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Abstract

In this paper, the large deviations at the trajectory level for ergodic Markov processes
are studied. These processes take values in the non-negative quadrant of the two-
dimensional lattice and are concentrated on step-wise functions. The rates of jumps
towards the axes (downward jumps) depend on the position of the process – the
higher the position, the greater the rate. The rates of jumps going in the same
direction as the axes (upward jumps) are constants. Therefore the processes are
ergodic. The large deviations are studied under equal scalings of both space and
time. The scaled versions of the processes converge to 0. The main result is that the
probabilities of excursions far from 0 tend to 0 exponentially fast with an exponent
proportional to the square of the scaling parameter. The proportionality coefficient is
an integral of a linear combination of path components. A rate function of the large
deviation principle is calculated for continuous functions only.
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1 Introduction

There are different settings in the large deviation theory studying probabilities of
rare events (see, for example, the books [3, 4, 5, 6, 7, 8]). This paper is devoted to
investigations of the rare event probabilities for a specific class of ergodic Markov pro-
cesses. The goal is to find the asymptotic behavior of logarithms of probabilities for
excursions of the process far from equilibrium states. We apply the large deviation
setting using equal contractions in time and in space. The large deviation principle in
terms of paths of the process is obtained.

The basic random object studied is a continuous-time Markov ergodic process ξ with
state spaceZ2

+ := {(z1, z2) : z1 ≥ 0, z2 ≥ 0}. Paths of ξ are piecewise constant functions.
The jumps belong to the following set

Y = {(1, 0), (0, 1), (−1, 0), (0,−1), (−1,−1)}.

The probabilities of the jumps are such that they do not take the process outside of Z2
+.

The intensities of the jumps depend on the value of ξ at the moment before the jump.
If at a moment t the process value is equal to ξ(t) = (z1, z2), then any increase (upward
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Large deviations for excursions of non-homogeneous Markov processes

jump) of at least one of the components of (z1, z2) happens with a constant intensity.
However, any decrease (downward jump) of at least one of the components of (z1, z2)
happens with an intensity proportional to this co-ordinate. This property implies the
ergodicity of the process ξ.

This study was inspired by the work [9], where ergodic properties of more compli-
cated processes were studied. The goal of the authors of [9] was to describe market
dynamics. Our goal is focused on some peculiarities of the large deviations for similar
models and our version of the model is hardly proper for market investigations.

We consider the large deviations for the sequence ξT (t) = ( ξ(tT )
T )T>0 of the processes

on t ∈ [0, 1] with ξ(0) = (0, 0). The large deviation principle for ξ is established on a set
of càdlàg functions X with a finite number of jumps, which includes all typical paths
of ξ. The rate function is finite for a set F of continuous functions on [0, 1] such that
any f ∈ F has positive co-ordinates except at t = 0, where f(0) = (0, 0). When the
processes ξT are localized in a small neighborhood of some function f ∈ F , we say that
the process ξ has an excursion far from equilibrium. We find that the rate function of
f = (f1, f2) has the following integral form

I(f) =

∫ 1

0

(
c1f1(t) + c2f2(t) + c3 min{f1(t), f2(t)}

)
dt, (1.1)

where constants c1, c2 and c3 are parameters defining the process ξ (see exact defini-
tions in section 2.2). A local principle of the large deviations proved in this paper implies
that the probability of a long excursion in a small neighborhood U(f) of a function f ∈ F
is of order

e−T
2I(f).

We use in this paper the uniform topology in F .

The proof is based on a comparison of the studied Markov process and a process
with independent increments. A density of the Markov process with the respect to the
process with independent increments (see (2.12)) gives the main contribution to the
asymptotic

ln Pr
(
ξT (·) ∈ U(f)

)
∼ −T 2I(f).

Only the expression (2.13) of jump intensities in the process density creates an asymp-
totic of order T 2. The other parts of the density, (2.14) and (2.12), have asymptotics of
order T .

