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Abstract

We use a growth procedure for binary trees [14], a bijection between binary trees and irre-
ducible quadrangulations of the hexagon [10], and the classical angular mapping between
quadrangulations and maps, to define a growth procedure for maps. The growth procedure
is local, in that every map is obtained from its predecessor by an operation that only mod-
ifies vertices lying on a common face with some fixed vertex. As n → ∞, the probability
that the n’th map in the sequence is 3-connected tends to 28/36. The sequence of maps
has an almost sure limit G∞, and we show that G∞ is the distributional local limit of large,
uniformly random 3-connected graphs.
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1 Introduction

Here is a common situation in probability. We have found a result of the form "as n → ∞,
Xn → X∞ in distribution", where (Xn, 1 ≤ n ≤ ∞) are some sort of random objects. The
Skorohod representation theorem then guarantees (in great generality) the existence of a
coupling such that Xn → X∞ almost surely. This result, though useful, is existential, and
often the discovery of an explicit coupling leads to a deeper understanding of both the limit
object and its finite approximations.

Given the substantial recent interest in random planar maps having the Brownian map as
their (known or conjectural) scaling limit, it seems natural to seek such a coupling for random
maps. (We hereafter refer to such a coupling as a growth procedure.) To date, however, all
convergence results for such random planar maps have been distributional in nature. The goal
of this note is to provide an explicit, local – in the sense described in the abstract – growth
procedure for random planar maps. The result is a sequence of rooted maps (Mn, 1 ≤ n ≤ ∞),
such that Mn

a.s.→ M∞ as n → ∞, by which we mean that balls of any fixed radius around the
root almost surely stabilize.

We briefly summarize the structure and the arguments of the paper, then head right to
details. We begin by considering irreducible quadrangulations of the hexagon: these are
rooted maps with a single face of degree 6 and all other faces of degree 4, such that every
cycle of length 4 bounds a face. (The root is a uniformly random oriented edge; it need
not lie along the hexagonal face.) Such maps are in bijective correspondence with rooted
binary plane trees [10]; we describe the bijection in Section 3.1. In Section 3.2 we describe
how growing a binary tree – transforming a degree-one vertex into a degree-three vertex –
changes the corresponding irreducible quadrangulation of the hexagon.
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Growing random 3-connected maps

A growth procedure is already known to exist for random binary plane trees [14]; the al-
most sure limit T∞ is a critical binary Galton-Watson tree, conditioned to survive. In Section 4
we use the bijection and properties of T∞ to show that the corresponding growth procedure
for irreducible quadrangulations of the hexagon has an almost sure limit. We then show, in
Section 5, that the structure of the irreducible quadrangulations near their root asymptoti-
cally decouples from the structure near the hexagonal face. We use this fact together with the
angular mapping between quadrangulations and general maps to define a growth procedure
(Gn, 1 ≤ n ≤ ∞) for random maps. We show that the almost sure limit G∞ is almost surely 3-
connected and is the distributional limit of large random 3-connected maps. Finally, Section 6
contains number of remarks and suggestions for future research.

We conclude the introduction by mentioning important related work by Bettinelli [6], who
introduces a variety of bijections for forests and maps. In particular, he describes a way
to sample a uniform quadrangulation with n + 1 faces from a uniform quadrangulation with
n faces. By repeatedly applying this method, one obtains a growth procedure for uniform
quadrangulations, whose distributional limit is the uniform infinite planar quadrangulation. It
would be interesting to know whether Bettinelli’s approach (whose details are rather different
from those of the current paper) can be used or modified to obtain almost sure convergence;
the non-locality of the growth rule from [6] is one potential obstacle to this.

2 Definitions

We briefly review some basic concepts regarding (planar) maps; more details can be found
in, e.g., [12]. All our maps are connected. Also, maps are by default embedded in R2 rather
than on the sphere S2. For any graph or map M , we write v(M) and e(M) for the nodes
and edges of M , respectively. The corners incident to a face f of M are the angles κ =

({u, v}, {v, w}) formed by consecutive edges along the face; {u, v} and {v, w} are the first and
second edge incident to κ, respectively. We say κ is incident to f , to v, and to its constituent
edges, and write v(κ) = v. The degree of f is the number of corners incident to f . Write C(M)

for the set of corners of M .

For {u, v} ∈ e(M), we use both (u, v) and uv as notation for the orientation of {u, v} with
tail u and head v. An oriented circuit C in M is clockwise if the bounded region of R2\C lies to
the right of C, and is otherwise counterclockwise. A rooted map is a pair M = (M,vw), where
{v, w} ∈ e(M); vw is the root edge. The root corner ρ = ρ(M) is the unique corner incident to
v whose second incident edge is {v, w}, and the root node is r(M) = u.

Given a rooted map M = (M,uv) and R > 0, write M<R for the submap induced by the set
of nodes at graph distance less than R from u. We say a sequence (Mn, n ≥ 1) of (finite or
infinite) locally finite rooted maps converges to rooted map M∞, and write Mn → M∞, if for
all R > 0, there is n0 ∈ N such that for all n ≥ n0, M<R

n and M<R
∞ are isomorphic as rooted

maps. Note that since the maps Mn are locally finite, so is their limit M∞. This is often called
local weak convergence; see [5, 2, 11] for more details.

