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Abstract

We derive exact fluctuation exponents for a solvable model of one-dimensional di-
rected polymers in random environment in the intermediate scaling regime. This
regime corresponds to taking the inverse temperature to zero as the size of the sys-
tem goes to infinity. The exponents satisfy the KPZ scaling relation and coincide with
previous nonrigorous predictions. In the critical case, we recover the fluctuation
exponent of the Hopf-Cole solution of the KPZ equation in equilibrium and close to
equilibrium.
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1 Main results

1.1 Introduction

The directed polymer in a random environment is a statistical physics model that as-
signs Boltzmann-Gibbs weights to random walk paths as a function of the environment
encountered by the walk. It was originally introduced in [31] as a model of an interface
in two dimensions. Here is the standard lattice formulation in d+ 1 dimensions (d space
dimensions, one time dimension).

The environment is a collection of i.i.d. random weights {ω(i, x) : i ∈ N, x ∈ Zd} with
probability distribution P. Let P be the law of simple symmetric random walk (St)t∈Z+

on Zd with S0 = 0. Denote expectation under P and P by E and E, respectively. The
quenched partition function of the directed polymer in environment ω and at inverse
temperature β > 0 is

ZN,x(β) = E
[
eβ

∑N
i=1 ω(i,Si), SN = x

]
, (1.1)
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Fluctuation exponents for directed polymers

where E[X,A] = E[X · 1A] is the expectation of X restricted to the event A. This is the
point-to-point partition function because the endpoint SN of the walk is constrained to
be x. The version that allows SN to fluctuate freely is the point-to-line partition function.
In the point-to-point setting the quenched polymer measure on paths ending at x is

QβN,x (S1 = x1, . . . , SN = xN )

=
1

ZN,x(β)
eβ

∑N
i=1 ω(i,xi)P [S1 = x1, . . . , SN = xN ] · 1{xN = x}.

(1.2)

These quenched quantities are functions of the environment ω and thereby random.
The averaged distribution of the path is P βN,x(·) = EQβN,x(·). We refer the reader to
reviews [21, 27, 34] for a deeper discussion of the subject.

We restrict the discussion to the 1+1 dimensional case. Basic objects of study are
the fluctuations of the free energy logZN,Nx(β) and the path (St)0≤t≤N . On the crudest
level the orders of magnitude of these fluctuations are described by two exponents χ
and ζ:

• fluctuations of logZN,Nx(β) under P have order of magnitude Nχ

• fluctuations of the path St under P βN,Nx have order of magnitude Nζ

In the 1+1 dimensional case these exponents are expected to take the values χ = 1/3

and ζ = 2/3 independently of β, provided the i.i.d. weights ω(i, x) satisfy a moment
bound. Furthermore, there are specific predictions for the limit distributions of the
scaled quantities: for example, the GUE Tracy-Widom distribution for logZN,Nx(β).
These properties are features of the Kardar-Parisi-Zhang (KPZ) universality class to
which these models are expected to belong. See [23, 47] for recent surveys. The KPZ
regime should be contrasted with the diffusive regime where χ = 0, ζ = 1/2, and the
path satisfies a central limit theorem. Diffusive behavior is known to happen for d ≥ 3

and small enough β [22].
There are four exactly solvable 1+1 dimensional positive temperature polymer mod-

els for which KPZ predictions have been partially proved:

(a) the semidiscrete polymer in a Brownian environment [41]

(b) the log-gamma polymer [45]

(c) the continuum directed random polymer, in other words, the solution of the Kardar-
Parisi-Zhang (KPZ) equation [1, 4, 33]

(d) the strict-weak lattice polymer [26, 40]

In recent years a number of results have appeared, first for exponents and then for
distributional properties. This is not a place for a thorough review, but let us cite some
of the relevant papers: [4, 15, 16, 17, 10, 25, 39, 45, 46]. To do justice to history,
we mention also that KPZ results appeared earlier for zero-temperature polymers (the
β → ∞ limit of (1.1)–(1.2), known as last-passage percolation), beginning with the
seminal papers [7, 32].

Getting closer to the topic of the present paper, physics paper [3] introduced the
study of the intermediate disorder regime in model (1.1)–(1.2). This means that β is
scaled to zero as N → ∞ by taking β = β0N

−α. The window of interest is 0 ≤ α ≤ 1/4.
At α = 0 one sees the KPZ behavior with exponents χ = 1/3 and ζ = 2/3. At α = 1/4 one
has the critical case where exponents are diffusive (χ = 0 and ζ = 1/2) but fluctuations
are different [2]. When α > 1/4 the disorder is irrelevant and the polymer behaves like
a simple random walk [1].

Article [3] conjectured the exponents for the entire range:

χ(α) = 1
3 (1− 4α) and ζ(α) = 2

3 (1− α) for 0 ≤ α ≤ 1/4. (1.3)
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Fluctuation exponents for directed polymers

In this paper we derive these intermediate disorder exponents for the semidiscrete poly-
mer in the Brownian environment (introduced in [41], hence also called the O’Connell-
Yor model). Along the way we offer some improvements to the earlier work [46] which
treated the α = 0 case. This model has two versions: a stationary version with par-
ticular boundary conditions that render the process of logZ increments shift-invariant,
and the point-to-point version without boundary conditions represented by (1.1)–(1.2)
above. In general we have better results for the stationary version. In case the reader
is encountering polymer models with boundaries for the first time but can appreciate
an analogy with the totally asymmetric simple exclusion process (TASEP), then the sta-
tionary polymer corresponds to stationary TASEP with Bernoulli occupations, while the
point-to-point version of the polymer is the analogue of TASEP with step initial condi-
tion.

We list below the precise contributions of our paper:

(i) For the free energy we derive the exponent χ(α) = 1
3 (1− 4α) for the entire range

0 ≤ α ≤ 1/4 for the stationary version and for 0 ≤ α < 1/4 for the point-to-point
version. For the fixed temperature case (α = 0) the lower bound χ ≥ 1/3 for the
point-to-point version was not covered in [46], but is done here.

(ii) We have the path exponent ζ(α) = 2
3 (1 − α) for the stationary version, and the

upper bound ζ(α) ≤ 2
3 (1− α) for the point-to-point version.

(iii) We refine the prediction (1.3) in the following way. We introduce a macroscopic
time parameter τ > 0 and conclude that the fluctuations of logZτN,τNx(β0N

−α) are
of magnitude τ1/3Nχ(α) while the path fluctuations are of magnitude τ2/3Nζ(α). In
other words, in the macroscopic variables we see again the exponents 1

3 and 2
3 .

(iv) In the fixed temperature case (α = 0) the lower bound χ ≥ 1/3 was already proved
in [46] for the stationary version. Here we give a considerably simpler proof of
the lower bound, including the case α = 0.

(v) In the critical case α = 1/4 we can connect with the KPZ equation. The macro-
scopic variable τ becomes the time parameter of the stochastic heat equation
(SHE), and we obtain again the exponent of the stationary Hopf-Cole solution of
the KPZ equation, first proved in [10]: Var[logZ(τ, 0)] � τ

2
3 where Z is the so-

lution of SHE. Moreover, we prove similar bounds for solutions where the initial
condition is a bounded perturbation of the stationary initial condition.

The structure of the present paper is similar to [46]. However, new arguments were
needed to obtain estimates that hold uniformly for a broader range of parameters. In
particular, for the upper bound proofs of the point-to-point case we found an approach
based on the connection of Brownian last passage percolation with the Gaussian unitary
ensemble.

Some further comments about the state of the field and the place of this work are
in order. Presently one can identify the following three approaches to fluctuations of
polymer models and of models in the KPZ class more broadly.

(a) The resolvent method. This is a fairly robust method used to establish superdif-
fusivity. It is quite general, for it can often be applied as long as a model has a
tractable invariant distribution [13, 35, 42, 43, 44, 49]. A drawback of the method
is that often it cannot determine the exact exponents but provides only bounds
on them. However, here are two exceptions. In [49] the scaling exponent of a 2d
TASEP model is identified exactly. In [42, 43] the method is used to give a com-
parison between the solvable 1d TASEP and more general 1d exclusion models to
show that the scaling exponents are the same.
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Fluctuation exponents for directed polymers

(b) The coupling method, represented by the present work and references [8, 9, 10,
11, 19, 45, 46]. This approach is able to identify exact exponents, but so far has
depended on the presence of special structures such as a Burke-type property.

(c) Exact solvability methods. When it can be applied, this approach leads to the
sharpest results, namely Tracy-Widom limit distributions. But it is the most spe-
cialized and technically very heavy. This approach became available for the semidis-
crete polymer after determinantal expressions where found for the distribution of
logZ [15, 16, 39]. For the related log-gamma polymer, see [17, 25]. For the ASEP
the first scaling limits were proved using Fredholm determinant formulas based
on the work of [48]. The recent work of [18] uses certain duality relations to get
scaling limits for the same model. Their method can be thought of as a rigorous
version of the physicists’ replica trick.

The free energy exponent χ = 1/3 in the fixed temperature case (α = 0) is also a
consequence of the distributional limits for logZ in [15, 16]. Presently these results
cover the point-to-point case of the semidiscrete polymer for the entire fixed temper-
ature range 0 < β < ∞. It is expected that these methods should work also in the
intermediate disorder regime (personal communication from the authors). However,
these works do not yet give anything on the stationary versions of the models, or on the
path fluctuations in either the point-to-point or stationary version.

The open problem that remains in the coupling approach used here is the lower
bound for the path in the point-to-point case.

One more expected universal feature of polymer exponents worth highlighting here
is the scaling relation χ = 2ζ − 1. This is expected to hold very generally across models
and dimensions. The exponents we derive satisfy this identity. There is important recent
work on this identity that goes beyond exactly solvable models: first [20], and then [5]
with a simplified proof, derived this relation for first passage percolation under strong
assumptions on the existence of the exponents. These results are extended to positive
temperature directed polymers in [6].

Finally, we point out that the coupling method applied to directed polymers first
appeared in the work [45] in the context of discrete polymers in a log-gamma environ-
ment. Most of the results of [46] have discrete analogues in [45]. The intermediate
regime can also be investigated for the polymers in the log-gamma environment. Al-
though this model is formulated for β = 1, the parameters of the environment can be
tuned to emulate the situation β → 0. We have obtained proofs for the fluctuation ex-
ponents of the log-gamma model in the intermediate scaling regime. The methods are
very similar to the ones used here for the semidiscrete polymer model, but involve con-
siderably heavier asymptotics so we decided not to include them in the present paper.

