better understood. For example, time homogeneous, translation invariant Markovian
evolution of the environment is considered in [7] and the references therein. The
quenched CLT for the walk is proved there for stationary initial conditions subject to
suitable locality, ellipticity, spatial and temporal mixing of the environment. Our focus is
on the recurrence/transience properties of certain time-varying, highly non-reversible
evolution. Specifically, we consider the discrete-time simple random walk (SRW) {Yt} on
non-decreasing connected graphs Gt of common vertex set. Namely, having Yt = y, one
chooses Yt+1 uniformly among all neighbors of y within Gt+1. In this article we propose
three natural general conjectures about the recurrence/transience of such processes
and prove partial results in this direction, for such SRW on subgraphs of Zd, d ≥ 3, which
satisfy the following bounded-shape condition.

Assumption 1.1. The connected, non-decreasing t 7→ Dt ⊆ Zd, d ≥ 3 are such that
f(t)B1∩Zd ⊆ Dt ⊆ f(t)Bc∩Zd, for some finite c and non-decreasing, unbounded, strictly
positive f(t), t ≥ 0 (and Bc ⊂ Rd denotes an Euclidean ball of radius c, centered at the
origin 0 ∈ Zd).

In this context, we propose the following universality conjecture (namely, that only
the asymptotic growth rate of t 7→ f(t) matters for transience/recurrence of such SRW).

Conjecture 1.2. Almost surely, the SRW {Yt} on {Dt} satisfying Assumption 1.1 and
starting at Y0 = 0, returns to the origin finitely often iff

Jf :=

∫ ∞
0

dt

f(t)d
<∞. (1.1)

Indeed, we show in Theorem 1.4 that under Assumption 1.1, having Jf <∞ implies that
P(A) = 0 for A := {

∑
t I{y}(Yt) = ∞} and any y ∈ Zd. For the more challenging part,

namely

Jf =∞ ⇒ P(A) = 1, (1.2)

we resort to connecting the SRW {Yt} with a normally reflected Brownian motion (in short
RBM), via an invariance principle (see Lemma 3.2). Thus, our approach yields sample-path
recurrence results for reflected Brownian motion on growing domains in Rd (in short
RBMG, see Definition 1.13 and Theorem 1.15), which are of independent interest. This
strategy comes however at a cost of imposing certain additional restrictions on t 7→ Dt.
Specifically, when proving in part (b) of Theorem 1.4 the recurrence of the SRW on growing
domains Dt in Zd, d ≥ 3, we further assume that Dt = f(t)K ∩ Zd for some K regular
enough, to which end we recall the following definition.

Definition 1.3. An open connected K ⊆ Rd is called a uniform domain if there exists
a constant C < ∞ such that for every x, y ∈ K there exists a rectifiable curve γ ⊆ K
joining x and y, with length(γ) ≤ C|x− y| and min{|x− z|, |z − y|} ≤ Cdist(z, ∂K) for all
z ∈ γ.

Dealing with a discrete time SRW, we may consider without loss of generality only
t 7→ f(t) piecewise constant, that is, from the collection

F := {f(·) : f(t) =

∞∑
l=1

alI[tl,tl+1)(t), for t1 = 0, {tl} ↑ ∞, 0 < al ↑ ∞}. (1.3)

However, as seen in our main result below, for our proof of (1.2) we further require the
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following separation of scales

F∗ := {f ∈ F : (al − al−1) ↑ ∞,
∞∑
l=1

a2−d
l log(1 + al) <∞} . (1.4)

Theorem 1.4. Consider a SRW {Yt} on {Dt} satisfying Assumption 1.1, with Y0 = 0.
(a). Whenever Jf <∞, the SRW {Yt} a.s. visits every y ∈ Zd finitely often.
(b). Such SRW {Yt} a.s. visits every y ∈ Zd infinitely often, in case Dt = f(t)K ∩ Zd with
f ∈ F∗ such that Jf =∞ and K in

K := {bounded uniform domain K ⊂ Rd : x ∈ K ⇒ λx ∈ K ∀λ ∈ [0, 1]} . (1.5)

Remark 1.5. Requiring (al − al−1) ↑ ∞ results in l 7→ al super-linear, and hence in the
series

∑
l a

2−d
l log(1 + al) converging whenever d ≥ 4 (so the latter restriction on f ∈ F∗

is relevant only for d = 3). We need K to be a uniform domain only for the invariance
principle of Lemma 3.2, and impose on K the star-shape condition of (1.5) merely to
guarantee that the corresponding sub-graphs t 7→ Dt are non-decreasing.

One motivating example for our study is the SRW {Yt} on the independently growing
Internal Diffusion Limited Aggregation (IDLA) cluster Dt, formed by particles injected at
the origin according to a Poisson process of bounded away from zero intensity λ(t), and
independently performing SRW with jump-rate v. While the microscopic boundary of such
IDLA cluster Dt is rather involved, it is well known (see [20]), that M−1/d

t Dt → Bκ, where
Mt denotes the number of particles reaching the IDLA cluster boundary by time t, and the
value of κ = κd is chosen such that Bκ has volume one. Consequently, from part (a) of
Theorem 1.4 we have that

Corollary 1.6. The SRW on such IDLA clusters is a.s. transient when the random variable
J :=

∫∞
1
M−1
t dt is finite.

Further, our analysis (i.e. part (b) of Theorem 1.4), suggests the a.s. recurrence of the
SRW on such IDLA clusters, whenever J =∞ (this is also a special case of Conjecture 1.2).

Remark 1.7. In our IDLA clusters example, let g(t) :=
∫ t

0
λ(s)ds denote the mean of the

Poisson number of particles Nt injected at the origin by time t. Then, a.s. J <∞ iff

Ĵ :=

∫ ∞
1

g(t)−1dt <∞ . (1.6)

Indeed, clearly Mt ≤ Nt and for large t the Poisson variable Nt is concentrated around
g(t). Our claim thus follows immediately when v → ∞, for then one has further that
Mt ↑ Nt ∼ g(t). More generally, for v finite and t� 1, the variableMt is still concentrated,
say around some non-random u(t), which is roughly comparable to Nt−cu(t)2/d for some

c = c(v), and thereby also to g(t− cu(t)2/d). Solving for

u(t) := sup{u : g(t− cu2/d) ≥ u}

it is easy to check that u(2t) ≥ g(t) ∧ (t/c)d/2, hence for d ≥ 3∫ ∞
1

u(t)−1dt <∞ iff Ĵ <∞.

Next, considering part (b) of Theorem 1.4 for K = B1 we see that (at least subject
to our conditions about {al}), Conjecture 1.2 is a consequence of the more general
monotonicity conjecture:

EJP 19 (2014), paper 106.
Page 3/20

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3272
http://ejp.ejpecp.org/


Walking within growing domains: recurrence versus transience

Conjecture 1.8. Suppose non-decreasing in t graphs Gt, G′t of uniformly bounded
degrees are such that Gt ⊆ G′t for all t, and the SRW {Yt} on {Gt} is transient, i.e. its
sample-path a.s. returns to Y0 = y0 finitely often. Then, the same holds for the sample
path of the SRW {Y ′t } on {G′t}, starting at Y ′0 = y0.

Remark 1.9. By Rayleigh monotonicity principle, Conjecture 1.8 trivially holds whenever
Gt and G′t do not depend on t. However, beware that it may fail when the graphs depend
on t and unbounded degrees are allowed. For example, on Gt = Z3 the SRW is transient,
but we can force having a.s. infinitely many returns to 0 by adding to the edges of Z3,
at times tk ↑ ∞ fast enough, edges in G′t, t ≥ tk, between 0 and each vertex in a wide
enough annulus Ak := {x ∈ Z3 : ‖x‖2 ∈ [rk, Rk)} (specifically, with rk � Rk suitably
chosen to make sure the SRW on G′t is at times tk in Ak and thereby force at least one
return to zero before exiting Ak, while tk−1 � tk gives separation of scales).

As shown for example in Theorem 1.4, when the SRW on the limiting graph G∞ is
transient, one may still get recurrence by imposing slow enough growth on Gt. In
contrast, whenever the SRW on G∞ is recurrent, we have the following consequence of
the Conjecture 1.8.

Conjecture 1.10. If SRW {Yt} on a fixed graph G∞ of uniformly bounded degrees is
recurrent, then the same applies to SRW on non-decreasing Gt ⊆ G∞, for any choice of
Gt ↑ G∞.

