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Abstract

We study stochastic perturbed Volterra equations of convolution type in an infinite
dimensional case. Our interest is directed towards the existence and regularity of
stochastic convolutions connected to the equations considered under some kind of
perturbations. We use an operator theoretical method for the representation of solu-
tions.
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1 Introduction

Since abstract linear Volterra equations are being used in many applications, it is
becoming increasingly desirable to study stochastic perturbations. To date there is
little published work on the conditions that an additive noise must satisfy to produce
solutions, or some kind of qualitative behavior like asymptotic stability, see Appleby [1],
[3] and Appleby-Freeman [2]. On the other hand, recently it has been demonstrated
that the use of one-parameter systems of bounded and linear operators can help to
analyze the existence of strong solutions to stochastic Volterra equations in the infinite
dimensional framework [10], [11].

In the current paper we study stochastic Volterra equations (SVEs) of the convolu-
tion type with some perturbations. Up till now, see Karczewska [8, 9] and Karczewska
and Lizama [10, 11], we have used the so-called resolvent approach which is a natu-
ral generalization of the semigroup approach usually used in the study of stochastic
differential equations considered in infinite dimensions. The semigroup methods are
a powerful tool. Unfortunately, this method can not be used in the study of stochas-
tic integral equations, particularly of stochastic Volterra equations considered in this
paper.

There are some generalizations of the classical theory of SDEs presented e.g. in
Da Prato and Zabczyk [6]. One of them is the resolvent approach mentioned above.
In Karczewska [12] several problems and difficulties arising during the study of SVEs
were discussed in details. Moreover, the semigroup and the resolvent case have also
been compared.
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Stochastic Volterra equations

The other generalization is that developed by K. Liu in the papers [14, 15, 16, 17],
where stochastic retarded differential equations (SRDEs) in Hilbert/Banach space are
studied. Liu has generalized classical results in a different direction than we have done.
He has studied SRDEs with some kind of retarding part, some times referred to as the
Hale type operator.

In his study, Liu [14] used two kinds of families of operators connected to the re-
tarded equations. First, he used the semigroup of operators generated by the linear
part of the equation. He proved the existence and uniqueness and a variation of con-
stants formula of mild solutions to the equations considered. This result was proved
by the contraction mapping theorem. Next, Liu constructed a new strong continuous
one-parameter family of bounded linear operators, called the fundamental solutions or
Green’s operators of the stochastic retarded equations. This family was then used to
define mild, weak and strong solutions to the SRDEs considered. Liu obtained relation-
ships between the mentioned solutions and found conditions under which mild solutions
became strong ones. In the remaining part of the paper, Liu obtained a very interesting
result, that is, the strong solution approximations for mild solutions of the systems un-
der consideration. This trick has played an important role, for instance, in stability and
controllability starting from A. Ichikawa [7], till now, see, e.g., Liu [13, 16] and refer-
ences therein. The paper [14] was finished with Burkholder-Davis-Grundy’s inequalities
for stochastic convolutions connected to the retarded equations studied. In general the
stochastic convolutions do not necessarily have continuous trajectories. Liu shown that
continuous versions of stochastic convolutions can be found by a strong approximation
procedure.

The methods developed in [14], have been used in [15, 16, 17]. In [15] a class of
retarded Langevin equations on Hilbert space were studied. In [16] neutral models
were considered. The paper [17] deals on some regularity results for mild solutions
of a class of linear functional equations on Hilbert space. The obtained results are
generalization of those given in [14].

Following the ideas from [8, 9, 10, 11], in this work we investigate strong solutions,
Itô-type formula and continuity of trajectories of mild solutions for a stochastic version
of the following perturbed linear Volterra equation

u(t) =

∫ t

0

[a(t−s)+(a∗k)(t−s)]Au(s) ds+

∫ t

0

b(t−s)u(s) ds+f(t), t ∈ [0, T ], T <∞, (1.1)

that is, the equation

X(t) = X0+

∫ t

0

[a(t−τ)+(a∗k)(t−τ)]AX(τ)dτ+

∫ t

0

b(t−τ)X(τ)dτ+

∫ t

0

Ψ(τ)dW (τ). (1.2)

Here A is a closed linear unbounded operator defined later in details and f is a con-
tinuous function on [0, T ]. We assume that a, k, b are real valued and locally integrable
functions defined on R+. X0 denotes a random variable, W is a cylindrical Wiener pro-
cess, and the process Ψ is W -integrable. Precise description of the equation (1.1) will
be given in section 4.