Organization of the paper. We introduce the directed polymer in a Brownian environ-
ment in its point-to-point and stationary versions and state our main theorems in Sec-
tions 1.2.1 and 1.2.2. Their proofs are in Section 2. In Section 1.3 we state our results
for the KPZ equation. The proofs are given in Section 3. Some basic estimates on
polygamma functions are provided in Section 4.

Notation and conventions. N = {1, 2, 3, . . . } and Z+ = {0, 1, 2, . . . }. For θ > 0, the usual
gamma function is Γ(θ) =

∫∞
0
sθ−1e−s ds and the Gamma(θ) distribution has density

f(x) = Γ(θ)−1xθ−1e−x for 0 < x < ∞. The digamma and trigamma functions are Ψ0 =

Γ′/Γ and Ψ1 = Ψ′0. Ψ−1
1 is the inverse function of Ψ1. See Section 4 for a few facts about

polygamma functions.
The environment distribution P has expectation symbol E. Generically expectation

under a probability measure Q is denoted by EQ. To simplify notation we drop integer
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parts. A real value s in a position that takes an integer should be interpreted as the
integer part bsc.

Acknowledgments. The authors thank Michael Damron for the decomposition idea in
the proof of Theorem 2.4.

1.2 The semi-discrete polymer in a Brownian environment

We begin with the results for the semi-discrete polymer in a Brownian environment.
This is a semi-discrete version of the generic polymer model described in (1.1). As al-
ready mentioned, the model has two versions: a point-to-point and a stationary version.

1.2.1 Point-to-point semi-discrete polymer

The environment consists of a family of independent one-dimensional standard Brow-
nian motions {Bi(·) : i ≥ 1}. These are two-sided Brownian motions with Bi(0) = 0.
Polymer paths are nondecreasing càdlàg paths x : [0, t] → N with nearest-neighbor
jumps, x(0) = 1, and x(t) = n. A path can be coded in terms of its jump times
0 = s0 < s1 < · · · < sn−1 < sn = t. At level k the path collects the increment
Bk(sk−1, sk) = Bk(sk) − Bk(sk−1). The partition function in a fixed Brownian environ-
ment at inverse temperature β > 0 is, for (n, t) ∈ N× [0,∞),

Zn,t(β) =

∫
0<s1<···<sn−1<t

exp
[
β
(
B1(0, s1) +B2(s1, s2) + · · ·+Bn(sn−1, t)

)]
ds1,n−1.

(1.4)
In the integral ds1,n−1 is short for ds1 · · · dsn−1. The limiting free energy density was
computed for a fixed β in [38]:

F(β) = lim
n→+∞

1

n
logZn,n(β) = inf

t>0

{
tβ2 −Ψ0(t)

}
− 2 log β

= Ψ−1
1 (β2)β2 −Ψ0(Ψ−1

1 (β2))− 2 log β for β > 0.
(1.5)

We consider this model in the intermediate disorder regime where β = β0n
−α for

fixed β0 ∈ (0,∞) and α ∈ [0, 1/4]. If 0 < α ≤ 1/4, logZn,n(β) concentrates asymptotically
around the value nF(β0n

−α) = n+O(n1−2α). (See (4.2) and (4.3) for the asymptotics of
the functions Ψ0 and Ψ1.)

Our first result identifies the free energy fluctuation exponent χ = 1
3 (1− 4α) for the

point-to-point semi-discrete polymer in the intermediate disorder regime. In the fixed
temperature case (α = 0) the upper bound was proved in [46] but a lower bound proof
with coupling methods is new even in this case. (To clarify, the correct exponent in
the α = 0 case has of course been identified in the weak convergence results [15, 16]
with exact solvability methods.) Note that we see the intermediate regime exponent
on the scaling parameter n, but for the macroscopic variable τ we see the exponent 1

3

corresponding to the KPZ scaling.

Theorem 1.1. Fix α ∈ [0, 1/4) and 0 < β0 < ∞. Let β = β0n
−α. There exist finite

positive constants C, n0, b0, τ0 that depend on (α, β0) such that the following bounds
hold. For τ ≥ τ0, n ≥ n0 and b ≥ b0,

P
{
| logZτn,τn(β)− τnF(β)| ≥ b τ 1

3n
1
3 (1−4α)

}
≤ Cb−3/2 (1.6)

and

C−1τ
1
3n

1
3 (1−4α) ≤ E| logZτn,τn(β)− τnF(β)| ≤ Cτ

1
3n

1
3 (1−4α). (1.7)
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We turn to the fluctuations of the polymer path. The quenched polymer measure
Qn,t,β on paths is defined, in terms of the expectation of a bounded Borel function
f : Rn−1 → R, by

EQn,t,βf(σ1, . . . , σn−1) =
1

Zn,t(β)

∫
0<s1<···<sn−1<t

f(s1, . . . , sn−1)

× exp
[
β
(
B1(0, s1) + · · ·+Bn(sn−1, t)

)]
ds1,n−1.

The jump times as functions of the path are denoted by σi. Averaged (or annealed ) prob-
ability and expectation are denoted by Pn,t,β(·) = EQn,t,β(·) and En,t,β(·) = EEQn,t,β (·).

In the point-to-point setting the path exponent ζ describes the order of magnitude
of the deviations of the path from the diagonal. A path close to the diagonal in the
rectangle {1, . . . , n} × [0, t] would have σi ≈ it/n. The next theorem shows that the path
exponent ζ is bounded above by its conjectured value 2

3 (1− α).

Theorem 1.2. Fix α ∈ [0, 1/4) and 0 < β0 < ∞. Let β = β0n
−α. There exist finite pos-

itive constants C, n0, b0, τ0 that depend on (α, β0) such that the following bound holds.
For all 0 < γ < 1, τ ≥ τ0, b ≥ b0, and n ≥ n0,

Pn,t,β

{
|σγτn − γτn| ≥ b τ

2
3n

2
3 (1−α)

}
≤ Cb−3. (1.8)

1.2.2 Stationary semi-discrete polymer

The proofs of the above theorems rely on comparison with a stationary version of the
model. Enlarge the environment by adding another Brownian motion B independent
of {Bi}i≥1. Introduce a parameter θ ∈ (0,∞) and restrict to β = 1 for a moment. The
stationary partition function is, for n ∈ N and t ∈ R,

Zθn,t =

∫
−∞<s0<s1<···<sn−1<t

exp
[
−B(s0) + θs0 +B1(s0, s1) + + · · ·+Bn(sn−1, t)

]
ds0,n−1. (1.9)

This model has a useful stationary structure described by [41]. Let Y0(t) = B(t) and,
for k ≥ 1, define inductively

rk(t) = log

∫ t

−∞
eYk−1(s,t)−θ(t−s)+Bk(s,t)ds (1.10)

Yk(t) = Yk−1(t) + rk(0)− rk(t). (1.11)

Induction shows that

Zθn,t e
B(t)−θt = exp

( n∑
k=1

rk(t)
)
. (1.12)

For each fixed t ≥ 0, {rk(t)}k≥1 are i.i.d. and e−rk(t) has Gamma(θ) distribution [41].
Thus the law of Zθn,t e

B(t)−θt is independent of t. This stationarity is part of a broader
Burke-type property (see [46, Section 3.1] for more details).

Extend definition (1.4) to 1 ≤ k ≤ n ∈ N and s < t ∈ R by Z(k,k),(s,t)(β) = eBk(s,t) and

Z(k,n),(s,t)(β) =

∫
s<sk<···<sn−1<t

exp
[
β
(
Bk(s, sk) +Bk+1(sk, sk+1)

+ · · ·+Bn(sn−1, t)
)]
dsk,n−1,

(1.13)
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and abbreviate the β = 1 case as Z(k,n),(s,t) = Z(k,n),(s,t)(1). The stationary partition
function can be recovered by integrating these point-to-point partition functions against
the boundary Brownian motion:

Zθn,t =

∫ t

−∞
ds0 e

−B(s0)+θs0 Z(1,n),(s0,t).

We include the inverse temperature in the stationary partition function by defining

Zθ,βn,t =

∫
−∞<s0<s1<···<sn−1<t

exp
[
−βB(s0) + βθs0 + β

(
B1(s0, s1)

+ · · ·+Bn(sn−1, t)
)]
ds0,n−1.

(1.14)

The following theorem identifies the fluctuation exponent χ for the stationary model.
A key difference between the point-to-point and stationary versions is that KPZ fluctua-
tions appear in the stationary version only in a particular characteristic direction (n, t)

determined by the parameters. In other directions the diffusive fluctuations of the
boundaries dominate (see [45], Corollary 2.2, in the context of discrete polymers in a
log-gamma environment). Once we choose β = β0n

−α, to make the diagonal a charac-
teristic direction we are forced to pick θ = βΨ−1

1 (β2) ∼ β−1. To simplify notation we
suppress the n-dependence of the parameters β and θ.

Theorem 1.3. Let α ∈ [0, 1/4], 0 < β0 < ∞, β = β0n
−α, and θ = βΨ−1

1 (β2). Then there
exist positive constants C, n0, τ0 depending only on α and β0 such that

C−1τ
2
3n

2
3 (1−4α) ≤ Var(logZθ,βτn,τn) ≤ Cτ 2

3n
2
3 (1−4α) (1.15)

for all τ ≥ τ0 and n ≥ n0.

The stationary quenched polymer measure Qθ,βn,t lives on nondecreasing cádlág paths
x : (−∞, t]→ {0, 1, . . . , n} with boundary conditions x(−∞) = 0, x(t) = n. We represent
paths again in terms of jump times −∞ < σ0 < σ1 < · · · < σn−1 ≤ t where x(σi−) = i <

i+ 1 = x(σi). The path measure is defined by

EQ
θ,β
n,t f(σ0, σ1, . . . , σn−1) =

1

Zθ,βn,t

∫
−∞<s0<···<sn−1<t

f(s0, s1, . . . , sn−1)

× exp
[
−βB(s0) + βθs0 + β (B1(s0, s1) + · · ·+Bn(sn−1, t))

]
ds0,n−1.

