
Electron. Commun. Probab. 19 (2014), no. 59, 1–8.
DOI: 10.1214/ECP.v19-3376
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Concentration of random polytopes
around the expected convex hull

Daniel J. Fresen∗ Richard A. Vitale†

Abstract

We provide a streamlined proof and improved estimates for the weak multivariate
Gnedenko law of large numbers on concentration of random polytopes within the
space of convex bodies (in a fixed or a high dimensional setting), as well as a corre-
sponding strong law of large numbers.
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1 Introduction

Let d ∈ N and let µ be a probability measure on Rd with a log-concave density
f = dµ/dx, i.e. − log f is a convex extended real valued function. Let n ≥ d + 1 and
let (Xi)

n
1 denote an i.i.d. sequence of random vectors with common distribution µ. The

convex hull
Pn = conv{Xi}n1 (1.1)

is a random polytope and, as such, is a random element w.p.1 of the space Kd of all
convex bodies in Rd (compact convex sets with non-empty interior). There are various
metrics and metric-like functions on Kd, such as the Hausdorff distance dH and the
Banach-Mazur distance δBM (for origin symmetric bodies). We refer the reader to [28]
for general background on convex bodies, and to [18] specifically for metric, and other,
structures on Kd.

It was shown in [13] that if n ≥ c exp(exp(5d)), then with probability at least 1 −
3d+3(log n)−1000, there exists x ∈ Rn and

λ ≤ 1 + c′d2
log log n

log n

such that
λ−1(F1/n − x) + x ⊆ Pn ⊆ λ(F1/n − x) + x (1.2)

where c, c′ > 0 are universal constants and F1/n is the floating body defined by

Fδ = ∩{H : µ(H) ≥ 1− δ} (1.3)
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Concentration of random polytopes

where the intersection runs through the collection of all closed half-spaces H of µ-mass
at least 1 − δ (δ < e−1). The body F1/n was defined in [29] (see also [5]) in the case
of Lebesgue measure on a convex body and has often been used to model random
polytopes, see for example [4, 33]. This follows an earlier type of floating body defined
in [10].

Being log-concave, the density f decays at least as quickly as an exponential func-
tion. A bound on the decay rate of f translates to a bound on the Hausdorff distance
dH(Pn, F1/n). For example if the tails of µ are sub-Gaussian (with universally bounded
constants), then diam(F1/n) ≤ c(log n)1/2 and (1.2) translates to

dH(Pn, F1/n) ≤ c′d2 log log n√
log n

(1.4)

where c, c′ > 0 are universal constants. This is an embodiment of the concentration
of measure phenomenon: the polytope Pn, as a random element of the metric space
(Kd, dH), is concentrated around F1/n.

In the case d = 1, Pn reduces to the interval

[min{Xi}n1 ,max{Xi}n1 ]

and we see that the above mentioned result generalizes a theorem of Gnedenko [15] on
concentration of the maximum and minimum of a large i.i.d. sample (under rapid decay
of the tails of µ). Other multivariate analogs of Gnedenko’s law of large numbers are
included in [14] for the multivariate normal distribution, [17] for Gaussian measures on
infinite dimensional spaces, [8, 11, 12] for regularly varying distributions, and [19, 22]
for more general distributions.

The proof of (1.2) was complicated by the fact that there is no convenient expression
for the support function of the floating body,

hF1/n
(θ) = max

x∈F1/n

〈θ, x〉

In this paper we study concentration of Pn around the expected convex hull

EPn = {x ∈ Rn : ∀θ ∈ Sd−1, 〈θ, x〉 ≤ E max
1≤i≤n

〈θ,Xi〉} (1.5)

which is easily seen to be a convex body with support function

hEPn
(θ) = E max

1≤i≤n
〈θ,Xi〉 (1.6)

Using the expected convex hull leads to a streamlined proof of (1.2). The notion of
the expectation of a random convex body follows the theory of integrals of set valued
functions, see for example [1, 3, 9, 20, 23] and the references therein. It was used in
[2] for the purpose of a Kolmogorov strong law of large numbers and has appeared as
an approximant to floating bodies in bounded domains [6], as well as in other contexts
e.g. [16, 24, 30, 31, 32, 34].

