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W1,+-interpolation of probability measures on graphs
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Abstract

We generalize an equation introduced by Benamou and Brenier in [BB00] and char-
acterizing Wasserstein Wp-geodesics for p > 1, from the continuous setting of prob-
ability distributions on a Riemannian manifold to the discrete setting of probability
distributions on a general graph.
Given an initial and a final distributions (f0(x))x∈G, (f1(x))x∈G, we prove the exis-
tence of a curve (ft(x))t∈[0,1],x∈G satisfying this Benamou-Brenier equation. We also
show that such a curve can be described as a mixture of binomial distributions with
respect to a coupling that is solution of a certain optimization problem.
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1 Introduction

Given some p ≥ 1, we consider the space Pp(X) of probability distributions over a
metric space (X, d) having a finite p-th moment. On this space we define the Wasserstein
distance Wp by

Wp(µ0, µ1)p := inf
π∈Π(µ0,µ1)

∫
X×X

d(x0, x1)pdπ(x0, x1), (1.1)

where the set Π(µ0, µ1) is the set of couplings of µ0 and µ1, i.e. the set of probability
distributions π on X ×X having µ0 and µ1 as marginals.

A comprehensive study of the Problem (1.1), called Monge-Kantorovitch problem,
can be found in Villani’s textbooks [Vil03] and [Vil08]. What is important for our pur-
poses is that it is possible to prove, under very general assumptions, the existence of
a minimizer π ∈ Π(µ0, µ1) for problem (1.1), called optimal coupling, and that Wp is
indeed a metric on Pp(X). The couple (Pp(X),Wp) will be called the Wp-Wasserstein
space over the metric space (X, d).
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W1,+-interpolation of probability measures on graphs

Given a metric space (X, d) and a continuous curve (γt)t∈[0,1] on the space (X, d), i.e.
a continuous mapping γ : [0, 1]→ (X, d), we define the length of (γt)t∈[0,1] by

L(γ) := sup
0=t0≤···≤tN=1

N−1∑
i=0

d(γti , γti+1
). (1.2)

The inequality L(γ) ≥ d(γ0, γ1) always holds. A curve (γt)t∈[0,1] with γ0 = x, γ1 = y

and L(γ) = d(x, y) is called a geodesic joining x to y. The metric space (X, d) is called
geodesic space if each couple of points x, y ∈ X is joined by at least one continuous
geodesic. A large class of geodesic spaces is given by compact Riemannian manifolds.
It is important to remark that a discrete metric space (X, d) (like a graph with its usual
distance) cannot be a geodesic space, because by definition of the discrete topology
there does not exist continuous curves from [0, 1] to (X, d).

A natural question about Wasserstein spaces is the following: given two prescribed
probability distributions µ0, µ1 ∈ Pp(X), does there exist a geodesic joining µ0 to µ1?
In other terms, is the metric space (Pp(X),Wp) a geodesic space? A partial answer is
given by the following:

Proposition 1.1. If (X, d) is a geodesic space, then the metric space (Pp(X),Wp) is
also a geodesic space.

In particular, each couple µ0, µ1 ∈ P2(X) can be joined by a curve (µt)t∈[0,1] of mini-
mal length for W2, called W2-Wasserstein geodesic.

In their seminal papers [Stu06a], [Stu06b] and [LV09], Sturm, and independently
Lott and Villani studied the links between the geometry of a measured geodesic space
(X, d, ν) and the behaviour of the entropy functional along theW2-Wasserstein geodesics
on P2(X). For instance, (X, d, ν) is said to satisfy the curvature condition CD(K,∞) for
some K ∈ R if for each couple of probability distributions µ0, µ1 ∈ P2(X) there exists a
W2-geodesic (µt)t∈[0,1] such that

∀t ∈ [0, 1] , Hν(µt) ≤ (1− t)Hν(µ0) + tHν(µ1)−K t(1− t)
2

W2(µ0, µ1)2, (1.3)

where the relative entropy functional Hν(·) is defined by

Hν(ρν) :=

∫
X

ρ(x) log(ρ(x))dν(x) (1.4)

if µ = ρν for some density ρ, and by Hν(µ) =∞ otherwise.

If the measured geodesic space (X, d, ν) is a compact Riemannian manifold with its
usual distance an its normalized volume measure, the curvature condition CD(K,∞) is
shown to be equivalent to the bound Ric ≥ K on the Ricci curvature tensor. Another
important property is the stability of the condition CD(K,∞) under measured Gromov-
Hausdorff convergence.

Moreover, if CD(K,∞) is satisfied for some K > 0, one can prove functional inequal-
ities on (X, d, ν) such as the logarithmic Sobolev inequality, which asserts that

Hν(fdν) ≤ 1

2K

∫
X

|∇−f |2

f
dν, (1.5)

for any Lipschitz probability density f and where |∇−f | is to be seen as a particular
form of the norm of a gradient. As a corollary, it can be shown that under the condition
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W1,+-interpolation of probability measures on graphs

CD(K,∞) for K > 0 a Poincaré inequality holds: for any Lipschitz function h : X → R

such that
∫
X
hdν = 0, we have∫

X

h2dν ≤ 1

2K

∫
X

|∇−h|2dν. (1.6)

Since the works of Sturm and Lott-Villani, the theory of measured geodesic spaces
satisfying CD(K,∞) has been thoroughly studied in a large number of papers, among
which the most impressive are the works by Ambrosio, Gigli and Savaré (see for in-
stance [AGS12]) and by Erbar, Kuwada and Sturm ([EKS13]).

Several obstacles prevent us from a direct generalization of Sturm-Lott-Villani the-
ory to the framework of discrete metric spaces. Indeed, if (X, d) is a graph with its
usual distance, equation (1.1) still defines a metric on the space Pp(X), but if p > 1 then
the length of non-trivial curves in (P(X),Wp) is +∞. (The reader can be convinced of
this fact by considering the two-point space X := {0, 1} and the curve (µt)t∈[0,1] defined
on Pp(X) by µt(0) := 1 − t and µt(1) := t. We then have Wp(µt, µt′ = |t − t′|1/p, from
which we deduce by equation (1.2) that the length of µ in the metric space (Pp(X),Wp)

is +∞.) In particular, Wasserstein W2-geodesics do not exist in general.

Several solutions have been proposed to overcome this difficulty, and there are now
many different definitions of Ricci curvature bounds on discrete spaces. The most no-
table of them are the coarse Ricci curvature, defined by Ollivier in [Oll09], and the
Erbar-Maas curvature, defined in [EM12]. The latter is based on the study of the gradi-
ent flow of the entropy and present some similarities with our own approach. Another
approach by Gozlan, Roberto, Samson and Tetali, see [GRST12], is based on the con-
struction of interpolating curves between probability distributions on a graph. These
interpolating curves are defined as mixtures of binomial distributions, which is reminis-
cent of the interpolating curves we introduce in this paper.

In this paper, we place ourselves in the framework of a connected and locally finite
graph G, endowed with its usual graph distance and the counting measure as the ref-
erence measure. In this framework, a probability distribution will be denoted by its
density, i.e. by a function f : G → R+ such that

∑
x∈G f(x) = 1. Given two probability

measures f0 and f1 on G, we investigate the question of the generalization of the notion
of Wp-geodesic joining f0 to f1 in a setting where such a curve does not exist. Our goal
is to provide a way to chose, among the set of all W1-geodesics joining f0 to f1, a curve
which shares some properties satisfied by Wp-geodesics for p > 1. Such curves will be
called W1,+ geodesics on the graph G.

This article is to be seen as the first of a two-paper research work. A following
article will investigate the convexity properties of the entropy functional along those
particular W1 geodesics, in the view of obtaining a discrete version of equation (1.3)
strong enough to imply discrete versions of log-Sobolev or Poincaré inequalities. This
ultimate goal has to be kept in mind even in this present paper because it will motivate
the definition of a W1,+-geodesic between f0 and f1: along such a curve, some technical
tools will allow us to give bounds on the second derivative of the entropy.

Our starting point is the article [BB99], by Benamou and Brenier. In this paper, the
authors reformulate the Monge-Kantorovitch problem in terms of velocity fields and
prove the following:

Theorem 1.2. Let µ0, µ1 be two probability distributions on a Riemannian manifold
(M, g) and p > 1. Then

Wp(µ0, µ1)p = inf

∫
M

∫ 1

0

|vt(x)|pdµt(x)dt, (1.7)
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the infimum being taken over the families of probability distributions (µt) := (ftd vol)

joining µ0 to µ1 and all velocity fields (vt(x)) satisfying

∂

∂t
ft(x) = −∇ · (ft(x)vt(x)), (1.8)

where ∇· is the divergence operator on M . Moreover the minimizing curve (µt)t∈[0,1] is
the Wp geodesic joining µ0 to µ1.

This theorem has been extended to the framework of separable Hilbert spaces by
Ambrosio, Gigli and Savré in [AGS].

The strategy used by Erbar and Maas in [EM12] is based on a generalization of the
minimization problem (1.7) in the framework of discrete Markov chains. Our approach
will consist in defining a discrete version of a characterization of its solutions. More
precisely, as pointed in [BB99], the formal optimality condition for the optimization
problem (1.7) can be written:

∂

∂t
vt(x) = −vt(x)∇ · vt(x). (1.9)

Another point of view on the formal optimality condition (1.9) is provided by writing
the velocity field (vt(x)) as the gradient of a family of convex functions vt := grad Φt. As
explained for instance in [OV00], it can be proven that such a function Φ satisfies the
Hamilton-Jacobi equation

∂

∂t
Φt +

1

2
|∇Φt|2 = 0. (1.10)

It suffices to consider the gradient of equation (1.10) to recover equation (1.9).

The links between the convexity of the entropy H(t) of µt and the Ricci curvature
tensor on the manifold M are seen on the following heuristic formula, established by
Otto and Villani in [OV00]:

H ′′(t) =

∫
M

[Tr((D2Φt)
TD2Φt) +∇Φt · Ric∇Φt]dµt. (1.11)

In particular, the non-negativity of the tensor Ric easily implies that H ′′(t) ≥ 0.

The formal optimality condition (1.9) on velocity fields makes sense only when v is
regular enough. The question of the regularity of optimal couplings is a difficult topic,
see for instance [AGS]. However, what is important for our purposes is that (1.9) can
be used to construct W2-geodesics: if (ft(x)) is a smooth family of probability densi-
ties satisfying the transport equation (1.8) for a smooth velocity field (vt(x))t∈[0,1],x∈M
satisfying the condition (1.9), then the curve (ft(x)) is a W2-geodesic.