A quadrangulation is a map in which every face has degree four. In a quadrangulation of
the hexagon, the unbounded face has degree six and all others have degree four. A quadran-
gulation, or a quadrangulation of the hexagon, is called irreducible if every cycle of length
four bounds a face. It is easily seen that an irreducible quadrangulation of the hexagon is
necessarily simple (i.e. has no loops or multiple edges), and also 3-connected, so has a unique
embedding by Whitney’s theorem.

The definitions of the coming paragraphs are illustrated in Figure 1. A plane tree is
a rooted tree T = (T, r(T )) together with an ordering of the children of each node v as
c1(v), . . . , ckT(v), where kT(v) is the number of children of v. This collection of orderings
uniquely specifies T as a planar map, with root e→ = e→(T) = (r(T ), c1(r(T ))). Conversely,
the orderings may be recovered from the embedding and the root edge e→(T).

Viewed as a map, T has a unique (unbounded) face. Writing n = |v(T )|, list the (oriented)
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Growing random 3-connected maps

edges of this face in the order they are traversed by a counterclockwise tour1 of T starting
from e→(T), as e→1 (T), . . . , e→2n−2(T), or simply e→1 , . . . , e

→
2n−2 when the tree is clear from con-

text. Write e1, . . . , e2n−2 for the corresponding unoriented edges. Note that each edge of T

appears exactly twice in this sequence. It is also convenient to set e→2n−1 = e→1 . We then have
ρ(T) = {e2n−2, e1}.

e4
e5 e6

e7

e2
e3 e8

e9

e10

r

e1

c1(r) α(v)κ1(v)

ρ

κ2(v)

κ3(v)

e→

v

Figure 1: A binary (plane) tree
(T, r). With labels as in the fig-
ure, κ3(v) ≺ ρ ≺ κ1(v).

For v ∈ v(T), list the corners incident to v as κ1(v), . . . , κd(v),
in the order they appear in the counterclockwise tour. Also,
write ≺ for the cyclic order on corners induced by the counter-
clockwise tour. In other words, κ ≺ κ′ ≺ κ∗ iff κ′ 6∈ {κ, κ∗} and
the cyclic tour starting from κ visits κ′ before κ∗; in this case we
say κ∗ is between κ and κ′. Finally, for v, w ∈ v(T), write Jv, wK
for the unique simple path from v to w in T.

In this paper, a binary tree is a plane tree T = (T, r(T )) all
of whose nodes have degree either one or three. We call the
degree one and three nodes of T the buds and internal nodes
of T, and denote them B(T) and I(T), respectively. Likewise,
bud corners and internal corners have their obvious meanings,
and we write CB(T) and CI(T) for the sets of bud and inter-
nal corners, respectively. We always have |CI(T)|/3 = |I(T)| =

|B(T)| − 2 = |CB(T)| − 2. For a bud v, write α(v) for the unique
node of T adjacent to v (α(v) is the parent of v unless v = r(T )).

3 Bijections and growth procedures for trees and maps

Let T = (T, r(T )) be a binary tree, and write e→ = e→(T) = (r(T ), c1(r(T ))) as above. In
the first subsection, we describe a labelling of the corners of T, which we then use to define
an irreducible quadrangulation of the hexagonal. The quadrangulation has a subtree of T as
a canonical “nearly-spanning” tree. This construction, due to Fusy, Poulalhon, and Schaeffer
[10], is invertible and so bijective. In the second subsection we analyze the effect of growing
a binary tree on the quadrangulation associated to it by the bijection we now describe.

3.1 The Fusy-Poulalhon-Schaeffer “closure” bijection

Given a corner κ ∈ C(T ), for i ∈ {1, 2, 3} let Ni(κ) be the number of i’th children in
Jr(T ), v(κ)K. Note that all nodes except r(T ) have either zero or two children, and r(T ) has
either one or three children.

If κ ∈ C(T) is incident to node v and is the i’th such corner, κi(v) = κ, then set εκ = 2(i−1),
so εκ ∈ {0, 2, 4}. Then set

ST(κ) =

{
3N3(κ) +N2(κ)−N1(κ) + εκ if κ 6= ρ

−41[ρ is a bud corner] if κ = ρ
(3.1)

An example appears in Figure 2. Here is another description of ST, which is easily seen to
be equivalent. Give ρ label −41[ρ is a bud corner], then perform a cyclic tour of the tree starting
from ρ. When moving from an inner corner to another corner, decrease the label by one. When
moving from a bud corner to another (necessarily inner) corner, increase the label by three.
Finally, when returning to the root corner, subtract an additional six.

Given a bud corner κ, if there exists an internal corner κ′ such that ST(κ′) ≤ ST(κ) −
61[κ≺ρ�κ′] then let σ(κ) = σT(κ) be the first such corner κ′ (i.e., if κ∗ is another such internal
corner then κ ≺ κ′ ≺ κ∗). Call σ(κ) the attachment corner of κ. Necessarily ST(σ(κ)) =

ST(κ)− 61[κ≺ρ�σ(κ)] since labels decrease by at most one along edges (except at ρ, but this is
accounted for by the correction term for winding around ρ).

1Recall that such a tour keeps the unbounded face to its left.
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Figure 2: A binary tree
endowed with the corner la-
belling ST.