In particular, Conjecture 1.10 implies that the SRW on any non-decreasing Dt ⊆ Z2 is
recurrent. We note in passing that monotonicity of t 7→ Dt is necessary for the latter
statement (hence for Conjectures 1.8 and 1.10). Indeed, with Dt being Z2 without edges
(x, y) for ||x||1 = t and ||y||1 = t− 1, we have Dt → Z2 as t→∞, while ||Yt||1 = t for all t.

Remark 1.11. Conjecture 1.10 was proposed to us by J. Ding and upon completing this
manuscript we found a more general version of it in [1]. Specifically, [1] conjecture
that a random walk {Yt} on graph G∞ with non-decreasing edge conductances {ct(e)}
is recurrent as soon as the walk on (G∞, {c∞(e)}) is recurrent (Conjecture 1.10 is just
its restriction to {0, 1}-valued conductances). This is proved for G∞ a tree (by potential
theory, see [1, Theorem 5.1]). A weaker version of Conjecture 1.8 is also proposed
there (and confirmed in [1, Theorem 4.2] for G∞ = Z+), whereby the transience of the
walk on (G∞, {ct(e)}) is conjectured to hold whenever the walk on (G∞, {c0(e)}) and the
walk on (G∞, {c∞(e)}) are both transient. Finally, we note in passing that the zero-one
law P(A) ∈ {0, 1} in Conjecture 1.2 is not at all obvious given [1, Example 4.5], where
0 < P(A) < 1 for some random walk on Z with certain non-random, non-increasing
ct(e) ∈ (0, 1].

Remark 1.12. Recall [11] that the SRW on the infinite cluster D0 of Bernoulli bond
percolation on Zd is a.s. recurrent for d = 2 and transient for any d ≥ 3. Hence, by
Conjectures 1.8 and 1.10 the same should apply to the SRW on any independently growing
domains Dt ⊇ D0. Whereas the latter is an open problem, by [15, Theorem 1.1] such
conclusion trivially holds when Dt is the set of vertices connected to the origin by time t
in First-Passage Percolation with finite, non-negative i.i.d. passage times on Zd, subject
only to the mild moment condition [15, (1.6)].

We consider also Brownian motions on growing domains, as defined next.

Definition 1.13. We call (Wt,Dt) reflected Brownian motion on growing domains (RBMG),
if the non-random, monotone non-decreasing Dt ⊆ Rd are such that the normally
reflected Brownian motion W on the time-space domain D := {(t, x) ∈ Rd+1 : x ∈ Dt} is
a well-defined strong Markov process solving the corresponding deterministic Skorohod
problem. That is, for any (s, x) ∈ D there is a unique pair of continuous processes
(W,L) adapted to the minimal admissible filtration of Brownian motion {Ut}t≥0, with L
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non-decreasing, such that for any t ≥ s, both (t,Wt) ∈ D and

Wt = x+ Ut − Us +

∫ t

s

n(u,Wu)dLu , (1.7)

Lt =

∫ t

s

I∂D(u,Wu)dLu ,

where n(u, y) denotes the inward normal unit vector at y ∈ ∂Du.

As shown in [5, Theorem 2.1 and 2.5], Definition 1.13 applies when ∂D is C3-smooth
with γ(t, x) · (0,n(t, x)) bounded away from zero uniformly on compact time intervals,
where γ(t, x) denotes the inward normal unit vector at (t, x) ∈ ∂D. Focusing on Dt =

f(t)K this condition holds whenever both f(t) and ∂K are C3-smooth. Further, this
construction easily extends to handle isolated jumps in t 7→ f(t).

In the context of Rd-valued stochastic processes, we define recurrence as follows:

Definition 1.14. The sample path xt of a stochastic process t 7→ xt ∈ Dt with x0 = 0, is
called recurrent, if it makes infinitely many excursions to Bε for any ε > 0, and is called
transient otherwise. That is, recurrence amounts to the event A := ∩ε>0Aε, where

σ(0)
ε := inf{t ≥ 0 : Dt ⊇ Bε},

τ (i)
ε := inf{t ≥ σ(i−1)

ε : |xt| < ε}, i ≥ 1

σ(i)
ε := inf{t ≥ τ (i)

ε : |xt| > 1/2},

Aε := {τ (i)
ε <∞,∀i}.

Theorem 1.15. Suppose Bf(t) ⊆ Dt ⊆ Rd, d ≥ 3, and t 7→ f(t) is positive, non-
decreasing.
(a). The sample path of the RBMG (Wt,Dt) is a.s. transient whenever Jf <∞.
(b). The sample path of the RBMG (Wt,Dt) is a.s. recurrent whenever Jf = ∞, provided
Dt = f(t)K for C3-smooth up to isolated jump points t 7→ f(t) such that

∫∞
0
f ′(s)2ds is

finite and K ∈ K of C3−smooth boundary ∂K.

Remark 1.16. In part (a) of Theorem 1.15 we implicitly assume that the RBMG (Wt,Dt) is
well defined, in the sense of Definition 1.13. Since Jf = ∞ whenever f(t) is bounded,
in which case part (b) trivially holds, we assume throughout that f(t) is unbounded.
The condition

∫∞
0
f ′(s)2ds < ∞ is needed in part (b) only for K 6= Br, and it holds for

example whenever f(·) is piecewise constant, or in case f(s) = (c+ s)α for some c > 0

and α ∈ [0, 1/2).

We prove Theorem 1.15 in Section 2 and Theorem 1.4 in Section 3, whereas in Section
4 we show that in the context of Conjecture 1.2, if recurrence/transience occurs a.s. with
respect to the origin, then the same applies at any other point.

2 Proof of Theorem 1.15

Since the events Aε are non-decreasing in ε, it suffices for Theorem 1.15 to show that
qε := P(W ∈ Aε) = I{Jf=∞} for each fixed ε > 0. To this end we require the following
three lemmas.

Lemma 2.1. Suppose |x1| ≤ |x2| and for some positive g ↑ ∞, and constant c > 1, one has

RBMG-s (W
(1)
t ,D

(1)
t ), (W

(2)
t ,D

(2)
t ), such that W (i)

0 = xi, i = 1, 2, D(1)
t = Bg(t), D

(2)
t ⊇ Bcg(t).

(a). Then, there exists a coupling (W
(1)
t ,W

(2)
t ) with non-negative ψt := |W (2)

t | − |W
(1)
t |.

(b). Such coupling also exists in case D(2)
t = D

(1)
t = Bg(t).
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Proof. (a). Given x, y ∈ Rd with |x| = |y|, let V := span{x, y} and O(x, y) denote the
unique d-dimensional orthogonal matrix acting as the identity on V⊥ and as the rotation
such that Ox = y on V. By assumption ψ0 ≥ 0. We run the RBMG-s independently,
until η1 := inf{t ≥ 0 : ψt = 0}, noting that by continuity of t 7→ ψt, the function ψt
is non-negative on (0, η1). It thus suffices to consider only η1 < ∞. In this case, let

{W (1)
t , t ≥ η1}, be the solution of (1.7) driven by Brownian motion {Ut, t ≥ η1} starting

at W (1)
η1 = Uη1 . Setting Ũt := O(W

(1)
η1 ,W

(2)
η1 )Ut let

τ1 := inf{t ≥ η1 : Ũt ∈ ∂D(2)
t }.

Since |W (2)
η1 | = |W

(1)
η1 | ≤ g(η1) < cg(η1), it follows from the definition of RBMG (W

(2)
t ,D

(2)
t )

that {Ũt} has for t ∈ [η1, τ1] the same law as {W (2)
t }. In particular, a normal reflection at

∂Bg(t) reduces the norm, hence |W (1)
t | ≤ |Ut| = |Ũt| = |W (2)

t | for such t. That is ψt ≥ 0

on t ∈ [η1, τ1]. With ψτ1 ≥ (c− 1)g(τ1) > 0, clearly η2 := inf{t ≥ τ1 : ψt = 0} > τ1. In case

η2 <∞, with W (2)
η2 ∈ D

(1)
η2 , we repeat the above argument for [η2, τ2], then for [η3, τ3], etc.