In the simpler framework of the real line R with its usual distance and the Lebesgue
reference measure, it is possible to give an equivalent statement of this result without
introducing explicitly the velocity field:

Proposition 1.3. Let (ft(x)) be a family of smooth probability densitites on R. We
define the families of functions

gt(x) := −
∫ x

−∞

∂

∂t
ft(z)dz , ht(x) := −

∫ x

−∞

∂

∂t
gt(z)dz. (1.12)

We suppose that gt > 0 and that the following one-dimensional Benamou-Brenier condi-
tion holds:

ft(x)ht(x) = gt(x)2. (1.13)

Then (ft(x)) is a Wp-geodesic for any p > 1.
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Proof. To prove Proposition 1.3, it suffices to realize that equation (1.13) easily implies
equation (1.9): the condition gt > 0 implies that we also have ft > 0 and ht > 0, we can
thus introduce the velocity function vt(x) := gt(x)/ft(x), which is positive and smooth.
The transport equation (1.8) is then satisfied, the divergence operator ∇· being here
the derivative ∂/∂x. Moreover, the Benamou-Brenier condition (1.13) is equivalent to
the condition vt(x) = ht(x)/gt(x). We then write

∂

∂t
log(vt(x)) =

1

gt(x)

∂

∂t
gt(x)− 1

ft(x)

∂

∂t
ft(x)

= −vt(x)

(
1

ht(x)

∂

∂x
ht(x)− 1

gt(x)

∂

∂x
gt(x)

)
= −vt(x)

∂

∂x
log(vt(x)),

which implies equation (1.9) as desired.

Apart from regularity issues, which will not play an important role in a discrete
framework, the main restriction made in the statement of Proposition 1.3 is the non-
degeneracy condition gt(z) > 0. It is quite easy to prove that such a condition implies
that f0 is stochastically dominated by f1. In the setting of graphs, we will introduce the
notion of W1-orientation (see Paragraph 2.2) in order to force the function gt to stay
positive.

The main purpose of this article is to study curves in the space of probability dis-
tributions on a graph which satisfy a discrete version of the Benamou-Brenier condi-
tion (1.13).

• The goal of Section 2 is to provide a generalization of equations (1.12) and (1.13)
to this discrete setting. We will first show that these equations can be recovered
in a particular form in the case of contraction of measures. Given a couple of
probability measures f0, f1 defined on G, we then endow G with an orientation
which will allow us to give a general definition of W1,+-geodesics on G. The ter-
minology "W1,+-geodesic" will be explained by considering a discrete version of
problem (1.7) when p > 1 is close to 1.

• In Section 3, we are looking for necessary conditions satisfied by W1,+-geodesics
on G. In particular, we will prove in Theorem 3.19 that if f0 and f1 are finitely
supported, then any W1,+-geodesic (ft) can be written as a mixture of binomial
measures supported on geodesics of G.

• In Section 4 we prove the existence of W1,+-geodesics (ft) with prescribed initial
and final measures f0 and f1. The construction of such curves suggests strong
links with the "Entropic Interpolations" studied in a recent series of papers by
Léonard.

2 The discrete Benamou-Brenier condition

In this paper, we consider a locally finite and connected graph G. A path γ on G

of length n = L(γ) is a collection of vertices γ0, . . . , γn ∈ G such that γi ∼ γi+1 for
every i = 0, . . . n − 1, where the relation x ∼ y means that (xy) is in the edge set of the
graph G. To any path γ : {0, . . . n} → G are associated its endpoints e0(γ) := γ(0) and
e1(γ) := γ(n).

We will use the usual graph distance on G: d(x, y) is the length of the shortest path
joining x to y. The set of geodesics joining x to y, denoted by Γx,y, is the set of paths γ
joining x to y such that L(γ) = d(x, y). The set of all geodesics on G is denoted by Γ(G).
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W1,+-interpolation of probability measures on graphs

Remark 2.1. In this paper, the word ’geodesic’ is used for two slightly different, al-
though closely related, objects. If (X, d) is a geodesic space, a geodesic is a continuous
curve γ : [0, 1] → (X, d) of minimal length. In the setting of a graph G, a geodesic
is a sequence γ : {0, . . . n} → G which is also length-minimizing in the sense that
d(γ(0), γ(n)) = n. As there is no continuous curve γ : [0, 1]→ G, there is no ambiguity.

A coupling π ∈ Π(f0, f1) is said to be a Wp-optimal coupling for some p ≥ 1 if it is a
minimizer for the functional

Ip : π →
∑

x,y∈G×G
d(x, y)pπ(x, y). (2.1)

We denote by Πp(f0, f1) the set of Wp-optimal couplings.

Remark 2.2. The equality Ip(απ1 + (1−α)π2) = αIp(π1) + (1−α)Ip(π2) proves that the
set Πp(f0, f1) is a convex subset of Π(f0, f1).

2.1 Contraction of measures and the Benamou-Brenier equation

Among early attempts to generalize particular Wasserstein geodesics to the discrete
case, one important example is given by the thinning operation:

Definition 2.3. Let f be a probability distribution finitely supported on Z+. The thin-
ning of f is the family (Ttf) of probability distributions defined by

Ttf(k) :=
∑
l≥0

binl,t(k)f(l) =
∑
l≥0

(
l

k

)
tk(1− t)l−kf(l), (2.2)

where by convention
(
l
k

)
= 0 if l < 0 or if k /∈ {0, . . . l}.

In particular, (Ttf) is an interpolation between the Dirac measure T0f(k) = δ(k = 0)

and T1f = f . The operation f 7→ Ttf is often seen as a discrete version of the operation

f(x) 7→ ft(x) :=
1

t
f
(x
t

)
, (2.3)

and is for instance used to state a weak law of small numbers (see [HJK10]) about the
limit in distribution of T1/n(f?n) when n→∞.

We know that, given a smooth probability density f on R, the family (ft) defined by
equation (2.3) is a Wp-geodesic for any p ≥ 1. According to Sturm-Lott-Villani theory,
the metric space (R, | · |) satisfies the condition CD(0,∞), so the entropy H(t) of ft
with respect to the Lebesgue measure is a convex function of t. On the other hand, a
theorem by Johnson and Yu (see [YJ09]) asserts that the entropy of the thinning Ttf is
also a convex function of t. The proof of this fact given in [Hil14] relies on the following:

Proposition 2.4. Let (ft) := (Ttf) be the thinning family associated to a probability
distribution f := f1 supported on Z+. We define the families of functions (gt) and (ht)

by

gt(k) := −
∑
l≤k

∂

∂t
ft(k) , ht(k) := −

∑
l≤k

∂

∂t
gt(k). (2.4)

The triple ft, gt, ht then satisfies the discrete Benamou-Brenier equation:

∀k ∈ Z , ft(k)ht(k − 1) = gt(k)gt(k − 1). (2.5)

Moreover, gt(k) ≥ 0, and if gt(k) = 0 then either ft(k + 1) = 0 or ht(k) = 0.
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Remark 2.5. Denoting by ∇1 (resp. ∇2) the left derivative operator (resp. the left
second derivative operator) defined by ∇1u(k) := u(k) − u(k − 1) (resp. ∇2u(k) =

u(k)− 2u(k − 1) + u(k − 2)), we thus have

∂ft(k)

∂t
= −∇1gt(k) ,

∂2ft(k)

∂t2
= ∇2ht(k).

The proof of the convexity of the entropy along thinning families relies so importantly
on Proposition 2.4 that this proof can be used verbatim to prove a stronger statement:

Proposition 2.6. Let (ft) be a family of finitely supported probability distributions on
Z. We suppose that the families of functions (gt) and (ht), defined by equation (2.4),
satisfy the discrete Benamou-Brenier equation (2.5) and the non-negativity condition
gt(k) ≥ 0. Then the entropy H(t) of ft is a convex function of t.

Because the similarities with equation (1.13), it seems legitimate to consider a family
of measures satisfying equation (2.5) and the non-negativity condition gt(k) ≥ 0 as a
pseudo Wp-geodesic, for p > 1, along which the entropy functional is convex, which is
reminiscent of Sturm-Lott-Villani theory.

The notion of thinning has been extended in [Hil14] to the setting of general graphs
in the following way: we consider a probability distribution f1 defined on G and another
probability measure f0 which is a Dirac mass at a given point o ∈ G. In this case, an
interpolating curve (ft)t∈[0,1], called contraction of f1 on o, is defined as a mixture of
binomial distributions by

ft :=
∑
z∈G

1

|Γo,z|
∑

γ∈Γ(o,z)

binγ,t, (2.6)

where the binomial distribution on γ is related to the classical binomial distribution by

∀p ∈ {0, . . . L(γ)} , binγ,t(γ(p)) := binL(γ),t(p) (2.7)

and where |Γo,z| denotes the cardinality of the set Γo,z of geodesics joining o to z.

There is a canonical way to associate to each vertex o ∈ G an orientation on G:

Definition 2.7. Let us fix a vertex o ∈ G.

• We define a partial order on the set of vertices of G by writing x1 ≤ x2 if the vertex
x1 belongs to a geodesic γ ∈ Γ0,x2 .

• If x1 ∼ x2 and x1 ≤ x2, we say that (x1, x2) is an oriented edge and we write (x1x2)

or x1 → x2. We denote by (G,→) the graph G endowed with this orientation.
• Given a vertex x1 ∈ G, we define the (possibly empty) sets of vertices E(x1), F(x1)

by
E(x1) := {x0 ∈ G : x0 → x1} , F(x1) := {x2 ∈ G : x1 → x2}.

Remark 2.8. If x, y ∈ G are two vertices such that d(o, x) = d(o, y) and x ∼ y then the
edge (x, y) ∈ E(G) is not oriented. To be more rigorous, in the definition of (G,→) one
should discard such non-oriented edges.

To the oriented graph (G,→) are associated two other oriented graphs:

Definition 2.9. The oriented edge graph (E(G),→) is the graph of oriented couples
x1 → x2 ∈ G, oriented itself by the relation (x1x2) → (x2x3). In particular, for any
(x1x2) ∈ (E(G),→) we have

E((x1x2)) = {(x0x1) : x0 ∈ E(x1)} , F((x1x2)) = {(x2x3) : x3 ∈ F(x2)}.

Similarly, we define the graph of oriented triples (T (G),→) := (E(E(G)),→), having
as vertices the triples (x1x2x3) with x1 → x2 → x3 and edges between each couple
(x0x1x2) and (x1x2x3).
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Remark 2.10. The graph G being now oriented, the notation E(G) and T (G) stand for
(E(G),→) and (T (G),→), which is a slight abuse of notation. For instance, (xy) ∈ E(G)

imply that x → y. This remark will still be valid once introduced the W1-orientation on
G.

Orienting the graph G allows us to define a divergence operator:

Definition 2.11. The divergence of a function g : E(G)→ R is the function∇·g : G→ R

defined by

∀x1 ∈ G , ∇ · g(x1) :=
∑

x2∈F(x)

g(x1x2)−
∑

x0∈E(x)

g(x0x1).