Let ∆ = ∆(T) be the set consisting of those corners κ ∈
CB(T ) for which there is no κ′ with ST(κ′) ≤ ST(κ)− 61[κ≺ρ�κ′].
Write s∗ = s∗(T) = min{ST(κ) : κ ∈ C(T )}. Then for each κ ∈ ∆,
ST(κ) ∈ [s∗, s∗ + 6], and we set σ(κ) = s(κ)− s∗ − 61[s(κ)−s∗=6].

We now form a map from T as follows. By closing a bud
corner κ 6∈ ∆, we mean identifying v(κ) and v(σ(κ)) to form
an oriented edge eκ = (α(v(κ)), v(σ(κ))), in such a way that
the oriented cycle Cκ formed by following eκ, then returning to
α(v(κ)) via Jv(σ(κ)), α(v(κ))K, is clockwise (the bounded region
of R2 \ C lies to its right).

Draw a hexagon so that T lies in its bounded face (interior),
and label its interior corners 0, 1, . . . , 5 so that for κ ∈ ∆, σ(κ) is
a corner of the hexagon. (Later, we will also view the nodes of
the hexagon as having labels 0, 1, 2, 3, 4, 5, in the obvious way.)
For each bud corner κ 6∈ ∆, close κ (see Figure 3a). For each
κ ∈ ∆, identify v(κ) with the hexagon corner labelled σ(κ) (see
Figure 3b)

Writing e→ for the image of the root edge e→(T) in M , the
resulting map M = (M, e→) is an irreducible, edge-rooted quadrangulation of a hexagon. The
key point of this section (Proposition 3.1, below) is that the function taking T to M is bijective
[10]. We use this fact more-or-less as a black box; however, the next two paragraphs contain
a very brief sketch of one aspect of its proof, for the interested reader. A more detailed and
very clear explanation can be found in [10, Section 4].

The map M inherits the orientations {eκ, κ ∈ BB(T)}, which orients a subset of its edges
(the orientation of e→ need not respect the inherited orientation). The remaining edges of M

are the edges of the hexagon, together with those edges of T joining internal nodes of T, and
we view all these edges as doubly oriented, or oriented in both directions (see Figure 3c; in
that figure the edge e→ is indicated by a solid black arrow, whereas the inherited orientation
is shown with empty white arrows). We say a doubly oriented edge is an outgoing edge from
both its endpoints. Since T is binary, it follows that each non-hexagon node v of M has exactly
three outgoing edges; such an orientation is called a tri-orientation of M. More precisely, a
tri-orientation of M is an orientation of the edges of M (with both singly and doubly oriented
edges permitted) such that every non-hexagon node has exactly three outgoing edges, and
hexagon nodes have exactly two outgoing edges.
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(a) Blue edges denote closures
to internal corners.
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(b) Red edges denote closures
of corners in ∆.
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(c) The induced orientation
(edges without arrows are dou-
bly oriented).

Finally, the “clockwise” orientation of the closure operation straightforwardly implies that
M has no counterclockwise cycle in its interior, in the sense that any oriented cycle C in M

containing at least one non-hexagon node and with its unbounded face to its right, must tra-
verse some (singly) oriented edge of M from head to tail. It turns out that for any irreducible
quadrangulation of the hexagon there is an unique tri-orientation of M with no counterclock-
wise cycle in its interior [10, Theorem 4.4]. Furthermore, the doubly-oriented edges of this
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Growing random 3-connected maps

tri-orientation form a hexagon plus a spanning tree T of the internal vertices of M, and T is a
binary tree whose closure is M. Likewise, applying the closure operation to any tree T yields
a map M whose “opening” is again T. It follows that the closure operation is a bijection.

Let Tn be the set of binary trees with n internal nodes. Also, let M be the set of pairs
(M, e→), where M is an irreducible quadrangulation of the hexagon and e→ is an oriented
edge of M at least one of whose endpoints is a non-hexagon node, and letMn = {(M, e→) ∈
M : |v(M)| = n+ 6}.

Proposition 3.1 ([10], Theorems 4.7 and 4.8). For each n ≥ 1, the closure operation is a
bijection between Tn andMn.

In the next subsection, we explain the effect of “growing” T – transforming a bud into an
internal node – on the map M resulting from the closure operation.

3.2 Bud growth and map growth

Given a binary tree T = (T, r(T )) and a bud corner κ of T, growing T at κ means adjoining
two buds incident to v = v(κ), so κ becomes an internal node of degree three. Write T+ for the
resulting tree, which is still binary. Let M and M+ be the closures of T and T+, respectively.
Figures 4a and 4b depict the corresponding difference between M and M+; this difference is
local, in that it is confined to faces incident to v(σT(κ)). We now explain the transformation in
detail.

κ

σT(κ)

κ′

x

fr

f`

vr

v`

v

κr

κ`

α(v(κ′))

α(v(κ))

(a) A part of M.

x

vr

v`

v

α(v(κ′))

α(v(κ))

(b) The same part of M+.

Figure 4: Gray nodes are nodes of T but not of M (left), or of T+ but not of M+ (right). Blue
edges have a thick part and a thin part, divided by a gray node; the thick part of each blue
edge is itself an edge of T (left) or T+ (right).