(1.16)

Averaged probability and expectation are denoted by P θ,βn,t (·) = EQθ,βn,t (·) and Eθ,βn,t (·) =

EEQ
θ,β
n,t (·). When β = 1, we simply remove it from the notation.

In the stationary case we can identify the exact path exponent ζ = 2
3 (1− α).

Theorem 1.4. Let α ∈ [0, 1
4 ], 0 < β0 < ∞, β = β0n

−α, γ ∈ (0, 1), and θ = βΨ−1
1 (β2).

Then there exist positive constants C, n0, τ0 depending only on α and β0 such that these
bounds hold. For τ ≥ τ0, n ≥ n0 and b ≥ 1

P θ,βτn,τn

{
|σγτn − γτn| > bτ

2
3n

2
3 (1−α)

}
≤ Cb−3 (1.17)

and

C−1τ
2
3n

2
3 (1−α) ≤ Eθ,βτn,τn|σγτn − γτn| ≤ Cτ

2
3n

2
3 (1−α) (1.18)
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Note that Theorems 1.1 and 1.2 (on the point-to-point polymer) are restricted to
α < 1/4 while Theorems 1.3 and 1.4 (on the stationary polymer) allow α = 1/4 as
well. We will prove the theorems about the stationary polymer first. The results for
the point-to-point case follow via various comparisons with the stationary case. During
these comparisons one picks up certain error terms (one instance of this can be seen by
comparing equations (2.16) and (2.31) with (2.38)). In the critical α = 1/4 case these
error terms become too large, hence the need the for the extra α < 1/4 restriction in
the point-to-point case. It appears to us that this restriction is purely technical.

1.3 The KPZ equation close to equilibrium

The Kardar-Parisi-Zhang (KPZ) equation was introduced in [33] as a model of a ran-
domly growing interface in 1 + 1 dimension: if we let h(t, x) denote the height of the
interface at site x ∈ R and time t ≥ 0, then the evolution of the interface is represented
by the (ill-posed) stochastic partial differential equation

∂th = 1
2∆h+ 1

2 (∇h)
2

+ Ẇ , (1.19)

where Ẇ is a space-time white noise.
We take initial conditions of the form B+ϕwhere B is a double-sided one-dimensional

Brownian motion and ϕ is a bounded function. We will always consider the so called
Hopf-Cole solution of (1.19). Let Z be the (well-defined) solution of the stochastic heat
equation

∂tZϕ = 1
2∆Zϕ + ZϕẆ , Zϕ(0, x) = eϕ(x)+B(x). (1.20)

Then h = logZ formally solves (1.19). [14] showed that the Hopf-Cole solution is the
correct scaling limit of a weakly asymmetric microscopic growth model in 1 + 1 dimen-
sion. A rigorous solution theory for (1.19) on the circle has been developed in [30]. For
a more detailed overview of the KPZ equation and KPZ universality class, we refer the
reader to the review [23] and its references.

It is expected that, for a wide family of initial conditions, the fluctuations of logZ(t, x)

are of order t1/3. This was first proved in [10] in the stationary case, that is, when
ϕ = 0. The proof was based on the convergence of the rescaled height function of
the weakly asymmetric exclusion process to the Hopf-Cole solution of the KPZ equation
[14], together with non-asymptotic fluctuation bounds on the current of the asymmetric
simple exclusion process [11]. It is not clear that this approach can be extended to the
case of non-zero ϕ.

When the initial condition is Z(0, x) = δ0(x), the asymptotic distribution of the fluctu-
ations of logZ is identified in [4] as the Tracy-Widom distribution. The proof is based on
heavy asymptotic analysis of exact formulas for the weakly asymmetric simple exclusion
process.

We will extend the result of [10] to the case of a bounded perturbation ϕ. Our ap-
proach is different as we use an approximation of Z by partition functions of the Brow-
nian semidiscrete directed polymer in the critical case α = 1

4 rather than by particle
systems.

Building on the techniques of [3], the unpublished preprint [37] shows that a suit-
able renormalization of the partition function of the semi-discrete model with α = 1

4

converges to Zϕ. More precisely, let ϕn(x) = ϕ
(
− x√

n

)
and let

Zθ,β,ϕn,t =

∫ t

−∞
exp
[
ϕn(s0)− βB(s0) + βθs0]Z(1,n)(s0,t)(β) ds0. (1.21)
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Fluctuation exponents for directed polymers

The renormalized partition function is

Zϕn (τ) = e−τn−
1
2 τ
√
n Zθ,β,ϕτn,τn. (1.22)

When ϕ = 0, we simply denote this by Zn(τ).

Theorem 1.5. [37] Let β = βn = n−1/4 and θ = βnΨ−1
1 (β2

n). Then as n→ +∞, the pro-
cess (Zϕn (τ), τ ≥ 0) converges in law to (Zϕ(τ, 0), τ ≥ 0), where Zϕ solves the stochastic
heat equation (1.20).

Combined with Theorem 1.3 this gives

Theorem 1.6. Let ϕ be a bounded function and let Zϕ be the solution of the stochastic
heat equation (1.20). Assuming the conclusion of Theorem 1.5, there exist constants
C1, C2, τ0 > 0 such that

C1τ
2
3 ≤ Var[logZϕ(τ, 0)] ≤ C2τ

2
3 ,

for all τ > τ0.

We note that our results for the path of the stationary polymer could in principle have
a meaning in the context of the SHE. In [1], Z is identified as the partition function of a
continuum directed polymer. Theorem 1.4 strongly suggests that the fluctuations of the
path of the continuum polymer are of order t2/3, in agreement with the KPZ scaling.

An alternative proof of Theorem 1.6 appeared in [24, Remark 1.9] posted after the
present paper.

2 Proofs for the semi-discrete polymer model

The proofs of our Theorems 1.1, 1.2, 1.3 and 1.4 are given in this section. We first
prove the results for the stationary model. The results for the point-to-point model are
then done by comparison.

2.1 Preliminaries

We recall some facts from [46]. Throughout this section we take β = 1 as we can
reduce the situation to this by Brownian scaling (see Section 2.2). The stationary model
can be written as

Zθn,t =

∫ t

0

e−B(s)+θsZ(1,n),(s,t) ds+

n∑
j=1

(
j∏

k=1

erk(0)

)
Z(j,n),(0,t) (2.1)

where the rk processes are defined recursively in (1.10). Recall that the random vari-
ables rk(0) are i.i.d. and e−rk(0) has Gamma(θ) distribution.

It is convenient to define Zθ0,t = exp(−B(t) + θt). The processes rk and Yk give space
and time increments of the partition function:

rk(t) = logZθk,t − logZθk−1,t

Yk(s, t) = Yk(t)− Yk(s) = θ(t− s)− logZk,t + logZk,s.
(2.2)

The appearance of polygamma functions in our results is natural because of the identi-
ties

E[rk(t)] = −Ψ0(θ) and Var[rk(t)] = Ψ1(θ). (2.3)

From (2.2) and (2.3) one immediately gets

E(logZθn,t) = −nΨ0(θ) + θt. (2.4)
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A formula for the variance was derived in Theorem 3.6 in [46]:

Var(logZθn,t) = nΨ1(θ)− t+ 2Eθn,t(σ
+
0 ) = t− nΨ1(θ) + 2Eθn,t(σ

−
0 ) = Eθn,t |σ0| . (2.5)

We will also need the following lemma from [46]:

Lemma 2.1. [46, Lemma 4.3] For θ, λ > 0,∣∣Var(logZλn,t)−Var(logZθn,t)
∣∣ ≤ n|Ψ1(λ)−Ψ1(θ)|.

Finally, we note a shift-invariance of the stationary model (Remark 3.1 of [46]):

EQ
θ
n,tf(σ0, σ1, . . . , σn−1)

d
= EQ

θ
n,0f(t+ σ0, t+ σ1, . . . , t+ σn−1). (2.6)

This follows from the stationarity of Zθn(t) exp(B(t) − θt) by observing that the density
of (σ0, . . . , σn−1) under Qθn,t can also be written as

1

Ẑθn(t)
exp
[
B̂(s0, t) + B̂1(s0, s1) + · · ·+ B̂n(sn−1, t)

]
× 1{s0 < · · · < sn−1 < t} (2.7)

where B̂(u) = B(u)− θu/2 (and similarly for B̂k) and Ẑθn(t) = Zθn(t) exp(B(t)− θt).
Using the same ideas one can also show a shift-invariance property in n (see the

proof of Theorem 6.1 in [46]):

EQ
θ
n,tf(σk, σk+1, . . . , σn−1)

d
= EQ

θ
n−k,tf(σ0, σ1, . . . , σn−k−1). (2.8)

2.2 Rescaled models and characteristic direction

For the proofs we scale β away via the following identity in law which is obtained by
Brownian scaling:

Z(1,n),(0,t)(β)
d
= β−2(n−1)Z(1,n),(0,β2t)(1). (2.9)

We drop β = 1 from the notation and write Z(1,n),(0,t) = Z(1,n),(0,t)(1). The regime
β = β0n

−α corresponds to studying Z(1,n),(0,β2
0n

1−2α). Similarly we scale β away from the
stationary partition function (1.14):

Zθ,βn,t
d
= β−2nZβ

−1θ,1
n, β2t . (2.10)

As we take (n, t) to infinity in the stationary model, we have to follow approximately
a characteristic direction determined by θ. The characteristic direction is found by
minimizing the right-hand side of (2.4) with respect to θ, or equivalently, by arranging
the cancellation of the first two terms on the right of (2.5). The following condition on
the triples (n, t, θ) expresses the fact that (n, t) is close to the characteristic direction:

|nΨ1(θ)− t | ≤ κn2/3θ−4/3 with a fixed constant κ ≥ 0. (2.11)

By the scaling relation (2.10), we can see that the choice of parameters in Theorem
1.3 corresponds to the characteristic direction.