Similarly, the divergence of a function h : T (G) → R is the function ∇ · h : E(G) → R

defined by

∇ · h(x1x2) :=
∑

x3∈F(x2)

h(x1x2x3)−
∑

x0∈E(x1)

h(x0x1x2).

We use this orientation to express the function ft as a product of two functions
satisfying interesting differential equations:

Proposition 2.12. There exists a couple (Pt), (Qt) of families of non-negative functions
on G such that:

1. We have ft(x) = Pt(x)Qt(x).

2. The functions P and Q satisfy the equations

∂

∂t
Pt(x1) =

∑
x0∈E(x1)

Pt(x0) ,
∂

∂t
Qt(x1) = −

∑
x2∈F(x1)

Qt(x2). (2.8)

This proposition is proven in [Hil14]. We can now use Definition 2.11 and Proposi-
tion 2.12 to state a generalized version of Proposition 2.4:

Proposition 2.13. We define the families of functions (gt) and (ht), defined respectively
on E(G) and T (G), by

gt(x1x2) := Pt(x1)Qt(x2) , ht(x0x1x2) := Pt(x0)Qt(x2). (2.9)

1. The functions f , g and h satisfy the differential equations

∂

∂t
ft(x1) = −∇ · gt(x1) ,

∂

∂t
gt(x1x2) = −∇ · ht(x1x2). (2.10)

2. For every oriented triple (x0x1x2) ∈ T (G) we have

ht(x0x1x2)ft(x1) = gt(x0x1)gt(x1x2). (2.11)

Remark 2.14. As in the thinning case, Proposition 2.13, and in particular equation
(2.11) are used to study the convexity properties of the entropy functional along con-
traction families on graphs (see [Hil14, Section 5]).
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2.2 The W1-orientation

It is not possible to use directly Proposition 2.13 to propose a general Benamou-
Brenier condition because such a definition relies on an orientation of the graph G

which has been constructed by using the fact that f0 is Dirac. As a first necessary step
in the construction of general W1,+-geodesics, we thus need to find a nice orientation
on G, depending on the initial and final measures f0 and f1.

The term "nice orientation" is vague, but the study of the thinning and of the contrac-
tion families suggests that, in order to have interesting consequences on the convexity
of the entropy, we should at least require that gt(x1x2) ≥ 0 for every x1 → x2 ∈ E(G).
As we will see at the end of this paragraph, this requirement can be interpreted in the
framework of optimal transportation theory.

We first recall some properties of supports of W1-optimal couplings:

Definition 2.15. Given a couple f0, f1 of finitely supported measures, we associate the
set

C(f0, f1) := {(x, y) ∈ G×G : ∃π ∈ Π1(f0, f1), π(x, y) > 0}. (2.12)

Equivalently, C(f0, f1) is the smallest subset of G×G containing the supports of all the
W1-optimal couplings between f0 and f1.

Proposition 2.16. There exists π ∈ Π1(f0, f1) such that Supp(π) = C(f0, f1).

Proof. For every (x, y) ∈ C(f0, f1), there exists a coupling π(x,y) ∈ Π1(f0, f1) satisfying
π(x,y)(x, y) > 0. As f0 and f1 are finitely supported, we can consider the barycenter

π :=
1

|C(f0, f1)|
∑

(x,y)∈C(f0,f1)

π(x,y), (2.13)

which by convexity is in Π1(f0, f1) and which is clearly fully supported in C(f0, f1).

A tool often used when studying the support of optimal couplings is the cyclic mono-
tonicity property:

Lemma 2.17. If (x0, y0), . . . (xp, yp) are in C(f0, f1) then

p∑
i=0

d(xi, yi) ≤ d(x0, yp) +

p−1∑
i=0

d(xi+1, yi). (2.14)

Proof. We consider a coupling π ∈ Π1(f0, f1) as constructed in Proposition 2.16 and
a number 0 < a < infi(π(xi, yi)). We introduce the function h on G × G defined by
h(x0, yp) := a, h(x, y) := a if (x, y) = (xi+1, yi) for some i ∈ {0, . . . p − 1}, h(x, y) := −a
if (x, y) = (xi, yi) for some i ∈ {0, . . . p}, and h(x, y) := 0 elsewhere. Then π + h is a
coupling in Π(f0, f1) and

I1(π + h)− I1(π) = a

(
d(x0, yp) +

p−1∑
i=0

d(xi+1, yi)−
p∑
i=0

d(xi, yi)

)
, (2.15)

but π ∈ Π1(f0, f1) implies I1(π + h) ≥ I1(π), which shows equation (2.14).

Lemma 2.17 is used to define unambiguously an orientation on some edges of G:
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W1,+-interpolation of probability measures on graphs

Theorem 2.18. Let f0, f1 be two fixed probability distributions on G, and γ(1), γ(2) be
two geodesics in G such that (e0(γ(i)), e1(γ(i))) ∈ C(f0, f1) for i = 1, 2. Then for any
(k1, k2) with ki ≤ L(γ(i)) − 1 we cannot have both identities γ(1)(k1) = γ(2)(k2 + 1) and
γ(1)(k1 + 1) = γ(2)(k2).

Proof. We suppose that both identities γ(1)(k1) = γ(2)(k2 + 1) and γ(1)(k1 + 1) = γ(2)(k2)

hold. By considering the path e0(γ(1)), · · · γ(1)(k1), γ(2)(k2 + 2), · · · e1(γ(2)), we see that

d(e0(γ(1)), e1(γ(2))) ≤ k1 + L(γ(2))− k2 − 1.

Similarly we have

d(e0(γ(2)), e1(γ(1))) ≤ k2 + L(γ(1))− k1 − 1.

Since L(γ(i)) = d(xi, yi) for i = 1, 2, we have

d(x1, y1) + d(x2, y2) ≥ d(x1, y2) + d(x2, y1) + 2, (2.16)

which by Lemma 2.17 is a contradiction.

Definition 2.19. Let f0, f1 be two finitely supported probability measures on G.

• The W1 orientation associated to f0, f1 is defined by orienting the edge (x, y) ∈
E(G) by x→ y if there exists a geodesic γ on G such that

1. (e0(γ), e1(γ)) ∈ C(f0, f1).
2. γ(k) = x, γ(k + 1) = y for some k ∈ {0, . . . L(γ)− 1}.

• An oriented path on the oriented graph (G,→) is an application γ : {0, . . . L} → G

such that γ(i)→ γ(i+ 1) for i = 0, . . . L− 1.

• We define a partial order relation on the vertices of G by writing x ≤ y if there
exists an oriented path joining x to y.

Remark 2.20. The process described in the first item of Definition 2.19 may not orient
every edge (x, y) ∈ E(G). For instance, if G = Z/3Z is the complete graph with three
vertices, f0 := δ(0) is the Dirac measure at 0 and f1 is any probability distribution on
G, then the edge (1, 2) is not oriented for the W1-orientation associated to (f0, f1). This
issue has already been encountered in the thinning case, see Remark 2.8.

If such edges exist, it is convenient to consider the subgraph G′ ⊂ G, which depends
on (f0, f1), such that the edge set E(G′) is exactly the set of edges (x, y) ∈ E(G) which
can be oriented and whose vertices are the vertices of G that are endpoints of at least
one oriented edge in E(G′). By an abuse of notation, we will denote (G′, E(G′)) by
(G,E(G)).

An important property of the W1-orientation is the following:

Theorem 2.21. Every oriented path on (G,→) is a geodesic.

Proof. Let γ be an oriented path on (G,→) of length n. To show that γ is a geodesic,
it suffices to prove that d(γ(0), γ(n)) ≥ n. By definition of the W1 orientation, for each
i ∈ {0, . . . n− 1} there exists a geodesic γ(i) of length Li ≥ 1 and ki ∈ {0, . . . Li − 1} such
that

• (e0(γ(i)), e1(γ(i))) ∈ C(f0, f1),

• γ(i)(ki) = γ(i),

• γ(i)(ki + 1) = γ(i+ 1).
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By Lemma 2.17, setting xi := e0(γ(i)) and yi := e1(γ(i)), we have

n−1∑
i=0

d(xi, yi) ≤ d(x0, yn−1) +

n−2∑
i=0

d(xi+1, yi). (2.17)

But, γ(i) being a geodesic of G, we have d(xi, yi) = d(e0(γ(i)), e1(γ(i))) = Li. Further-
more, for i ∈ {0, . . . n− 2} we have

d(xi+1, yi) ≤ d(xi+1, γ(i+ 1)) + d(γ(i+ 1), yi)

= d(γ(i+1)(0), γ(i+1)(ki+1)) + d(γ(i)(ki + 1), γ(i)(Li))

= ki+1 + Li − ki − 1.

We also have the estimation

d(x0, yn−1) ≤ d(x0, γ(0)) + d(γ(0), γ(n)) + d(γ(n), yn−1)

= d(γ(0)(0), γ(0)(k0)) + d(γ(0), γ(n))

+d(γ(n−1)(Ln−1), γ(n−1)(kn−1 + 1))

= k0 + Ln−1 − kn−1 + 1 + d(γ(0), γ(n)).

We finally have

n−1∑
i=0

Li ≤ k0 + Ln−1 − kn−1 + 1 + d(γ(0), γ(n)) +

n−2∑
i=0

ki+1 + Li − ki − 1, (2.18)

which gives 0 ≤ d(γ(0), γ(n))− n and proves the theorem.

The following shows that the W1-orientation is in some sense stable by restriction:

Proposition 2.22. Let (ft)t∈[0,1] be a W1-geodesic on G. For 0 ≤ s ≤ t ≤ 1, let (x, y) in
E(G) such that x → y for the W1-orientation with respect to fs, ft. Then x → y for the
W1-orientation with respect to f0, f1.

Proof. It suffices to show that, if π̃ ∈ Π1(fs, ft) and π̃(b, c) > 0 then b ≤ c for the partial
order coming from the W1-orientation associated to f0, f1.

The proof this fact is inspired by the ’gluing lemma’ stated and explained in [LV09]:
let π(1) ∈ Π1(f0, fs), π

(2) ∈ Π1(fs, ft), π
(3) ∈ Π1(ft, f1). We consider the ’gluing’ π of

these three couplings, defined by:

π(a, d) :=
∑
b,c∈G

π(1)(a, b)π(2)(b, c)π(3)(c, d)

fs(b)ft(c)
,

where the quotient is zero when fs(b) = 0 or ft(c) = 0. It is easily shown that π ∈
Π(f0, f1). Moreover,

W1(f0, f1) ≤
∑
a,d∈G

d(a, d)π(a, d)

≤
∑

a,b,c,d∈G

(d(a, b) + d(b, c) + d(c, d))π(a, d)

=
∑

a,b,c,d∈G

(d(a, b) + d(b, c) + d(c, d))
π(1)(a, b)π(2)(b, c)π(3)(c, d)

fs(b)ft(c)

=
∑
a,b∈G

d(a, b)π(1)(a, b) +
∑
b,c∈G

d(b, c)π(2)(b, c) +
∑
c,d∈G

d(c, d)π(3)(c, d)

= W1(f0, fs) +W1(fs, ft) +W1(ft, f1)

= W1(f0, f1).
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This shows the W1-optimality of π and the equality

d(a, d)π(a, d) = (d(a, b) + d(b, c) + d(c, d))π(a, d).