Let κ′ be the first bud corner with σT(κ′) = σT(κ), in the sense that if κ∗ is any other bud
corner with σT(κ∗) = σT(κ) then κ′ ≺ κ∗ ≺ κ. Then let K(κ) = {κ∗ ∈ CB(T) : σT(κ′) = σT(κ)}.
In Figure 4a, the nodes incident to corners in K(κ) are precisely the greyed nodes

Write x = v(σT(κ)), let e` = {α(v(κ′)), x} and let er = {α(v(κ)), x}, and let f` and fr be
the faces of M lying to the left and right of e` and er, respectively. Then let v` and vr be the
vertices of M diagonally opposite α(v(κ′)) and α(v(κ)) on f` and on fr, respectively, and let κ`
and κr be the corners of f` and fr incident to v` and vr. Again, see Figure 4a.

With these definitions, M+ is formed from M as follows. For all ξ ∈ K(κ) remove eξ from
M. This creates a face of degree 2|K(κ)| + 4. Add a vertex v in this face (recall that we also
wrote v = v(κ); this is deliberate), and add edges from v to α(v(ξ)) for each ξ ∈ K(κ), and
from v to v(κ`) and v(κr).

To prove that this description is valid, argue as follows.2 Viewing T as a subtree of T+ in the
natural way, for κ′ ∈ C(T )\{κ} we have ST(κ′) = ST+(κ′). It follows that if κ′ ∈ C(T )\K(κ) then
σT(κ′) = σT+(κ′). In T+ the corner κ1(v) is an internal corner, and has ST+(κ1(v)) = ST(κ).

2If Figure 4 is sufficiently convincing, feel free to skip straight to Section 4.
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Furthermore, for all κ′ ∈ K(κ) \ {κ}, in T+ we have κ′ ≺ κ1(v) ≺ σT(κ′) = σT(κ) and thus
σT+(κ′) = κ1(v).

Next write ξ` and ξr for the bud corners incident to the left and right children of v in T+

(these are the two greyed nodes incident to v in Figure 4b). Then ST+(ξ`) = ST(κ) − 1 and
ST+(ξr) = ST(κ) + 1. We claim that σT+(ξ`) = κ` and σT+(ξr) = κr; proving this will establish
the validity of the above description.

In proving the above claim, it is useful to extend the domain of definition of σT from CB(T)

to C(T) as follows. For κ ∈ CI(T), if the first corner κ′ after κ in the counterclockwise tour
around T is internal set σT(κ) = κ′, and otherwise set σT(κ) = σT(κ′). We likewise define
σT+(κ) for κ ∈ CI(T+). With the above definition, for all κ ∈ CI(T ), ST(σT(κ)) = ST(κ) −
61[κ≺ρ≺σT(κ)] − 1, and all corners κ′ with κ ≺ κ′ ≺ σT(κ) have ST(κ′) ≥ ST(κ)− 61[κ≺ρ�κ′]. The
analogous assertion holds for T+.

First consider ξ`; we must show that κ` is the first corner κ′ after ξ` in T+ with ST+(κ′) =

ST+(ξ`) − 61[ξ`≺ρ�κ′] = ST(κ) − 1 − 61[ξ`≺ρ�κ′]. All corners κ′ ∈ C(T+) with ξ` ≺ κ′ � σT(κ)

have ST+(κ′) ≥ ST(κ) − 61[κ≺ρ�κ′]; this follows from the definition of ST+ for the corners
of C(T+) \ C(T), and for the remaining corners follows from the definition of σT(κ). Also,
σT(κ) is internal and κ` = σT(σT(κ)), so all corners κ′ with σT(κ) ≺ κ′ ≺ κ` have ST+(κ′) ≥
ST+(σT(κ))− 61[σT(κ)≺ρ�κ′]. Since ρ can not lie both between κ and σT(κ) and between σT(κ)

and κ`, the result follows.
The argument for ξr is similar so we only sketch it. Let ξ∗ be the corner of fr incident to

α(κ), and note that ξ∗ is a corner of both T and T+. Thus ST+(ξ∗) = ST(ξ∗) = ST(κ) + 3. Since
κr = σT(σT(ξ∗)), by twice applying the definition of the attachment corner, κr must be the
first corner κ′ after ξr in T+ with ST+(κ′) ≤ ST(κ) + 1− 61[ξr≺ρ�κ′] = ST+(ξr)− 61[ξr≺ρ�κ′].

4 Growing uniformly random trees and, thus, maps

In the infinite rooted binary tree T every node has precisely two children – one left and one
right child – so all nodes have degree three but the root, which has degree two. Depth-n nodes
in T may be represented as strings in {−1, 1}n, with −1 and 1 representing left and right. We
adopt this point of view, and identify T with its node set

⋃
i≥0{−1, 1}i, where {−1, 1}0 = {∅}

and ∅ is the root of T.
It is temporarily useful to view binary trees as subtrees of T as follows. For a given binary

tree T, add a vertex z in the middle of edge e→(T). Identify z with r(T), and the head and
tail of e→ with the left and right children of r(T), respectively. Recursively embed the remain-
ing nodes by making first and second children in T respectively correspond to left and right
children in T. See Figure 5 for an illustration. The plane tree T can be recovered from its
representation as a subtree of T – essentially by replacing the path from 1 to 0 through ∅ by a
single edge – so this viewpoint is reasonable. With this perspective we have e→(T) = (1,−1)

and r(T) = 1; as usual e→(T) is the second edge incident to the root corner ρ.
The following result of Luczak and Winkler [14] is key tool in the current work.