In the original paper [13] we were mainly interested in a quantitative dependence on
n. Although our bounds included dependence on dimension, the required sample size
was very large. Theorem 2.1 includes improved bounds on the required sample size
and is more in the spirit of the high dimensional theory. The quantitative dependence
that we achieve is essentially the same as that in Dvoretzky’s theorem, see for example
[26]. This result should also be compared to the main result in [7].

To make the present exposition brief, we refer the reader to [13] for a more detailed
discussion.
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2 Main results

Theorem 2.1. Let d ∈ N and let µ be a log-concave probability measure on Rd with
center of mass at the origin and non-singular covariance matrix. Consider any ε ∈
(0, 1/2) and let n ≥ exp(7dε−1 log ε−1). Let (Xi)

n
1 be an i.i.d. sample from µ, Pn =

conv{Xi}n1 , and let EPn denote the expected convex hull as defined by (1.5). With
probability at least 1− 3n−ε/4,

(1− ε)EPn ⊆ Pn ⊆ (1 + ε)EPn (2.1)

Setting ε = (4q + 32d)(log logn)/ log n (where q ≥ 1 can be chosen arbitrarily), we
see that whenever n ≥ 8(q + 8d) exp (8q + 64d), (2.1) holds with probability at least
1 − 3(log n)−q−8d. Theorem 2.1 above therefore implies Theorem 1 in [13] with im-
proved estimates. The following Theorem, which is similar to the main result in [6], is
a consequence of Lemma 5.1.

Theorem 2.2. Let d ∈ N and let µ be a log-concave probability measure on Rd with
center of mass at the origin and non-singular covariance matrix. Let EPn denote the
expected convex hull as defined by (1.5), and let F1/n denote the floating body defined
by (1.3). Then provided n ≥ 12,

(1− 3/ log n)EPn ⊆ F1/n ⊆ (1 + 1/ log n)EPn

Theorem 2.3. Let d ∈ N and let µ be a log-concave probability measure on Rd with
center of mass at the origin and non-singular covariance matrix. Let (Xi)

∞
1 be an i.i.d.

sample from µ, and let (Pn)∞d+1 and (EPn)∞d+1 be the random polytopes and expected
convex hulls defined by (1.1) and (1.5) respectively. Then with probability 1, there
exists N ∈ N such that for all n ≥ N ,(

1− 3 log log n

log n

)
EPn ⊆ Pn ⊆

(
1 +

8 log log n

log n

)
EPn (2.2)

3 Approximation in the Hausdorff distance

Let us comment briefly on how the main results of this paper give rise to estimates
in terms of the Hausdorff distance dH. Let Eµ and Cov(µ) denote (respectively) the
center of mass and covariance matrix of µ. If we assume, in addition to log-concavity,
that Eµ = 0 and Cov(µ) = Id, in which case µ is called isotropic, then it is easy to show
that the diameter of both EPn and F1/n are bounded above by c log n, where c > 0 is a
universal constant. In addition, it follows from the definition of the Hausdorff distance
dH that for any two convex bodies A,B ⊂ Rd with 0 ∈ int(A) ∩ int(B), dH(A,B) ≤
diam(B) inf{ε > 0 : (1 + ε)−1A ⊆ B ⊆ (1 + ε)A}. Using these bounds, Theorems 2.1, 2.2
and 2.3 may be written in terms of dH.