The large deviation principle we obtained demonstrates some unusual features in
contrast with known results for large deviations on processes in terms of paths. One of
the features is that the rate function (1.1) does not depend on derivatives of the paths of
the process. As a consequence, sharp peaks of a path make negligible contributions to
the rate functions. Another peculiarity of this approach is that Cramèr transformation
is not used. Although the method is applied to a very specific example of the Markov
process, we believe that the method represented in this paper works in more general
cases.

2 Results.

2.1 Notation.

Let ξ(t) = (ξ1(t), ξ2(t)), t ∈ [0,∞) be a Markov process with state space Z2
+ :=

{(z1, z2) : z1 ≥ 0, z2 ≥ 0}. The evolution of the process can be described in the
following way. Let a state of the process at a moment t ≥ 0 be ξ(t) = z = (z1, z2) ∈ Z2

+.
The state is not changed during a time τz, where τz is a random variable distributed
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exponentially with a parameter h(z). At the moment t + τz the value of the process
becomes equal to z + y, where y belongs to

Y = {(1, 0), (0, 1), (−1, 0), (0,−1), (−1,−1)}. (2.1)

The intensity of the jumps is a sum

h(z) := λz(1, 0) + λz(0, 1) + λz(−1, 0) + λz(0,−1) + λz(−1,−1), (2.2)

where

λz(1, 0) := λ(1, 0), λz(0, 1) := λ(0, 1),

λz(−1, 0) := z1λ(−1, 0), λz(0,−1) := z2λ(0,−1), (2.3)

λz(−1,−1) := min{z1, z2}λ(−1,−1),

and the constants λ(y) at y ∈ Y are positive. The probability of the jump y is

pz(y) :=
λz(y)

h(z)
, y = (y1, y2) ∈ Y. (2.4)

2.2 The local large deviation principle.

In this section we study the local deviation principle for the measures (PT ) which
are the distributions of the processes (ξT (t) = 1

T ξ(tT )), t ∈ [0, 1]. The support of the
processes ξT is a subset of the set X of non-negative càdlàg functions

x : [0, 1]→ R2
+ = {(y1, y2) ∈ R2 : y1 ≥ 0, y2 ≥ 0},

which are right-continuous and have left limits everywhere, having finite numbers of
jumps on [0, 1] and such that x(0) = (0, 0) (definition of the càdlàg functions see, for ex-
ample, in [1]). We introduce a uniform topology on X, which, in this case, is determined
by the distance d(x1, x2) between two functions x1, x2 ∈ X as follows

d(x1, x2) = sup
t∈[0,1]

‖x1(t)− x2(t)‖, (2.5)

where ‖ · ‖ means the usual Euclidean norm in R2.
There is a weak convergence PT ⇒ δx0

, where x0(t) ≡ 0, t ∈ [0, 1]. Studying excur-
sions far from x0 we consider the set F ⊂ X of continuous functions f(t) = (f1(t), f2(t))

satisfying the following properties:

F1 f(0) = (0, 0),

F2 f1(t) > 0 and f2(t) > 0 for any t > 0.

We have found the rate function for this class F ⊂ X of continuous functions satisfying
the conditions F1 and F2.

For brevity we shall use the notations c0 = λ(1, 0) + λ(0, 1), c1 = λ(−1, 0), c2 =

λ(0,−1), c3 = λ(−1,−1). Thus we rewrite (2.2) as (see also (2.3))

h(z) ≡ h(z1, z2) = c0 + c1z1 + c2z2 + c3 min{z1, z2}. (2.6)

On the set X we define the following functional I : X → R ∪ {∞}

I(x) :=

{∫ 1

0

(
c1x1(t) + c2x2(t) + c3 min{x1(t), x2(t)}

)
dt, if x ∈ F,

∞, if x /∈ F.
(2.7)

I(x) is finite for all bounded continuous functions x ∈ F . In the next theorem we prove
the local large deviation principle with rate function I(x).
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Theorem 2.1. For any f ∈ F

lim
ε→0

lim
T→∞

1

T 2
lnP

(
ξT ∈ Uε(f)