Theorem 4.1 ([14], Theorem 4.1). There exists a sequence (Tn, n ≥ 1) of random binary trees
with the following properties.

1. For each n ≥ 1, Tn is uniformly distributed in Tn.

2. For each n ≥ 1, there is a bud corner ξn of Tn such that Tn+1 is obtained from Tn by
growing at ξn. In particular, the sequence is increasing so has a limit T∞ ⊂ T.

3. The limit T∞ is a critical binary Galton-Watson tree, conditioned to be infinite.

Here is a more detailed explanation of property (3). Let (Xn, n ≥ 1) be iid with P {Xn = 1} =

1/2 = P {Xn = −1}, and for each n let Yn = −Xn. Let P be the infinite path {(X1, . . . , Xi), i ≥
0} in T. Let (Bn, n ≥ 1) be independent Galton-Watson trees with offspring distribution µ,
where µ({0}) = 1/2 = µ({2}), and for each i ≥ 1, append Bi to P by rooting Bi at node
(X1, . . . , Xi−1, Yi). The resulting tree (see Figure 6 for an illustration) has the law of T∞. The
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tree T∞ is the (distributional) local weak limit of Galton-Watson tree with offspring distribu-
tion µ conditioned to be large; this is sometimes called the “incipient infinite cluster” of the
Galton-Watson tree. In [8], Chassaing and Durhuus study a related distributional limit for
labelled trees, in order to deduce information about volume growth in large random quadran-
gulations.

∅

(1)

(1,−1)
(1, 1)

z

Figure 5: Left: a part of T, with some node labels shown. Center: a binary tree T. Right: T
viewed as a subtree of T.

By Proposition 3.1, the closure operation associates to each tree Tn a map Mn which is
uniformly distributed inMn. It therefore seems reasonable to expect that applying the closure
rules to T∞ yields a map M∞ and that Mn

a.s.→ M∞. This is indeed the case, and proving so is
the subject of the remainder of the section.

B1

B2

B3

..
.

X1 = 1

X2 = 1

X3 = −1

P

Figure 6: A part of T∞,
with its unique infinite
path in purple.

We now view T∞ as a binary plane tree (rather than as a subtree
of T). The set of corners C(T∞) consists of pairs (e, e′), where e′

follows e in the counterclockwise walk around (the unique, infinite
face of) T∞.3 Write ≺ for the total order on C(T∞) given by this
walk.

The bud corners CB(T∞) and internal corners CI(T∞) are de-
fined as before. Write C` and Cr for the set of corners following and
preceding ρ in the counterclockwise walk around T∞, respectively.
Define labels ST∞ : C(T∞) → Z exactly as in (3.1). The second de-
scription of the labels, given just after (3.1) for finite trees, again ap-
plies: ST∞(ρ) = −41[ρ is a bud corner], and in a counterclockwise walk,
labels decrease by one when leaving an internal corner and increase
by three when leaving a bud corner (except when the walk arrives
at the root corner; then one must additionally subtract six).

For κ ∈ CB(T∞), let σ(κ) = σT∞(κ) be the first corner κ′

following κ in the counterclockwise walk around T∞ for which
ST∞(κ′) ≤ ST∞(κ) − 61[κ≺ρ�κ′], if such a corner exists. Otherwise,
set σT∞(κ) = −∞. It is immediate that if σT∞(κ) 6= −∞ then
ST∞(σ(κ)) = ST∞(κ) − 61[κ≺ρ�σ(κ)]. The set of corners κ with σ(κ) = −∞ is the analogue
of the set ∆ of corners attaching to the hexagon when closing a finite binary tree. The next
proposition states that this set vanishes in the n → ∞ limit, and is my excuse for the paper’s
subtitle.

Proposition 4.2. There are almost surely no corners κ ∈ C(T∞) with σT∞(κ) = −∞.

Proof. For any corner ξ ∈ C(T∞), all but finitely many elements of C` follow ξ in the walk. It
thus suffices to show that inf{ST∞(κ) : κ ∈ T∞} = −∞.

View T∞ as built from the path P , the random variables Xi and the random trees Bi as
above, and for n ≥ 0 let vn be the n’th node along P (so v0 = r(T∞)). Then for all n ≥ 1,
κ1(vn) ∈ C` and ST∞(κ1(vn)) =

∑n
i=1Xi. Thus (ST∞(κ1(vn)), n ≥ 1) forms a symmetric simple

random walk and so inf{ST∞(κ1(vn)), n ≥ 1} = −∞ almost surely.

3We call it a walk rather than a tour since it is not closed.
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For κ ∈ CB(T∞) define the closure operation, the closure edge eκ, and the oriented cycle
Cκ exactly as in Section 3.1. By the minimality of σ(κ), all corners lying κ′ within the bounded
face of Cκ have ST∞(κ′) > ST∞(κ) − 6. Since any infinite path leaving κ follows P for all
but finitely many steps, and the corners along P take unboundedly large negative values, it
follows that the interior of Cκ contains only finitely many vertices of T∞

Let M∞ be formed by closing κ in the corner σ(κ) for each κ ∈ CB(T∞).

Proposition 4.3. M∞ is almost surely locally finite.