For a(t) = t and b(t) ≡ 0 the equation (1.1) is equivalent to

ü(t) = ḟ(t) +Au(t) + k ∗Au(t), t ≥ 0, (1.3)

u(0) = f(0), u̇(0) = ḟ(0),

where ü denotes second derivative w.r.t. time of u. This problem arises in several ap-
plied fields like viscoelasticity or heat conduction with memory, and in such applications
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Stochastic Volterra equations

the operator A typically is the negative Laplacian in H = L2(Ω), or the elasticity opera-
tor, the Stokes operator, or the biharmonic ∆2 operator, equipped with suitable bound-
ary conditions. We note that the recent paper [21] considered stability properties of the
solutions of (1.3) in Hilbert spaces, in particular the decay of polynomial or exponential

type. Typically, the kernel k is nonnegative nonincreasing, and it satisfies

∫ ∞
0

k(t)dt < 1;

the latter is necessary for the well-posedness of the problem, see [21].
For the case a(t) ≡ 1, the equation (1.1) is equivalent to

u̇(t) = ḟ(t) +Au(t) + k ∗Au(t) + db ∗ u(t), t ≥ 0, (1.4)

u(0) = f(0),

where u̇ and ḟ denote first derivatives w.r.t. time of u and f , respectively. Note that
[20, Theorem 1.2, p.40] states that (1.4) is well-posed if and only if A generates a C0-
semigroup in H.

The problem

u̇(t) = Au(t), t ≤ 1,

u̇(t) = Au(t) +Au(t− 1), t > 1, (1.5)

u(0) = x

is of the form (1.1) with b(t) ≡ 0 and k(t) = δ0(t − 1), a(t) ≡ 1. From [20, Example
1.1 p.41] it is known that (1.5) is well-posed if and only if A generates an analytic C0-
semigroup in H.

Deterministic convolution type Volterra equations with k(t) ≡ 0 and b(t) ≡ 0, that is
equations of the form

u(t) = f(t) +

∫ t

0

a(t− s)Au(s) ds, t ∈ [0, T ], (1.6)

considered in a more general context of a Banach space, have been the subject of many
papers; see e.g. [20] and references therein. Stochastic versions of the equation (1.6)
in a separable Hilbert space have been studied, among others, in [8], [9], [10] and [11].
However, to the best of our knowledge, the study of stochastic versions of the perturbed
Volterra equation (1.1) remains an open problem.

As we have already written, our approach to SVEs and results are basing on the
different tool. Our starting point is a family of so-called resolvent operators, or simply
resolvents. Usually such family consists of operators generated by the linear operator
and kernel function. In this paper the resolvent, denoted by R(t), t ≥ 0, is generated by
the foursome (A; a, b, k), where A is an operator and a, b, k are kernel functions which
occur in the SVE under consideration.

In the paper we define mild, weak and strong solutions to the Volterra equation
studied and state some relationships between them. Particularly, we give sufficient
conditions under which the mild solution becomes the strong one. We show this using
the theorem on approximation of resolvents. Next, we discuss the Itô-type formula
for the perturbed Volterra equation considered. This formula will be a good starting
point to the study of stability of the mild solution to the Volterra equation studied.
Then we provide continuity of trajectories of stochastic convolution corresponding to
the particular form of the equation. We did this result by conducting the stochastic
convolution to some formula easier for the study and without the convolution.

The paper is organized as follows. First, in section 2, we recall some known facts
on the equation (1.1) in the setting of Banach spaces. In section 3 we provide sufficient
conditions for the existence of the resolvent family for (1.1) and we give our first main
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theorem on approximation of resolvents. This result will be used in the remaining part
of the paper where we study the stochastic equation (1.2) in Hilbert spaces. In section 4
our principal results provide sufficient conditions which guarantee existence of strong
solution to stochastic perturbed Volterra equation (1.2). In section 5 we discuss the Itô-
type formula and its application to the exponential stability of stochastic convolution
introduced earlier. Section 6 deals with the continuity of trajectories of mild solution
to the stochastic perturbed Volterra equation (1.2). Section 7 contains the proof of
Theorem 6.1.

2 Preliminaries

In the paper we use an operator approach to the perturbed equation (1.1) intro-
ducing a family of operators corresponding to (1.1) called resolvent, see the definition
below. We shall assume that the equation (1.1) is well-posed. The concepts of solutions,
well-posedness and resolvent to (1.1) are extensions of that introduced for the equation
(1.6); see [20].

In this section A is a closed linear unbounded operator defined in a Banach space B
with a dense domain D(A) equipped with the graph norm.