By construction, ηn < τn < ηn+1 for all n. Moreover, a.s. τn →∞ when n→∞. Indeed,
assuming without loss of generality that ηk <∞, we have the stopping times

θk := inf{t ≥ ηk : Ũt ∈ ∂Bg(t)} ,

ζk := inf{t ≥ θk : Ũt ∈ ∂Bcg(θk)} ,

such that θk < ζk ≤ τk and conditional on the relevant stopped σ-algebra at θk, the
random variable ζk − θk has the law of the time it takes an independent Brownian
motion to get from ∂Bg(θk) to ∂Bcg(θk). With g(θk) ≥ g(0), by Brownian scaling it follows
that the sequence {τk − ηk} stochastically dominates the i.i.d. {ξk}, each distributed
as ξ := g(0)2 inf{t ≥ 0 : |Ut| = c, |U0| = 1}. This induces stochastic domination of the
corresponding partial sums,

n∑
k=1

(τk − ηk) �
n∑
k=1

ξk .

As n→∞ the right-hand-side grows a.s. to infinity and so does the left-hand-side.

(b). We follow the construction and reasoning of part (a), up to time η1, setting now
Ũt := O(W

(1)
η1 ,W

(2)
η1 )W

(1)
t for all t ≥ η1. Then, by the invariance to rotations of Bg(t) and

the fact that only normal reflections are used, we have that t 7→W
(2)
t 1{t<η1} + Ũt1{t≥η1}

is a realization of the RBMG (W
(2)
t ,Bg(t)), for which ψt is non-negative.

Lemma 2.2. Let Px denote the law of the RBM Zt on Ba, starting at Z0 = x. Consider the
stopping times τ(a) := inf{s ≥ 0 : Zs ∈ ∂Ba} and σ(a, r) := inf{s ≥ 0 : Zs ∈ Br}. Then,
there exists C = Cd(δ) > 0 such that for any t, δ > 0, ra ∈ [δ, 1), d ≥ 3,

sup
x∈Ba

Px(τ(a) > ta2) < C−1e−Ct , (2.1)

sup
x∈Ba\Br

Px(σ(a, r) > ta(a− r)) < C−1e−Ct , (2.2)

inf
x∈Ba/2

Px(τ(a) > a2) > C . (2.3)

Proof. In case the process starts at z ∈ ∂Br we use Pr~e1 to indicate probabilities of
events which are invariant under any rotation of the sample path. Then, with Ut denoting
a standard Brownian motion, by Brownian scaling the left-hand side of (2.3) does not
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depend on a and is merely the positive probability P0.5~e1(|Us| < 1,∀s ≤ 1). Further, by
the Markov property, invariance to rotations and Brownian scaling, for x ∈ Ba,

Px(τ(a) > ta2) = Px(|Zs| < a,∀s ≤ ta2) ≤
[

sup
0≤|z|<a

Pz(|Zs| < a,∀s ≤ a2)
]btc

=
[
P0(|Zs| < a,∀s ≤ a2)

]btc
= P0(|Us| < 1,∀s ≤ 1)btc := (1− η)btc,

with η = ηd > 0, out of which we get (2.1). Proceeding similarly, we have for (2.2) that

Px(σ(a, r) > ta(a− r)) = Px(|Zs| > r,∀s ≤ ta(a− r))

≤
[

sup
r<|z|≤a

Pz(|Zs| > r,∀s ≤ a(a− r))
]btc

=
[
Pa~e1(|Zs| > r,∀s ≤ a(a− r))

]btc
≤ sup
δ≤ρ<1

P~e1(|Ẑs| > ρ,∀s ≤ 1− ρ)btc := (1− ζ(δ))btc

where Ẑ denotes the RBM on B1. Further,

ζ ≥ inf
δ≤ρ<1

P~e1(|U1−ρ| ≤ ρ) > 0

(by the stochastic domination |Us| � |Ẑs|, for example, due to part (a) of Lemma 2.1).

Lemma 2.3. Let Px denote the law of the RBM Zt on Ba, starting at Z0 = x. Fixing
ε, δ ∈ (0, 1/2), there exist finite Md(ε, δ) and C = Cd(ε, δ) such that for all M,T, a and r

with M ≥Md(ε, δ), T ≥Ma2 log a and a−M ≥ r ≥ aδ,

inf
x∈Br

Px(∃s ≤ T : |Zs| < ε) ≥ C−1
[ T
ad
∧ 1
]
, (2.4)

sup
x∈∂Br

Px(∃s ≤ T : |Zs| < ε) ≤ C
[ T
ad
∧ 1
]
. (2.5)

Proof. Starting at Z0 = x ∈ ∂Br, we set σ0 := 0,

τk := inf{t ≥ σk−1 : Zt ∈ ∂Ba}, k ≥ 1 (2.6)

σk := inf{t ≥ τk : Zt ∈ Ba/2}

and call Z· restricted to [σk, σk+1] the k-th excursion of Z, with Lk := σk+1 − σk denoting
its length. Obviously, for σ(a, ε) := inf{t ≥ 0 : |Zt| ≤ ε} and any k ∈ N

P(σ(a, ε) ≤ σk)− P(σk ≥ T ) ≤ P(σ(a, ε) ≤ T ) ≤ P(σ(a, ε) ≤ σk) + P(σk ≤ T ) . (2.7)

Recall that conditional on their starting and ending positions, these excursions of the RBM

Zt on Ba are mutually independent. Consequently,

P(σ(a, ε) > σk) = E
[ k∏
i=1

(
1− bε(Zσi−1

, Zσi)
)]

(2.8)

where bε(x,w) := Px(inft≤τ1 |Zt| ≤ ε | Zσ1 = w) is the probability of entering Bε in one
such excursion. Elementary potential theory (e.g. see [21, Theorem 3.18]), yields the
formula

bε(x) =
|x|2−d − a2−d

ε2−d − a2−d (2.9)
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for the unconditional probability bε(x) := E[bε(x, Zσ1
)]. Hence, applying the strong

Markov property of Z· at the stopping time σi where |Zσi | = a/2, going from i = k − 1

backwards to i = 1 we deduce that

qk := P(σ(a, ε) ≤ σk) = 1− (1− bε(r~e1))(1− bε(
a

2
~e1))k−1 .

It is easy to check that bε(
a
2~e1) = c0a

2−d(1 + o(1/M)) for some finite, positive c0 = c0(d, ε)

and all a ≥ M ≥ 1/δ, whereas bε(r~e1) ≤ c′bε(
a
2~e1) for some finite c′ = c′(d, δ), and all

r ≥ aδ ≥ 1. Thus, setting k = [Ta−2κ∓1] for some universal κ yet to be determined, we
see that

C−1
[ T
ad
∧ 1
]
≤ qk ≤ C

[ T
ad
∧ 1
]
, (2.10)

for some finite C = C(d, ε, δ, κ) and all M ≥Md(ε, δ) large enough. Hence, it suffices to
show that for some universal c = c(d, ε, δ) > 0, κ = κ(d, ε, δ) finite and all a ≥ 2Md, k ≥ 1,
x ∈ ∂Br

Px(k−1a−2σk ≥ κ) ≤ e−ck , Px(k−1a−2σk ≤ κ−1) ≤ e−ck . (2.11)

Indeed, our assumption that T ≥Ma2 log a translates to ck ≥ cκ∓1M log a, so that for all
large enough M ≥M0(κ, c, d, C) we have that

e−ck ≤ 1

2C

[
κ±1a2−d ∧ 1

]
≤ 1

2
qk ,

resulting by (2.7) and (2.10) in the claimed bounds.
The universal exponential tail bounds of (2.11), are a direct consequence of having
control on the log-moment generating functions Λk(θ) := logE[eθσk ] for large k and small
θ̂ := θa2. Specifically, by Markov’s exponential inequality (also known as Chernoff’s
bound), we get (2.11) as soon as we show that

κ+ := lim inf
θ̂↓0

lim sup
k→∞

θ̂−1k−1 sup
a≥M

{
Λk(θ̂a−2)

}
<∞ , (2.12)

−κ−1
− := lim inf

θ̂↓0
lim sup
k→∞

θ̂−1k−1 sup
a≥M

{
Λk(−θ̂a−2)

}
< 0 , (2.13)