)
= −I(f), (2.8)

where (see (2.5))
Uε(f) = {g ∈ X : d(f, g) < ε}. (2.9)

Proof of Theorem 2.1. Upper bound. We have to show that

L+ := lim sup
ε→0

lim sup
T→∞

1

T 2
lnP

(
ξT ∈ Uε(f)

)
≤ −I(f). (2.10)

In order to show this, consider a Markov process ζ(t) = (ζ1(t), ζ2(t)), t ∈ [0, T ], with
state space Z2 and its intensity of jumps equal to 1. The process ζ(t) is homogenous in
time. At the moment of a jump the process ζ changes its value from z ∈ Z2 to z+ y with
uniform probabilities 1/5 for y ∈ Y. This means that the process ζ is homogeneous in
space, as well. The process ζ may take values outside Z2

+, moreover the process leaves
Z2

+ with probability 1.
Let XT be the set of all trajectories of the process ξ on the time interval [0, T ]. The

distribution of the process ξ is absolutely continuous with respect to ζ with density

P (u(·)) = 5NT (u)
NT (u)−1∏
i=0

h(u(ti))e
−(h(u(ti))−1)τi+1pu(ti)(u(ti+1)− u(ti))×

h(u(tNT (u)))e
−(h(u(tNT (u)))−1)τNT (u)+1 (2.11)

= 5NT (u)
NT (u)−1∏
i=0

e−(h(u(ti))−1)τi+1λu(ti)(u(ti+1)− u(ti))×

h(u(tNT (u)))e
−(h(u(tNT (u)))−1)τNT (u)+1

where u(·) ∈ XT with NT (u) jump moments 0 = t0 < t1 < · · · < tNT (u) < tNT (u)+1 = T .
For any u(·) /∈ XT , P (u(·)) = 0. Hence

P(ξ(·) ∈ E) = eTE(e−AT (ζ)eBT (ζ)+NT (ζ) ln 5; ζ(·) ∈ E) (2.12)

for any measurable set E ⊆ XT , where for u ∈ E

AT (u) :=

NT (u)∑
i=0

h(u(ti))τi+1 =

∫ T

0

h(u(t))dt, (2.13)

BT (u) :=

NT (u)−1∑
i=0

ln
(
λu(ti)(u(ti+1)− u(ti))

)
+ lnh

(
u(tNT (u))

)
. (2.14)

We study the asymptotic behavior of the logarithm of the probability P
(
ξT (·) ∈

Uε(f)
)

for any f ∈ F using (2.12). The main contribution to this asymptotic comes

from AT . To prove this we consider the scaled processes ζT (s) = ζ(sT )
T , s ∈ [0, 1]. Let

x(s) = u(sT )
T for u ∈ XT , then

AT (x) := AT (u) = T 2

∫ 1

0

[
c0
T

+ c1
u1(sT )

T
+ c2

u2(sT )

T
+ c3 min

{u1(sT )
T

,
u2(sT )

T

}]
ds

= T 2

∫ 1

0

[c0
T

+ c1x1(s) + c2x2(s) + c3 min {x1(s), x2(s)}
]
ds

= T 2
[c0
T

+ I(x)
]
.
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Then for any ε there exists δ such that

T 2I(f)(1− δ) ≤ AT (x) ≤ T 2I(f)(1 + δ) (2.15)

for any x ∈ Uε(f). Hence

L+ ≤ −I(f) + lim sup
ε→0

lim sup
T→∞

1

T 2
lnE

(
eBT (ζ)+NT (ζ) ln 5; ζT (·) ∈ Uε(f)

)
. (2.16)

Next we show that the second term in (2.16) is equal to 0.
Let y ∈ Uε(f) and K+ = K+(y) be the number of jumps of y(·) = (y1(·), y2(·)) on the

time interval [0, 1], such that the values of either y1 or y2 are increasing at the jump
moments. Recall that the path y can increase by the increments (1, 0) or (0, 1).