Definition 2.1. A family (R(t))t≥0 of linear bounded operators defined in the space B
is called a resolvent to the equation (1.1) if the following conditions are fulfilled:

1. R(t) is strongly continuous on R+ and R(0) = I;

2. R(t) commutes with A, that is, R(t)(D(A)) ⊂ D(A) and for all x ∈ D(A), t ≥ 0,
AR(t)x = R(t)Ax ;

3. for all x ∈ D(A), t ≥ 0, the following resolvent equation holds

R(t)x = x+

∫ t

0

[a(t− s) + (a ∗ k)(t− s)]AR(s)x ds+

∫ t

0

b(t− s)R(s)x ds.

Let us recall now some interesting results about the resolvent for the equation (1.1).

Theorem 2.2. (see, e.g. Theorem 1.2 [20])
Let k, b ∈ BVloc(R+;R). Then (1.1) is well-posed iff (1.6) is well-posed. Also, the resol-
vent R(t), t ≥ 0, of (1.1) is differentiable iff the resolvent S(t), t ≥ 0, of (1.6) has this
property.

Corollary 2.3. (see, e.g. Corollary 1.3 [20])
Suppose k, b ∈ W 1,1

loc (R+;R) and let S(t), t ≥ 0, be the resolvent for (1.6). Then the
resolvent R(t), t ≥ 0, of (1.1) admits the decomposition

R(t) = S(t) + S̃(t), t ≥ 0,

where S̃(t) is continuous in B(B) for all t ≥ 0. If S(t), t ≥ 0, is also differentiable then
˙̃S ∈ L1

loc(R+;B(D(A), B)).

Corollary 2.4. (see, e.g. Corollary 1.4 [20])
Assume that k, b ∈ BVloc(R+;R). Then (1.4) is well-posed iffA generates a C0-semigroup
in B. If this is the case, the resolvent for (1.4) is differentiable.

Corollary 2.5. (see, e.g. Corollary 1.5 [20])
Suppose k, b ∈ W 1,1

loc (R+;R) and k ∈ BVloc(R+;R). Then (1.3) is well-posed iff A gener-
ates a cosine family in B. If this is the case, the resolvent for (1.3) is differentiable.

Corollary 2.6. (see, Example 1.1 p.41 [20])
The problem (1.3) admits a resolvent iff A generates an analytic C0-semigroup in B.
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3 Representation of the solution and qualitative properties

Concerning representation of the solution to the equation (1.1) we have the following
result.

Theorem 3.1. Assume that the equation (1.1) admits a resolvent R(t), t > 0. Then its
solution can be represented by

v(t) =
d

dt

∫ t

0

R(t− s)f(s)ds = R(t)f(0) +

∫ t

0

R(t− s)ḟ(s)ds, t ≥ 0, (3.1)

whenever f ∈W 1,1(R+;B).

Proof. Note that (1∗v)(t) = (R∗f)(t) and hence from properties of the finite convolution,
and definition of R, we obtain

1 ∗ (a ∗Av + a ∗ k ∗Av) = Aa ∗ (1 ∗ v) +Aa ∗ k ∗ (1 ∗ v)

= Aa ∗R ∗ f +Aa ∗ k ∗R ∗ f
= (Aa ∗R+Aa ∗ k ∗R) ∗ f
= (R− I − b ∗R) ∗ f
= R ∗ f − 1 ∗ f − b ∗R ∗ f
= 1 ∗ v − 1 ∗ (b ∗ v)− 1 ∗ f
= 1 ∗ (v − b ∗ v − f),

that is∫ t

0

(a ∗Av)(s)ds+

∫ t

0

(a ∗ k ∗Av)(s)ds =

∫ t

0

v(s)ds−
∫ t

0

(b ∗ v)(s)ds−
∫ t

0

f(s)ds, t ≥ 0.

By differentiation with respect to t on both sides of the above identity, we obtain the
desired representation.

Corollary 3.2. Assume that the equation (1.1) admits a differentiable resolvent R(t),
t ≥ 0. Then the solution can be represented by

v(t) = f(t) +

∫ t

0

Ṙ(t− s)f(s)ds, t ≥ 0. (3.2)

Next we study the approximation of R(t), t ≥ 0, by a sequence of bounded linear
operators involving the unbounded operator A.

Let α(t) and β(t) be the unique solutions of the scalar convolution equations

α(t) = (α ∗ b)(t) + (a ∗ k)(t) + a(t), t ≥ 0, (3.3)

and
β(t) = 1 + (β ∗ b)(t), t ≥ 0, (3.4)

respectively. Note that β(0) = 1. Taking Laplace transform, whenever exists, we obtain
the following identities

α̂(λ) =
â(λ)(1 + k̂(λ))

1− b̂(λ)
(3.5)

and

β̂(λ) =
1

λ(1− b̂(λ))
for all Re(λ) large enough. (3.6)

We shall assume the following hypotheses:
(Hα) The solution of the equation (3.3) is nonnegative, nonincreasing and convex.
(Hβ) The solution of the equation (3.4) is differentiable.
Let us note that there are several kernel functions fulfilling the above conditions.
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Example 3.3. Consider the equation (1.1) with the kernel functions a(t) ≡ 1,

b(t) ≡ 0 and k(t) =

{
2t− 2 if t ≤ 1;

0 if t > 1.