(provided κ > κ+ ∨ κ− and c = θ̂(κ− κ+) ∧ (κ−1
− − κ−1) for θ̂ > 0 small enough). Turning

to control Λk(·), recall that σk =
∑k−1
i=0 Li, with {Li} mutually independent conditional

on the values of {Zσi}. Thus, proceeding in the same manner as done in (2.8), we have
that for any θ ∈ R and k ∈ N,

Λk(θ) = logE
[ k∏
i=1

m(θ, Zσi−1
, Zσi)

]
,

where m(θ, x, w) := Ex[eθL0 |Zσ1 = w]. By invariance of the joint law of {σk} with respect
to rotations of the RBM sample path t 7→ Zt, the function m(θ, x) = E[m(θ, x, Zσ1)] depends
only on |x| and is thus denoted hereafter by m(θ, |x|). Using this and exploiting once
more the strong Markov property at the stopping times σi where |Zσi | = a/2 (first for
i = k − 1, then backwards to i = 1), we find that

Λk(θ) = (k − 1) logm(θ, a/2) + logm(θ, r) . (2.14)

Further, L0 is the sum of two independent variables, having the laws of τ(a) and σ(a, a/2)

of Lemma 2.2. Thus, the universal upper bounds (2.1) and (2.2) imply that for any
0 ≤ θ̂ < Cd(δ) (and Cd(δ) > 0 as in Lemma 2.2),

sup
r≥aδ

{m(θ̂a−2, r)} ≤
[
1 +

θ̂

Cd(Cd − θ̂)
]2
. (2.15)
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Combining this with (2.14) we get (2.12) (with κ+ = 2C−2
d finite). Recall that for any

Y, y ≥ 0,
logE[e−Y ] ≤ −(1− E[e−Y ]) ≤ −(1− e−y)P(Y ≥ y) ,

hence logm(−θ̂a−2, r) ≤ 0 and

logm(−θ̂a−2, a/2) ≤ −(1− e−θ̂)P(L1 ≥ a2) .

It thus follows from (2.3) and the stochastic domination L1 � τ(a) starting at some
position x ∈ ∂Ba/2 that logm(−θ̂a−2, a/2) ≤ −Cdθ̂/e for all a > 0 and θ̂ ≤ 1, thereby
establishing (2.13) with κ−1

− = Cd/e positive, and completing the proof of the lemma.

Proof of Theorem 1.15. This proof consists of six steps. First, for Dt = Bf(t) and f ∈ F∗
of (1.4), we prove in Step I the a.s. recurrence of the RBMG when Jf =∞, and in Step II
its a.s. transience when Jf <∞. Relaxing these conditions, in Step III we prove part (a),
and in Step IV get part (b) for K = B1. The a.s. sample-path recurrence when Jf =∞ is
then established for K ∈ K of (1.5), when both ∂K and t 7→ f(t) are C3-smooth (see Step
V), and further extended to f(·) having isolated jump points (see Step VI).

Step I. For f ∈ F∗ we set ∆Tl := tl+1 − tl and pl := a2−d
l log(1 + al), so that

∑
l pl < ∞

and

Jf =

∞∑
l=1

a−dl ∆Tl . (2.16)

Considering here Dt = Bf(t) for f ∈ F∗, we proceed to prove the a.s. recurrence of
the RBMG sample path in case Jf = ∞. To this end, consider the events Γl := {∃t ∈
[tl−1, tl) : |Wt| < ε}, adapted to the filtration Gl := σ{Ws, s ≤ tl}. Fixing δ ∈ (0, 1/2) we
set rl := (al−1 + 1) ∨ δal and further assume that

∆Tl ≥ 2Mda
2
l log(1 + al) . (2.17)

Then, since
Wtl ∈ Bal−1

and Dt = Bal , ∀t ∈ [tl, tl+1), (2.18)

we have by (2.4) that

ζl := P(Γl+1|Gl) = P(Γl+1|Wtl) ≥ inf
x∈Bal−1

Px(∃s ≤ ∆Tl : |Zs| < ε) ≥ C−1
[∆Tl
adl
∧ 1
]
.

Recall that Jf of (2.16) is infinite, hence a.s. {
∑∞
l=1 ζl =∞}, which implies that Γl occurs

infinitely often (by the conditional version of Borel-Cantelli II, see [9, Theorem 5.3.2]).
That is,

∃lk ↑ ∞ & sk ∈ [tlk , tlk+1) such that |Wsk | < ε . (2.19)

By transience of the d ≥ 3 dimensional Brownian motion we can set k1 = 1 and
recursively pick uj := inf{t > skj : |Wt| > 1/2}, kj+1 := inf{k : sk > uj}, for
j = 1, 2, . . . , thus yielding the event Aε. To remove the spurious condition (2.17) set
ψl := ∆Tl/(a

2
l log(1 + al)), so

∑
l ψlpl =

∑
l a
−d
l ∆Tl diverges by (2.16) whereas

∑
l pl is

finite. Hence,
∑
l ψlplI{ψl≥2Md} = ∞, and the preceding argument is applicable even

when restricted to {lk} ↑ ∞ such that ψlk ≥ 2Md.

Step II. Still considering Dt = Bf(t) for f ∈ F∗, we show next that P(Aε) = 0 whenever
Jf of (2.16) is finite. To this end, we note that

τl := inf{s ≥ 0 : Ws 6∈ Brl},
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for l = 1, 2, . . . , are a.s. finite and proceed to show that∑
l

P(Γ̃l) <∞, (2.20)

where Γ̃l := {∃t ∈ [τl, τl+1) : |Wt| < ε}. Indeed, in this case by Borel-Cantelli I, a.s. the
RBMG does not re-enter Bε during [τl,∞), for some l finite. In any finite time, even the RBM

on B1 a.s. makes only finitely many excursions between Bε and Bc1/2, hence P(Aε) = 0.
Turning to prove (2.20), recall that tl ≤ τl and tl+1 ≤ τl+1, so the interval [τl, τl+1) splits
into [τl, ξl+1) and [ξl+1, τl+1), where

ξl+1 := inf{s ≥ tl+1 : Ws 6∈ Brl} .

Restricted to t ∈ [τl, ξl+1), the process {Wt} has the law of a RBM on Bal , and the length
of [τl, ξl+1) is at most ∆Tl plus the length of [tl+1, ξl+1). By (2.1), for some constant
C = Cd(δ) > 0, any l and all t,

P(ξl+1 − tl+1 > ta2
l ) < C−1e−Ct. (2.21)

Combining (2.5) with (2.21) for t = M log al, M = Md ∨ 2
C , we have that

P(∃s ∈ [τl, ξl+1) : |Ws| < ε) ≤ C[a−dl ∆Tl +Mpl] + C−1a−2
l , (2.22)

with the first term on the right-hand-side summable in l iff Jf <∞ (the other two terms
are summable for any f ∈ F∗). Further, restricted to t ∈ [ξl+1, τl+1), the process {Wt}
has the law of Brownian motion {Ut} (since rl+1 < al+1), hence

P(∃s ∈ [ξl+1, τl+1) : |Ws| < ε) =
r2−d
l − r2−d

l+1

ε2−d − r2−d
l+1

≤ 2εd−2(r2−d
l − r2−d

l+1 ). (2.23)

Bounding P(Γ̃l) by the sum of the left-hand-sides of (2.22) and (2.23), we thus conclude
that

∑
lP(Γ̃l) <∞ whenever Jf <∞.

Step III. Given non-decreasing, unbounded, positive t 7→ f(t) (which without loss of
generality we assume hereafter to be also right-continuous), let g ∈ F∗ with al = 2l−1f(0)

and tl := inf{t ≥ 0 : f(t) ≥ 2l−1f(0)}. Since g(t) ≤ f(t) ≤ 2g(t) for all t ≥ 0, we have by
part (a) of Lemma 2.1, the coupling |W̃t| ≤ |W ′t | for RBMG (W̃t,Bg(t)/2) and (W ′t ,Dt) such
that Dt ⊇ Bf(t). Further, as J4g ≤ Jf ≤ J 1

2 g
, if Jf <∞ then J 1

2 g
= 8dJ4g <∞ and in view

of Step II, a.s. {W̃t} enters Bε finitely often. Hence, P(Aε) = 0, yielding the stated a.s.
transience of the sample path for any such RBMG (W ′t ,Dt), thereby completing the proof of
part (a).