Theorem 2.21 shows that, whenever π(a, d) > 0, we have a ≤ b ≤ c ≤ d. On the other
hand, if π(2)(b, c) > 0 then there exists a ∈ Supp(f0) and d ∈ Supp(f1) with π(1)(a, b) > 0

and π(3)(c, d) > 0, so π(a, b) = 0 and so b ≤ c.

We now prove:

Theorem 2.23. Let (ft) be a smooth W1-geodesic on G. We endow this graph with the
W1-orientation associated to f0, f1. There exists a family of functions (gt) : E(G) → R

such that

• ∂
∂tft(x) = −∇ · gt(x).

• ∀(xy) ∈ E(G) , gt(xy) ≥ 0.

Moreover, there exists a family (ht) : T (G)→ R such that

∀(xy) ∈ E(G) ,
∂

∂t
gt(xy) = −∇ · ht(xy).

We first prove a general result implying the existence of a family (gt) such that
∂
∂tft(x) = −∇ · gt(x):

Lemma 2.24. Let (G,→) be an oriented graph and u : G → R finitely supported such
that

∑
x∈G u(x) = 0. Then there exists g : E(G)→ R with ∇ · g = u.

Proof. We consider two scalar products, for functions respectively defined on G and
E(G), defined by

< u, v >G:=
∑
x∈G

u(x)v(x) , < a, b >E :=
∑
x→y

a(xy)b(xy).

The adjoint of the divergence operator ∇· is −∂, where ∂ is the linear operator defined
by (∂u)(xy) := u(y)− u(x), in the sense that

< ∇ · a, u >G=< a, ∂u >E (2.19)

for any couple u, a of functions respectively defined on G and E(G). The kernel of
∂ is the one-dimensional space generated by the constant function v = 1. The con-
dition

∑
x∈G u(x) = 0 is thus equivalent to < u, v >G= 0 or u ∈ (ker(∂))⊥G . We

thus want to prove that (ker(∂))⊥G ⊂ range(∇·). As the linear spaces we are con-
sidering are finite-dimensional, this inclusion is equivalent to (range(∇·))⊥G ⊂ ker(∂).
Let u ∈ (range(∇·))⊥G . Then for any b : E(G) → R we have < ∇ · b, u >G= 0, so
< b, ∂u >E= 0, which proves that u ∈ ker(∂).

As we have ∂
∂tft(x) = 0, Lemma 2.24 gives the existence of a family (gt) with

∂
∂tft(x) = −∇ · gt(x). However, this result does not provide an explicit construction
of g and in general nothing can be said about its sign.

Proof of Theorem 2.23. Let G′ be a spanning tree of G, i.e. a tree having the
same vertices as G, but with possibly fewer edges. We endow G′ with the restriction
of the orientation on G. According to Lemma 2.24, there exists a family of functions
(gt) : E(G′)→ R+ satisfying ∂

∂tft(x) = −∇·gt(x). As G′ is a tree, we know that removing
an edge (x0y0) from the graph G′ will cut it into two disjoint subgraphs G′1 := G′1(x0y0)
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and G′2 := G′2(x0y0). Let u(x0y0) be the indicator function of G′1. This function satisfies
(∂u(x0y0))(xy) = −1 if (xy) = (x0y0) and (∂u(x0y0))(xy) = 0 otherwise, which implies:

gt(x0y0) = −
∑

(xy)∈(E(G′),→)

gt(xy)(∂u(x0y0))(xy)

= − < gt, ∂u(x0y0) >E=< ∇ · gt, u(x0y0) >G

= − < ∂

∂t
ft, u(x0y0) >= −

∑
z∈G′1

∂

∂t
ft(z)

We want to prove that gt(x0y0) ≥ 0. Actually we will prove that the function t 7→∑
z∈G′1

ft(z) is strictly decreasing, so we have gt(x0y0) > 0. For 0 ≤ s ≤ t ≤ 1, let

π ∈ Π1(fs, ft). We have∑
z∈G′1

fs(z) =
∑

x≤y∈G : x∈G′1

π(x, y) ,
∑
z∈G′1

ft(z) =
∑

x≤y∈G : y∈G′1

π(x, y)

By Proposition 2.22, we know that if π(x, y) > 0 then x ≤ y. In particular, we cannot
have x ∈ G′2 and y ∈ G′1. Equivalently, if x ≤ y, π(x, y) > 0 and y ∈ G1 then x ∈ G1.
Consequently, we have:∑

z∈G′1

fs(z)−
∑
z∈G′1

ft(z) = −
∑

x≤y∈G : x∈G′1,y∈G′2

π(x, y) ≤ 0. (2.20)

Furthermore, as (x0y0) is an oriented edge, we know by the definition of the W1

orientation that there exists (x, y) ∈ C(f0, f1) such that x ≤ x0 ≤ y0 ≤ y. In particular,
x ∈ G′1, y ∈ G′2 and π(x, y) > 0. This proves that the inequality (2.20) is actually strict,
which shows the positivity of the family of functions (gt) on E(G′). The first point of
Theorem 2.23 is proven by extending gt to E(G), setting gt(xy) := 0 if (xy) /∈ E(G′).

The existence of a family of functions (ht) such that ∂
∂tgt = −∇ · ht is proven by

Lemma 2.24. We only need to check that
∑

(xy)∈E(G)
∂
∂tgt(xy) = 0. We are actually

going to prove the stronger statement:∑
(xy)∈(E(G),→)

gt(xy) = W1(f0, f1).

To prove this fact, we consider the function u :=
∑

(x0y0)∈E(G′) u(x0y0). The function u

satisfies (∂u)(xy) = 1 for every x→ y ∈ E(G′). We then have:∫ t

0

∑
(xy)∈(E(G),→)

gs(xy)ds =

∫ t

0

∑
(xy)∈(E(G),→)

gs(xy)(∂u)(x, y)ds

= −
∫ t

0

∑
x∈G

(∇ · gs)(x)u(x)dt

=

∫ t

0

∑
x∈G

∂

∂s
fs(x)u(x)ds

=
∑
y∈G

ft(y)u(y)−
∑
x∈G

f0(x)u(x).

Let π ∈ Π1(f0, ft). We know by Proposition 2.22 that if π(x, y) > 0 then x ≤ y. On
the other hand, if x ≤ y then there exists a path x = γ0 → · · · → γn = y and we have
u(y)− u(x) = (u(γn)− u(γn−1)) + · · ·+ (u(γ1)− u(γ0)) = n = d(x, y), so we have∫ t

0

∑
(xy)∈(E(G),→)

gs(xy)ds =
∑
x≤y

π(x, y)d(x, y) = W1(f0, ft) = tW1(f0, f1).

EJP 19 (2014), paper 92.
Page 13/29

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3336
http://ejp.ejpecp.org/


W1,+-interpolation of probability measures on graphs

Differentiating with respect to t shows that the sum
∑

(xy)∈E(G) gt(xy) is constant and
equal to W1(f0, f1). To finish the proof of the theorem, we extend (ht) to T (G) by
defining ht(x0x1x2) := 0 if (x0x1x2) /∈ T (G′). �

Actually, Theorem 2.23 can be strengthened in the following way:

Proposition 2.25. In Theorem 2.23, we can replace the assertion ∀(xy) ∈ E(G) ,
gt(xy) ≥ 0 by ∀(xy) ∈ E(G) , gt(xy) > 0.

Proof. The proof of Theorem 2.23 allowed us to construct, given a spanning treeG′ ⊂ G,
a family of functions (gG

′

t ) such that gG
′

t (xy) > 0 when (xy) ∈ E(G′) and gG
′

t (xy) = 0

when (xy) /∈ E(G′). But for each edge (x0y0) ∈ E(G) there exists a spanning tree
G′ ⊂ G with (x0y0) ∈ E(G′). We define a family (gt) : E(G)→ R as the barycenter

∀(xy) ∈ E(G) , gt(xy) :=
1

|T |
∑
G′∈T

gG
′

t (xy),

where T is the (finite) set of spanning trees for G. Then gt > 0 and satisfies the
conditions of Theorem 2.23. We finally construct a suitable family (ht) by defining

ht := 1
|T |
∑
G′∈T h

G′

t , where (h
(G′)
t ) is constructed from (gG

′

t ) as in the proof of Theo-
rem 2.23.

2.3 Definition of W1,+-geodesics

Having now constructed an orientation of G associated to each couple of finitely
supported probability distributions f0, f1 ∈ P1(G), we propose a definition of W1,+-
geodesics inspired by Proposition 2.13:

Definition 2.26. Let G be a graph, W1-oriented with respect to a couple of finitely
supported probability measures f0, f1. A family (ft)t∈[0,1] ∈ P(G) is said to be a W1,+-
geodesic if:

1. The curve (ft)t∈[0,1] is a W1-geodesic.

2. There exists two families (gt) and (ht) defined respectively on E(G) and T (G) such
that

∂

∂t
ft = −∇ · gt ,

∂

∂t
gt = −∇ · ht.

3. For every (xy) ∈ E(G) we have gt(xy) > 0.

4. The triple (ft, gt, ht) satisfies the Benamou-Brenier equation

∀(x0x1x2) ∈ T (G) , ft(x1)ht(x0x1x2) = gt(x0x1)gt(x1x2). (2.21)

Remark 2.27. In the sequel,the assertion ’let (ft) be a W1,+-geodesic’ means ’let
((ft), (gt), (ht)) be a triple of families of functions satisfying the conditions of Defini-
tion 2.26’. This is an abuse because nothing is known about the uniqueness of the
families (gt) and (ht) associated to a W1,+-geodesic.

Remark 2.28. We can check that any contraction of measure is also a W1,+-geodesic:
if f0 = δo is a Dirac measure, then the set Π1(f0, f1) has only one element, and it easy to
prove that the W1-orientation with respect to f0, f1 coincide with the orientation used
for contraction of measures. Proposition 2.13 shows that the other points of Defini-
tion 2.26 are satisfied by contraction families.