Then α(t) =

{
(t− 1)2, if t ≤ 1;

0, if t > 1,
and β(t) ≡ 1 verify the hypotheses (Hα) and

(Hβ).

Example 3.4. Consider the equation (1.1) with the kernel functions b(t) ≡ 0, a(t) = p,

where p > 0 and k(t) = −e−qt, where pq ≥ 1. Then α(t) = p
q e
−qt + p(1 − 1

q ), q ≥ 1.
Moreover, α̇(t) < 0 and α̈(t) > 0 implying that hypotheses (Hα) and (Hβ) are verified.

Comment Under the hypothesis (Hα) it follows from [20, Proposition 3.3, p.72] that
α(t) is 1-regular and of positive type.

Now, we are ready to formulate the main result of this section.

Theorem 3.5. Assume that A is the generator of a bounded analytic semigroup on B.
Suppose that the hypothesis (Hα) and (Hβ) are satisfied. Then the equation (1.1)

admits a resolvent (R(t))t≥0 on B. Additionally, there exist bounded operators An and
corresponding resolvent families Rn(t) satisfying ||Rn(t)|| ≤ Mβ(t) for all t > 0, n ∈ N,
such that

Rn(t)x→ R(t)x as n→ +∞ (3.7)

for all x ∈ B, t ≥ 0. Moreover, the convergence is uniform in t on every compact subset
of R+.

Proof. Since the function α(t), t > 0, is of positive type, we obtain by [20, Corollary 3.1,
p.69] that 1

α̂(λ) ∈ ρ(A) for all Re λ > 0. Moreover, there is a constant M ≥ 1 such that

H(λ) := (I − α̂(λ)A)−1/λ satisfies

||H(λ)|| ≤ M

|λ|
for all Re λ > 0.

From the above, and since α(t) is 1-regular, we get by [20, Theorem 3.1 p.73] that A
generates a strongly continuous family (S(t))t≥0 ⊂ B(B) such that

Ŝ(λ) = H(λ), Re λ > 0.

Additionally, there is a constant C ≥ 1 such that the estimate ||S(t)|| ≤ C, t > 0, is valid.
Let x ∈ B and define

R(t)x := S(t)x+

∫ t

0

β̇(t− s)S(τ)xdτ, t > 0.

Then we can see that R(t), t > 0, is a resolvent for the equation (1.1).
On the other hand, since A generates a bounded analytic semigroup, the resolvent

set ρ(A) of the operator A contains the ray (0,∞) and

||R(λ,A)k|| ≤ M

|λ|k
for λ > 0, k ∈ N.

Define
An := nAR(n,A) = n2R(n,A)− nI, n > 0,

the Yosida approximation of A. Then

||etAn || = e−nt||en
2R(n,A)t|| ≤ e−nt

∞∑
k=0

n2ktk

k!
||R(n,A)k|| ≤M e(−n+ n2

n )t = M.
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Hence, for n > 0 we obtain
||eAnt|| ≤M, t ≥ 0. (3.8)

Since each An is bounded and hence generates bounded analytic semigroups eAnt veri-
fying (3.8), it follows that there exist uniformly continuous families (Sn(t))t≥0 such that
||Sn(t)|| ≤ M , see [20, Corollary 3.1 p.69 and Theorem 3.1 p.73]. Then, for each n ∈ N
and x ∈ B the formula

Rn(t)x = Sn(t)x+

∫ t

0

β̇(t− s)Sn(τ)xdτ, t > 0,

defines corresponding resolvent families such that

||Rn(t)|| ≤M +M

∫ t

0

β̇(s)ds = Mβ(t). (3.9)

Now, we recall the fact that R(µ,An)x→ R(µ,A)x as n→∞ for all µ sufficiently large,
from which it follows that

β̂(λ)(I − α̂(λ)An)−1x→ β̂(λ)(I − α̂(λ)A)−1x

as n→∞ for all λ sufficiently large. Then the uniform stability condition (3.9) and [18,
Theorem 2.2] implies that

Rn(t)x→ R(t)x as n→ +∞

for all x ∈ B, uniformly for t on every compact subset of R+ .