Let ε > 0 be such that fi(1)− ε > 0, i = 1, 2. Then yi(1) > 0, since y ∈ Uε(f). Thus

K+ −K− > 0,

where K− is the number of jumps on the time interval [0, 1], when the values of either
y1 or y2 or both are decreasing at the jump moments. Note that NT (y) = K+ +K−, and
hence

K+ >
1

2
NT (y). (2.17)

The next step of the proof is based on the following lemma.

Lemma 2.2. For any f ∈ F there exist positive constants R1 and R2, which depend on
f , such that

eCT := E
(
eBT (ζ)+NT (ζ) ln 5; ζT (·) ∈ Uε(f)

)
≤ E exp

{NT (ζ)
2

(lnT+R1)+
1

2
ln(R2T )

}
(2.18)

holds for small ε (see (2.16)).

Proof. Let x be some scaled trajectory of unscaled path u ∈ XT , x(s) = u(sT )/T, s ∈
[0, 1] and {s̃i} ⊂ {si} = {ti/T} be a subset of moments when the values x1 or x2 or both
are decreasing. Remember that the number of such jumps is K−. Thus (see (2.14) for
the definition of BT ):

BT (u) := BT (x) =

NT (x)−1∑
i=0

ln
(
λTx(si) (T (x(si+1)− x(si)))

)
+ ln

(
h(Tx(tNT (x)))

)
≤ K+ ln c0 + (K− + 1) ln

(
T
(
c0 + (max ci)

(
sup
t∈[0,1]

max{f1(t), f2(t)}+ ε
)))

≤ 1

2
(NT (x) + 1)(lnT + C), (2.19)

for some constant C that depends on f . Choosing R1 = C + 2 ln 5, R2 = eC we obtain
the proof of the lemma.

To finish the proof of

lim sup
ε→0

lim sup
T→∞

1

T 2
CT = 0,

note that the random variableNS(ζ) has Poisson distribution with a parameter S. Hence

EeθNS(ζ) = eS(e
θ−1).

Using (2.18) we obtain

eCT ≤ eT (e
1
2
(lnT+R1)−1)R2T ≤ eT

3/2e
R1
2 R2T,
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which implies that

lim sup
T→∞

1

T 2
CT ≤ lim

T→∞

1

T 2

(
T 3/2e

R1
2 + ln(R2T )

)
= 0. (2.20)

Therefore the proof of the upper bound (2.10) is completed.
Lower Bound. We have to prove the inequality

L− := lim inf
ε→0

lim inf
T→∞

1

T 2
lnP

(
ξT ∈ Uε(f)

)
≥ −I(f). (2.21)

The probability of the event U(f) := (ξT ∈ Uε(f)) can be bounded below by the proba-
bility of a more restricted event U(f, C) := (ξT ∈ Uε(f), NT (ξ) ≤ CT ). The value of the
constant C depends on f . Using the representation of the distribution of ξ in terms of
the process ζ (see (2.12)), the inequalities (2.15) and that BT (x) > NT (x) ln(c̃), where
c̃ := min ci, we obtain the lower bound

lim inf
T→∞

1

T 2
lnP

(
ξT ∈ Uε(f)

)
(2.22)

≥ −I(f)(1 + δ) + lim inf
T→∞

1

T 2
lnE

(
eNT (ζ) ln(5c̃); ζT ∈ Uε(f), NT (ζ) ≤ CT

)
.

If ln(5c̃) > 0, then eNT (ζ) ln(5c̃) > 1 and the expectation in (2.22) is bounded below by the
probability P(U(f, C)). On the other hand, if ln(5c̃) < 0, then the expectation is bounded

below by eCT ln(5c̃)P(U(f, C)).
Recall that on the event U(f, C), the values of the process ζT (t) are non-negative.

The lower bound on lnP(U(f, C)) follows from the recent result in [2], (Theorems 3.1
and 3.3). Namely, there exists a constant J > 0 such that

lim inf
T→∞

1

T
lnP

(
ζT ∈ Uε(f), NT (ζT ) ≤ CT

)
≥ J > −∞.