It is possible to state (2.21) in terms of two different velocity fields:
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Proposition 2.29. Let (ft)t∈[0,1] be a W1,+-geodesic on G. We define the velocity fields
v+,t and v−,t by

v+,t(x0x1) :=
gt(x0x1)

ft(x0)
, v−,t(x0x1) :=

gt(x0x1)

ft(x1)
(2.22)

and the velocity functions V+,t and V−,t by

V+,t(x1) :=
∑

x2∈F(x1)

v+,t(x1x2) , V−,t(x1) :=
∑

x0∈E(x1)

v−,t(x0x1). (2.23)

The following differential equations then hold:

∂

∂t
v+,t(x0x1) = −v+,t(x0x1) [V+,t(x1)− V+,t(x0)] , (2.24)

∂

∂t
v−,t(x0x1) = −v−,t(x0x1) [V−,t(x1)− V−,t(x0)] . (2.25)

Proof. We use the definitions of gt and ht, and then apply the Benamou-Brenier equa-
tion (2.21) to write:

∂

∂t
v+,t(x0x1) =

gt(x0x1)

ft(x0)2

 ∑
x̃1∈F(x0)

gt(x0x̃1)−
∑

x−1∈E(x0)

gt(x−1x0)


+

1

ft(x0)

− ∑
x2∈F(x1)

gt(x0x1)gt(x1x2)

ft(x1)
+

∑
x−1∈E(x0)

gt(x−1x0)gt(x0x1)

ft(x0)


= v+,t(x0x1)

 ∑
x̃1∈F(x0)

gt(x0x̃1)

ft(x0)
−

∑
x2∈F(x1)

gt(x1x2)

ft(x1)


= v+,t(x0x1) [V+,t(x0)− V+,t(x1)] .

The second formula is proven by similar methods.

Remark 2.30. Proposition 2.29 is reminiscent of the continuous case described in the
introduction. In particular, equation (2.22) is similar to the transport equation (1.8)
(see also the proof of Proposition 1.3) and equations (2.24) and (2.25) are similar to the
formal optimality condition (1.9).

We now give some heuristic arguments explaining the terminology ’W1,+-geodesic’.
Let us consider the minimization problem described by equation (1.7) of Theorem 1.2,
when the paramater p = 1+ε is close to 1. We use the expansion a1+ε = a exp(ε log(a)) =

a+ ε a log(a) +O(ε2), valid for a > 0, to write∫
M

∫ 1

0

|vt(x)|pdµt(x)dt =

∫
M

∫ 1

0

|vt(x)|dµt(x)dt+ε

∫
M

∫ 1

0

|vt(x)| log(|vt(x)|)dµt(x)dt+O(ε2).

The integral
∫
M

∫ 1

0
|vt(x)|dµt(x)dt is exactly equation (1.7) for p = 1. We thus know, by

Theorem 1.2 that the minimizers of this integral over the set of families (ft) of proba-
bility measures with f0, f1 prescribed and ∂

∂tft(x) +∇ · (vt(x)ft(x)) = 0 are exaclty the
W1-geodesics joining f0 to f1. This suggests the following:

Definition 2.31. We say that a curve (ft) of probability measures on a Riemannian
manifold M is a W1,+-geodesic on M if it is solution to the minimization problem

inf

∫
M

∫ 1

0

|vt(x)| log(|vt(x)|)dµt(x)dt,
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W1,+-interpolation of probability measures on graphs

where the infimum is taken over the set of all W1-geodesics between f0 and f1 and
where the velocity field (vt) is defined by the continuity equation

∂

∂t
ft(x) +∇ · (vt(x)ft(x)) = 0.

The formal optimality condition on (vt) obtained by applying Euler-Lagrange equa-
tions is the same as for Wp-geodesics:

∂

∂t
vt(x) = −vt(x)∇vt(x).

The next proposition shows that W1,+-geodesics on a graph can be related to a min-
imization problem similar to the continuous one described in Definition 2.31:

Proposition 2.32. Let G be a W1-orientated with respect to f0, f1 finitely supported.
We consider the problem

inf I+(f, g) := inf

∫ 1

0

∑
x→y

v+,t(xy) log(v+,t(xy))ft(x), (2.26)

where the infimum is taken over the set of W1-geodesics (ft) between f0 and f1 such
that the velocity v+,t(xy) is defined by equation (2.22) from a family of non negative (gt)

with ∂
∂tft(x) = −∇ · gt(x).

We suppose that there exists a W1,+-geodesic (ft) joining f0 to f1. Then (ft) is a
critical point for I+ in the following sense: if (ut) is a family of functions defined on
E(G) satisfying the boundary conditions u0(xy) = u1(xy) = 0, then

I+

(
f + η∇ · u, g − η ∂u

∂t

)
= I+(f, g) +O(η2). (2.27)

Remark 2.33. Recall that, given a W1-geodesic (ft), the continuity equation ∂
∂tft(x) =

−∇ · gt(x) may be solved by a family (gt) which is not necessarily always positive. We
restrict ourselves to the families of non-negative (gt), which always exist by Proposi-
tion 2.25, in order to write |v+,t(xy)| = v+,t(xy).

Proof of Proposition 2.32. When η is small, we have the expansion

I+

(
f + η∇ · u, g − η ∂u

∂t

)
− I+(f, g)

= −η
∫ 1

0

∑
x→y

∂

∂t
ut(x, y) (1 + log(v+,t(xy))) + (∇ · ut)(x)vt(xy)dt+O(η2)

On the other hand, we use the boundary conditions u0 = u1 = 0 to write:∫ 1

0

∑
x→y

∂

∂t
ut(x, y) (1 + log(v+,t(xy))) = −

∫ 1

0

∑
x→y

ut(x, y)
∂

∂t
(1 + log(v+,t(xy))) dt

= −
∫ 1

0

∑
x→y

ut(xy)
1

vt(xy)

∂

∂t
vt(xy)dt

=

∫ 1

0

∑
x→y

ut(xy)[V+,t(y)− V+,t(x)]dt

= −
∫ 1

0

∑
x∈G

(∇ · ut)(x)V+,t(x)dt

=

∫ 1

0

∑
x→y

(∇ · ut)(x)vt(xy)dt,
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W1,+-interpolation of probability measures on graphs

which proves that I+

(
f + η∇ · u, g − η ∂u∂t

)
= I+(f, g) +O(η2). �

Remark 2.34. Similarly, it can be proven that a W1,+-geodesic is also critical for the
functional

inf I−(f, g) := inf

∫ 1

0

∑
x→y

v−,t(xy) log(v−,t(xy))ft(x), (2.28)

3 W1,+-geodesics as mixtures of binomial distributions

W1,+-geodesics have been constructed as generalizations of contraction families,
which have been defined as mixture of binomial distributions. In this section, we fix
a W1,+-geodesic (ft) on G, joining two finitely supported probability measures f0, f1 ∈
P(G). It will always be assumed that the graph G is W1-oriented with respect to f0, f1

and that every path is an oriented path, thus a geodesic, by Theorem 2.21.

The main purpose of this section is to prove Theorem 3.19: (ft) can also be expressed
as a mixture of binomial measures, with respect to a coupling π ∈ Π(f0, f1) solution to
a certain minimization problem. The key ingredients to the proof of this theorem are
the study of the behaviour of (ft) along particular geodesics of G, called extremal and
semi-extremal geodesics, and the construction of two sub-Markov kernels K,K? on G

associated to (ft).

3.1 Extremal geodesics

Recall that we write x2 ∈ F(x1) and x1 ∈ E(x2) if x1 ≤ x2 and d(x1, x2) = 1 or equiv-
alently if (x1x2) is an oriented edge of G. If γ is a geodesic of G, it will be sometimes
convenient to use the notation γi := γ(i).

Definition 3.1. Let γ be a geodesic on G.

• If L(γ) ≥ 2, we associate to γ the function

Cγ(t) :=
gt(γ0γ1) · · · gt(γn−1γn)

ft(γ1) · · · ft(γn−1)
, (3.1)

• If L(γ) = 1, we define Cγ(t) := gt(γ0γ1).
• If L(γ) = 0, we define Cγ(t) := ft(γ0).

Proposition 3.2. The function Cγ(t) satisfy

∂

∂t
Cγ(t) =

∑
x0∈E(γ0)

Cx0∪γ(t)−
∑

x2∈F(γn)

Cγ∪x2
(t), (3.2)

where x0 ∪ γ (resp. γn ∪ x2) is the geodesic x0, γ0, . . . γn (resp. γ0, . . . γn, x2).

Proof. If L(γ) = 0, equation (3.2) is equivalent to ∂
∂tft(γ0) = −(∇ · gt)(x0), which is true

by the definition of (gt). If L(γ) ≥ 1, we notice that

Cγ(t) = ft(γ0)v+,t(γ0γ1) · · · v+,t(γn−1γn). (3.3)

Proposition 2.29 gives:

1

Cγ(t)

∂

∂t
Cγ(t) =

1

ft(γ0)

∂

∂t
ft(γ0) +

n−1∑
i=0

1

v+,t(γiγi+1)

∂

∂t
v+,t(γiγi+1)

= (−V+,t(γ0) + V−,t(γ0))−
n−1∑
i=0

[V+,t(γi+1)− V+,t(γi)]

= −V+,t(γn) + V−,t(γ0)

= −
∑

x2∈F(γn)

v+,t(γnx2) +
∑

x0∈E(γ0)

v−,t(x0γ).
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Multiplying by Cγ(t) and applying equation (3.3) leads to the result.

Equation (3.2) takes a simpler form in the case where the set E(e0(γ)) (or F(e1(γ)),
or both) is empty. This motivates the following:

Definition 3.3. We define the particular subsets of vertices of G:

• The set of initial vertices A ⊂ G contains every x1 ∈ G such that E(x1) is empty.
• The set of final vertices B ⊂ G contains every x1 ∈ G such that F(x1) is empty.

We also define the particular subsets of geodesics f G:

• The set EΓ of extremal geodesics contains every γ ∈ Γ(G) with e0(γ) ∈ A, e1(γ) ∈
B.

• The set SEΓ1,x contains every γ ∈ Γ(G) with e0(γ) ∈ A, e1(γ) = x.
• The set SEΓ2,x contains every γ ∈ Γ(G) with e0(γ) = x, e1(γ) ∈ B.

If e0(γ) ∈ A or e1(γ) ∈ B, the geodesic γ is said to be semi-extremal.

Remark 3.4. The sets A and B are both non empty. If we suppose for instance that B is
empty, then we can construct an infinite sequence (xn)n≥0 in G such that xn+1 ∈ F(xn).
But, f0 and f1 being finitely supported and G being locally finite, the set of oriented
edges of G is finite so xp = xq for a couple of indices q > p. This means that there exists
a non-trivial oriented path γ joining xp to itself, which is a contradiction because γ is a
geodesic of G by Proposition 2.21.

An immediate corollary of Proposition 3.2 is the following:

Proposition 3.5. Let γ be a geodesic of G.

• If γ ∈ EΓ, then Cγ(t) = Cγ is a constant function of t.
• If γ ∈ SEΓ1,x then Cγ(t) is polynomial in t and deg(Cγ(t)) ≤ sup{L(γ̃) : γ̃ ∈ SEΓ2,x}.
• If γ ∈ SEΓ2,x then Cγ(t) is polynomial in t and deg(Cγ(t)) ≤ sup{L(γ̃) : γ̃ ∈ SEΓ1,x}.