For certain distributions the estimate c log n on the diameter may be substantially
improved. Consider the case where the density function f = dµ/dx has the form

f(x) =

(
p

2Γ(p−1)

)d
exp

(
−

n∑
i=1

|xi|p
)

for 1 ≤ p <∞. In this case Eµ = 0 and Cov(µ) = (Γ(3/p)/Γ(1/p))
1/2

Id (see the proof of
Lemma 2, part 4 with q = 2 in [27]). It follows from Theorem 2.2 above and Theorem 3
in [13] that for n > n0(d, p), diam (EPn) ≤ (2.01) max{d1/2−1/p, 1}(log n)1/p. By Theorem
2.3, with probability 1 there exists N ∈ N such that for all n ≥ N ,

dH(Pn,EPn) ≤ 17(log log n)

(log n)
1−1/p max{d1/2−1/p, 1}
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As another example, when the tails of µ are sub-Gaussian then with probability 1

there exists N ∈ N such that for all n ≥ N ,

dH(Pn,EPn) ≤ c log log n

(log n)
1/2

which can be compared to (1.4).

4 Notation

If J is the cumulative distribution function associated to a probability measure µ on
R, then the generalized inverse J−1 : (0, 1)→ R is defined as

J−1(t) = sup{x ∈ R : J(x) < t} = inf{x ∈ R : J(x) ≥ t}

If µ has a log-concave density function then J(J−1(t)) = t for all t ∈ (0, 1) and J−1(J(x)) =

x for all x in the support of µ. If (Yi)
n
1 is an i.i.d. sample from µ, then Y(n) = max1≤i≤n Yi

denotes the nth order statistic.
If K ⊂ Rd is a convex body then the function

hK(x) = max
y∈K
〈x, y〉

is known as the support function of K. If 0 ∈ int(K) then the Minkowski functional is
defined as

‖x‖K = min{λ ≥ 1 : x ∈ λK}

and the support function is the Minkowski functional of the polar body

K◦ = {y ∈ Rd : ∀x ∈ K, 〈x, y〉 ≤ 1}

i.e. hK(·) = ‖·‖K◦ . In the case when K is centrally symmetric, i.e. K = −K, then hK(·)
and ‖·‖K are norms.

5 Proofs

The following lemma is a natural extension of Lemma 7 in [13].

Lemma 5.1. Let µ be a probability measure on R with mean 0 and log-concave density
f = dµ/dx. Let n ≥ 12 and let (Yi)

n
1 be an i.i.d. sample from µ. Then for all t > 0,

P{Y(n) ≤ (1 + t)EY(n)} ≥ 1− n−t/2 (5.1)

P{Y(n) ≥ (1− t)EY(n)} ≥ 1− exp(−nt/2/3) (5.2)

Proof. Let J be the common distribution function of each Yi. Let fn and Jn denote the
density and distribution function of Y(n),

Jn(t) = J(t)n

fn(t) =
d

dt
Jn(t) = nJ(t)n−1f(t)

Since f is log-concave, so is J (see for example Theorem 5.1 in [21] or Lemma 5 in [13]).
The product of log-concave functions is certainly log-concave, and therefore so is fn. By
a standard result, see for example Lemma 5.4 in [21], J−1n (e−1) ≤ EY(n) ≤ J−1n (1− e−1).
Just as the left tail J is log-concave, so is the right tail 1 − J , and the function u(t) =

− log(1− J(t)) is convex. This implies that,

u(J−1(1− n−t/2/n))− u(J−1(1− 1/n))

J−1(1− n−t/2/n)− J−1(1− 1/n)
≥ u(J−1(1− 1/n))− u(0)

J−1(1− 1/n)
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which translates to

J−1(1− n−t/2/n)− J−1(1− 1/n)

J−1(1− 1/n)
≤ t log n

2(log n− 1)
≤ t

Now,
P{Y(n) ≤ J−1(1− n−t/2/n)} = (1− n−t/2/n)n ≥ 1− n−t/2

By definition of Jn, Jn(J−1(1− 1/n)) = (1− 1/n)n < e−1, so EY(n) ≥ J−1n (e−1) ≥ J−1(1−
1/n) and (5.1) follows. Again by convexity of u,

u(J−1(1− 9/(20n)))− u(J−1(1− 9nt/2−1/20))