2.3 Upper bounds for the stationary model

The main tool for our upper bounds is the following lemma. The proof of the upper
bound in Theorem 1.3 will follow by a particular choice of the parameters and can be
found at the end of this section. When we write σ±0 we mean that the statement is true
for both σ+

0 and σ−0 .
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Lemma 2.2. Fix θ0 > 0 and κ ≥ 0. Assume that θ > 0, n ∈ N and t > 0 satisfy (2.11)
and θ0 ≤ θ ≤ θ−1

0

√
n. Then there are constants δ > 0 and c < ∞ that depend only on θ0

such that, for all nθ−1 ≥ u ≥ 2κn2/3θ−4/3, we have

P
{
Qθn,t(σ

±
0 ≥ u) ≥ e−δθ

2u2n−1}
≤ c(1 + κ)

n8/3

θ16/3u4
+ c

n2

θ4u3
. (2.12)

When u ≥ nθ−1∨2κn2/3θ−4/3, bound (2.12) continues to hold for σ+
0 , but for σ−0 we have

this bound:

P
{
Qθn,t(σ

−
0 ≥ u) ≥ e−δθu

}
≤ 2e−cθu. (2.13)

Furthermore, we have these bounds:

Eθn,t(σ
±
0 ) ≤ c(1 + κ)

n2/3

θ4/3
, (2.14)

P θn,t
{
σ±0 ≥ bn

2
3 θ−

4
3

}
≤ c(1 + κ)b−3 for b ≥ (2κ) ∨ 1, (2.15)

and Var(logZθn,t) ≤ c(1 + κ)n2/3θ−4/3. (2.16)

Proof. We introduce a = δθ2u2n−1. We fix the positive parameter r (its value will be
determined later), and set λ = θ + ruθ2n−1. From the definition of the path measure,
we have

Qθn,t(σ
+
0 ≥ u)

=
1

Zθn,t

∫
u<s0<···<sn−1<t

exp
[
−B(s0) + θs0 +B1(s0, s1) + · · ·+Bn(sn−1, t)

]
ds0,n−1

≤ 1

Zθn,t

∫
u<s0<···<sn−1<t

e(θ−λ)u exp
[
−B(s0) + λs0 +B1(s0, s1) + · · ·+Bn(sn−1, t)

]
ds0,n−1

(2.17)

≤
Zλn,t
Zθn,t

e(θ−λ)u.

Consequently,

P
{
Qθn,t(σ

+
0 ≥ u) ≥ e−a

}
≤ P

{
logZλn,t − logZθn,t ≥ (λ− θ)u− a

}
= P

{
logZλn,t − logZθn,t ≥ n(Ψ0(λ)−Ψ0(θ))− t(λ− θ) + (λ− θ)u− a

}
, (2.18)

where X = X − EX denotes the centering of the random variable X. Because of (2.4)
we have logZλn,t = logZλn,t + nΨ0(θ)− θt.

By the monotonicity of Ψ2(z) = Ψ′′0(z) (see (4.1)) for any λ > θ > 0

0 ≥ Ψ0(λ)−Ψ0(θ)−Ψ1(θ)(λ− θ) =

∫ λ

θ

∫ y

θ

Ψ2(z)dzdy ≥ − 1
2 |Ψ2(θ)|(λ− θ)2.

Assumptions (2.11) and u ≥ 2κn2/3θ−4/3 imply

|nΨ1(θ)− t | ≤ u/2 (2.19)

and so the right-hand side inside the probability (2.18) develops as follows:

n(Ψ0(λ)−Ψ0(θ))− t(λ− θ) + (λ− θ)u− a
= n

(
Ψ0(λ)−Ψ0(θ)−Ψ1(θ)(λ− θ)

)
+ (nΨ1(θ)− t)(λ− θ) + u(λ− θ)− a

≥ −n
2
|Ψ2(θ)|(λ− θ)2 +

u

2
(λ− θ)− a ≥

(
−r

2c0
2

+
r

2
− δ
)
θ2u2n−1

≥ δθ2u2n−1.

EJP 19 (2014), paper 89.
Page 11/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3307
http://ejp.ejpecp.org/


Fluctuation exponents for directed polymers

Above we introduced

c0 = sup
x≥θ0

|Ψ2(x)|x2 <∞ (2.20)

(which is finite by (4.1) and (4.2)) and then chose r = (2c0)−1 and δ = c−1
0 /16.

In the following c denotes a constant that depends only on θ0, but may change from
line to line. From line (2.18), using Lemma 2.1 we get

P
{
Qθn,t(σ

+
0 ≥ u) ≥ e−a

}
≤ P

{
logZλn,t − logZθn,t ≥ δθ2u2n−1

}
≤ c n2

θ4u4
Var

[
logZλn,t − logZθn,t

]
≤ c n2

θ4u4

(
Var

[
logZθn,t

]
+ n|Ψ1(λ)−Ψ1(θ)|

)
≤ c n2

θ4u4

(
Eθn,t(σ

+
0 ) + u

)
.

(2.21)

Above we used (2.5), (2.19), and the following estimate:

|Ψ1(λ)−Ψ1(θ)| ≤ |Ψ2(θ)|(λ− θ) ≤ c0θ−2(λ− θ) = c0ru/n = u/(2n).

Let u0 ≥ 2κn2/3θ−4/3.

Eθn,t(σ
+
0 ) ≤ u0 +

∫ t

u0

duP θn,t
[
σ+

0 ≥ u
]

≤ u0 +

∫ t

u0

du
{∫ 1

e−a
drP

[
Qθn,t(σ

+
0 ≥ u) ≥ r

]
+ e−a

}
≤ u0 +

cn2

θ4

∫ t

u0

du

(
Eθn,t(σ

+
0 )

u4
+

1

u3

)
+

∫ t

u0

e−δθ
2u2/n du

≤ u0 +
cn2

θ4u3
0

Eθn,t(σ
+
0 ) +

cn2

θ4u2
0

+
δ−1n

2θ2u0
e−δθ

2u2
0/n.

The last term comes from
∫∞
m
e−x

2

dx ≤ (2m)−1e−m
2

for m > 0. Now choose u0 =

2(1 + c+ κ)n2/3θ−4/3. The inequality above can be rearranged to give

Eθn,t(σ
+
0 ) ≤ (c+ 4κ)

n2/3

θ4/3
+
cn1/3

θ2/3
exp(−δn1/3θ−2/3)

≤ c(1 + κ)
n2/3

θ4/3
.

(2.22)

Above, c has been redefined but still depends only on θ0. This proves (2.14) for σ+
0 .

Substitute this back up in (2.21) to get

P
{
Qθn,t(σ

+
0 ≥ u) ≥ e−δθ

2u2n−1}
≤ c(1 + κ)

n8/3

θ16/3u4
+ c(1 + u)

n2

θ4u4
(2.23)

which proves (2.12) as θ ≤ θ0
√
n . To prove (2.15) apply (2.12) with u = bn2/3θ−4/3, and

use b ≥ (2κ) ∨ 1:

P θn,t
{
σ+

0 ≥ bn
2
3 θ−

4
3

}
≤ e−δθ

2u2n−1

+ P
{
Qθn,t(σ

+
0 ≥ bn

2
3 θ−

4
3 ) ≥ e−δθ

2u2n−1}
≤ e−δθ

−2/3n1/3b2 + c(1 + κ)b−4 + cb−3 (2.24)

≤ c(1 + κ)b−3.
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The proof for σ−0 is similar, but we need some modifications. We take λ = θ − ruθ2n−1.
Note that by choosing r < 1/2 and using nθ−1 ≥ u we have λ > θ/2. Now we use the
inequality

Qθn,t(σ
−
0 ≥ u) ≤

Zλn,t
Zθn,t

e−(θ−λ)u,

instead of (2.17), its proof being similar. Bound (2.12) now follows exactly the same way
as for σ+

0 .
In order to get the bound (2.13) for u ≥ nθ−1 we set λ = (1− r)θ with 0 < r < 1/2 to

be specified later and proceed with the proof exactly the same way as in the previous
case. We have

P
{
Qθn,t(σ

−
0 ≥ u) ≥ e−δθu

}
≤ P

{
logZλn,t − logZθn,t ≥ n(Ψ0(λ)−Ψ0(θ))− t(λ− θ) + (θ − λ)u− δθu

}
.

Below we use the Taylor expansion of Ψ0 and (2.19).

n(Ψ0(λ)−Ψ0(θ))− t(λ− θ) + (θ − λ)u− δθu
= n

(
Ψ0(λ)−Ψ0(θ)−Ψ1(θ)(λ− θ)

)
+ (nΨ1(θ)− t)(λ− θ) + u(θ − λ)− δθu

≥ −n
2
|Ψ2(λ)|(λ− θ)2 +

u

2
(θ − λ)− δθu ≥ −nC(θ0)r2 +

1

2
ruθ − δθu ≥ c0θu

with a fixed positive c0. In order to get the last bound we need to choose r and δ small
enough in terms of c(θ0). This gives

P
{
Qθn,t(σ

+
0 ≥ u) ≥ e−δθu

}
≤ P

{
logZλn,t − logZθn,t ≥ c0θu

}
≤ P

{
logZλn,t +B(t) ≥ c0θu/2

}
+ P

{
logZθn,t +B(t) ≤ −c0θu/2

}
(2.25)

By (1.12) logZθn,t + B(t) − θt =
∑n
k=1 rk(t) where e−rk(t) are i.i.d. Gamma(θ) variables.

(Recall that X = X − EX.) We will use the following large deviation estimate: for
y ≥ c > 0 there exists a constant c2 > 0 depending only on c such that

P
( ∣∣∣ n∑

k=1

rk(t)
∣∣∣ ≥ ny) ≤ e−c2θny. (2.26)

This will follow from a standard exponential Markov inequality. For the right tail for
0 < q < θ we get

P
( n∑
k=1

rk(t) ≥ ny
)
≤ e−qny

(
Eeq rk(t)

)n ≤ e−n( log Γ(θ)−log Γ(θ−q)−qΨ0(θ)+qy
)
, (2.27)

using the fact that if ξ is Gamma(θ) then Eξ−q = Γ(θ−q)
Γ(θ) . If q < θ/2 then we can bound

the multiplier of n in the exponent as

log Γ(θ)− log Γ(θ − q)− qΨ0(θ) + qy = −
∫ θ

θ−q

∫ θ

s

Ψ1(v)dv ds+ qs

≤ −c3q2θ−1 + qy (2.28)

with a constant c3 > 0 depending only on θ0. Using y ≥ c we may choose a small enough
0 < c′ < 1/2 so that with q = c′θ so that the right side of (2.28) is bounded by e−c2θny

with some constant c2. The left tail bound of (2.26) follows similarly.
Returning to (2.25) we can bound the second term on the right as

P
{

logZθn,t +B(t) ≤ −c0θu/2
}
≤ e−c̃θ

2u
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where c̃ depends on θ0. The first term on the right of (2.25) can be bounded similarly
by using λ = (1− r)θ and the fact that r can be chosen to be small. This completes the
proof of (2.13) for σ−0 .