Thereby

lim inf
T→∞

1

T 2
lnP

(
ζT ∈ Uε(f), NT (ζT ) ≤ CT

)
= 0.

Even though the formula for the rate function (2.7) can be applied for discontinuous
functions, in fact the rate function is infinite for such functions. That happens because
P(ξT ∈ Uε(x)) = 0 in the uniform topology for any discontinuous function x if ε is small
enough.

Remark 2.3. In [2], the large deviation principle is proved for real valued processes
with independent increments. The result of Theorems 3.1 and 3.3 from [2] can be easily
extended to finite-dimensional cases.

2.3 A version for “integral" large deviation principle.

For any continuous function f = (f1, f2) ∈ F and any positive ε and M , consider the
following sets:

Bf,ε,M = {x = (x1, x2) ∈ X : fi(t)− ε ≤ xi(t) ≤M, i = 1, 2, t ∈ [0, 1]},
Bf,M = {x = (x1, x2) ∈ X : fi(t) ≤ xi(t) ≤M, i = 1, 2, t ∈ [0, 1]}.

We will call them strips.

Theorem 2.4. For any f ∈ F and any M > supt∈[0,1] max{f1(t), f2(t)}

lim
ε→0

lim
T→∞

1

T 2
lnP

(
ξT (·) ∈ Bf,ε,M

)
= − inf

g∈F∩Bf,M
I(g) = −I(f). (2.23)
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Proof of Theorem 2.4. The upper bound follows from representation (2.12): for any ε

there exists δ such that

1

T 2
lnP(ξT (·) ∈ Bf,ε,M ) ≤ − inf

g∈F∩Bf,M
I(g)(1− δ) + sup

g∈F∩Bf,M

1

T 2
CT ,

see Lemma 2.2 for the definition of CT . The proof of the relation

lim sup
T→∞

sup
g∈F∩Bf,M

1

T 2
CT = o(1) as ε→ 0

basically repeats the arguments of Section 2.2 replacing supt∈[0,1] max{f1(t), f2(t)} byM
in (2.19). This modification does not affect the principal inequality (2.20). This proves
the upper bound.

The lower bound becomes obvious using the inequality

P
(
ξT (·) ∈ Bf,ε,M

)
≥ P

(
ξT (·) ∈ Uε(f)

)
,

and after that the usage of Theorem 2.1 completes the proof of the theorem.

Remark 2.5. Theorem 2.4 holds also if, in the definition of the strip, we substitute the
upper bound M by a bound (M1,M2) + g, where g is any continuous function on [0,1]
with g(0) = (0, 0) and M1,M2 are some positive constants. The lower bound is defined
by a function f ∈ F such that

sup
t∈[0,1]

(
Mi + gi(t)− fi(t)

)
> 0.

for any i = 1, 2.

We have not proven the large deviation principle in its complete form. There are
some reasons for this. First, the rate function (2.7) is not compact. Second, in the
topology we considered, exponential tightness does not hold. Moreover, the space X is
not complete and it is not separable. Thus we stated the large deviation for some special
sets, which we called strips. It seems that strips can be required in applications.

3 Conclusion

Notice that derivatives of f are not included in the expression for I(f) (1.1). Such
form of the rate function seems paradoxical. Indeed, let a continuous function g1 :

[0, 1]→ R+ have a form of a high narrow peak such that
∫ 1

0
g1(t)dt = ε0 is small, and let

g = (g1, 0). The difference of the rate functions I(f + g) and I(f), for f ∈ F , is small and
equal to c1ε0, but supt{g1(t) − f1(t)} can be very large. An explanation of this paradox
is that the probability that the process ξT belongs to a “neighborhood" of g is of order

e−T ln(T )C , (3.1)

where C is a constant that depends on g. The asymptotic (3.1) is not proved in this
paper. The word “neighborhood" is in quotation marks because (3.1) has to be proved
in different settings (it will be done in another paper). This means that the probability
of ξT being away from zero for a long time is much smaller than the probability of a
high ejection during a short period.
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