J−1(1− 9/(20n))− J−1(1− 9nt/2−1/20)
≥ u(J−1(1− 9/(20n)))− u(0)

J−1(1− 9/(20n))

which translates to

J−1(1− 9/(20n))− J−1(1− 9nt/2−1/20)

J−1(1− 9/(20n))
≤ (t/2) log n

log n− 1 + log(20/9)
≤ t

Now,
P{Y(n) ≤ J−1(1− 9nt/2−1/20)} = (1− 9nt/2−1/20)n ≤ exp(−9nt/2/20)

As before, Jn(J−1(1 − 9/(20n))) = (1 − 9/(20n))n > 1 − e−1, so EY(n) ≤ J−1n (1 − e−1) <

J−1(1− 9/(20n)) and (5.2) follows.

Proof of Theorem 2.2. Since J−1(1−1/n) = J−1n ((1−1/n)n), where Jn(x) = P{Y(n) ≤ x},
P{Y(n) ≤ J−1(1 − 1/n)} ≥ 1/3 and by inequality (5.2) of Lemma 5.1, this can only be
true if J−1(1− 1/n) ≥ (1− (log 18)/ log n)EY(n). By similar reasoning, P{Y(n) > J−1(1−
1/n)} ≥ 1 − e−1, which by inequality (5.1) of Lemma 5.1 implies that J−1(1 − 1/n) ≤
(1 + 1/ log n)EY(n). The result now follows from the definitions of F1/n and EPn, see
(1.3) and (1.6).

The following lemma appears in Lemmas 4.10 and 4.11 in [25] under the assumption
that K is centrally symmetric. We sketch the proof to show that it can also be used in
the non-symmetric case.

Lemma 5.2. Let K ⊂ Rd be any convex body with 0 ∈ int(K) and 0 < ε < 1/2. Then
there exists a set N ⊂ ∂K with |N | ≤ (3/ε)d such that for all θ ∈ ∂K there exist
sequences (ωi)

∞
0 ⊆ N and (εi)

∞
1 ⊆ [0,∞) such that 0 ≤ εi ≤ εi for all i and

θ = ω0 +

∞∑
i=1

εiωi

Proof. Consider a subset N ⊂ ∂K, minimal with respect to set inclusion, with the
following property: for all z ∈ ∂K there exists ω ∈ N such that ‖z − ω‖K ≤ ε. Such a
set can easily be constructed recursively, and we shall refer to N as an ε-net. Note that
since K may be non-symmetric, we may have ‖z − ω‖K 6= ‖ω − z‖K and order becomes
important. By the standard volumetric argument |N | ≤ (3/ε)d. By the defining property
of N , for all x ∈ Rd there exists ω ∈ N such that

‖x− ‖x‖K ω‖K ≤ ε ‖x‖K (5.3)

Now consider θ ∈ ∂K. By (5.3) there exists ω0 ∈ N such that ‖θ − ω0‖K ≤ ε. By applying
(5.3) again, there exists ω1 ∈ N such that ‖θ − ω0 − ‖θ − ω0‖K ω1‖K ≤ ε ‖θ − ω0‖K ≤ ε2.
Iterating this procedure defines a sequence (ωi)

∞
0 such that for all N ∈ N,∥∥∥∥∥θ − ω0 −

N∑
i=1

εiωi

∥∥∥∥∥
K

≤ εN+1

where εi =
∥∥∥θ − ω0 −

∑i−1
i=1 εiωi

∥∥∥
K
≤ εi.
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Proof of Theorem 2.1. Set δ = 3n−ε/(4d) and let N ⊂ ∂((EPn)◦) be a δ-net as in Lemma
5.2. By the bounds imposed on n, δ ≤ ε/5 < 1/10. From the union bound and Lemma
5.1, the following event occurs with probability at least 1 − (3/δ)d3n−ε/2 ≥ 1 − 3n−ε/4:
for all ω ∈ N ,

