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Abstract

Let f : Rk → [r] = {1, 2, . . . , r} be a measurable function, and let {Ui}i∈N be a
sequence of i.i.d. random variables. Consider the random process {Zi}i∈N defined
by Zi = f(Ui, ..., Ui+k−1). We show that for all q, there is a positive probability,
uniform in f , that Z1 = Z2 = ... = Zq. A continuous counterpart is that if f : Rk → R,
and Ui and Zi are as before, then there is a positive probability, uniform in f , for
Z1, ..., Zq to be monotone. We prove these theorems, give upper and lower bounds
for this probability, and generalize to variables indexed on other lattices.

The proof is based on an application of combinatorial results from Ramsey theory
to the realm of continuous probability.
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1 Introduction

The objective of this note is to bring to the attention of probabilists an application
of tools from Ramsey theory to probabilistic questions on sliding window processes.
These results can be further extended with relative ease to other noise type variables
(see Section 4). Let f : Rn → R be a measurable function, and let {Ui}i∈N be a sequence
of i.i.d. random variables. Consider the random process Zf

i = f(Ui, ..., Ui+k−1). Such
processes are called k-block factors.

Our main observation is the following result dealing with functions f with finite
image.

Theorem 1.1. For every k, q, r ∈ N there exists p = pk,q,r > 0 such that for every
measurable f : Rk → {1, . . . , r} the following holds:

P(Zf
1 = Zf

2 = · · · = Zf
q ) > p

In other words, the probability of every k-factor to be constant on a discrete interval
of length q is bounded away from zero.

The particular case r = 2 which motivated our interest in the problem, is presented
in the following corollary.

∗Support: USA-Israeli BSF grant; ISF grant; Hermann Minkowski Minerva Center for Geometry at Tel Aviv
University; Israeli I-Core program; grant from the Israel Science Foundation.
†Tel Aviv University, Israel. E-mail: nogaa@tau.ac.il
‡Department of Mathematics, Weizmann Institute of Science, Israel. E-mail: ohad_f@netvision.net.il

http://dx.doi.org/10.1214/ECP.v19-3341
http://ecp.ejpecp.org/
mailto:nogaa@tau.ac.il
mailto:ohad_f@netvision.net.il


General sliding window processes

Corollary 1.2. For every k, q ∈ N there exists p = pk,q > 0 such that for every
measurable f : Rk → {0, 1} the following holds:

P(Zf
1 = Zf

2 = · · · = Zf
q ) > p

A more general corollary is the following continuous counterpart:

Theorem 1.3. For every k, q ∈ N there exists p = pk,q > 0 such that for every
measurable f : Rk → R, one of the following holds:

either P(Zf
1 < Zf

2 < · · · < Zf
q ) > p,

or P(Zf
1 = Zf

2 = · · · = Zf
q ) > p,

or P(Zf
1 > Zf

2 > · · · > Zf
q ) > p.

Proof of Theorem 1.3 using Theorem 1.1. Let k, q ∈ N, and let f : Rk → R. We define a
new function g : Rk+1 → {−1, 0, 1} by

g(x1, ..., xk+1) =


−1 f(x1, ..., xk) > f(x2, ..., xk+1)

0 f(x1, ..., xk) = f(x2, ..., xk+1)

1 f(x1, ..., xk) < f(x2, ..., xk+1)

By Theorem 1.1 there exists a positive p = pk+1,q−1,3 such that one of the following
holds:

either P(Zg
1 = Zg

2 = · · · = Zg
q−1 = −1) > p,

or P(Zg
1 = Zg

2 = · · · = Zg
q−1 = 0) > p,

or P(Zg
1 = Zg

2 = · · · = Zg
q−1 = 1) > p.

The theorem follows.

The decay of p as a function of k in the above theorems is very fast. In particular the
p which Theorem 1.1 yields is 1

Mk+q−1 for M satisfying

M = 1 + 22
. .

.
2

︸ ︷︷ ︸
k − 2 times

qr

.

Such a tower dependency is in fact essential as the following proposition shows:

Theorem 1.4. For all large enough k, there exists f : [0, 1]k → {0, 1} such that for
the process {Zf

i } defined as above with respect to uniform variables Ui on [0, 1] the
following holds:

P(Zf
1 = Zf

2 = · · · = Zf
2k) <

9k2

M
,

where

M = 22
. .