Step IV. Returning to Dt = Bf(t) = f(t)B1, now for t 7→ f(t) which is further C3-smooth
up to isolated jump points, we have by yet another application of part (a) of Lemma 2.1
that |W ′t | ≤ |W

′′

t | for the RBMG (W
′′

t ,B4g(t)). Assuming that Jf = ∞, or equivalently that
J4g = ∞ (with g ∈ F∗ chosen as in Step III), we know from Step I that for any u fixed,
{W ′′

t , t ≥ u} a.s. makes infinitely many excursions from Bε to Bc1/2. With |W ′t | ≤ |W
′′

t | we
consequently get (2.19) (for any unbounded tl), which as we have already seen in Step I
of the proof, implies that {W ′t} a.s. makes infinitely many excursions from Bε to Bc1/2.

Step V. We next extend the a.s. recurrence of the RBMG (Wt,Dt) sample path to Dt = f(t)K

with Jf = ∞, K from K of (1.5), such that ∂K and f(t) are both C3-smooth, and∫∞
0
f ′(s)2ds < ∞. To this end, we assume without loss of generality that B1 ⊆ K ⊆ Bc

and note that t 7→
∫ t

0
1

f(u)dLu =: L̃t increases only when Xt := 1
f(t)Wt is at ∂K. Hence,
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applying Ito’s formula to the C1,2-function v(t, x) = 1
f(t)x (with vxx = 0), and the semi-

martingale {Wt} of (1.7), we get that (X, L̃) is the strong Markov process solving the
deterministic Skorohod problem corresponding for (s, x) ∈ R+ ×K to

Xt = x+

∫ t

s

1

f(u)
dBu +

∫ t

s

n(Xu)dL̃u , (2.24)

L̃t =

∫ t

s

I∂K(Xu)dL̃u , (2.25)

where n(x) denotes the inward unit normal vector at x ∈ ∂K and

Bt = Ut −
∫ t

0

f ′(s)Xsds, B0 = 0 . (2.26)

Further, with Xt ∈ K ⊆ Bc and
∫∞

0
f ′(s)2ds < ∞, the quadratic variation 〈M〉t =∫ t

0
|f ′(s)Xs|2ds of the continuous (local) martingale

Mt =

∫ t

0

f ′(s)XsdUs ,

has uniformly in t bounded exponential moments. That is, for any κ > 1,

E
[

exp
{
κ〈M〉∞

}]
≤ exp

{
c2κ

∫ ∞
0

f ′(s)2ds
}
<∞ .

By Novikov’s criterion, Zt = exp(Mt − 1
2 〈M〉t) is a uniformly integrable continuous

martingale (see [23, Proposition VIII.1.15]). The same applies for Z−1
t = exp(M̂t− 1

2 〈M̂〉t)
and the martingale M̂t = −

∫ t
0
f ′(s)XsdBs under the measure Q such that {Bt, t ∈ [0,∞)}

is a standard Brownian motion in Rd. Hence, by Girsanov’s theorem, restricted to the
completion of the canonical Brownian filtration, the measure Q is equivalent to P (see
[23, Proposition VIII.1.1]). Moreover, under Q the process {Xt} is a normally reflected
time changed Brownian motion (in short TCRBM), on K for the deterministic time change

τ(t) :=

∫ t

0

f(s)−2ds . (2.27)

Applying the same procedure for the RBMG (W ′t , f(t)Bc), such that W ′0 = W0, yields another
probability measure H, likewise equivalent to P, under which Yt := 1

f(t)W
′
t is a TCRBM on

Bc for the same time change τ(·) as in (2.27). Further, {W· ∈ A} iff {X· ∈ A(f)}, and

{W ′· ∈ A} iff {Y· ∈ A(f)}, where A(f) :=
⋂
ε>0A

(f)
ε and similarly to Definition 1.14 we

have that

σ(0,f)
ε := 0

τ (i,f)
ε := inf{t ≥ σ(i−1,f)

ε : |xt| < ε/f(t)}, i ≥ 1

σ(i,f)
ε := inf{t ≥ τ (i,f)

ε : |xt| > 1/(2f(t))},

A(f)
ε := {τ (i,f)

ε <∞,∀i}

(as ε < f(0) with no loss of generality). For Jf =∞ recall that P(W ′· ∈ A) = 1 as shown
in Step IV. Hence,

P(Y· ∈ A(f)) = 1 ⇔ H(Y· ∈ A(f)) = 1
(a)⇒ Q(X· ∈ A(f)) = 1 ⇔ P(X· ∈ A(f)) = 1

out of which we deduce that P(W· ∈ A) = 1 as well. The key implication, marked
by (a), is a consequence of the proof of [22, Theorem 5.4]. The latter theorem is a
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comparison result about Neumann heat kernels over domains Di, i = 1, 2, such that
D2 ⊆ B ⊆ D1 ⊆ Rd, d ≥ 2, for bounded domains D1, D2 of C2-smooth boundary, and
some ball B centered at 0, such that for any x ∈ D2, the line segment from 0 to x is
in D2. Its proof in [22] is by constructing a (mirror) coupling between the RBM X̂ on D2

and the RBM Ŷ on D1, such that |X̂s| ≤ |Ŷs| for all s ≥ 0 and any common starting point
x ∈ D2. We use it here for D2 = K ⊆ Bc = D1 and note that the monotonicity of the
radial component under this coupling extends to the TCRBM-s Xs (under Q), and Ys (under
H), thereby assuring that Y ∈ A(f), H-a.s. implies X ∈ A(f), Q-a.s.

Step VI. We proceed to show that the conclusion of Step V holds in case t 7→ f(t) has
jumps ∆j > 0 at isolated jump points t1 < · · · < tj < · · · . That is, f(t) = fc(t) + fd(t)

with a C3-smooth function fc(·) and piecewise constant fd(t) =
∑
j ∆jIt≥tj . Setting

t0 = 0 and re-using the notations of Step V, upon applying Ito’s formula we get that Xt

(and Yt) solve the corresponding deterministic Skorohod problem (2.24)-(2.25) within
each interval [ti−1, ti), and Bt is again defined via (2.26) except for f ′c(t) replacing f ′(t).
In addition, Xti = ηiXt−i

and Yti = ηiYt−i
for i = 1, 2, . . ., where ηi = f(t−i )/f(ti) < 1.

Since
∫∞

0
f ′c(s)

2ds is finite, as in Step V we have measures Q and H, both equivalent to
P, under which within each interval [ti−1, ti] the processes Xt and Yt are TCRBM-s on K
and Bc, respectively, for the same time change τ(·). With Jf = ∞, we already saw in
Step IV that P(W ′· ∈ A) = 1. Following the argument of Step V this would yield that
P(W· ∈ A) = 1, provided we suitably extend the scope of the implication (a). That is,
suffices to show the existence of coupling between RBM-s X̂ on K and Ŷ on Bc, such that
|X̂s| ≤ |Ŷs| for all s ≥ 0, in the setting where at a sequence of isolated times si = τ(ti)

one applies the common shrinkage by ηi ∈ (0, 1) to both X̂· and Ŷ·. To achieve this,
starting at Ŷ0 = Ŷ ′0 = X̂0 = x, we produce inductively for i = 0, 1, . . . another copy
{Ŷ ′s : s ∈ [si, si+1)} of the RBM on Bc, with jumps from Ŷ ′

s−i
to Ŷ ′si = X̂si and a coupling

such that |X̂s| ≤ |Ŷ ′s | ≤ |Ŷs| for all s. Indeed, as explained in Step V, employing [22,
Theorem 5.4] separately within each interval [si, si+1) yields a (mirror) coupling of Ŷ

′

and X̂ that maintains the stated relation |X̂s| ≤ |Ŷ ′s |. Further, applying part (b) of Lemma
2.1 inductively in i ≥ 0, we couple Ŷ ′s and Ŷs within each interval [si, si+1), such that
|Ŷ ′s | ≤ |Ŷs| for all s ≥ 0, provided |Ŷ ′si | ≤ |Ŷsi | for all i ≥ 0. Starting at Ŷ0 = Ŷ ′0 , we have
the latter inequality at i = 0. Then, for i ≥ 1 we have by induction, upon utilizing our
coupling on [si−1, si) that |X̂s−i

| ≤ |Ŷ ′
s−i
| ≤ |Ŷs−i |. Hence |Ŷ ′si | = |X̂si | ≤ |Ŷsi | (after the

common shrinkage by factor ηi), as needed for concluding the proof.