To prove (2.14) for σ−0 we use Eθn,t(σ
+
0 − σ−0 ) = t − nΨ1(θ) and the fact that we

already have (2.14) for σ+
0 . To prove (2.15) for σ−0 we can follow (2.24) in the case

bn
2
3 θ−

4
3 ≤ nθ−1 and use the bound (2.13) with a similar argument if bn

2
3 θ−

4
3 ≥ nθ−1.

Finally, bound (2.16) follows from (2.5), (2.11) and (2.14).

Proof of the upper bound in Theorem 1.3. Introduce variables

ñ = τn, t = τβ2
0n

1−2α and θ̃ = Ψ−1
1 (β2

0n
−2α). (2.29)

By the scaling identity (2.10), Var(logZθ,βτn,τn) = Var(logZ θ̃ñ,t). Condition (2.11) is satis-

fied by (ñ, t, θ̃) with κ = 0, θ̃ ≥ Ψ−1
1 (β2

0) > 0 and θ̃ ≤ Cβ−2
0 n2α ≤ C ′

√
ñ, as long as τ ≥ τ0

for a constant τ0 = τ0(β0). This means that we may apply Lemma 2.2 with (ñ, t, θ̃). The
bound (2.16) gives

Var
[
logZ θ̃ñ,t

]
≤ c ñ

2/3

θ̃4/3
≤ Cτ 2

3n
2
3 (1−4α)

where C depends only on β0.

2.4 Lower bound for the stationary model

In this section we prove the lower bound in Theorem 1.3. Again, the proof will follow
by a particular choice of the parameters in the next proposition and can be found at the
end of the section.

Proposition 2.3. Let θ0 > 0 and κ ≥ 0. There are positive constants δ1, δ2, n0 that
depend on (κ, θ0) such that

P
{

logZθn,t − E(logZθn,t) ≥ δ1n
1
3 θ−

2
3

}
≥ δ2 (2.30)

whenever n ≥ n0, (n, t, θ) satisfies (2.11), and θ0 ≤ θ ≤ θ−1
0

√
n.

Moreover, under the previous assumptions we also have

Var
[
logZθn,t

]
≥ cn 2

3 θ−
4
3 (2.31)

Proof. It is sufficient to prove estimate (2.30) since the lower bound (2.31) follows from
this easily. Fix a constant 0 < b < θ1/3n1/3 and set λ = θ + bθ2/3n−1/3 < 2θ and
t̄ = t+ nΨ1(λ)− nΨ1(θ). Then we have

v = t− t̄ = n(Ψ1(θ)−Ψ1(λ)) ≥ n|Ψ2(λ)|(θ − λ) ≥ 4−1bn
2
3 θ−

4
3 (2.32)

where we used |Ψ2(λ)| ≥ λ−2 ≥ θ−2/4 from (4.2). We shall take b ∈ (0,∞) large enough
in the course of the argument, which is not problematic as θ1/3n1/3 will be large for
large enough n by our assumption θ ≥ θ0.

Fix a c1 ∈ (0, 1/2). By the shift-invariance (2.6) we have

Qλn,t(σ
+
0 ≤ c1v) = Qλn,t(σ0 ≤ c1v)

d
= Qλn,t̄(t− t̄+ σ0 ≤ c1v) = Qλn,t̄(σ0 ≤ −(1− c1)v)

= Qλn,t̄(σ
−
0 ≥ (1− c1)v).

Since λ ≤ 2θ, (n, t̄, λ) satisfies (2.11) with κ replaced by 24/3κ. We can apply the upper
bound (2.12) to σ− with (n, t̄, λ) and u = (1− c1)v because

(1− c1)v ≥ 1

8
bn

2
3 θ−

4
3 ≥ 2(24/3κ)λ−4/3n

2
3
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if we choose b > 24+4/3κ. After collecting all the terms on the right of (2.12) we get the
upper bound

P (Qλn,t(σ
+
0 ≤ c1v) > ε0) ≤ Cb−3

for any fixed ε0 > 0 if b is large enough (and hence also n) relative to ε0 and θ0. This
choice of b is needed to ensure that ε0 > e−δλ

2u2n−1

.
A similar shifting argument gives

Qλn,t(σ
+
0 ≥ (1 + c)(t− t̄)) d

= Qλn,t̄(σ
+
0 ≥ c(t− t̄)),

and the upper bound (2.12) can be applied with λ and t̄. Hence, we can fix constants
0 < c1 < c2 <∞ such that, for a given ε0 > 0 and large n,

P
[
Qλn,t{c1v ≤ σ0 ≤ c2v} ≥ 1− ε0

]
≥ 1− Cb−3. (2.33)

Observe that c1 can be taken as close to 0 as we wish.
Introduce temporary notations s1 = c1v and s2 = c2v. Assumptions (2.11) and θ ≥

θ0 > 0 guarantee that s2 < t for large enough n. Hence

Qλn,t{s1 ≤ σ0 ≤ s2} =
1

Zλn,t

∫ s2

s1

e−B(s)+λsZ1,n(s, t)ds.

Using (2.11),

E(logZλn,t)− E(logZθn,t) = n(Ψ0(θ)−Ψ0(λ)) + (λ− θ)t

≥ n
∫ λ

θ

(Ψ1(θ)−Ψ1(ξ)) dξ − κn2/3θ−4/3(λ− θ)

≥ 1
2n|Ψ2(λ)|(λ− θ)2 − κbθ−2/3n1/3

≥ 1
8n

1/3b2θ−2/3 − κbθ−2/3n1/3 ≥ 2c∗b
2n

1
3 θ−

2
3 ,

with the constant c∗ = 1
32 if we choose b ≥ 16κ. Then from (2.33)

1− Cb−3 ≤ P
[
Qλn,t{s1 ≤ σ0 ≤ s2} ≥ 1− ε0

]
≤ P

[ ∫ s2

s1

e−B(s)+λsZ1,n(s, t)ds ≥ (1− ε0)eE(logZθn,t)+c∗b
2n

1
3 θ−

2
3
]

(2.34)

+ P
(
Zλn,t ≤ eE(logZλn,t)−c∗b

2n
1
3 θ−

2
3
)
. (2.35)

Bound probability (2.35) with Chebyshev:

P
(
Zλn,t ≤ eE(logZλn,t)−c∗b

2n
1
3 θ−

2
3
)
≤ c−2
∗ b−4θ

4
3n−

2
3Var(logZλn,t).

The variance is estimated by (2.1) and (2.32):

Var(logZλn,t) ≤ Var(logZθn,t) + n|Ψ1(λ)−Ψ1(θ)| ≤ C(1 + b)n
2
3 θ−

4
3 .

This implies that (2.35) ≤ Cb−3.
Let A denote the event in probability (2.34):

P(A) = P
[
e−B(s1)+λs1

∫ s2

s1

e−B(s1,s)+λ(s−s1)Z1,n(s, t)ds ≥ (1− ε0)eE(logZθn,t)+c∗b
2n

1
3 θ−

2
3
]

= P
[
e−B(s1)+θs1

∫ s2

s1

e−B(s1,s)+λ(s−s1)Z1,n(s, t)ds ≥ (1− ε0)eE(logZθn,t)+c∗b
2n

1
3 θ−

2
3−(λ−θ)s1

]
.
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Fluctuation exponents for directed polymers

We wish to replace λ by θ inside the integral to match it with the parameter in E(logZθn,t)

on the right-hand side. For this we use the Cameron-Martin-Girsanov formula to add a
drift λ− θ to the Brownian motion {B(s1, s) : s1 ≤ s ≤ s2}. Note that the other random
objects in the event A, namely {B(s1);Bi(·) : 1 ≤ i ≤ n}, are independent of B(s1, · ).
Let

dP̃

dP
= e(λ−θ)B(s1,s2)− 1

2 (θ−λ)2(s2−s1)

so that, under P̃, B(s1, s)
d
= B̃(s1, s) + (λ − θ)(s − s1) where B̃ is a standard Brownian

motion. By Cauchy-Schwarz

P(A) = Ẽ
[dP
dP̃

1(A)
]
≤

√
Ẽ
[(dP
dP̃

)2 ]√
P̃(A).

The first expectation is finite:

Ẽ
[(dP
dP̃

)2 ]
= Ẽe2(θ−λ)B(s1,s2)+(θ−λ)2(s2−s1) = Ẽe2(θ−λ)(B̃(s1,s2)+(λ−θ)(s2−s1))+(θ−λ)2(s2−s1)

= Ẽe2(θ−λ)B̃(s1,s2)−(θ−λ)2(s2−s1) = e(θ−λ)2(s2−s1) ≤ eCb
3

where C depends only on θ0. We bound the probability P̃(A) as follows: recall c0 from
(2.20),

P̃(A)

= P̃
[
e−B(s1)+θs1

∫ s2

s1

e−B(s1,s)+λ(s−s1)Z1,n(s, t)ds ≥ (1− ε0)eE logZθn,t+c∗b
2n

1
3 θ−

2
3−(λ−θ)s1

]
= P̃

[
e−B(s1)+θs1

∫ s2

s1

e−B̃(s1,s)+θ(s−s1)Z1,n(s, t)ds ≥ (1− ε0)eE logZθn,t+c∗b
2n

1
3 θ−

2
3−(λ−θ)s1

]
≤ P

(
Zθn,t ≥ (1− ε0)eE logZθn,t+c∗b

2n
1
3 θ−

2
3−(λ−θ)s1

)
≤ P

(
logZθn,t ≥ log(1− ε0) + c∗b

2n
1
3 θ−

2
3 − c0c1b2n

1
3 θ−

2
3

)
≤ P

(
logZθn,t ≥ 1

2c∗b
2n

1
3 θ−

2
3

)
where the last line follows after choosing c1 small enough.

Put the estimates back on lines (2.34)–(2.35) to conclude that

(1− Cb−3)2 exp(−Cb3) ≤ P
{

logZθn,t ≥ 1
2c∗b

2n1/3θ−
2
3

}
for a constant C that depends only on (κ, θ0). This completes the proof of the proposi-
tion.