.
2

︸ ︷︷ ︸
k−2
times

dk/
√

8e

.
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2 Background and motivation

The research of k-block factors originated as a part of a wider attempt to understand
m-dependent processes. These generalize independent processes in discrete time, by
requiring that every two events which are separated by a time-interval with length
more than m will be independent. Such processes arise naturally as scaling limits in
renormalization theory (see for example [2]). Clearly, every k-block factor is (k − 1)-
dependent. For a while the converse was also conjectured to hold, to the extent that in
certain papers, results on k-block factors are presented as results on (k− 1)-dependent
processes, conditioned on the validity of the conjecture (see for example [6]).

While for Gaussian processes, every m-dependent process is indeed an m + 1-block
factor, we now know that for general m-dependent processes this is not true. Ibragimov
and Linnik have already stated in 1971 that there should exist a 1-dependent process
which is not a 2-block factor, but provided no example. The first example was published
by Aaronson and Gilat in [1] in 1987. Later, in [3], Burton, Goulet and Meester showed
that there exists a 1-dependent process which is not a k-block factor for any k.

One property of binary block factors, i.e., block factors with range {0, 1}, which have
been extensively studied, is the probability of observing r consecutive occurrences of
the value b in the process. This event is called an r-run of b-s. Janson, in [6], studied the
convergence of the statistics of runs of zeros in a k-factor in which every two ones are
guaranteed to be separated by k − 1 zeros. De Valk, in [8], computed the minimal and
maximal possible probability of a 2-run of ones given the marginal probability of seeing
the value one. Such studies give rise to the following natural question: is it possible to
create a binary k-block factor for some k which almost surely has neither an r-run of
zeros nor an r-run of ones? Here we show that this is impossible. The result is twofold.
On one hand, the probability of seeing an arbitrarily long run is bounded away from
zero. On the other hand, it can be extremely small.

3 Proof of the results

This section is dedicated to the proofs of Theorems 1.1 and 1.4. For this purpose we
shall use a classical result on de-Bruijn graphs (Theorem A), whose proof we present
for completeness sake. Throughout this section we shall set the distribution of {Ui} to
be uniform on (0, 1). Observe that this restriction does not limit the generality of our
proofs, since every random variable is the image of a uniform variable on (0, 1) through
some function.

For a directed graph G let χ(G), the chromatic number of G, denote the minimal
number of colors required to color the vertices of G so that no two adjacent vertices get
the same color.

Define D(k,m), the increasing k-dimensional de-Bruijn graph of m symbols, to be
the directed graph whose vertices are all the strictly increasing sequences of length
k with elements in {1, . . . ,m}, such that there is a directed edge from the sequence
{a1, ..., ak} to the sequence {b1, ..., bk} if and only if bi = ai+1 for all i ∈ {1, . . . , k − 1}.

We shall make use of the fact that D(k + 1,m) is the directed line-graph of D(k,m).
That is - that the map φ : (a1, ..., ak+1) → ((a1, ..., ak), (a2, ..., ak+1)) is a bijection,
mapping every vertex of D(k + 1,m) to an edge of D(k,m).

Theorem A. log2 χ (D(k,m)) ≤ χ (D(k + 1,m)).

Proof. Using the fact that D(k + 1,m) is the directed line-graph of D(k,m), we get that
a proper vertex coloring of D(k + 1,m) is equivalent to an edge coloring of D(k,m) in
which there is no monochromatic directed path of length 2. Thus, it is enough to show

ECP 19 (2014), paper 66.
Page 3/7

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3341
http://ecp.ejpecp.org/


General sliding window processes

that for every such coloring of E(D(k,m)) using q colors, there exists a proper coloring
of V (D(k,m)) using 2q colors.

Let C : E(D(k,m)) → {1, . . . , q} be an edge-coloring of D(k,m) as above. Construct
C ′ : V (D(k,m)) → P{1, . . . , q} using the subsets of {1, . . . , q} as colors in the following
way. Define C ′(u) = {C(u, v) : (u, v) ∈ E(D(k,m))}. To see that C ′ is a proper vertex
coloring, observe that if C ′(u) = C ′(v) and (u, v) ∈ E(D(k,m)) then C(u, v) ∈ C ′(v)

which implies the existence of (v, w) such that C(v, w) = C(u, v), in contradiction to our
premises.

Since clearly χ(D(1,m)) = m, we get that for k ≥ 2,

χ(D(k,m)) ≥ log
(k−1)
2 (m), (3.1)

where log
(k)
2 represents k iterations of the function log2.

We now use the following theorem by Chvátal [4].