4 Stochastic convolution

Now, we are able to study the stochastic version of the equation (1.1) in a separable
Hilbert space (H, 〈·, ·〉H). Let (Ω,F , (F)t≥0, P ) denote a stochastic basis. We consider
the following stochastic Volterra equation

X(t) = X0 +

∫ t

0

[a(t− τ) + (a ∗ k)(t− τ)]AX(τ)dτ (4.1)

+

∫ t

0

b(t− τ)X(τ)dτ +

∫ t

0

Ψ(τ)dW (τ), t ≥ 0.

In the equation (4.1), X0 is a F0-measurable H-valued random variable and the kernel
functions a, k, b are as previously. The operator A is a closed linear unbounded with the
dense domain D(A) ⊂ H equipped with the graph norm defined as follows: |h|D(A) :=

(|h|2H + |Ah|2H)
1
2 for h ∈ D(A). Here | · |H denotes the norm in the space H defined by

the inner product 〈·, ·〉H .
W is a cylindrical Wiener process on another Hilber space U with the strictly positive

covariance operator Q. Let the subspace U0 of U be defined by U0 := Q
1
2 (U), with the

norm |u|U0
:= |Q 1

2u|U for u ∈ U0. We denote by L0
2 := L2(U0, H) the space of Hilbert-

Schmidt operators acting from U0 into H.
The process Ψ belongs to the space N 2(0, T ;L0

2), that is the space of all operator
valued stochastic processes

Φ : [0, T ]× Ω→ L2(U0, H) (4.2)

such that

‖Φ‖T :=

[
E

(∫ T

0

‖Φ(t)‖2L2(U0,H) dt

)] 1
2

<∞ . (4.3)
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For all u ∈ U0, the process (Φ(t)u), t ∈ [0, T ], is an H-valued and Ft-adapted stochastic
process.

In what follows, we prove some results on stochastic convolution corresponding to
the equation (4.1). As we have already written, we shall use the resolvent approach to
the equation (4.1).

For definitions of strong, weak and mild solutions to stochastic Volterra equations
of convolution type without perturbation we can refer to [9] or [11]. The concepts of
solutions have obvious extensions to the stochastic equation (4.1). For the reader’s
convenience we formulate them below.

Definition 4.1. An H-valued predictable process X(t), t ∈ [0, T ], is said to be a strong
solution to (4.1), if X has a version such that P (X(t) ∈ D(A)) = 1 for almost all
t ∈ [0, T ]; for any t ∈ [0, T ]∫ t

0

|[a(t− τ) + (a ? k)(t− τ)]AX(τ)|H dτ <∞, P − a.s. (4.4)

and for any t ∈ [0, T ] the equation (4.1) holds P − a.s.

Let A∗ denote the adjoint of the operator A with the dense domain D(A∗) ⊂ H and
the graph norm | · |D(A∗) defined as |h|D(A∗) := (|h|2H + |A∗h|2H)

1
2 , for h ∈ D(A∗). Then

the space (D(A∗), | · |D(A∗)) is a separable Hilbert space.

Definition 4.2. An H-valued predictable process X(t), t ∈ [0, T ], is said to be a weak
solution to (1.1), if P (

∫ t
0
|[a(t − τ) + (a ? k)(t − τ)]X(τ)|Hdτ < ∞) = 1 and if for all

ξ ∈ D(A∗) and all t ∈ [0, T ] the following equation holds

〈X(t), ξ〉H = 〈X0, ξ〉H + 〈
∫ t

0

[a(t− τ) + (a ? k)(t− τ)]X(τ) dτ,A∗ξ〉H (4.5)

+ 〈
∫ t

0

b(t− τ)X(τ)dτ, ξ〉H + 〈
∫ t

0

Ψ(τ) dW (τ), ξ〉H , P−a.s.

In the remaining part of the paper R(t), t ≥ 0, will denote the resolvent operators
(the resolvent) to the equation (1.1).

Definition 4.3. An H-valued predictable process X(t), t ∈ [0, T ], is said to be a mild
solution to the stochastic Volterra equation (4.1), if

E

(∫ t

0

||R(t− τ)Ψ(τ)||2L0
2
dτ

)
<∞ for t ≤ T (4.6)

and, for arbitrary t ∈ [0, T ],

X(t) = R(t)X0 +

∫ t

0

R(t− τ)Ψ(τ) dW (τ), P − a.s. (4.7)

Then the stochastic convolution corresponding to (4.1) is defined as

WΨ(t) :=

∫ t

0

R(t− τ)Ψ(τ)dW (τ), t ≥ 0. (4.8)

Using the same arguments like in the papers [8, 9], we can prove the following
results analogous to those obtained previously for the equation without perturbations.