3 Proof of Theorem 1.4

Hereafter we denote the inner boundary of a discrete set G by ∂G and fix K from
the collection K of (1.5), scaled by a constant factor so as to have K ⊇ B2 and hence
(Ba ∩ Zd) ∩ ∂(aK ∩ Zd) = ∅ for all a ≥ ad large enough. We then have the following SRW

analog of Lemma 2.2.

Lemma 3.1. Let Px denote the law of SRW {Zt, t ≥ 0} on aK ∩ Zd, d ≥ 3, starting
at Z0 = x ∈ Zd. Considering the stopping times τ(a) := inf{s ≥ 0 : Zs ∈ Bca} and
σ(a, r) := inf{s ≥ 0 : Zs ∈ Br}, there exists C = Cd(δ) > 0 and ad = ad(δ) <∞ such that
for any t, δ > 0, a ≥ ad, ra ∈ [δ, 1),

sup
x∈Ba

Px(τ(a) > ta2) < C−1e−Ct , (3.1)

sup
x∈aK\Br

Px(σ(a, r) > ta2) < C−1e−Ct , (3.2)

inf
x∈Ba/2

Px(τ(a) > a2) > C . (3.3)
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In proving Lemma 3.1 we rely on the following invariance principle in bounded
uniform domains, which allows us to transform hitting probabilities of SRW to the corre-
sponding probabilities for an RBM.

Lemma 3.2. [4, 6] Fix a bounded uniform domain D ⊆ Rd and let Y nt := n−1Ybn2tc
denote the SRW on D ∩ (n−1Z)d, induced by the discrete-time SRW {Yt} on nD ∩ Zd. If
Y n0 = xn → x ∈ D, then {Y nt ; t ≥ 0} converges weakly in D([0,∞),D) to {Wκt; t ≥ 0},
where W is the RBM on D starting from x, time changed by constant κ.

Proof. Lemma 3.2 merely adapts facts from [6, Theorem 3.17 and Section 4.2] to our
context (alternatively, it also follows by strengthening [4, Theorem 3.6] as suggested in
[4, Remark 3.7]). The original result presented in [6] is for variable-speed and constant-
speed random walks (VSRW,CSRW) on bounded uniform domain with random conductances
uniformly bounded up and below. We are in a special case where all edges in nD ∩Zd
are present and have equal non-random conductance. Hence, here the CSRW is merely a
continuous-time SRW Zt of unit jump rate on nD ∩Zd and further the invariance principle
holds for Znt := n−1Zn2t and any choice of x ∈ D. Indeed, while RBM Wt constructed
via Dirichlet forms is typically well defined only for a quasi-everywhere starting point
in D, here this can be refined to every starting point. This is because in a uniform
domain, such RBM admits a jointly-continuous transition density p(t, x, y) on R+ ×D×D
of Aronson’s type (see [12, Theorem 3.10]), thereby eliminating the exceptional set in
[10, Theorem 4.5.4].

It remains only to infer the invariance principle for the discrete-time SRW {Y nt } out of
the invariance principle for {Znt }. To this end, recall the representation Y nt = Znn−2L(n2t)

for L(t) := inf{s ≥ 0 : N(s) = btc} and the independent Poisson process N(t) of intensity
one. Now, fixing T finite, by the functional strong law of large numbers for Poisson
processes,

sup
t∈[0,T ]

|n−2L(n2t)− t| a.s.→ 0 , for n→∞ .

Further, by [6, Proposition 3.10 and Section 4.2], for any r > 0,

lim
δ→0

lim sup
n→∞

Pnxn
(

sup
|s1−s2|≤δ,si≤T

|Zns2 − Z
n
s1 | > r

)
= 0.

Hence,

sup
0≤t≤T

|Y nt − Znt | = sup
0≤t≤T

|Znn−2L(n2t) − Z
n
t |

p→ 0 .

and it follows that (Y nt ; t ≥ 0)
d→ (Wκt; t ≥ 0) as n→∞.

Remark 3.3. Lemma 3.2 generalizes to Y ant
d→ Wκt, for Y ant := an

−1Yban2tc that is
induced by the discrete-time SRW on anD ∩ Zd and any fixed an ↑ ∞ (just note that the
conditions laid out in [6, first paragraph, Page 13] hold with an replacing n).

Proof of Lemma 3.1. Consider the RBM W· on K ⊇ B2 and the rescaled discrete time SRW

Zat := a−1Zba2tc. Starting with the proof of (3.1), for a > 0 and y ∈ K, let

qRW(a, y) := Py(Zas ∈ B1, ∀s ≤ 1), mRW(a) := sup
y∈B1∩(a−1Z)d

qRW(a, y) ,

qBM(y) := Py(Wκs ∈ B1, ∀s ≤ 1), mBM := sup
y∈B1

qBM(y) .
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Then, by the Markov property of the SRW, for any a, t > 0 and x ∈ Ba ∩Zd,

Px(τ(a) > ta2) = Px(Zs ∈ Ba, ∀s ≤ ta2) = Pa−1x(Zas ∈ B1, ∀s ≤ t)

≤
[

sup
y∈B1∩(a−1Z)d

qRW(a, y)
]btc

= mRW(a)
btc
. (3.4)

An RBM on uniform domain admits jointly continuous, positive transition density ([12,
Theorem 3.10]), and in particular mBM = 1− 2η for some η ∈ (0, 1/2). As we show in the
sequel, setting ξ := 1−η

1−2η > 1,

ad := sup{a > 0 : mRW(a) > ξmBM} , (3.5)

is finite. It then follows from (3.4) that for some positive C, all a > ad and t > 0,

sup
x∈Ba∩Zd

Px(τ(a) > ta2) ≤ mRW(a)
btc ≤ (ξ mBM)btc = (1− η)btc ≤ C−1e−Ct .

To complete the proof of (3.1), suppose to the contrary that ad = ∞ in (3.5), namely
mRW(al) > ξmBM for some al ↑ ∞. Taking the uniformly bounded yl ∈ B1 ∩ (a−1

l Z)d such
that qRW(al, yl) = mRW(al), we pass to a sub-sequence {ln} along which yln → x ∈ B1.
Then, considering Remark 3.3 for the sequence aln , we deduce that as n→∞,

mRW(aln) = qRW(aln , yln)→ qBM(x) ≤ mBM ,

in contradiction with our assumption that mRW(aln) > ξmBM for some ξ > 1 and all n.
Likewise, whenever x ∈ Ba/2 ∩Zd we have that

Px(τ(a) > a2) = Pa−1x(Zas ∈ B1, ∀s ≤ 1) ≥ inf
y∈B1/2∩(a−1Z)d

qRW(a, y) := mRW(a)

and by the same reasoning as before,

lim inf
a→∞

mRW(a) ≥ inf
z∈B1/2

{qBM(z)} > 0 ,

yielding the bound (3.3). Next, fixing δ > 0 we turn to the stopping time σ(a, r) and set

qRW

∗ (a, y) := Py(Zas /∈ Bδ, ∀s ≤ 1), mRW

∗ (a) := sup
y∈(K\Bδ)∩(a−1Z)d

qRW

∗ (a, y) ,

qBM

∗ (y) := Py(Wκs /∈ Bδ, ∀s ≤ 1), mBM

∗ := sup
y∈K\Bδ

qBM

∗ (y) ,

getting by Markov property of the SRW that for any a, t > 0, r/a ∈ [δ, 1) and x ∈ (aK \Br)∩
Zd

Px(σ(a, r) > ta2) = Px(Zs /∈ Br, ∀s ≤ ta2) ≤ Pa−1x(Zas /∈ Bδ, ∀s ≤ t)

≤
[

sup
y∈(K\Bδ)∩(a−1Z)d

qRW

∗ (a, y)
]btc

= mRW

∗ (a)
btc
. (3.6)

By the same arguments as in case of (3.4), again mBM

∗ = 1− 2η for some η ∈ (0, 1/2), and
in view of Remark 3.3 the corresponding constant ad as in (3.5), is finite, with (3.6) thus
yielding (3.2).