Proof. If γ ∈ EΓ, then the sets E(e0(γ)) and F(e1(γ)) are empty, which by Proposition 3.2
shows that Cγ is a constant function of t. We prove the second point by induction on
m = m(γ) := sup{L(γ̃); γ̃ ∈ SEΓ2,x}, which only depends on the endpoint e1(γ) = x. If
m = 0 then γ ∈ EΓ and this case has been considered in the first point. We now fix a
geodesic γ ∈ SEΓ1,x such that m(γ) ≥ 1. We apply Proposition 3.2 and use the fact that
e0(γ) ∈ A to write:

∂

∂t
Cγ(t) = −

∑
x2∈F(x)

Cγ∪x2(t). (3.4)

it is easily shown that, for z ∈ F(x), m(γ ∪ {z}) = m(γ) − 1, which proves by induction
on m that Cγ(t) is polynomial in t of degree less than m(γ).

3.2 Sub-Markov kernels associated to a W1,+-geodesic

The fact that the function Cγ(t) is constant and positive on extremal geodesics allows
us to introduce a useful function on ordered subsets of G:

Definition 3.6. Given an ordered p-uple z1 ≤ z2 ≤ . . . zp of vertices of (G,→), we
associate

m(z1, . . . zp) =
∑

γ∈E(z1,...zp)

Cγ , (3.5)

where E(z1, . . . zp) ⊂ EΓ is defined by:

γ ∈ E(z1, . . . zp)⇐⇒ ∃ k1 ≤ · · · ≤ kp , γ(ki) = zi. (3.6)

If γ is a geodesic of G, we denote by m(γ) the number m(e0(γ(0)), · · · e1(γ)).
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Proposition 3.7. For any family of vertices x0 ≤ · · · ≤ xm we have

m(x0, . . . xm) =
m(x0, x1) · · ·m(xm−1,xm)

m(x1) · · ·m(xm−1)
. (3.7)

Proof. There is a natural bijection between the set E(x0, . . . , xm) and the product set

SEΓ1,x0
×Γx0,x1

× · · · × Γxm−1,xm × SEΓ2,xm .

Indeed, let γ ∈ E(x0, . . . , xm) be a geodesic of G of length n and 0 ≤ k0 ≤ · · · ≤ km ≤ n

such that γ(ki) = xi for i = 0, . . . ,m. The projection of γ onto Γxi,xi+1
is given by the

geodesic (γ(ki), · · · , γ(ki+1)). The inverse bijection is given by the concatenation map.
We denote by γ 7→ (p0(γ) × p0,1(γ) × · · · × pm−1,m(γ) × pm(γ)) this bijection. Moreover,
given some γ ∈ E(x0, . . . , xm) of length n we have:

Cγ =
gt(γ0γ1) · · · gt(γn−1γn)

ft(γ1) · · · ft(γn−1)

=
gt(γ0γ1) · · · gt(γk0−1γk0)

ft(γ1) · · · ft(γk0−1)

1

ft(γk0)

gt(γk0γk0+1) · · · gt(γk1−1γk1)

ft(γk0+1) · · · ft(γk1−1)
· · ·

· · · 1

ft(γkm)

gt(γkmγkm+1) · · · gt(γn−1γn)

ft(γkm+1) · · · ft(γn−1)

=
Cp0(γ)(t)Cp0,1(γ)(t) · · ·Cpm−1,m(γ)(t)Cpm(γ)(t)

ft(x0) · · · ft(xm)
.

We thus have:

m(x0, . . . xm) =

(∑
γ(0)∈SEΓ1,x0

Cγ(0)(t)
)(∑

γ(0,1)∈Γx0,x1
Cγ(0,1)(t)

)
· · ·
(∑

γ(m)∈SEΓ2,xm
Cγ(m)(t)

)
ft(x0) · · · ft(xm)

=:
A1,x0

(t)Ax0,x1
(t) · · ·Axm−1,xm(t)A2,xm(t)

ft(x0) · · · ft(xm)
.

With the same notations we have, for i = 0, . . . ,m,

m(xi) =
A(1, xi)A(2, xi)

ft(xi)
,

and for i = 0, . . . ,m− 1,

m(xi, xi+1) =
A1,xi(t)Axi,xi+1

(t)A2,xi+1
(t)

ft(xi)ft(xi+1)
.

Equation (3.7) then follows from a direct calculation.

Definition 3.8. The sub-Markov kernels K and K∗ associated to a W1,+-geodesic (ft)

on G are defined by

∀x1 ∈ G , ∀x0 ∈ E(x1) , K(x1, x0) :=
m(x1, x0)

m(x1)
, (3.8)

∀x0 ∈ G , ∀x1 ∈ F(x0) , K∗(x0, x1) :=
m(x0, x1)

m(x0)
. (3.9)

If (x0x1) /∈ E(G,→), we set K(x1, x0) = K∗(x0, x1) = 0. We also define

Kf(x1) :=
∑
x0

K(x1, x0)f(x0) , K∗f(x0) :=
∑
x1

K∗(x0, x1)f(x1). (3.10)
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Remark 3.9. If x1 ∈ A is an initial vertex of G, then E(x1) = ∅ and Kf(x1), defined as
a sum over an empty set, is thus set to 0. Similarly, we set K∗f(x0) = 0 is x0 ∈ B is a
final vertex of G.

Proposition 3.10. The kernels K and K∗ satisfy the following:

• If x1 /∈ A then
∑
x0∈E(x1)K(x1, x0) = 1.

• If x0 /∈ B then
∑
x1∈F(x0)K

∗(x0, x1) = 1.

• The operatorsK andK∗ are adjoint for the scalar product< f, g >:=
∑
x∈G f(x)g(x)m(x).

• The iterated kernel Kn is supported on the set of couples (x0, xn) such that xn ∈
En(x0), i.e. such that x0 ≤ xn and d(xn, x0) = n. For such a couple we have

Kn(xn, x0) =
m(xn, x0)

m(xn)
.

• Similarly, for xn ∈ Fn(x0), i.e. for xn ≤ x0 such that d(xn, x0) = n we have

(K∗)n(x0, xn) =
m(x0, xn)

m(x0)
.

• The operators K and K∗ are nilpotent.

Proof. The first point comes from the fact that, if x0 /∈ B, there exists a bijection
between the set E(x0) and the disjoint union

⋃
x1∈F(x0)E(x0, x1). The second point

is proven similarly. The third point is proven by noticing that both scalar products
< Kf, g > and < f,K∗g > are equal to∑

x0→x1

m(x0, x1)f(x0)g(x1).

To prove the fourth point, we write the general formula for the iterated kernel for some
n ≥ 2:

∀x0, xn ∈ G , Kn(xn, x0) :=
∑

xn−1,...x1

K(xn, xn−1) · · ·K(x1, x0).

The product K(xn, xn−1) · · ·K(x1, x0) is non-zero if and only if x0 → · · · → xn, i.e. iff
(x0, . . . , xn) is a geodesic. This proves that Kn(xn, x0) > 0 implies that x0 ∈ En(xn).
Moreover we have:

Kn(xn, x0) =
∑

γ∈Γx0,xn

m(xn, γn−1)

m(xn)
· · · m(γ1, x0)

m(γ1)
=
m(xn, x0)

m(xn)

by Proposition 3.7. The fifth point is proven similarly. The nilpotency of K and K∗

comes from the fact that (G,→) has a finite diameter: if n > Diam(G) then Kn = 0 and
(K∗)n = 0.

Remark 3.11. The first point of Proposition 3.10 shows that K can easily be trans-
formed into a Markov kernel: it suffices to add a vertex ω (often called ’cemetery’) to G
and oriented edges ω → x for every x ∈ A. The sub-Markov kernel K is extended into a
Markov kernel on G ∪ ω by defining K(ω, ω) = 1 and K(ω, x) = 1 for every x ∈ A. The
kernel K∗ can be treated similarly, by considering the oriented edges (x, ω) for x ∈ B.
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3.3 Polynomial structure of W1,+-geodesics

In this paragraph we use properties of the functions Cγ(t) and of the sub-Markovian
kernels K,K? to give expression of (ft) as a mixture of binomial measures on geodesics
G.

Proposition 3.12. Let x ∈ G be a vertex and γ, γ̃ be two geodesics on G with γ ∈
SEΓ1(G, x) and γ̃ ∈ SEΓ2(G, x). Then

ft(x) =
Cγ(t)Cγ̃(t)

Cγ∪γ̃
, (3.11)

where γ ∪ γ̃ is the concatenation of γ and γ̃.

Remark 3.13. A first consequence of Propositions 3.5 and 3.12 is the fact that, for any
x ∈ G, ft(x) is a polynomial function of t such that deg(ft(x)) ≤ Diam(G).

We also use Proposition 3.12 to show the following:

Proposition 3.14. For x ∈ G, we consider two semi-extremal curves γ(1), γ(2) ∈ SEΓ1,x(G).

The quotient
C
γ(1)

(t)

C
γ(2)

(t) does not depend on t and is equal to m(γ(1))
m(γ(2))

. Furthemore, we have

Cγ(1)(t) =
m(γ(1))

m(x)

∑
γ∈SEΓ1,x(G)

Cγ(t). (3.12)

Proof. Let γ̃ be in SEΓ2,x(G). Then Proposition (3.12) shows that

Cγ(1)(t)

Cγ(2)(t)
=
C(γ(1) ∪ γ̃)

C(γ(2) ∪ γ̃)
.

We use the fact that this quotient does not depend on γ̃ to write

Cγ(1)(t)

Cγ(2)(t)
=

∑
γ̃∈SEΓ2,x(G) C(γ(1) ∪ γ̃)∑
γ̃∈SEΓ2,x(G) C(γ(2) ∪ γ̃)

=
m(γ(1))

m(γ(2))
.

The second point is proven by writing∑
γ∈SEΓ1,x(G)

Cγ(t)

Cγ(1)(t)
=

∑
γ∈SEΓ1,x(G)

m(γ)

m(γ(1))
=

m(x)

m(γ(1))
. (3.13)

We now introduce two families of functions which play the same role as (ut)t∈[0,1]

and (vt)t∈[0,1] in the case of contraction of measures:

Definition 3.15. We define the functions Pt(x) and Qt(x) by

Pt(x) :=
1

m(x)

∑
γ(2)∈SEΓ2,x

Ct(γ
(2)) , Qt(x) :=

1

m(x)

∑
γ(1)∈SEΓ1,x

Ct(γ
(1)), (3.14)

if x /∈ A (resp. x /∈ B), and by Pt(x) := ft(x), resp. Qt(x) := ft(x), if x ∈ A (resp. if
x ∈ B).