Proof. First observe that for κ, ξ ∈ CB(T∞), if κ ≺ ξ ≺ σ(κ) then κ ≺ σ(ξ) � σ(κ). It follows
that if ξ ≺ κ then either σ(ξ) ≺ κ or σ(κ) ≺ σ(ξ). Since T∞ is a.s. locally finite and the cycles
Cκ a.s. have finite interior, it suffices to show that a.s. for all internal corners ξ of T∞, the set
{κ ∈ CB(T∞) : σ(κ) = ξ} is a.s. finite. Let π(ξ) be the maximal corner ξ′ (with respect to ≺)
preceding ξ for which ST∞(ξ′) < ST∞(ξ)− 6.

All but finitely many corners preceding ξ lie in Cr, and a similar argument to that above
shows that the corners along P lying in Cr take unboundedly large negative values. Since a.s.
only finitely many corners lie between any two corners of C(T∞) with respect to ≺, it follows
that π(ξ) is well-defined. Furthermore, π(ξ) must be a bud corner since its ≺-successor has a
larger label than its own. It follows that ξ ≺ σ(π(ξ)). Thus, by the observation from the start
of the first paragraph, if κ is any bud corner with σ(κ) = ξ then necessarily π(ξ) ≺ κ ≺ ξ; and
there are only finitely many such corners.

Corollary 4.4. Mn
a.s.→ M∞ as n→∞.

Proof. Recall that Tn+1 is obtained from Tn by growing at corner ξn, and the description in
Section 3.2 of how such growth transforms the associated map. It follows from this description
that for κ ∈ CB(Tn), if σTn+1

(κ) 6= σTn
(κ) then σTn+1

(κ) = ({α(v(ξn)), v(ξn)}, {v(ξn), c1(v(ξn))}).
Since c1(v(ξn)) is not a node of Tn, it follows that σTn+1

(κ) 6∈ CB(Tn).
Now, for each corner κ ∈ C(T∞), let τ(κ) = inf{m : κ ∈ C(Tm)}; then τ(κ) is almost surely

finite. By the fact in the preceding paragraph, for all n ≥ max(τ(κ), τ(σT∞(κ))), we have
σTn

(κ) = σT∞(κ). Since M∞ is a.s. locally finite, it follows that for any R > 0, there is an a.s.
finite time n0 such that for all m,n ≥ n0, M<R

n and M<R
m are isomorphic.

Corollary 4.4 implies the distributional local weak convergence of Mn to M∞. The first
and most famous such result for random maps is due to Angel and Schramm [3], who studied
triangulations; related results for quadrangulations appear in [8].

5 Three-connected maps

Given a locally finite map G, the angular mapping associates to G a quadrangulation Q as
follows. Add a vertex vf in each face f of G. For each corner κ incident to f , add an edge
between vf and v(κ) attaching in corner κ. Then erase the edges of G (see Figure 7). Here
consider G and Q as embedded in S2 (in R2 there is a choice of how to draw the edges of Q
lying in the unbounded face of G), but in S2 this choice vanishes. Then the angular mapping
is a 2-to-1 map; its inverse images may be found by properly 2-coloring the vertices of Q, and
choosing one of the two colour classes to form the nodes of G. Note that the number of edges
of G is the number of faces of Q.

There is a natural function ϕ taking oriented edges of G to oriented edges of Q: for uv
an oriented edge of G, let f be the face of G lying to the right of G, and let ϕ(uv) = uvf .
Note that the tail of ϕ(uv) is always a node of G. This yields an extension of the angular
mapping to rooted maps, which sends (G, e) to (Q,ϕ(e)). The mapping is now bijective, since
the orientation of ϕ(e) determines which of the colour classes of Q forms the nodes of G.

By Proposition 3.1, for any irreducible quadrangulation of a hexagon M ∈ M, we may view
M as arising from a binary tree T by the closure bijection. We may thus canonically label
the nodes of the hexagonal face of M with labels 0, 1, 2, 3, 4, 5. We hereafter view all M ∈ M as
endowed with such labels, and for i ∈ {0, 1, 2, 3, 4, 5} write M(i) for the rooted quadrangulation
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obtained from Mn by adding an edge e∗ = {i, i + 3 mod 6} from i to the diagonally opposing
node of the hexagon.

e
ϕ(e)

Figure 7: A rooted map (with
grey nodes and black edges)
and its image under the angu-
lar mapping (with white and
grey nodes and blue edges).

Now let (Mn, 1 ≤ n ≤ ∞) be as in Section 4. Indepen-
dently of (Mn, 1 ≤ n ≤ ∞), let U be uniformly distributed in
{0, 1, 2, 3, 4, 5}. For 1 ≤ n ≤ ∞, let Qn = Mn(U). Then Qn is a
rooted quadrangulation, and we let Gn be the associated rooted
map under the inverse of the angular mapping.

It is well-known (see, e.g., [10, Theorem 3.1]) that if a quad-
rangulation M is associated with a map G under the angular
mapping, then G is 3-connected if and only if M is irreducible.
The quadrangulation Qn need not be irreducible, since there
may be a 3-edge path between the endpoints of e∗ passing
through the interior of the hexagon in Mn. However, it turns
out that Qn is irreducible with uniformly positive probability,
and hence Gn is 3-connected with uniformly positive probabil-
ity. The main point of this section is to show (in Proposition 5.1)
that Gn a.s. converges, and to identify the limit (in Theorem 5.2)
as “the uniform infinite 3-connected planar map” (or – thanks to
Whitney’s theorem – graph). However, we first briefly describe
how the growth dynamics modify Gn (though this information is not in fact needed in the
paper).