Proof of the lower bound in Theorem 1.3. Proposition 2.3 applied to variables (ñ, t, θ̃)

from (2.29) gives

Var(logZθ,βτn,τn) = Var(logZ θ̃ñ,t) ≥ cñ2/3θ̃−4/3 ≥ cτ2/3n
2
3 (1−4α).

2.5 Bounds on the path for the stationary model

Proof of Theorem 1.4. We start with the proof of the upper bound (1.17). We introduce
the familiar rescaling θ̃ = Ψ−1

1 (β2
0n
−2α), ñ = τn and t = τβ2

0n
1−2α. Then

P θ,βτn,τn

{
|σγτn − γτn| > bτ

2
3n

2
3 (1−α)

}
≤ P θ̃ñ,t

{
|σγñ − γt| > bβ

− 2
3

0 ñ
2
3 θ̃−

4
3

}
= P θ̃(1−γ)ñ,(1−γ)t

{
|σ0| > bβ

− 2
3

0 ñ
2
3 θ̃−

4
3

}
≤ Cb−3.

(2.36)
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The first inequality is from Brownian scaling (2.10). After the change of variable from
the Brownian scaling step, the quantity on the right of the inequality inside the braces
develops as follows:

β2bτ
2
3n

2
3 (1−α) = β2

0bτ
2
3n

2
3n−

8
3α ≥ bβ−

2
3

0 ñ
2
3 θ̃−

4
3

using Ψ−1
1 (x) ≥ x−1 (4.2). The second step (equality) in (2.36) comes from shift invari-

ance in t and n: (2.6) and (2.8). The last inequality in (2.36) is the upper bound (2.15)
for σ±0 . Note that ((1 − γ)ñ, (1 − γ)t, θ̃) satisfies (2.11) with κ = 0. The constant c from
(2.15) depends only on the lower bound θ̃0 = Ψ−1

1 (β2
0) and so C above depends only on

β0. This completes the proof of (1.17).
We now prove the bound (1.18): using Brownian scaling (2.10) and shift invariance

(2.6), (2.8) again,

Eθ,βτn,τn|σγτn − γτn| = β−2E θ̃ñ,t|σγñ − γt| = β−2E θ̃(1−γ)ñ,(1−γ)t|σ0|.

By (2.5)

β−2E θ̃(1−γ)ñ,(1−γ)t|σ0| = β−2
0 n4αVar[ logZ θ̃(1−γ)ñ(1−γ)t ].

Now using (2.16) and (2.31) we have

C−1
1 (1− γ)2/3ñ2/3θ̃−4/3 ≤ Var log[Z θ̃(1−γ)ñ(1−γ)t ] ≤ C1((1− γ)2/3ñ2/3θ̃−4/3 + 1)

Using the asymptotics for θ̃ we get

C−1
1 τ2/3n

2
3 (1−α) ≤ Eθ,βτn,τn|σγτn − γτn| ≤ C1τ

2/3n
2
3 (1−α).

2.6 Bounds for the point-to-point model

This section derives bounds on the path and free energy fluctuations in the point-to-
point case without boundaries, with β = 1, uniformly in (n, t, θ). Theorems 1.1 and 1.2
follow after a Brownian scaling step. For n ∈ N, t > 0 and events D on the paths write
Zθn,t(D) = Zθn,tQ

θ
n,t(D) for the unnormalized quenched measure.

Theorem 2.4. Fix 0 < θ0 < ∞. Let θ = Ψ−1
1 (t/n) satisfy θ0 ≤ θ ≤ θ−1

0

√
n. Then there

exist constants n0, b0, C that depend only on θ0 so that for n ≥ n0, b ≥ b0 we have

P
{
| logZ(1,n),(0,t) − (θt− nΨ0(θ))| ≥ bn 1

3 θ−
2
3

}
≤ Cb−3/2 + θe−b n

1
3 θ−

2
3 (2.37)

and

C−1(n
1
3 θ−

2
3−log n) ≤ E| logZ(1,n),(0,t)−(θt−nΨ0(θ))| ≤ Cn

1
3 θ−

2
3 +θe−b0 n

1
3 θ−

2
3 . (2.38)

Note that the assumptions of the theorem force c−1
1

√
n ≤ t ≤ c1n for a positive

constant c1. The strategy of our proofs is the following. If we consider Zθn,t with θ

defined according to the theorem then Eθn,t(σ0) = 0 by (2.13). Since we expect σ0 to
be fairly close to its mean, this would suggest that Zθn,t is fairly close to Z(1,n),(0,t). The
main components of the proofs will rely on comparisons between the partition functions
of the two models and on the results proved about the stationary model.

The centering θt−nΨ0(θ) inside probability (2.37) is the right choice, as can be seen
from the exact expression for the free energy (1.5) and Brownian scaling.

Proof of the lower bound in (2.38). Note that (n, t, θ) satisfy (2.11) with κ = 0. Let

fn = θt− nΨ0(θ) = E(logZθn,t). (2.39)

EJP 19 (2014), paper 89.
Page 17/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3307
http://ejp.ejpecp.org/


Fluctuation exponents for directed polymers

Define the event A = {logZθn,t ≥ fn + δ1n
1
3 θ−

2
3 }. By Proposition 2.3 there exist δ1, δ2 > 0

such that
P (A) ≥ δ2. (2.40)

From (2.1) we get the simple bound

Zθn,t ≥ er1(0)Z(1,n),(0,t). (2.41)

Utilizing this,

fn = E[(logZθn,t)1A] + E[(logZθn,t)1Ac ]

≥ P(A)(fn + δ1n
1
3 θ−

2
3 ) + E[(logZθn,t − fn)1Ac ] + fnP(Ac)

≥ fn + δ1P(A)n
1
3 θ−

2
3 + E

[(
logZ(1,n),(0,t) − fn

)
1Ac

]
+ E[r1(0)1Ac ].

Rearranging and using (2.40),

δ1δ2n
1
3 θ−

2
3 ≤ δ1P(A)n

1
3 θ−

2
3 ≤ E

[(
fn − logZ(1,n),(0,t)

)
1Ac

]
− Er1(0)1Ac

≤ E
∣∣fn − logZ(1,n),(0,t)

∣∣+ E|r1(0)|
≤ E

∣∣fn − logZ(1,n),(0,t)

∣∣+ C(θ0) log n.

We used E|r1(0)| ≤
√
Er1(0)2 =

√
Ψ1(θ) + Ψ0(θ)2 from (2.3). This proves the lower

bound in (2.38).

Proof of the upper bounds in (2.37) and (2.38). Inequality (2.41) gives

P
(

logZθn,t − logZ(1,n),(0,t) ≤ −b n
1
3 θ−

2
3

)
≤ P

(
e−r1(0) ≥ eb n

1
3 θ−

2
3
)
≤ θe−b n

1
3 θ−

2
3

where the last step comes from Markov’s inequality and e−r1(0) ∼ Gamma(θ). Estimate
(2.16) gives the Chebyshev bound

P
(
| logZθn,t − fn| ≥ b n

1
3 θ−

2
3

)
≤ b−2n−

2
3 θ

4
3Var(logZθn,t) ≤ Cb−2 ≤ Cb−3/2

which gives

P
(

logZ(1,n),(0,t) − fn ≥ b n
1
3 θ−

2
3

)
≤ Cb−3/2 + θe−b n

1
3 θ−

2
3 . (2.42)

The bound on the other tail will be proved in two steps. In Lemma 2.8 below we show
that there exists c0 > 0 depending on θ0 so that, for all n ∈ N, if b > c0n

2/3θ2/3 then

P
(

logZ(1,n),(0,t) − (θt− nΨ0(θ)) ≤ −b n 1
3 θ−

2
3

)
≤ Ce−C

−1bn1/3θ1/3 . (2.43)

In Lemma 2.7 below we will show that if b ≤ c0n
2/3θ2/3 then there are constants C and

n0 depending on c0 and θ0 so that

P

(
Zθn,t

Z(1,n),(0,t)
≥ eb n

1
3 θ−

2
3

)
≤ Cb−3/2 (2.44)

for all n > 1. Using the Chebyshev bound again with (2.44) and then combining it with
(2.43) we get

P
(

logZ(1,n),(0,t) − fn ≤ −b n
1
3 θ−

2
3

)
≤ Cb−3/2 + Ce−C

−1bn1/3θ1/3 . (2.45)

The estimates (2.42) and (2.45) together establish (2.37).
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Integrating out b in (2.37) gives

E| logZθn,t − logZ(1,n),(0,t)| ≤ Cn
1
3 θ−

2
3 + Cθe−b0 n

1
3 θ−

2
3 .

Combining the above with

E| logZθn,t − fn| ≤
√
Var logZθn,t ≤ Cn

1
3 θ−

2
3 (2.46)

verifies the upper bound of (2.38).

Except for the technical estimates postponed to Section 2.7, this completes the proof
of Theorem 2.4.

Proof of Theorem 1.1. Recall that β = β0n
−α. Introduce ñ = τn, t = τβ2

0n
1−2α and

θ = Ψ−1
1 (t/ñ) = Ψ−1

1 (β2
0n
−2α). From Brownian scaling (2.9) and the explicit free energy

density F(β) in (1.5),

logZτn,τn(β0n
−α)− τnF(β)

d
= −2(τn− 1) log(β0n

−α) + logZ(1,τn),(0,β2
0τn

1−2α) − τnF(β0n
−α)

= logZ(1,ñ),(0,t) − 2(ñ− 1) log β − ñ(θβ2
0n
−2α −Ψ0(θ)− 2 log β)

= logZ(1,ñ),(0,t) − (θt− ñΨ0(θ)) + 2 log β.

The bounds claimed in Theorem 1.1 follow by quoting Theorem 2.4 for (ñ, t). Note
that because α ∈ [0, 1/4), the terms log β and log n are lower order than n

1
3 (1−4α), and

θe−bn
1/3θ−2/3

is lower order than b−3/2.

We turn to the path fluctuations for the model without boundaries.