Proposition 4.4. For any process Ψ ∈ N 2(0, T ;L0
2), the process WΨ(t), t ≥ 0, given by

(4.8) has a predictable version.
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Proposition 4.5. Let Ψ ∈ N 2(0, T ;L0
2). Then the process WΨ(t), t ∈ [0, T ], defined by

(4.8) has square integrable trajectories.

Proposition 4.6. If Ψ ∈ N 2(0, T ;L0
2), then the stochastic convolution WΨ(t), t ∈ [0, T ],

fulfills the equation (4.5).

Corollary 4.7. Assume that A is a bounded operator. If Ψ belongs to N 2(0, T ;L0
2) then

WΨ(t) =

∫ t

0

[a(t− τ) + (a ? k)(t− τ)]AWΨ(τ)dτ +

∫ t

0

b(t− τ)WΨ(τ)dτ

+

∫ t

0

Ψ(τ)dW (τ), P − a.s. (4.9)

Theorem 4.8. Suppose that the assumptions of Theorem 3.5 hold. When Ψ, AΨ ∈
N 2(0, T ;L0

2), and Ψ(·, ·)(U0) ⊂ D(A), P-a.s., then the equation (4.1) has a strong solu-
tion. Precisely, the convolution WΨ(t), t ∈ [0, T ], defined by (4.8) is the strong solution
to (4.1).

Comment The above results can be read as follows. Proposition 4.6 says that the
stochastic convolution WΨ(t), t ∈ [0, T ], is the weak solution to (1.1). Moreover, under
some additional assumptions, by Theorem 4.8, the convolution WΨ(t), t ∈ [0, T ], is even
strong solution to the equation (1.1). Because proofs of that facts are very similar to
those in [8, 9], we omit them.

Remark Let us note that we have more general result. In fact, the process

XΨ(t) := WΨ(t) +R(t)X0, t ≥ 0,

when X0 ∈ D(A), satisfies the equation (4.5). It comes from the resolvent equation in
Definition 2.1.

5 Itô-type formula

In this section we derive the Itô-type formula to the perturbed Volterra equation
(4.1) where we take X0 nonrandom for simplicity.

Let us provide, using standard argumentation, an analogue of the Itô formula for the
stochastic Volterra equation (4.1).

Proposition 5.1. (Analogue of the Itô formula)
Suppose that the function F (t, x) : [0, T ] ×H → H is continuous and has the following
properties:

1. F (t, x) is differentiable in t;

2. F (t, x) is twice Fréchet differentiable in x and Fx(t, x)x ∈ H, Fxx(t, x)(x1, x2) ∈ H,
are continuous on [0, T ]×H for all x, x1, x2 ∈ H.

The process X(t), t ≥ 0, is given by the equation (4.1).

Then the process Z(t) := F (t,X(t)), t ∈ [0, T ], fulfills the following equation

dZ(t) =

[
Ft(t,X(t)) +

〈
Fx(t,X(t)),

(∫ t

0

ã(t− τ)X(τ)dτ

)′〉
H

(5.1)

+
1

2
Tr Ψ(t)Q(Ψ(t))∗Fxx(t,X(t))

]
dt+ 〈Fx(t,X(t)),Ψ(t)dW (t)〉H , t ≥ 0,
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where(∫ t

0

ã(t− τ)X(τ)dτ

)′
:=

∫ t

0

[ȧ(t− τ) + ((a ∗ k)(t− τ))′]AX(τ) dτ + [a(0) + (a ∗ k)(0)]AX(t)

+

∫ t

0

ḃ(t− τ)X(τ) dτ + b(0)X(t). (5.2)

In (5.2) all kernel functions a, b, k are like in the equation (4.1).

Now, we are ready to apply the Itô-type formula (5.1).
Let v : H → R be a function satisfying the following conditions:

v(x) is twice Fréchet differentiable and v(x), vx(x), and vxx(x) are continuous in R1, H

(5.3)
and L(H), respectively;

|v(x)|+ |x| |vx(x)|+ |x|2 |vxx(x)| ≤ c|x|p for some p ≥ 2 and c > 0; (5.4)

Lv(x) + αv(x) ≤ 0 for all x ∈ D(A); (5.5)

where α is a real number and

Lv(x) := 〈vx(x), Ax+ f(x)〉+
1

2
TrG(x)WG∗(x) vxx(x).

The formula (5.1) seems to be a good starting point in the study of stability of mild
solution to (4.1).

Conjecture 5.2. Assume that the conditions (5.3), (5.4) and (5.5) hold. Then the mild
solution X(t), t ≥ 0, to the equation (4.1) satisfies the inequality

E v(X(t)) ≤ e−αtM v(X0). (5.6)

The idea of the proof bases on Ichikawa’s scheme, see [7, Theorem 3.1], and on
Theorem 3.5 and Proposition 5.1.