Theorem B (Chvátal). Let D be a directed graph and let q, r ∈ N satisfy χ(D) > qr;
then any edge-coloring of D with r colors contains a monochromatic directed path of q
edges.

Combining this with the fact that D(k,m) is the directed line-graph of D(k − 1,m)

and with (3.1), we draw the following corollary.

Corollary 3.1. Given k, q, r ∈ N, let M be an integer such that log
(k−2)
2 (M) > qr. Then

any r-coloring of the vertices of D(k,M) contains a monochromatic directed path of q
vertices.

Using this we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let r ∈ N, let f : [0, 1]k → {1, . . . , r} be a measurable function,
Ui uniform on [0, 1] and {Zf

i = f(Ui, ..., Ui+k−1)}i∈Z. Choose M = M(k, q, r) as in
Corollary 3.1 to get:

P (X1 = · · · = Xq) =

∫ 1

0

dx1 · · ·
∫ 1

0

dxq+k−1 1I {f(x1, . . . , xk) = · · · = f(xq, . . . , xq+k−1)}

=

∫ 1

0

dy1 · · ·
∫ 1

0

dyM
(M − k − q + 1)!

M !

∑
1≤j1<...

<jq+k−1≤M

1I
{
f(yj1 , . . . , yjk) = · · · = f(yjq , . . . , yjq+k−1

)
}
.

where the equality in the second line is obtained by first picking M random i.i.d. values
in [0, 1] and then by assigning a random set of q + k − 1 of them to the variables
x1, . . . , xq+k−1 uniformly at random.

Now, for a given ȳ = (y1, . . . , yM ) ∈ [0, 1]M , the inner sum counts the number of
monochromatic directed paths in D(k,M) for the coloring

c(a1, . . . , ak) = f(ya1 , . . . , yak
).

This is an r-coloring, therefore by the above corollary, this inner sum is at least 1. We
conclude that

P (X1 = · · · = Xq) ≥ (M − k − q + 1)!

M !
>

1

Mk+q−1 ,

as required.
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3.1 Tower dependency is essential

This subsection contains the proof of Theorem 1.4.
For i > 1, the 2-tower function, ti, denotes the function satisfying ti(k) = 2ti−1(k), and

t1(k) = k. Also, recall the notation D(k,m) of the increasing k-dimensional de-Bruijn
graph of m symbols which is defined in the beginning of this section.

In our proof we use the following lemma of Moshkovitz and Shapira (see [7,
Corallary 3]).

Lemma C. There exists n0 ∈ N such that for any k ≥ 3, q ≥ 2 and n > n0, there exists an
edge coloring of D(k, tk−1(dnq−1/

√
8e)) with q colors which contains no monochromatic

path of n edges.

Recalling that edge colorings of D(k − 1,m) are the same as vertex colorings of
D(k,m), and plugging q = 2, n = k in Lemma C, we get the following useful proposition.

Proposition 3.2. For every large enough k, there exists a vertex 2-coloring of
D(k, tk−2(dk/

√
8e)) such that no path of length k is monochromatic.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. LetM = tk−2(dk/
√

8e), and let g be a vertex 2-coloring ofD(k,M)

by the colors {0, 1} such that no path of length k is monochromatic, which exists by
Proposition 3.2. Define h : {1, . . . ,M}k → {0, 1} as follows:

h(z1, . . . , zk) =


g(z1, . . . , zk) z1 < · · · < zk

g(zk, . . . , z1) z1 > · · · > zk

0 ∃i 6= j s.t. zi = zj

α(z2, z3) otherwise,

(3.2)

where α(x, y) takes the value 0 if x < y, and 1 otherwise.
Let z1, . . . , z3k be distinct integers in {1, . . . ,M}. We claim that the following is

impossible:
h(z1, . . . , zk) = h(z2, . . . , zk+1) = · · · = h(z2k+1, . . . , z3k). (3.3)

Assuming the contrary, we study two cases.
The first case is when z2, . . . , z2k is monotone. In this case h is equal to g along the

path
(z2, . . . , zk+1), (z3, . . . , zk+2), . . . , (zk+1, . . . , z2k)

(by the first or second case of the definition (3.2)). This is a contradiction, since g cannot
be constant along a path of length k in D(k,M).