The effect on Gn of growing Tn depends on whether the growing bud corner is attached
to a primal or a facial vertex. If it is attached to a facial vertex then growing Tn adds an edge
within the face. If it is attached to a primal vertex then growing instead “uncontracts” the
primal vertex, turning it into two vertices joined by an edge; this may be seen as adding an
edge to the facial dual graph of Gn. In either case, this is a “local” modification in that it only
affects the nodes that lie on a common face with a given vertex. We now turn to the main
business of the section.

Proposition 5.1. Gn
a.s.→ G∞ as n→∞.

Proof. Fix any map G and let M be the image of G under the angular mapping. Then for all
{u, v} ∈ e(G), there exists a path of length two between u and v in Q. Thus, for all x, y ∈ v(G),
dG(x, y) ≥ dM (x, y)/2, where dG and dQ denote graph distance in G and Q respectively. Since
Qn and Gn have the same root node and Qn

a.s.→ Q∞, the result follows.

Theorem 5.2. Let Ĝn be uniformly distributed on the set of 3-connected rooted maps with
n + 4 edges; then Ĝn converges in distribution to G∞ in the local weak sense. In particular,
G∞ is almost surely three-connected.

Proof. By Theorem 4.8 and Lemma 5.1 of [10], the conditional distribution of Gn, given that
it is 3-connected, is uniform in the set of 3-connected graphs with n + 4 edges (note that Qn

has n + 4 faces). Furthermore, by Proposition 6.1 of [10], P {Gn is 3-connected} → 28/36 as
n→∞. WriteM(i) = {M ∈ M : M(i) is irreducible}, and observe that we may then write the
event that Gn is 3-connected as E(Mn) = {Mn ∈M(U)}.

We prove the theorem by showing that for fixed R > 0, E(Mn) is asymptotically indepen-
dent of M<R

n . More precisely, we show that any set S of finite rooted planar maps,∣∣P{M<R
n ∈ S, E(Mn)

}
−P

{
M<R
n ∈ S

}
P {E(Mn)}

∣∣→ 0 , (5.1)

as n→∞. Since M<R
n → M<R

∞ almost surely, and G
<R/2
n is determined by M<R

n , the first asser-
tion of the theorem then follows. Having established this, since G∞ is the distributional limit
of a sequence of random 3-connected maps, it must itself be a.s. 3-connected. It thus remains
to prove that E(Mn) and M<R

n are indeed asymptotically independent. For the remainder of
the proof, we fix R > 0 and a set S as above.
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We again view T∞ as constructed from the infinite path P and the random variables Xi

and random trees Bi. List the nodes of P as (vi, i ≥ 1). Write V <Rn for the set of nodes of Tn
that either (a) are nodes of M<R

n or (b) are buds whose attachment corner is incident to a node
of M<R

n .

v1

v2

v3

(a) Nodes of Tn are grey, edges of P are purple.

Tn(k, 2)

Tn(k, 1)

(b) The trees Tn(k, 1) and Tn(k, 2) (here k = 1).

Figure 8: Splitting Tn into Tn(k, 1) and Tn(k, 2).

Given k > 1, let Tn(k, 1) be the subtree of Tn containing the root edge when all strict
descendants of vk+1 are removed, and let Tn(k, 2) be the subtree of Tn consisting of vk and
all its strict descendants; see Figure 8. (If vk+1 is not a node of Tn we agree that Tn(k, 2)

is empty.) Since Tn is a uniformly random binary tree, conditional on its size Tn(k, 2) is a
uniformly random binary tree and is independent of Tn(k, 1).

Let Hn be the set of nodes of Tn incident to a corner κ with STn(κ) ≤ s∗(Tn) + 7. For any
three-edge path in Mn joining distinct vertices of the hexagon, if the internal nodes of the path
do not lie on the hexagon then they are nodes of Tn that neighbour buds which attach to the
hexagon. Since buds κ attaching to the hexagon have STn(κ) ≤ s∗(Tn) + 6, it follows that all
nodes of such a path belong to Hn.

Write Mn(k, 1) and Mn(k, 2) for the closures of Tn(k, 1) and Tn(k, 2). Then conditional on
its size, Mn(k, 2) is a uniformly random quadrangulation of the hexagon. Furthermore, by
reasoning similar to that in the proof of Corollary 4.4, it is straightforward to see that for
all κ ∈ CB(Tn), if κ and σTn(κ) are both elements of CB(Tn(k, 1)) then σTn(κ) = σTn(k,1)(κ).
Likewise, if κ, σTn(κ) ∈ CB(Tn(k, 2)) then σTn(κ) = σTn(k,2)(κ).

Now let A(k, n) be the event that no node of V <Rn is a weak descendant of vk, that Hn ⊂
v(Tn(k, 2)), and that |v(Tn(k, 2))| ≥ n/2. Almost surely, V <Rn = V <R∞ for all n sufficiently large,
and s∗(Tn) a.s. decreases to −∞. For any ε > 0, we may therefore choose k and n large
enough that P {A(k, n)} > 1− ε, and for such k and n we have

|P
{

M<R
n ∈ S, E(Mn)

}
−P

{
M<R
n ∈ S, E(Mn), A(k, n)

}
| < ε .