Theorem 2.5. Fix 0 < θ0 <∞ and 0 < ε0, ε1 < 1/2. Then there exist positive constants
b0, C, C1 that depend only on θ0, ε0 such that the following holds. If θ = Ψ−1

1 (t/n) satisfies

θ0 ≤ θ ≤ θ−1
0 n1/2−ε0 (2.47)

then for n ≥ n0, b ≥ b0, and ε1 ≤ γ ≤ 1− ε1 we have

Pn,t

(
|σbnγc − γt| > bn

2
3 θ−

4
3

)
≤ Cb−3. (2.48)

The measure Pn,t is the averaged measure Pn,t,β with β = 1 introduced above Theo-
rem 1.2.

Proof. Since 0 ≤ σk ≤ t = nΨ1(θ) ≤ cnθ−1 we may assume that

b ≤ cn1/3θ1/3 (2.49)

with a constant c depending only on θ0.
Let ` = bnγc, t′ = γt and u = b n

2
3 θ−

4
3 . By the definitions and (2.41)

Q(1,n),(0,t) (|σ` − t′| > u) =
1

Z(1,n)(0,t)

∫
|s−t′|>u

Z(1,`)(0,s)Z(`+1,n)(s,t) ds

≤ e−r1(0)

Z(1,n)(0,t)

∫
|s−t′|>u

Zθ`,s Z(`+1,n)(s,t) ds =
e−r1(0)Zθn,t
Z(1,n)(0,t)

Qθn,t (|σ` − t′| > u) .
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Let h ∈ (b−3, 1) (note that if b0 is large enough then the interval is non-empty) and set
r = δb2/(3(1− γ)) with δ from Lemma 2.2.

P
(
Q(1,n),(0,t) (|σ` − t′| > u) > h

)
≤ P(e−r1(0) ≥ θb3) + P

[
Zθn,t

Z(1,n)(0,t)
≥ ern

1
3 θ−

2
3

]

+P

[
Qθn,t (|σ` − t′| > u) > e−rn

1
3 θ−

2
3 hθ−1b−3

]
On the right hand side, the first term is bounded by Cb−3 by Markov’s inequality, since
e−r1(0) ∼ Gamma(θ). The second term is bounded by Cr−3/2 ≤ Cb−3 by inequality (2.44)
above (inequality (2.44) is proved in Lemma 2.7 below). To see that we can actually
apply (2.44) note that by (2.49) we have

r =
δb2

3(1− γ)
≤ Cn2/3θ2/3

with a constant depending on θ0 and ε1 which was the condition needed for (2.44).
Finally, the shift invariance (2.8) and Lemma 2.2 give, for large enough n and b and

uniformly for h ∈ (b−3, 1),

P

[
Qθn,t (|σ` − t′| > u) > e−rn

1
3 θ−

2
3 hθ−1b−3

]
≤ P

[
Qθn−`,t−t′(|σ0| > u) > e−rn

1
3 θ−

2
3 θ−1b−6

]
≤ P

[
Qθn−`,t−t′(|σ0| > u) > e−δθ

2u2/(n−`)
]
≤ Cb−3.

It is above that we need θ ≤ θ−1
0 n1/2−ε0 for ε0 > 0, for otherwise the right-hand side

e−rn
1
3 θ−

2
3 θ−1b−6 cannot be bounded below by e−δθ

2u2/(n−`). Collecting the estimates
gives

P
[
Q(1,n),(0,t) (|σ` − t′| > u) > h

]
≤ Cb−3

and from this

P(1,n),(0,t)

(
|σbnγc − γt| > bn

2
3 θ−

4
3

)
≤ b−3 +

∫ 1

b−3

P
[
Q(1,n),(0,t) (|σ` − t′| > u) > h

]
dh ≤ Cb−3.

This completes the proof.

Proof of Theorem 1.2. We again introduce ñ = τn, t = τβ2
0n

1−2α and θ = Ψ−1
1 (t/ñ) =

Ψ−1
1 (β2

0n
−2α). Assumption (2.47) is satisfied because α < 1/4. Using (2.9) and Theorem

2.5 the theorem follows.

2.7 The tail estimates

In this section we prove the missing components of the proofs of Theorem 1.4 and
Theorem 2.4. We begin with some definitions.

Augment the family Z(j,k),(s,t) = Z(j,k),(s,t)(1) defined for j ≥ 1 in (1.13) by introduc-
ing, for k ∈ N and t ∈ R+,

Z(0,0),(0,t) = e−B(t), Z(0,k),(0,t) =

∫
0<s0<···<sk−1<t

exp
[
−B(s0)+B1(s0, s1)+· · ·+Bk(sk−1, t)

]
ds0,k−1.

(2.50)
It is also convenient to set, for A ⊆ R,

Zθ0,t(σ0 ∈ A) = 1A∩R+(t) exp[−B(t) + θt]. (2.51)

The following bounds are proved in Lemma 3.8 of [46] .
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Lemma 2.6. [46] Let θ > 0. For 0 < s < t and n ∈ Z+

Zθn+1,t(σ0 > 0)

Zθn,t(σ0 > 0)
≤
Z(0,n+1),(0,t)

Z(0,n),(0,t)
≤
Zθn+1,t(σ0 < 0)

Zθn,t(σ0 < 0)
(2.52)

and
Zθn,t(σ0 > 0)

Zθn,s(σ0 > 0)
≥
Z(0,n),(0,t)

Z(0,n),(0,s)
≥
Zθn,t(σ0 < 0)

Zθn,s(σ0 < 0)
. (2.53)

The second inequality of (2.53) makes sense only for n ≥ 1.

For A ⊂ R note the identity

Zθn,t(σ0 ∈ A)

Z1,n(0, t)
=

∫
A

exp(−B(s) + θs)
Z1,n(s, t)

Z1,n(0, t)
ds.

We will also define a reversed system: construct a new environment ω̃ with

B̃(s) = −(Bn(t)−Bn(t− s)), B̃i(s) = Bn−i(t)−Bn−i(t− s), 1 ≤ i ≤ n− 1.

Quantities that use environment ω̃ are marked with a tilde. From the definitions one
checks that

Z(1,n),(s,t) = Z̃(0,n−1),(0,t−s) for any t > 0 and s ∈ (−∞, t). (2.54)

Lemma 2.7. Let θ = Ψ−1
1 (t/n) and assume that θ0 ≤ θ ≤ θ−1

0

√
n with a fixed θ0 > 0. Fix

a c0 > 0. Then there exist a finite, positive constant C depending on θ0, c0 such that if
n > 1 and b ≤ c0n2/3θ2/3, then

P

(
Zθn,t

Z(1,n),(0,t)
≥ eb n

1
3 θ−

2
3

)
≤ Cb−3/2. (2.55)

Proof. Note that once we prove (2.55) for b > b0 with a constant b0 depending on θ0, c0
then we can get it for all b by adjusting the constant C. Thus we may assume that b is
big enough compared to θ0 and c0.

Let u =
√
bn2/3θ−4/3 and ν = ε

√
bn−1/3θ2/3 where ε > 0 will be specified later. Then

P

(
Zθn,t

Z(1,n),(0,t)
≥ eb n

1
3 θ−

2
3

)
= P

(
Zθn,t(|σ0| ≤ u)

Z(1,n),(0,t)Q
θ
n,t(|σ0| ≤ u)

≥ eb n
1
3 θ−

2
3

)

≤ P

(
Zθn,t(|σ0| ≤ u)

Z(1,n),(0,t)
≥ 1

2
eb n

1
3 θ−

2
3

)
+ P

(
Qθn,t(|σ0| ≤ u) ≤ 1/2

) (2.56)

The second probability can be bounded as

P
(
Qθn,t(|σ0| ≤ u) ≤ 1/2

)
= P

(
Qθn,t(|σ0| > u) ≥ 1/2

)
≤ Cb−3/2 (2.57)

by (2.12) of Lemma 2.2 The first probability can be bounded by

P

(
Zθn,t(0 ≤ σ0 ≤ u)

Z(1,n),(0,t)
≥ 1

4
eb n

1
3 θ−

2
3

)
+ P

(
Zθn,t(−u ≤ σ0 < 0)

Z(1,n),(0,t)
≥ 1

4
eb n

1
3 θ−

2
3

)
.

We will bound the first term, the second will follow similarly.
Introduce the new parameter λ = θ − ν. Note that by choosing ε2 ≤ (4c0)−1 we can

assume λ > θ/2.
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Begin with (2.54) and then apply comparison (2.53):

Z(1,n),(s,t)

Z(1,n),(0,t)
=
Z̃(0,n−1),(0,t−s)

Z̃(0,n−1),(0,t)

≤
Z̃λn−1,t−s(σ0 < 0)

Z̃λn−1,t(σ0 < 0)
=
Z̃λn−1,t−s

Z̃λn−1,t

·
Q̃λn−1,t−s(σ0 < 0)

Q̃λn−1,t(σ0 < 0)

= exp
(
Ỹn−1(t− s, t)− λs

)
·
Q̃λn−1,t−s(σ0 < 0)

Q̃λn−1,t(σ0 < 0)

≤ exp
(
Ỹn−1(t− s, t)− λs

)
· 1

Q̃λn−1,t(σ0 < 0)
.

where we used (2.2) for the reversed system. Specializing the above to our context and
substituting it in the probability that is to be bounded:

P

(
Zθn,t(0 < σ0 ≤ u)

Z(1,n),(0,t)
≥ 1

4e
n

1
3 θ−

2
3 b

)

= P

(∫ u

0

exp(−B(s) + θs)
Z(1,n),(s,t)

Z(1,n),(0,t)
ds ≥ 1

4e
n

1
3 θ−

2
3 b

)

≤ P

(∫ u

0

exp(−B(s) + Ỹn−1(t− s, t) + (θ − λ)s)

Q̃λn−1,t(σ0 < 0)
ds ≥ 1

4e
n

1
3 θ−

2
3 b

)
≤ P

(
Q̃λn−1,t(σ0 < 0) ≤ 1/2

)
(2.58)

+ P

(∫ u

0

exp(−B(s) + Ỹn−1(t− s, t) + νs) ds ≥ 1
8e
n

1
3 θ−

2
3 b

)
. (2.59)

To treat probability (2.58) set

ū = (n− 1)Ψ1(λ)− nΨ1(θ) ≥ −Ψ1(θ) + (n− 1)Ψ2(θ)(λ− θ)