Equipped with Lemma 3.1 we can now establish the following SRW analog of Lemma
2.3.
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Lemma 3.4. Let Px denotes the law of SRW {Zt, t ≥ 0} on aK ∩Zd, with Z0 = x ∈ Zd.
(a). For δ ∈ (0, 1/2), there exist C = Cd(δ) > 0 and Md = Md(δ) finite, such that for all
M ≥Md, and any T ≥Ma2 log a, a−M ≥ r ≥ aδ,

inf
x∈rK

Px(∃s ≤ T : |Zs| = 0) ≥ C−1
[ T
ad
∧ 1
]
, (3.7)

sup
x∈∂(rK∩Zd)

Px(∃s ≤ T : |Zs| = 0) ≤ C
[ T
ad
∧ 1
]
. (3.8)

(b). The uniform bound (3.8) applies for SRW {Zt} on growing domains D̃t ⊇ Ba+1 ∩ Zd,
starting at arbitrary Z0 ∈ Bcaδ.

Proof. (a). We adapt the proof of Lemma 2.3 to the current setting of discrete time
SRW Zt on aK ∩Zd, by taking throughout ε = 0 and re-defining the excursions of length
Lk := σk+1 − σk, k ≥ 0, to be determined now by the stopping times σ0 = 0 and

τk := inf{t ≥ σk−1 : Zt ∈ Bca}, k ≥ 1

σk := inf{t ≥ τk : Zt ∈ Ba/2} .

Since the laws of increments of SRW are not invariant to rotations, x 7→ m(θ, x) = Ex[eθL0 ]

is not a radial function. However, replacing Lemma 2.2 (which we used when bounding
m(θ, x) in case of Brownian motion), by the universal bounds of Lemma 3.1, yields (2.12)
and (2.13) for the SRW case considered here. Thereby, applying the discrete analogue of
(2.9)

b(x) := Px( inf
t≤τ1
|Zt| = 0) = cd(|x|2−d − a2−d) +O(|x|1−d) , (3.9)

where 0 < cd <∞ is a dimensional constant (see [19, Proposition 1.5.9]), at x ∈ ∂(rK∩Zd)
and x ∈ ∂(Ba/2 ∩Zd), yields the SRW analog of (2.10), out of which the stated conclusions
follow.
(b). Let Ik := [σk, τk+1), k ≥ 0. Our assumptions that Z0 ∈ Bcaδ and D̃t ⊇ Ba+1 ∩Zd result
in {Zt, t ∈ Ik} having for each k ≥ 0 the same conditional law given Zσk , as in part (a).
Since the event |Zt| = 0 can only occur for t ∈ ∪kIk, the derivation leading to the SRW

analog of (2.10) applies here as well. Further, conditional on Zσk = x, each Lk, k ≥ 1,
stochastically dominates the random variable τ(a) of Lemma 3.1 starting at same point
x. Consequently

Ex[e−θ̂Lk/a
2

] ≤ Ex[e−θ̂τ(a)/a2 ] ,

and utilizing the uniform in x and a control on the r.h.s. due to (3.1), establishes yet
again the analog of (2.13). Examining the proof of (2.5) in Lemma 2.3 we see that this
suffices for re-producing the corresponding uniform upper bound (3.8).

Proof of Theorem 1.4. (a). Fix f(t) such that Jf < ∞ and consider the SRW {Yt} on
Dt ⊆ Zd, d ≥ 3 for which Assumption 1.1 holds. Similarly to Step II of the proof of
Theorem 1.15, for al := (c+ 1)l, l ≥ 1, define

tl := inf{s ≥ 1 : Ds ∩Bcal+1
6= ∅},

τl := inf{s ≥ 0 : Ys ∈ Bcal},

Γ̃l :={∃t ∈ [τl, τl+1) : Yt = 0} .

With f(·) unbounded, for any l eventually Ds ⊇ Bal ∩Zd and by the transience of the SRW

on Zd, necessarily τl are a.s. finite. Thus, by Borel-Cantelli I,∑
l

P(Γ̃l) <∞ ⇒ P0(Yt = 0 f.o. ) = 1 . (3.10)
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Turning to bound P(Γ̃l), note that τl+1 ≥ tl and Dtl ⊇ B1+al ∩Zd (by Assumption 1.1 and
the choice of al). Hence, by (3.1), we have that for some constants Cd > 0 and ld <∞,
all l ≥ ld and t ≥ 0,

P(τl+1 − tl > ta2
l ) < C−1

d e−Cdt. (3.11)

Let ∆Tl := (tl − tl−1) and for δ = 1/(c + 1) < 1/2 and Md = Md(δ) of Lemma 3.4, set
T ∗l := Md log al and Tl = ∆Tl + T ∗l a

2
l . Since τl ≥ tl−1 the length of [τl, τl+1) is at most ∆Tl

plus the length of [tl, τl+1), which by (3.11) is with high probability under T ∗l a
2
l . Further,

Dτl ⊇ Dtl−1
⊇ B1+al−1

∩ Zd and Yτl ∈ Bcal , hence from part (b) of Lemma 3.4 we have
that,

P(Γ̃l) ≤ P(τl+1 − tl > T ∗l a
2
l ) + P(∃s ∈ [τl, τl + Tl] : Ys = 0)

≤ C−1
d e−CdT

∗
l + Ca−dl−1Tl . (3.12)

With our choice of al growing exponentially in l, the terms e−CdT
∗
l and a2−d

l T ∗l in the
bound (3.12) are summable over l ∈ N. Hence, the left-hand-side of (3.10) is finite
whenever

∑
l a
−d
l−1∆Tl is finite. Further, Assumption 1.1 and our definition of tl imply

that f(tl − 1) ≤ 1 + al+1. Thus,

Jf ≥
∑
l≥2

f(tl − 1)−d∆Tl ≥ (1 + c)−3d
∑
l≥2

a−dl−1∆Tl .

Consequently, finite Jf results in P0(Yt = 0 f.o.) = 1, which by Proposition 4.2 extends
to P0(Yt = y f.o.) = 1 for all y ∈ Zd, as claimed.

(b). Fix f ∈ F∗ such that Jf = ∞ and K ∈ K. Since Jf/r = ∞ for any r > 0 and
Dt = (f(t)/r)(rK) ∩ Zd, taking r large enough we have with no loss of generality that
K ⊇ B2. Then, considering the SRW on Dt, upon replacing (2.4) by (3.7), the argument
we have used in Step I of the proof of Theorem 1.15 applies here as well, apart from
the obvious notational changes (of replacing Bal and Bal−1

in (2.18) by alK ∩Zd and the
collection of all x ∈ Zd within distance one of al−1K, respectively).

4 On recurrence probability independence of target states

The following, xy-recurrence property, generalizes Definition 1.14 to arbitrary start-
ing and target locations, x, y ∈ Rd, respectively.

Definition 4.1. Suppose Dt ↑ Rd, x ∈ D0, y ∈ Rd. The sample path xt of a stochastic
process t 7→ xt ∈ Dt is xy-recurrent if x0 = x and the event A(y) := ∩ε>0Aε(y) occurs,
where

σ(0)
ε := inf{t ≥ 0 : Dt ⊇ Bε + x},
τ (i)
ε := inf{t ≥ σ(i−1)

ε : |xt − y| < ε}, i ≥ 1

σ(i)
ε := inf{t ≥ τ (i)

ε : |xt − y| > 1/2},
Aε(y) := {τ (i)

ε <∞,∀i}.

Proposition 4.2. Suppose {Xt} is a SRW on Dt ↑ Zd, or alternatively that (Xt,Dt) is the
RBMG of Definition 1.13 with D0 open connected set and Dt ↑ Rd. Then, the probability
qxy of xy-recurrence does not depend on y. In case of RBMG, if qzy ∈ {0, 1} for some z ∈ D0

then qxy = qzy for all x ∈ D0, whereas in case of SRW, if qzy = 0 for some z ∈ D0 then
qxy = 0 whenever ‖x− z‖1 is even.

Remark 4.3. Adapting the approach we use for the RBMG, it is not hard to show that for
continuous time SRW (on growing domains Dt ↑ Zd), having qzz ∈ {0, 1} for some z ∈ D0
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results in qxy = qzz for all x ∈ D0 and y ∈ Zd. This approach is based on the equivalence
of hitting measures of suitable sets when starting the process at nearby initial states.
This however does not apply for discrete time SRW, hence our limited conclusion in that
case.