The stability of mild solution to the equation (4.1) will be studied in details in a future
paper.

6 Continuity of trajectories of stochastic convolution

In this section we give sufficient conditions for the continuity of trajectories of the
stochastic convolution corresponding to the equation

X(t) = X0 +

∫ t

0

[a(t− τ) + (a ? k)(t− τ)]AX(τ)dτ +W (t), (6.1)

t ∈ [0, T ], when the covariance operator Q of the Wiener process W is nuclear one, that
is, TrQ < ∞. The stochastic convolution corresponding to the equation (6.1) has the
form

WR(t) :=

∫ t

0

R(t− τ)dW (τ), t ∈ [0, T ], (6.2)

where R(t), t ≥ 0, denotes here the resolvent family for the equation (1.1) in the case
b(t) ≡ 0.

The study of continuity of trajectory of stochastic convolution is rather complicated.
In the semigroup case, see, e.g. [6], two methods can be used. The first, direct method,
bases on the so-called factorization method developed in [5]. Unfortunately, this method
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cannot be used in the resolvent case. The second, indirect method, relies on results for
regularity of solutions of an appropriate Cauchy problem connected to the stochastic
convolution considered.

In this paper we use the second method. In the following theorem we conduct the
convolution (6.2) to the formula without the stochastic integral. We substitute the con-
volution (6.2) by the formula (6.3) below with a Bochner type integral.

Theorem 6.1. Assume that the operator A in the equation (6.1) is the generator of an
analytic semigroup T (t), t ∈ [0, T ]. Let the kernel functions a(t), k(t), t ∈ [0, T ], satisfy
assumptions of Theorem 3.5, and, additionally, ȧ ∈ L1

loc([0, T ];R). Let R(t), W (t) and
WS(t), t ∈ [0, T ], be like above. Then the following formula holds

WR(t) = cA

∫ t

0

T (t− τ)× (6.3)

×
[∫ τ

0

[ȧ(τ − σ) + [(a ? k)(t− τ)]′]WR(σ)dσ + cW (τ)

]
dτ +W (t),

t ∈ [0, T ], where c = a(0) is a constant.

Proof of Theorem 6.1 is given in section 7.
Comment One can see that the formula (6.3) is more complicated than the analogous
one for the semigroup case. In fact, if a(t) = 1 and k(t) ≡ 0, the formula (6.3) reduces
to

WT (t) = A

∫ t

0

T (t− s)W (s)ds+W (t), t ∈ [0, T ] ,

where T (t), t ≥ 0, denotes the semigroup generated by A.
For our convenience we will assume in the sequel that c ≡ a(0) = 1.

Lemma 6.2. Suppose that the assumptions of Theorem 6.1 hold and a(0) = 1. Define
the process

Y (t) :=

∫ t

0

T (t− s)
[
W̃ (s) +W (s)

]
ds, t ∈ [0, T ] , (6.4)

where

W̃ (s) :=

∫ s

0

ȧ(s− σ)WR(σ) dσ, s ∈ [0, T ] .

Then
WR(t) = AY (t) +W (t), t ∈ [0, T ]. (6.5)

Additionally, Y belongs to C1([0, T ];D(A)), P− a.s., and

dY (t)

dt
= AY (t) +

[
W̃ (t) +W (t)

]
, t ∈ [0, T ] . (6.6)

Proof. From the definition (formula (6.4)) of the process Y and properties of convolu-
tion, Y ∈ C1([0, T ];D(A)), P−a.s.Next, from the Leibniz rule and property of semigroup
we obtain

dY (t)

dt
=

∫ t

0

dT (t− s)
dt

[
W̃ (s) +W (s)

]
ds+ T (0)

[
W̃ (t) +W (t)

]
= A

∫ t

0

T (t− s)
[
W̃ (s) +W (s)

]
ds+

[
W̃ (t) +W (t)

]
= AY (t) +

[
W̃ (t) +W (t)

]
, t ∈ [0, T ].
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Now, we are able to use regularity results of solutions for the non homogeneous
Cauchy problem, due to Da Prato and Grisvard [4], to the problem (6.5).

We will need the following space related to the so-called interpolation theory, see,
e.g., [19]. It will be denoted DA(α,∞) for α ∈ (0, 1).

For reader’s convenience we recall the definition of that space. For any α ∈ (0, 1),
we set

|x|α,∞ := sup
t>0

|T (t)x− x|
tα

, x ∈ H.

We denote by DA(α,∞) the Banach space of all x ∈ H such that |x|α,∞ < ∞, endowed
with the norm | · |H + | · |α,∞. By the interpolation theory, DA(α,∞) is an invariant
space of T (t), t > 0, and the restriction of T (t) to DA(α,∞) generates a C0-semigroup
in DA(α,∞).