Proposition 3.16. The functions ft, gt and ht are related to Pt, Qt and m by

1. ft(x0) = m(x0)Pt(x0)Qt(x0),

2. gt(x0x1) = m(x0x1)Pt(x0)Qt(x1),
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3. ht(x0x1x2) = m(x0x1x2)Pt(x0)Qt(x2).

Proof. To prove the first point, we notice that the concatenation map γ(1), γ(2) 7→ γ(1) ∪
γ(2) is a bijection between the sets SEΓ1,x0

× SEΓ2,x0
and E(x0). We then use Proposi-

tion 3.12 to write: ∑
(γ(1),γ(2))∈SEΓ1,x0

×SEΓ2,x0

Cγ(1)(t)Cγ(2)(t) =
∑

γ∈E(x0)

Cγft(x0)

= ft(x0)m(x0).

To prove the second point, given of vertices x0 → x1 we consider the bijection between
the sets SEΓ1,x0

× SEΓ2,x1
and E(x0, x1) given by the concatenation γ(1), γ(2) → γ(1) ∪

γ(2). Moreover, if γ(1) ∈ SEΓ1,x0
and γ(2) ∈ SEΓ2,x1

have length L1 ≥ 2 and L2 ≥ 2 we
have:

Cγ(1)(t)Cγ(2)(t) =
g(γ

(1)
0 γ

(1)
1 ) · · · g(γ

(1)
L1−1x0)

f(γ
(1)
1 ) · · · f(γ

(1)
L1−1)

g(x1γ
(2)
1 ) · · · g(γ

(2)
L2−1γ

(2)
L2

)

f(γ
(2)
1 ) · · · f(γ

(2)
L2−1)

= Cγ(1)∪γ(2)(t)
ft(x0)ft(x1)

gt(x0x1)
.

Summing over all γ(1), γ(2) gives

1

m(x0)
Pt(x1)

1

m(x1)
Qt(x0) = m(x0, x1)

ft(x0)ft(x1)

gt(x0x1)
.

Replacing ft(x0) and ft(x1) by their expressions in terms of Pt, Qt proves the second
point. The third point is simply proven by using the Benamou-Brenier equation:

ht(x0x1x2) =
gt(x0x1)gt(x1x2)

ft(x1)
=
m(x0, x1)m(x1, x2)

m(x1)
Pt(x0)Qt(x2)

= m(x0, x1, x2)Pt(x0)Qt(x2).

Proposition 3.17. The functions Pt and Qt satisfy the differential equations

∂

∂t
Pt(x) = KPt(x) ,

∂

∂t
Qt(x) = −K∗Qt(x). (3.15)

Proof: When applied to semi-extremal geodesics, Proposition 3.2 takes a simpler
form. More precisely, if γ(2) ∈ SEΓ2,x0 , we have

∂

∂t
Cγ(2)(t) =

∑
x−1∈E(x0)

Cx−1∪γ(2)(t). (3.16)

On the other hand, by Proposition 3.14, we have:

∑
γ(2)∈SEΓ2,x0

Ct(x−1 ∪ γ(2)) =
∑

γ(2)∈SEΓ2,x0

m(x−1 ∪ γ(2))

m(x−1)

∑
γ̃2∈SEΓ2,x−1

Cγ̃2(t)

=
m(x−1, x0)

m(x−1)
Pt(x−1).

Summing this last equation over x−1 ∈ E(x0) gives the result. The differential equation
for Qt(x0) is proven similarly. �
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W1,+-interpolation of probability measures on graphs

Proposition 3.18. There exist two functions a, b : G→ R such that

Pt(z) =
1

m(z)

∑
x≤z

m(x, z)a(x)
td(x,z)

d(x, z)!
, Qt(z) =

1

m(z)

∑
y≥z

m(z, y)b(y)
(1− t)d(z,y)

d(z, y)!
. (3.17)

Proof. For x ∈ G, let a(x) := P0(x) be the constant term of the polynomial t 7→ Pt(x).
Using Proposition 3.17 and Proposition 3.10, we have

Pt(z) = [exp(tK)P0](x) = [exp(tK)a](z)

=
∑
l≥0

tl

l!
(Kla)(z)

=
∑
l≥0

∑
x∈El(z)

tl

l!

m(x, z)

m(z)
a(x)

=
1

m(z)

∑
x≤z

m(x, z)a(x)
td(x,z)

d(x, z)!
.

The proof of the second point is quite similar: define Q̃t(z) := Q1−t(z) and b(y) :=

Q̃0(y) = Q1(y). As we have ∂Q̃t(z)
∂t = (K∗Q̃t)(z), we use again Proposition 3.10 to

conlude.

We are now ready to write the W1,+-geodesic (ft) as a mixture of binomial measures:

Theorem 3.19. For any couple of vertices x ≤ y ∈ G we define the binomial probability
distribution bin(x,y),t on G, associated to the application m, supported on the set of
vertices z ∈ G such that x ≤ z ≤ y, by

bin(x,y),t(z) :=
m(x, z, y)

m(x, y)

d(x, y)!

d(x, z)!d(z, y)!
td(x,z)(1− t)d(x,y). (3.18)

The W1,+-geodesic (ft)t∈[0,1] is a mixture of such binomial measures:

ft(·) =
∑
x≤y

m(x, y)

d(x, y)!
a(x)b(y) bin(x,y),t(·). (3.19)

Proof. The theorem follows from the calculation:

ft(z) = m(z)Pt(z)Qt(z)

=
1

m(z)

∑
x,y:x≤z≤y

m(x, z)a(x)
td(x,z)

d(x, z)!
m(z, y)b(y)

(1− t)d(z,y)

d(z, y)!

=
∑

x,y:x≤z≤y

m(x, z)m(z, y)

m(z)

m(x, y)

d(x, y)!
a(x)b(y) bin(x,y),t(z),

and from the fact that m(x,z)m(z,y)
m(z) = m(x, z, y) (by Proposition 3.7).

4 Existence of W1,+-geodesics

In the previous section, we showed that any W1,+-geodesic (ft) can be expressed a
mixture of binomial distributions with respect to a certain coupling between f0 and f1.
We now turn to the question of the existence of a W1,+-geodesic (ft) joining two fixed
probability distributions f0, f1. Through this section, we fix such a couple of initial and
final measures and endow the underlying graph G with the W1-orientation associated
to f0, f1.
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Definition 4.1. Let m : E(G) → R∗+ be satisfying ∇ · m(x) = 0 for every x /∈ A,B.
Let p ≥ 0 be an integer. We extend m as a function on ordered families in (G,→) by
defining:

• If p = 0, m(x) :=
∑
y∈F(x)m(x, y).

• If p ≥ 2 and γ : {0, . . . p} → (G,→) is a geodesic, then

m(γ) := m(γ0, . . . γp) :=

∏p−1
i=0 m(xi, xi+1)∏p−1

j=1 m(xj)
(4.1)

• If p ≥ 2 and x0 ≤ · · · ≤ xp then

m(x0, . . . xp) =
1∏p−1

j=1 m(xj)

p−1∏
i=1

∑
γ∈Γxi,xi+1

m(γ).

Remark 4.2. The assumption ∇ ·m(x) = 0 for x /∈ A,B allows us to write∑
y∈F(x)

m(x, y) = m(x) =
∑

y′∈E(x)

m(y′, x).

Remark 4.3. An equivalent way to define the extension of m is to define m(γ) on
extremal geodesics using equation (4.1) and to extend it to general p-uples as in Defini-
tion 3.6, the quantity m(γ) playing the role of Cγ .

Theorem 4.4. A W1-geodesic (ft) is a W1,+-geodesic if and only if there exist:

• A function m : E(G)→ R∗+ satisfying∇·m(x) = 0 for x /∈ A,B, extended to ordered
families of G

• A couple of non-negative functions a, b : G→ R+,

such that equations (3.18) and (3.19) hold.

Proof. The ’only if’ part of Theorem 3.19 is exactly Theorem 3.19. Indeed, the restric-
tion to E(G) of the function m constructed from a W1,+-geodesic (ft) satisfies ∇ ·m = 0

outside of A ∪ B, and using Definition 4.1 to extend this restriction to ordered fami-
lies allows us to recover the original m. Moreover, the functions a and b introduced in
Proposition 3.18 are non-negative: indeed a(x) is the constant term of the polynomial
Pt(x), which is non-negative for every t ∈ [0, 1], and the same goes for b(x).

Conversely, let (ft) be a curve satisfying the assumptions of Theorem 4.4. We define
the polynomial functions

Pt(z) :=
1

m(z)

∑
x≤z

m(x, z)a(x)
td(x,z)

d(x, z)!
, Qt(z) :=

1

m(z)

∑
y≥z

m(z, y)b(y)
td(z,y)

d(z, y)!
.

Direct calculations show that ft(z) = m(z)Pt(z)Q1−t(z). Moreover, using the defini-
tions of m(x, z) and m(z, y), one can prove easily that Pt and Qt satisfy the differential
equations

∂

∂t
Pt(z) =

∑
z0∈E(z)

m(z0, z)

m(z0
Pt(z) ,

∂

∂t
Qt(z) =

∑
z1∈F(z)

m(z, z1)

m(z1)
Qt(z).

This allows us to write ∂
∂tft(z) = −∇ · gt(z) where we define

gt(x0x1) := m(x0, x1)Pt(x0)Q1−t(x1).
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Similarly, defining ht(x0x1x2) := m(x0, x1,2 )Pt(x0)Q1−t(x2) we have ∂
∂tgt(x0x1) = −∇ ·

ht(x0x1). The positivity of Pt and Q1−t implies the positivity of gt(x0x1). Moreover, the
formula

m(x1)m(x0, x1, x2) = m(x0, x1)m(x1, x2)

implies
ft(x1)ht(x0x1x2) = gt(x0x1)gt(x1x2),

which shows that (ft) is a W1,+-geodesic.

The task of finding a W1,+-geodesic joining f0 to f1 is simplified by Theorem 4.4
because it turns it into the static problem of finding a coupling π between f0 and f1

such that π(x, y) := m(x,y)
d(x,y)!a(x)b(y)1x≤y for a couple of functions a(x), b(y) defined on G

and for a function m constructed in Definition 4.1.

Theorem 4.4 can be used to construct explicitly W1,+-geodesics, as shown in the
following two examples:

• On the graph G = Z, consider two probability distributions f0 and f1 defined by
f0(0) = f0(1) = 1/2 and f1(1) = f1(2) = 1/2. The W1-orientation associated to
f0, f1 is obtained by orienting the edges 0 → 1 and 1 → 2, the other edges being
discarded. The only oriented triple is 0 → 1 → 2. As there is only one extremal
geodesic, the function m(x, y) is necessarily a constant which can be set to 1. By
Theorem 4.4, we want to find two functions a, b : {0, 1} → R such that the measure
π on Z× Z defined by π(i, j) := a(i)b(j)

d(i,j)! for 0 ≤ i ≤ j ≤ 2 and π(i, j) := 0 elsewhere
is a coupling between f0 and f1. The only solutions are

((a(0), a(1), a(2)) = λ

(
1

2 +
√

2
,

1

2 +
√

2
, 0

)
, (b(0), b(1), b(2)) =

1

λ

(
0, 1,
√

2
)

for any λ > 0. The associated coupling then satisfies

π(0, 1) =
1

2 +
√

2
, π(0, 2) =

1

2 + 2
√

2
, π(1, 1) =

1

2 + 2
√

2
, π(1, 2) =

1

2 +
√

2
.