≥ −C1θ
−1 + C2ε

√
bn

2
3 θ−

4
3 ≥ C ′

√
bn

2
3 θ−

4
3 ,

where we used our assumptions on θ, n > 1, the bounds (4.2), and took b large enough
in relation to θ0. Use invariance (2.6) of Q and upper bound (2.12):

P(Q̃λn−1,t(σ0 < 0) < 1/2) = P(Q̃λn−1,t(σ0 > 0) ≥ 1/2)

= P(Q̃λn−1,t+ū(σ0 > ū) ≥ 1/2) ≤ C(θ0)b−3/2.
(2.60)

To justify our use of the upper bound, note that

(n− 1)Ψ1(λ)− t− ū = nΨ1(θ)− t = 0

so the upper bound (2.12) is valid for ū.
For probability (2.59), observe first that s 7→ Ỹn−1(t − s, t) is a standard Brownian

motion which is independent of B by construction. By introducing B†(s) = 1√
2

(
−B(s) +

Ỹn−1(t− s, t)
)

we need to bound

P
(∫ u

0

exp(
√

2B†(s) + νs)ds ≥ 1
8e
ε−1νu

)
≤ P

(∫ u

0

exp(
√

2B†(s) + νs)ds ≥ e3νu
)
.

where the upper bound follows by choosing ε small enough (for fixed b0, n0, θ0). We will
show that

P
(∫ u

0

exp(
√

2B†(s) + νs)ds ≥ e3νu
)
≤ Ce−

1
4ν

2u (2.61)
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if ν > 0, u > 0. Note that

P
(∫ u

0

exp(
√

2B†(s) + νs)ds ≥ e3νu
)
≤ P

(∫ u

−∞
exp(
√

2B†(s) + νs)ds ≥ e3νu
)

≤ P(exp(
√

2B†(u) + νu) ≥ e2νu)

+ P
(∫ u

−∞
exp
(√

2(B†(s)−B†(u)) + ν(s− u)
)
ds ≥ eνu

)
.

The first probability is P(
√

2B†(u) ≥ νu) ≤ C exp(−ν2u/4). For the second probability
we note that by Dufresne’s identity [28] the integral has the same distribution as the
reciprocal of a Gamma(ν) random variable. Thus the second term is

P(Gamma(ν) ≤ e−νu) ≤ 1

νΓ(ν)
e−ν

2u ≤ Ce−ν
2u

which proves the estimate (2.61).
Collecting everything we get that

P

(
Zθn,t(0 < σ0 ≤ u)

Z(1,n),(0,t)
≥ 1

4e
n

1
3 θ−

2
3 b

)
≤ Cb−3/2 + Ce−

1
4 ε

2b3/2 ≤ C ′b−3/2.

The case of −u < σ < 0 goes similarly, with small alterations. Now λ = θ+ ν ≤ 3θ/2.
Utilizing (2.54) and comparison (2.53) the ratio is developed as follows:

Zθn,t(−u ≤ σ0 < 0)

Z(1,n),(0,t)
=

∫ 0

−u
exp(−B(s) + θs)

Z(1,n),(s,t)

Z(1,n),(0,t)
ds

≤
∫ 0

−u

exp(−B(s)− Ỹn−1(t, t− s)− (θ − λ)s)

Q̃λn−1,t(σ0 > 0)
ds.

The rest follows along the same lines as above. This proves (2.55).

Lemma 2.8. Fix θ0 > 0, suppose that θ0 < θ < θ−1
0

√
n and let t = nΨ1(θ). Then there

exist constants c0, C depending on θ0 so that for all n ∈ N

P
(
logZ(1,n),(0,t) − (θt− nΨ0(θ)) < −x

)
≤ c1e−c

−1
1 xθ, for x ≥ c0n. (2.62)

The same bound holds for the upper tail.

Proof. We first note that

Z(1,n)(0,t) =

∫
0<s1<···<sn−1<t

exp {B1(0, s1) + · · ·+Bn(sn−1, 1)} ds1,n−1

>
tn−1

(n− 1)!
exp

(
min

0<s1<···<sn−1<t
(B1(0, s1) + · · ·+Bn(sn−1, 1))

)
d
=

tn−1

(n− 1)!
exp(−

√
nt λnmax)

where λnmax is the largest eigenvalue of an n × n GUE random matrix where the non-
diagonal entries have variance 1/n. (This is the normalization where the support of the
spectrum converges to [−2, 2].) The fact that

min
0<s1<···<sn−1<1

(B1(0, s1) + · · ·+B(sn−1, 1))
d
= − max

0<s1<···<sn−1<1
(B1(0, s1) + · · ·+B(sn−1, 1))

d
= −
√
nλnmax
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was proved independently in [29] and [12].
It is known that the random variable λnmax converges to 2, and the following uniform

tail bound holds in n for K > K0 > 2 (see e.g. [36] and the references within):

P (λnmax > K) ≤ Ce−C
−1nK2

(2.63)

with a constant C depending only on K0. We will use this bound with K0 = 3.
We have

P
(
logZ(1,n),(0,t) − (θt− nΨ0(θ)) < −x

)
≤ P

(
e−(θt−nΨ0(θ)) tn−1

(n− 1)!
exp(−

√
nt λnmax) < e−x

)
= P

(
−θt+ nΨ0(θ) + x+ (n− 1) log t− log(n− 1)! <

√
ntλnmax

)
.

(2.64)

Using Stirling’s formula, t = nΨ1(θ), the bounds θ0 ≤ θ ≤ θ−1
0 n1/2 and the bounds (4.2),

(4.3) on Ψ0,Ψ1 we get that

|−θt+ nΨ0(θ) + (n− 1) log t− log(n− 1)!| ≤ Cn

where C depends on θ0. This gives

P
(
logZ(1,n),(0,t) − (θt− nΨ0(θ)) < −x

)
≤ P

(
−Cn+ x <

√
ntλnmax

)
Choosing c0 > 2C we get

P
(
−Cn+ x <

√
ntλnmax

)
≤ P

(
1
2x <

√
ntλnmax

)
≤ P ( 1

2xn
−1Ψ1(θ)−1/2 < λnmax).

Now choose c0 large enough so that 1
2c0Ψ1(θ)−1/2 > 3 for θ ≥ θ0 (possible by the mono-

tonicity of Ψ1). Now use (2.63):

P
(
logZ(1,n),(0,t) − (θt− nΨ0(θ)) < −x

)
≤ P ( 1

2xn
−1Ψ1(θ)−1/2 < λnmax)

≤ Ce−C
−1n( 1

2xn
−1Ψ1(θ)−1/2)2

≤ c1e−c
−1
1 θx

where in the last step we used the bounds on Ψ1(θ) and x ≥ c0n.

3 Proofs for the KPZ equation

Proof of Theorem 1.6. We first start with the case ϕ = 0. From the definition (1.22), the
scaling identity (2.10) and the identity (2.4) we get

1

τ
E logZn(τ) = −n− 1

2

√
n− 2n log βn − nΨ0(Ψ−1

1 (β2
n)) + β2

nnΨ−1
1 (β2

n). (3.1)

Using the asymptotics in (4.3) with βn = n−1/4 we get that the right side of (3.1) is
uniformly bounded by a constant which means that

|E logZn(τ)| ≤ Aτ (3.2)

for some constant A > 0. The upper bound in Theorem 1.3 gives

Var logZn(τ) ≤ Cτ2/3,

with a constant C. This implies that {logZn(τ) : n ≥ 1} is uniformly integrable, and
hence from Theorem 1.5 we get E logZn(τ) → E logZ(τ, 0). Note that this could have
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been obtained by exact computations for the stochastic heat equation as well. Together
with Theorem 1.5, this gives the convergence in law

logZn(τ)− E logZn(τ)⇒ logZ(τ)− E logZ(τ).

Fatou’s lemma and Theorem 1.3 then give

Var logZ(τ) ≤ lim inf
n

E
[
(logZn(τ)− E logZn(τ))

2
]
≤ Cτ 2

3 ,

for some C > 0. As for the lower bound,

P
{

logZ(τ)− E logZ(τ) ≥ cτ1/3
}
≥ lim

n
P
{

logZn(τ)− E logZn(τ) ≥ cτ1/3
}
≥ δ,

for some constants c, δ > 0, and τ large enough, thanks to the lower bound in Proposi-
tion 2.3. This proves that there exist some constant C > 0 such that

C−1τ
2
3 ≤ Var logZ(τ) ≤ Cτ

2
3 ,

for τ large enough.
We now turn to the case |ϕ| ≤ K for some 0 < K < +∞. From (1.21), we can verify

that

e−KZϕn (τ) ≤ Zn(τ) ≤ eKZϕn (τ).

This implies that
E| logZϕn (τ)− logZn(τ)| ≤ K

and

Var logZϕn (τ) ≤ 8K2 + 2Var logZn(τ),

which in turn implies the uniform integrability of {logZϕn (τ) : n ≥ 1}. Fatou’s lemma
and the upper bound on Var logZn(τ) show that

Var logZϕ(τ) ≤ C ′τ 2
3 ,

for some C ′ > 0 and τ > 0 large enough. The lower bound follows from Proposition 2.3

P
{

logZϕ(τ)− E logZϕ(τ) ≥ cτ1/3
}
≥ lim

n
P
{

logZϕn (τ)− E logZϕn (τ) ≥ cτ1/3
}

≥ lim
n
P
{

logZn(τ)− E logZn(τ) ≥ cτ1/3 − 2K
}
≥ δ,

for suitable c, δ > 0 and all n and τ large enough. This completes the proof of the
theorem.

4 Facts about the polygamma functions

We collect here some basic facts about the polygamma functions. Recall that Ψ0 =

Γ′/Γ and Ψn = Ψ′n−1 for n ≥ 1. These functions satisfy

Ψn(x) = (−1)n+1n!
∑
k≥0

(x+ k)−n−1 for x > 0 and n ≥ 1. (4.1)

Ψ0 is strictly increasing and Ψ1 is positive and strictly decreasing. For x > 0 and n ≥ 1

(n− 1)!

xn
≤ |Ψn(x)| ≤ (n− 1)!

xn
+

n!

xn+1
. (4.2)

For Ψ0 and Ψ1 we have the following asymptotics for large x > 0:

Ψ0(x) = log x− 1

2x
+O

(
1

x2

)
, Ψ1(x) =

1

x
+

1

2x2
+O

(
1

x3

)
. (4.3)
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