In the complimentary case there exists a local extremum among z3, . . . , z2k−1,
i.e., there exists i ∈ {3, . . . , 2k − 1} such that either zi > max{zi−1, zi+1} or zi <

min{zi−1, zi+1}. Thus, the values

h(zi−2, zi−1, . . . , zi+k−3) = α(zi−1, zi), and

h(zi−1, zi, . . . , zi+k−2) = α(zi, zi+1)

are not equal, which also leads to a contradiction.
Now, observe that taking uniform distribution over 1, . . . ,M the probability that

(zi)i∈{1,...,3k} are distinct is greater than

3k−1∏
j=0

(
1− j

M

)
> 1− 9k2

M
.
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We may therefore define f : [0, 1]k → {0, 1} to be f(x1, . . . , xk) = h(dMx1e, . . . , dMxke)
and get

P(Zf
1 = Zf

2 = · · · = Zf
2k) <

9k2

M
as required.

4 Generalizations

Theorem 1.1 can be generalized with relative ease to factors of other spaces such
as the discrete lattice Zd or the infinite binary tree. In this section we prove a general
theorem which can be used to handle these cases and demonstrate its use. However,
unlike Theorems 1.1 and 1.3, the proof method described here often yields bounds
which are far from being tight.

Let k, q, r ∈ N and let Z = {Zv}v∈[q] be a collection of i.i.d. random variables. We
write Sk,q := {S ⊂ [q] : |S| = k}. Given a function f : Rk → [r] and {s1, . . . , sk} ∈ Sq such
that s1 < · · · < sk, we write fZ(S) := f(Zs1 , . . . , Zsk). The following is a generalization
of Theorem 1.1.

Theorem 4.1. There exists pk,q,r > 0 such that for any function f : Rk → [r] the
following holds.

P
(
∀S, S′ ∈ Sk,q we have fZ(S) = fZ(S′)

)
> p.

Proof. The proof of Theorem 4.1 is similar to the proof of Theorem 1.1. For any M > q

we write

P
(
∀S, S′ ∈ Sk,q we have f(S) = f(S′)

)
=

∫ 1

0

dx1 · · ·
∫ 1

0

dxq 1
{
∀ 1≤i1<i2<···<ik≤q

1≤j1<j2<···<jk≤q , f(xi1 , . . . , xik) = f(xj1 , . . . , xjk)
)}

=

∫ 1

0

dy1 · · ·
∫ 1

0

dyM
∑

1≤P1<...
<Pq≤M

(
M

q

)−1
1
{
∀ 1≤i1<···<ik≤q

1≤j1<···<jk≤q , f(yPi1
, . . . , yPik

) = f(yPj1
, . . . , yPjk

)
}
.

We then use Ramsey theorem for hypergraphs (which plays here the role of
Corollary 3.1.)

Theorem D (Ramsey, c.f., e.g., [5]). For all k, q, r ∈ N there exists large M ∈ N such
that for every r-coloring of the k-subsets of [M ] there exists a Y ⊂ [M ] of size q, which
satisfies that all k-subsets of Y are colored by the same color.

Viewing f as a coloring of the k-subsets of y1, ...yM , this allows us to deduce that for
large enough M there exists a subset Y = {yP1

, . . . , yPq
} such that f is monochromatic

on all the k-subsets of Y . We deduce that pk,q,r >
(
M
q

)−1
.

Applications.
We can use Theorem 4.1 to generalize Theorems 1.1 and 1.3 to other spaces, such

as the discrete lattice Zd or the infinite binary tree. Let us demonstrate this on the
following example. Let {Ux,y}x,y∈Z be a sequence of i.i.d. random variables. Given

k, r ∈ N and f : Rk2 → [r] we write

Zf
i,j = f


Ui,j Ui+1,j . . . Ui+k−1,j
Ui,j+1 Ui+1,j+1 . . . Ui+k−1,j+1

. . . . . . . . . . . .

Ui,j+k−1 Ui+1,j+k−1 . . . Ui+k−1,j+k−1

 .

We get the following.
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Corollary 4.2. Let k, q, r ∈ N. There exists p = pk,q,r such that for every function

f : Rk2 → [r], we have
P(∀i, j, i′, j′ ∈ [q] : Zf

i,j = Zf
i′,j′) > p

To see this we order the elements of [q+k−1]2 lexicographically, i.e, U(i, j) precedes
U(i′, j′) if and only if either i > i′ or i = i′ and j > j′. Under this order [q + k − 1]2 is
isomorphic to [(q + k − 1)2]. We then observe that f is always applied to elements
whose indices are ordered by this order. Theorem 4.1 implies that the probability that
f assigns the same value to all ordered subsets of size k2 of [q + k − 1]2 is bounded
away from zero uniformly for all functions f , which is a stronger claim than that of
Corollary 4.2.
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