The only W1,+-geodesic joining f0 to f1 is finally obtained by considering binomial
mixtures with respect to π:

(ft(0), ft(1), ft(2)) =
1

2 + 2
√

2

(
(1− t)2 +

√
2(1− t), 2t(1− t) + 1 +

√
2, t2 +

√
2t
)
.

It is then possible to compute gt(01) = 1+
√

2(1−t)
2+
√

2
, gt(12) = 1+

√
2t

2+
√

2
, ht(012) = 1

1+
√

2

and check that we have gt(01)gt(12) = ft(1)ht(012).

• Let G = {0, 1}2 be the square graph. We denote a = (0, 0), b = (0, 1), c = (1, 0) and
d = (1, 1). We define the probability distributions f0, f1 by f0(a) = f0(b) = 1/2 and
f1(b) = f1(d) = 1/2. The W1-orientation is now obtained by orienting the edges

a→ b , a→ c , b→ d , c→ d.

There are now two extremal geodesics, which are a → b → d and a → c → d. The
functions m : E(G) → R∗+ satisfying ∇ ·m(x) = 0 are exactly the functions such
that m(ab) = m(bd) = A and m(ac) = m(cd) = B for two constants A,B > 0. The
function m is extended by m(a) = m(d) = A+B, m(b) = A, m(c) = B and

m(a, d) = m(a, b, d)+m(a, c, d) =
m(a, b)m(b, d)

m(b)
+
m(a, c)m(c, d)

m(c)
=
A2

A
+
B2

B
= A+B.
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As in the first example, we use Theorem 4.4 to associate to the function m a
coupling π between f0 and f1. After calculations, and setting θ := A

A+B , we find
that π satisfies

π(a, b) =

√
θ

2

1

1 +
√

2θ
= π(b, d) , π(a, d) =

1

2

1

1 +
√

2θ
.

We now use equation (3.19) to write:

(ft(a), ft(b), ft(c), ft(d)) =(
(1− t)2 +

√
2θ(1− t)

2(1 +
√

2θ)
,

2θt(1− t) + 1 +
√

2θ

2(1 +
√

2θ)
,

2(1− θ)t(1− t)
2(1 +

√
2θ)

,
t2 +

√
2θt

2(1 +
√

2θ)

)
.

From this we calculate:

(gt(ab), gt(bd), gt(ac), gt(cd)) =

(
2θ(1− t) +

√
2θ

2(1 +
√

2θ)
,

2θt+
√

2θ

2(1 +
√

2θ)
,

2(1− θ)(1− t)
2(1 +

√
2θ)

,
2(1− θ)t

2(1 +
√

2θ)

)
and:

ht(abd) =
θ

1 +
√

2θ
, ht(acd) =

1− θ
1 +
√

2θ
,

and we can check that both identities hold:

ht(abd)ft(b) = gt(ab)gt(bd) , ht(acd)ft(c) = gt(ac)gt(cd).

Theorem 4.4 is also used to prove the existence of W1,+-geodesics with prescribed
initial and final distributions:

Theorem 4.5. Let f0, f1 ∈ P(G) be finitely supported. Then there exists a W1,+-
geodesic between f0 and f1.

Proof. Let m : E(G) → R∗+ be a positive function with ∇ ·m(x) = 0 for x /∈ A,B, and

extended to ordered families of G. We set c(x, y) := m(x,y)
d(x,y)! . By Theorem 4.4, it suffices

to prove the existence of a coupling π ∈ Π1(f0, f1) such that π(x, y) = c(x, y)a(x)b(y)1x≤y
for a couple of positive a, b : G→ R.

We will adopt the following point of view on the set Π1(f0, f1):

Let D := {(x, y) ∈ G × G | x ≤ y}. In the Euclidean space RD, we consider the
particular families of vectors (j0,x)x∈G and (j1,y)y∈G defined by

∀(x, y) ∈ D , j0,x0
(x, y) := 1x=x0

, j1,y0(x, y) := 1y=y0 .

If for every (x, y) ∈ D we have x0 6= x then j0,x0 = 0.

If π ∈ RD, we have

π · j0,x0
:=
∑
y≥x0

π(x0, y) , π · j1,y0 :=
∑
x≤y0

π(x, y0).

In particular we have

Π+(f0, f1) := RD+ ∩

( ⋂
x0∈G

{π : π · j0,x0
= f0(x0)}

)
∩

 ⋂
y0∈G
{π : π · j1,y0 = f1(y0)}

 .

In other words, Π1(f0, f1) is seen as the intersection of the “quadrant” RD+ with an
affine subspace of RD directed by the vector subspace V ⊥, where V is the vector space
generated by the families (j0,x)x∈G and (j1,y)y∈G.

Depending on the dimension of Π1(f0, f1) as a subset of an affine subspace of RD ,
we will consider two cases:
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1. The dimension of Π1(f0, f1) is zero. In this case, the vector space V is RD. In
particular, the vector l ∈ RD, with components l(x, y) := π(x,y)

m(x,y) for every couple
x ≤ y ∈ D, can be written under the form

l(x, y) =
∑
x∈G

A(x)j0,x +
∑
y∈G

B(y)j1,y

for a unique couple of functions A,B defined on G. Considering the exponential of
each side proves that π can be written under the form π(x, y) := c(x, y)a(x)b(y)1x≤y
with a(x) := exp(A(x)) and b(y) := exp(B(y)).

2. The dimension of Π1(f0, f1) is positive. In this case we will use the fact that the in-
terior Π1(f0, f1) is non-empty and equal to the set of fully supported W1-couplings:

Π1(f0, f1)◦ = {π ∈ Π1(f0, f1) : ∀(x, y) ∈ D, π(x, y) > 0}.

The boundary of Π1(f0, f1) is thus described by:

∂Π1(f0, f1) = {π ∈ Π1(f0, f1) : ∃(x, y) ∈ D, π(x, y) = 0}.

We consider the mapping J : RD+ → R defined by

J(π) :=
∑

(x,y)∈D

π(x, y) log

(
π(x, y)

d(x, y)!

c(x, y)
− π(x, y)

)
, (4.2)

where the variables are denoted by π(x, y), for x ≤ y. The function J is clearly continu-

ous on RD+ and smooth on
(
R∗+
)D

. Moreover we have

∂J

∂π(x, y)
= log

(
π(x, y)

d(x, y)!

m(x, y)

)
. (4.3)

The Hessian of J is thus a diagonal matrix with coefficients
(

1
π(x,y)

)
(x,y)∈D

, so J is

strictly convex on
(
R∗+
)D

.

The set Π1(f0, f1) being compact, the infimum of J on Π1(f0, f1) is attained for some
coupling π̃. As J is strictly convex and Π1(f0, f1) is a convex subset of RD, we know that
π̃ is unique and that we have either π̃ ∈ ∂Π1(f0, f1) or π̃ ∈ Π1(f0, f1)◦ and in this second
case π̃ is a critical point for the restriction to Π1(f0, f1) of the application J .

Let us prove that π̃ ∈ Π1(f0, f1)◦: we consider a segment πt := (1− t)π0 + tπ1, where
π0 ∈ ∂Π1(f0, f1) and π1 ∈ Π1(f0, f1)◦. Each πt is in Π1(f0, f1), by convexity. The function
J(t) := J(πt) is continuous on [0, 1], smooth on ]0, 1[ and we have:

J ′(t) =
∑

(x,y)∈D

(π1(x, y)− π0(x, y)) log

(
πt(x, y)

d(x, y)!

m(x, y)

)
.

As π0 ∈ ∂Π1(f0, f1), there exists (x0, y0) ∈ D such that π0(x0, y0) = 0 and we have

lim
t→0

(π1(x0, y0)− π0(x0, y0)) log

(
πt(x0, y0)

d(x0, y0)!

m(x0, y0)

)
= −∞,

so we have limt→0 J
′(t) = −∞. The infimum of J on Π1(f0, f1) is thus not attained on

∂Π1(f0, f1).
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We have proven the existence of a unique critical point π̃ ∈ Π1(f0, f1)◦ for the re-
striction to Π1(f0, f1) of J . As Π1(f0, f1) is a subset of an affine space directed by the
vector subspace V ⊥, we know that

gradπ̃ J ∈ V.

In other terms,
gradπ̃ J =

∑
x∈G

A(x)j0,x +
∑
y∈G

B(y)j1,y

for a couple of functions A,B : G→ R. Due to the particular form taken by j0,x and j1,y,
equation (4) can be written in a simple way:

∀(x, y) ∈ D , gradπ̃(J)(x, y) = A(x) +B(y).

But equation (4.3) gives an explicit formula for gradπ̃(J)(x, y), which allows us to write,
for (x, y) ∈ D:

π̃(x, y)

c(x, y)
= exp (gradπ̃(J)(x, y))

= exp (A(x) +B(y)) = a(x)b(y),

where a(x) := exp(A(x)) and b(y) := exp(B(y)). Theorem 4.4 then gives the existence
of a W1,+-geodesic (ft) between f0 and f1 constructed from the function m and the
coupling π̃.

Remark 4.6. The particular form taken by W1,+-geodesics (see equation (3.19)) and
the minimisation problems associated by the functionals (4.2) and (2.26), are reminis-
cent of the theory of Entropic Interpolations, constructed in a recent series of articles by
Léonard. A survey of the main results of this theory is found in [Leo14]. A construction
of entropic interpolations and a discussion of the cases where they can be described as
mixtures of binomials is found in [Leo13a]. Another paper, see [Leo13b], addresses the
question of the convexity of entropy along such interpolations.

A major difference between these two kinds of interpolations lies in their construc-
tion: in order to define an entropic interpolation on a graph G, one requires an underly-
ing Markov chain to which is canonically associated a positive measure R01 on the set of
couples of vertices (x, y) ∈ G. On the other hand, the definition of a W1,+-interpolation
does not require an underlying Markov chain. It only relies on the "metric-measure"
properties of the graph G, endowed with its counting measure. However, to each
W1,+-geodesic is associated a function m on the ordered subsets of G, which is used
to construct sub-Markov kernels.

A complete understanding of the links between entropic interpolations and W1,+-
geodesics, and more especially between the measure R01 of entropic interpolations and
the function m of W1,+-geodesics, is still under investigation.
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