(1− ε/2) ‖ω‖(EPn)◦
≤ ‖ω‖Pn

◦ ≤ (1 + ε/2) ‖ω‖(EPn)◦
(5.4)

For any θ ∈ ∂((EPn)◦), write θ = ω0 +
∑∞

1 δiωi, with ωi ∈ N and 0 ≤ δi ≤ δi for all i. By
the triangle inequality and (5.4),

‖θ‖Pn
◦ ≤ (1 + ε/2)

∞∑
i=0

δi ≤ (1 + 2δ)(1 + ε/2) ≤ 1 + ε

and

‖θ‖Pn
◦ ≥ ‖ω0‖Pn

◦ −
∞∑
1

δi ‖ωi‖Pn
◦ ≥ 1− ε/2− (1 + ε/2)δ(1− δ)−1 ≥ 1− ε

and the result follows.

Proof of Theorem 2.3. Here d and µ are fixed, and we treat n → ∞ as a variable. In
particular we may assume that n > n0, where n0 is suitably large. From comparing
successive terms in the binomial theorem and using the fact that n−k

(
n
k

)
is a decreasing

function of k, for all δ ∈ (0, 1/2)

(1− 2δ/n)n = (1− δ)− δ +

(
n

2

)(
2δ

n

)2

+

n∑
k=3

(−1)k
(
n

k

)(
2δ

n

)k
≤ 1− δ

By Theorem 2.1, 1 − 3n−ε/4 ≤ P{Pn ⊆ (1 + ε)EPn} = (P{X1 ∈ (1 + ε)EPn})n, and it
follows that µ((1 + ε)EPn) ≥ (1 − 3n−ε/4)1/n ≥ 1 − 6n−1−ε/4 (provided 3n−ε/4 < 1/2).
Setting ε = 8(log log n)/ log n yields

∞∑
n=12

P{Xn /∈ (1 + ε)EPn} ≤ 6

∞∑
n=12

n−1−ε/4 = 6

∞∑
n=12

1

n(log n)2
<∞

Therefore, by the Borel-Cantelli lemma, with probability 1 there exists N (1) ∈ N such
that for all n ≥ N (1),

Pn ⊆ (1 + 8(log log n)/ log n)EPn (5.5)

For each n ∈ N, let En be the event that (5.5) holds. Consider any sufficiently large
(deterministic) n ∈ N. Set ε = 3(log log n)/ log n and δ = 3 exp(−n−ε/2/(6d)). Let
N ⊂ ∂((EPn)◦) be a δ-net as in Lemma 5.2. As before, δ ≤ ε/10 ≤ 1/20. By the union
bound and Lemma 5.1, the following event, to be denoted Fn, occurs with probability
at least 1− (3/δ)d exp(−nε/2/3) ≥ 1− exp(−nε/2/6) ≥ 1− n−2: for all ω ∈ N ,

(1− ε/2) ‖ω‖(EPn)◦
≤ ‖ω‖Pn

◦

The Borel-Cantelli lemma again implies that with probability 1 there exists N (2) ∈ N
such that Fn occurs for all n ≥ N (2). For all n ≥ max{N (1), N (2)}, En ∩ Fn occurs w.p.1,
and expressing an arbitrary θ ∈ ∂((EPn)◦) as θ = ω0 +

∑∞
1 δiωi as in Lemma 5.2 and

using the triangle inequality,

‖θ‖Pn
◦ ≥ ‖ω0‖Pn

◦ −
∞∑
1

δi ‖ωi‖Pn
◦ ≥ 1− ε/2− 2δ(1− δ)−1 ≥ 1− ε

which implies (2.2).
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