Hence, we can deduce the following result from the formula (6.5).

Theorem 6.3. Let us take the same assumptions as in Theorem 6.1. If both processes
Y and W have continuous trajectories in the space DA(α,∞), then the stochastic con-
volution WR(t), t ∈ [0, T ], has continuous trajectories in DA(α,∞).

7 Appendix

Proof. of Theorem 6.1
Because the formula (4.9) holds for any bounded operator, then it holds for the Yosida
approximation An, n ∈ N, of the operator A and in our case it has the form

WRn(t) =

∫ t

0

[a(t− τ) + (a ? k)(t− τ)]AnW
Rn(τ) dτ +W (t), t ∈ [0, T ]. (7.1)

In the formula (7.1), Rn(t), t ≥ 0, is the resolvent corresponding to the equation (6.1)
with the operator An and

WRn(t) :=

∫ t

0

Rn(t− τ) dW (τ) t ∈ [0, T ] . (7.2)

Let us denote

Zn(t) :=

∫ t

0

[a(t− τ) + (a ? k)(t− τ)]WRn(τ) dτ, t ∈ [0, T ] . (7.3)

Then, from the Leibniz rule

Z ′n(t) =

(∫ t

0

a(t− τ)WRn(τ) dτ

)′
+

(∫ t

0

(a ? k)(t− τ)WRn(τ) dτ

)′
=

∫ t

0

ȧ(t− τ)WRn(τ) dτ + a(0)WRn(t) (7.4)

+

∫ t

0

[(a ? k)(t− τ)]′WRn(τ) dτ, t ∈ [0, T ] .

From (7.1) and (7.3), we can write

WRn(t) = An Zn(t) +W (t), t ∈ [0, T ] .

Let us denote

W̃Rn(t) :=

∫ t

0

[ȧ(t− τ) + [(a ? k)(t− τ)]′]WRn(τ) dτ .

ECP 19 (2014), paper 29.
Page 12/14

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3365
http://ecp.ejpecp.org/


Stochastic Volterra equations

From (7.4), if a(0) 6= 0, we have

WRn(t) =
1

a(0)

[
Z ′n(t)− W̃Rn(t)

]
.

So, we obtained

Z ′n(t)− W̃Rn(t) = a(0) [An Zn(t) +W (t)], t ∈ [0, T ].

And next
Z ′n(t) = a(0)An Zn(t) + W̃Rn(t) + a(0)W (t), t ∈ [0, T ].

So, we have

Z ′n(t) = cAn Zn(t) +
[
W̃Rn(t) + cW (t)

]
, where c = a(0).

From the above formula

Zn(t) =

∫ t

0

ec(t−τ)An

[
W̃Rn(τ) + cW (τ)

]
dτ, t ∈ [0, T ] ,

because Zn(0) = 0.
From the formula (7.1),

WRn(t) = An Zn(t) +W (t), t ∈ [0, T ] , or

WRn(t) = AJnZn(t) +W (t), t ∈ [0, T ],

where Jn := nR(n,A).
So, we obtain

WRn(t) = AJn

∫ t

0

ec(t−τ)An

[
W̃Rn(τ) + cW (τ)

]
dτ +W (t), t ∈ [0, T ].

Basing on Theorem 3.5, properties of the Yosida approximation An of the operator A,
and the Lebesgue dominated convergence theorem, we have

lim
n→∞

Jn x = x, for any x ∈ H;

lim
n→∞

An x = Ax, for any x ∈ D(A);

lim
n→∞

etAn x = T (t)x, for any x ∈ H;

and lim
n→∞

sup
t∈[0,T ]

E
∣∣WRn(t)−WR(t)

∣∣2
H

= 0.

Because the operatorA is closed, we can conclude that the integral

∫ t

0

T (t−τ)
[
W̃R(τ) + cW (τ)

]
dτ

belongs to the domain D(A).
Hence, passing to the limit with n→ +∞, we obtain

WR(t) = cA

∫ t

0

T (t− τ)
[
W̃R(τ) + cW (τ)

]
dτ +W (t), t ∈ [0, T ],

where

W̃R(τ) =

∫ τ

0

[ȧ(τ − σ) + [(a ? k)(τ − σ)]′]WR(σ)dσ , τ ∈ [0, T ] .

In the case a(0) = 0, from the formula (7.1), passing to the limit we would have only

WR(t) =

∫ t

0

[a(t− τ) + (a ? k)(t− τ)]AWR(τ)dτ +W (t), t ∈ [0, T ] .
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