Furthermore, by the above observations about consistency of closure locations in Tn and
Tn(k, 2), if A(k, n) occurs then M<R

n = M<R
n (k, 1) and E(Mn) = E(Mn(k, 2)), where we let

E(Mn(k, 2)) = {Mn(k, 2) ∈M(U)}. We thus have

P
{

M<R
n ∈ S, E(Mn), A(k, n)

}
=P

{
M<R
n (k, 1) ∈ S, E(Mn(k, 2)), A(k, n)

}
=P

{
M<R
n (k, 1) ∈ S, A(k, n)

}
P
{
E(Mn(k, 2)) | A(k, n),M<R

n (k, 1) ∈ S
}

so

|P
{

M<R
n ∈ S, E(Mn)

}
−P

{
M<R
n (k, 1) ∈ S, A(k, n)

}
·P
{
E(Mn(k, 2))|A(k, n),M<R

n (k, 1) ∈ S
}
| < ε.
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For k and n large enough that P {A(k, n)} > 1− ε, we also have

|P
{

M<R
n ∈ S

}
−P

{
M<R
n (k, 1) ∈ S, A(k, n)

}
| < ε.

Now recall that Tn(k, 2) is a uniform binary tree and is independent of Tn(k, 1) conditional
on its size. It follows that given that |v(Tn(k, 2))| = m, Mn(k, 2) is distributed as Mm, so

P
{
E(Mn(k, 2)) | A(k, n),M<R

n (k, 1) ∈ S, |v(Tn(k, 2))| = m
}

= P {E(Mm)} .

Given A(k, n) we have n/2 ≤ |v(Tn(k, 2))| ≤ n, so by the triangle inequality

|P
{
E(Mn(k, 2)) | A(k, n),M<R

n (k, 1) ∈ S
}
−P {E(Mn)} | ≤ sup

n/2≤m≤n
2|P {E(Mm)} − 28/36| ,

which is also less than ε for n sufficiently large since P {E(Mn)} = P {Gn is 3-connected} →
28/36 as n → ∞. The preceding inequalities (and the fact that probabilities lie between zero
and one) then yield that for n large,∣∣P{M<R

n ∈ S, E(Mn)
}
−P

{
M<R
n ∈ S

}
P {E(Mn)}

∣∣ < 2ε .

Since ε was arbitrary, this establishes (5.1).

6 Questions and remarks

0. As observed in [4], it is not hard to show using enumerative results for irreducible quad-
rangulations with boundary [16] that the degree of the root node has exponential tails in
Ĝn; the same follows easily for Mn and Gn.4 From Theorem 5.2 and the general result of
Gurel-Gurevich and Nachmias [11] on recurrence of planar graph limits, it then follows
straightforwardly that simple random walk is recurrent on both M∞ and G∞.

1. A pioneering work of Brooks, Smith, Stone and Tutte [7] showed how to associate to a
squaring of a rectangle with any rooted 3-connected map. For random maps, this yields
a random squaring. When appropriately rescaled to remain compact, the squarings
corresponding to the sequence Gn, viewed as random subsets of R2, converge almost
surely for the Hausdorff distance to a random infinite squaring of a finite rectangle; see
[1] for details and for several further questions.

2. Rather than rooting at e→, it would also be natural to re-root Qn at (an orientation of)
the edge e∗ that is added to the hexagon. However, it is straightforward to see that the
sequence (Qn, e

∗) can not converge almost surely. This is because the hexagon essen-
tially corresponds to the corner of minimum label in Tn, and this minimum label tends
to −∞ as n → ∞. Nonetheless, we expect that (Qn, e

∗) does converge in distribution,
that the law of the limit can be explicitly described using the results from [10], and that
this law is mutually absolutely continuous with that of Q∞.

3. Marckert [15] essentially establishes that the contour process of Tn and the label pro-
cess STn

(in contour order) converge jointly, after appropriate normalization, to a pair
(e, Z), where e is a standard Brownian excursion, and Z is the Brownian snake indexed
by e. (See [13] for more details on these objects and their connections with random
maps.) Given this, it does not seem out of reach of current technology to prove that Qn

converges, after renormalization, to the Brownian map.

4. There is a standard bijection between binary trees and plane trees, that consists of
contracting edges from parents to right children in the binary tree; applying this to Tn
yields a plane tree Pn. Augmenting the edges of Pn with independent uniform {−1, 0,+1}

4For the assiduous reader: what we call irreducible was called simple in [16].

ECP 19 (2014), paper 54.
Page 11/12

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3314
http://ecp.ejpecp.org/


Growing random 3-connected maps

random variables and applying the Schaeffer bijection then yields a uniformly random
rooted quadrangulation (not necessarily irreducible) with n + 1 nodes. This yields a
growth procedure for uniformly random quadrangulations, which should converge al-
most surely; this deserves investigation.

5. Evans, Grübel and Wakolbinger [9] have initiated the study of the Doob-Martin bound-
ary of Luczak and Winkler’s tree growth process. Roughly speaking, the Doob-Martin
boundary corresponds to the ways in which it is possible to condition on T∞ to obtain
a well-defined conditional growth procedure for (Tn, n ≥ 1). It would be interesting to
revisit the growth of Mn and Gn in this context.
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