Proof. This proof consists of the following four steps. Starting with the SRW we show in
Step I that qxy does not depend on y, then for x, z ∈ D0 with ‖x− z‖1 even, we prove in
Step II that qzz = 0 implies qxx = 0. In case of the RBMG we have that qεxy := Px(Aε(y)) ↓ qxy
and deduce the stated claims upon showing in Step III that if qzz ∈ {0, 1} then qxz = qzz
for any x, z ∈ D0, then conclude in Step IV that qεxy = qεxx for any fixed ε > 0 and all
y ∈ Rd (even when 0 < qxx < 1).

Step I. For the SRW Xt on Dt ⊆ Zd and fixed s ∈ N we denote by Psx(·) the law of SRW Xt

on the shifted-domains Dt+s starting at X0 = x. Then, for any x, y ∈ Zd and s ≥ 0,

qxy(s) := P(Xt = y i.o. | Xs = x) = Psx(Xt = y i.o.) ,

with qxy := qxy(0). Since Dt ↑ Zd, clearly any y, w ∈ Zd are also in Dt provided t ≥ t0(y, w)

is large enough, with some non-self-intersecting path in Dt0 connecting y and w. Setting
FXt := σ{Xs, s ≤ t} ↑ F∞ and events Γs,t,z,w := {Xs = z,Xu = w some u > t}, we thus
have η = η(y, w) > 0 such that for any starting point x, all z, s and t ≥ t0 ∨ s,

Px(Γs,t,z,w|FXt ) ≥ ηI{Xs=z,Xt=y} .

Further as t→∞ we have that

Γs,t,z,w ↓ Γs,z,w := {Xs = z and Xu = w i.o. in u} .

Clearly, Γs,z,w ∈ F∞ so it follows by Lévy’s upward theorem (and dominated convergence,
see [9, Theorem 5.5.9]), that for any x, a.s.

IΓs,z,w = Px(Γs,z,w|F∞) = lim
t→∞

Px(Γs,t,z,w|FXt ) ≥ η lim sup
t→∞

I{Xs=z,Xt=y} = ηIΓs,z,y .

The same applies with the roles of y and w exchanged and consequently, a.s. Γs,z,y =

Γs,z,w for all z, y, w ∈ Zd and s ≥ 0. In particular, qzy(s) = P(Γs,z,y|Xs = z) is thus
independent of y, for any z and s ≥ 0.

Step II. Assuming now that qzz = qzz(0) = 0 for some z ∈ D0, we have from Step I that
qzx = 0. As explained before (in Step I), s0 := inf{t : Pz(Xt = x) > 0} is a finite integer
and clearly Pz(X2s+s0 = x) > 0 for any s ≥ 0. By the Markov property at time 2s+ s0,

0 = qzx ≥ Pz(X2s+s0 = x,Xt = x i.o.) = Pz(X2s+s0 = x)qxx(2s+ s0) .

Consequently, for any s ≥ 0,

Px(X2s+s0 = x,Xt = x i.o.) = Px(X2s+s0 = x)qxx(2s+ s0) = 0 .

Starting at X0 = x, the event {Xt = x} is possible only at t even. Since ‖x− z‖1 is even,
so is the value of s0 and from the preceding we know that Px-a.s. any visit of x at even
integer larger than s0 results in only finitely many visits to x. Since there can be only
finitely many visits of x up to time s0, we conclude that qxx = 0.

Step III. Dealing hereafter with the RBMG, recall that Aε(y) ↓ A(y) for Aε(y) = {∃sk, uk ↑
∞ : |Xsk − y| < ε, |Xuk − y| > 1/2, uk ∈ (sk, sk+1)}. Let Psx(·) stand for the law of the
RBMG {Xt} on shifted-domains Dt+s starting at X0 = x, and qεxy(s) := Psx(Aε(y)) with
qεxy = qεxy(0), so that qεxy ↓ q0

xy = qxy when ε ↓ 0. We first prove that if qzz ∈ {0, 1}
for some z ∈ D0 then qxz = qzz for any x ∈ D0 such that x+z

2 + Bα ⊆ D0 for some
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α > |x− z|/2. Indeed, with Px,α denoting the joint law of (Xτα , τα) for the first exit time
τα := inf{s ≥ 0 : Xs /∈ x+z

2 +Bα} and X0 = x, we have that

qεxz =

∫
qεx′z(γ)dPx,α(x′, γ) , (4.1)

for any fixed ε > 0. By dominated convergence this identity extends to ε = 0 and
considering it for x = z (and ε = 0), we deduce that qx′z(γ) = qzz ∈ {0, 1} for Pz,α-a.e.
(x′, γ). By our assumption about the points x and z, the measure Pz,α is merely the
joint law of exit position and time for x+z

2 + Bα and Brownian motion Xs starting at z
and as such it has a continuous Radon-Nikodym density with respect to the product of
the uniform surface measure ωd−1 on ∂(x+z

2 +Bα) and the Lebesgue measure on (0,∞)

(for example, see [14, Theorem 1 and 3]). Further, the latter density is strictly positive
due to the continuity of (killed) Brownian transition kernel. Since the same applies to
the corresponding Radon-Nikodym density between Px,α and dωd−1 × dt, we conclude
that Pz,α and Px,α are mutually equivalent measures. In particular, qx′z(γ) = qzz also
for Px,α-a.e. (x′, γ) and hence it follows from (4.1) at ε = 0, that qxz = qzz. Now, since
D0 is an open connected subset of Rd, any x, z ∈ D0 are connected by a continuous
path w : [0, 1] → D0 such that dist(w(·),Dc0) > 0. Consequently, there exists a finite
sequence of points {wk}Kk=0 ⊆ D0 with w0 = z, wK = x and wk−1+wk

2 + Bαk ⊆ D0, for
αk > |wk − wk−1|/2 and all 1 ≤ k ≤ K. Applying iteratively the preceding argument, we
conclude that if qzz ∈ {0, 1} then qzz = qw1z = · · · = qwK−1z = qxz, as claimed.

Step IV. Next, fixing ε > 0 and x ∈ D0 we proceed to show that qεxz = qεxy for any
z, y ∈ Rd. To this end, let t0 = t0(y, z) be large enough so that Dt0 contains the compact

K := {w : inf
λ∈[0,1]

|w − λz − (1− λ)y| ≤ 1} .

We set FXt := σ{Xs, s ≤ t} ↑ F∞ and consider the FX -stopping times θt,z ≥ τt,z ≥ t,
given by

τt,z := inf{u ≥ t : |Xu − z| < ε} , θt,z := inf{v ≥ τt,z : |Xv − z| ≥ 1/2}

(with θt,y ≥ τt,y ≥ t defined analogously). We claim that Px-a.s. for some non-random
η = η(z, y, ε) > 0 and any t ≥ t0,

Px(θt,y <∞|FXθt,z ) ≥ ηI{θt,z<∞} . (4.2)

Indeed, assuming without loss of generality that θ = θt,z is finite, for any given w =

Xθ ∈ z + ∂B1/2 let ψ(·) denote the line segment from ψ(0) = w to ψ(1) = y. The event
Γw,y := sups∈[0,1] |Xθ+s − ψ(s)| < ε implies that τt,y ≤ θ + 1 is finite and thereby also that
θt,y < ∞. Further, since ψ(·) ⊆ K ⊆ Dt is of distance 1/2 > ε from ∂K, the probability
of Γw,y given FXθ is merely δ(w) := P(sups∈[0,1] |Us + ψ(0) − ψ(s)| < ε) for a standard
d-dimensional Brownian motion {Us}. Clearly, η = inf{δ(w) : |w − z| = 1/2} > 0, yielding
(4.2). Now, considering the conditional expectation of (4.2) given FXt , we find that

Px(θt,y <∞|FXt ) ≥ ηPx(θt,z <∞|FXt ) .

Further, the F∞-measurable event Aε(y) is the limit of {θt,y < ∞} as t → ∞ (and the
same applies to Aε(z)), so it follows from Lévy’s upward theorem (see [9, Theorem
5.5.9]), that Px-a.s.

IAε(y) = Px(Aε(y)|F∞) = lim
t→∞

Px(θt,y <∞|FXt ) ≥ η lim
t→∞

Px(θt,z <∞|FXt ) = ηIAε(z) .

The same applies with the roles of y and z exchanged and consequently, Px-a.s. Aε(y) =

Aε(z). In particular, qεxy = Px(Aε(y)) = Px(Aε(z)) = qεxz, as claimed.
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