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Abstract

We consider a supercritical branching process (Zn) in a random environment ξ. Let
W be the limit of the normalized population size Wn = Zn/E[Zn|ξ]. We first show a
necessary and sufficient condition for the quenched Lp (p > 1) convergence of (Wn),
which completes the known result for the annealed Lp convergence. We then show
that the convergence rate is exponential, and we find the maximal value of ρ > 1 such
that ρn(W −Wn) → 0 in Lp, in both quenched and annealed sense. Similar results
are also shown for a branching process in a varying environment.
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1 Introduction and main results

Branching process in a random environment (BPRE), is an important extension of
the Galton-Watson process in the aspect of random environments. This model was first
introduced by Smith & Wilkinson [18] in the independent and identically distributed
environment case, and then by Athreya & Karlin [3, 4] in the stationary and ergodic
environment case. As it is a fundamental process for branching systems such as branch-
ing random walks, branching Markov processes in random environments, where the
offspring distributions vary according to a random environment, the asymptotic proper-
ties of BPRE received many authors’ attention recently, see for example [6, 7, 8, 12, 15].
Meanwhile, during our previous related works, we notice that many limit behavior
such as large deviations of branching systems in random environments may rely on
the convergence (especially the Lp convergence) and its rates of the martingale of the
corresponding BPRE. For this reason, in this paper we focus on the Lp convergence and
its exponential rates of the martingale for a supercritical BPRE. We study the sufficient
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Lp convergence for BPRE

conditions for the Lp convergence (at an exponential rate), and find the critical value
of the rate, in both quenched and annealed sense. Our results complete the annealed
convergence of Guivarc’h & Liu [11], and extend the corresponding ones of Liu [17] and
Alsmeyer & Iksanovet al. [1] on the Galton-Watson process.

Let us give a description of the model – a branching process in a stationary and
ergodic random environment. Let ξ = (ξ0, ξ1, ξ2, · · · ) be a stationary and ergodic process
taking values in some measurable space (Θ, E). Without loss of generality we can suppose
that ξ is defined on the product space (ΘN, E⊗N, τ), with N = {0, 1, 2, · · · } and τ the law
of ξ. Each realization of ξn corresponds to a probability distribution on N, denoted by
p(ξn) = (pk(ξn))k∈N, where

pk(ξn) ≥ 0,
∑
k

pk(ξn) = 1 and
∑
k

kpk(ξn) ∈ (0,∞).

The sequence ξ = (ξn) will be called random environment. A branching process (Zn)

in the random environment ξ is a class of branching processes in varying environment
indexed by ξ. By definition,

Z0 = 1, Zn+1 =

Zn∑
i=1

Xn,i (n ≥ 0), (1.1)

where Xn,i(i = 1, 2, · · · ) denotes the number of offspring of the ith particle in the nth
generation. Given ξ, {Xn,i : n ≥ 0, i ≥ 1} is a family of (conditionally) independent
random variables and each Xn,i has distribution p(ξn).

For each realization ξ ∈ ΘN of the environment sequence, let (Γ,G,Pξ) be the
probability space under which the process is defined (when the environment ξ is fixed to
be the given realization). The probability Pξ is usually called quenched law. The total
probability space can be formulated as the product space (ΘN × Γ, EN ⊗ G,P), where
P = E(δξ ⊗ Pξ) with δξ the Dirac measure at ξ and E the expectation with respect to the
law of ξ, so that for all measurable and positive g defined on ΘN × Γ, we have∫

ΘN×Γ

g(x, y)dP(x, y) = E

∫
Γ

g(ξ, y)dPξ(y).

The total probability P is usually called annealed law. The quenched law Pξ may be
considered to be the conditional probability of P given ξ. The expectation with respect
to P will still be denoted by E; there will be no confusion for reason of consistence. The
expectation with respect to Pξ will be denoted by Eξ.

Let F0 = σ(ξ) and Fn = σ(ξ, (Xl,i : 0 ≤ l ≤ n − 1, i = 1, 2, · · · )) be the σ-field
generated by ξ and Xl,i (0 ≤ l ≤ n− 1, i = 1, 2, · · · ). For n ≥ 0 and p ≥ 1, set

mn(p) = mn(p, ξ) =
∑
k

kppk(ξn), mn = mn(1), (1.2)

and

P0 = 1, Pn =

n−1∏
i=0

mi (n ≥ 1). (1.3)

So mn(p) = EξX
p
n,i and Pn = EξZn. It is well known that the normalized population size

Wn =
Zn
Pn

(1.4)
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Lp convergence for BPRE

is a non-negative martingale with respect to Fn both under Pξ for every ξ and under P,
hence the limit

W = lim
n→∞

Wn (1.5)

exists almost surely (a.s.) with EW ≤ 1 by Fatou’s lemma. Assume throughout the paper
that the process is supercritical in the sense that E logm0 is well defined with

E logm0 > 0.

Here we are interested in the Lp convergence rate of Wn to W both in the quenched
sense (under Pξ) and in the annealed sense (under P).

We first show a criterion for the quenched Lp convergence of Wn.

Theorem 1.1 (Quenched Lp convergence). Let p > 1. Consider the following assertions:

(i) E logEξ

(
Z1

m0

)p
<∞; (ii) supnEξW

p
n <∞ a.s.;

(iii) Wn →W in Lp under Pξ for almost all ξ; (iv) 0 < EξW
p <∞ a.s..

Then the following implications hold: (i)⇒ (ii)⇔ (iii)⇔ (iv). If additionally (ξn) are i.i.d.
and E logm0 <∞, then all the four assertions are equivalent.

For the almost notion in (ii)-(iv), we mean that the concerned statement holds for
almost every realization ξ ∈ ΘN, that is, it holds for τ - almost every ξ ∈ ΘN (recall
that we use the same letter ξ to denote both the random variable and a realization), or
equivalently, the statement holds for P-almost every (θ, γ) ∈ (ΘN × Γ,P) if we regard
ξ = ξ(θ, γ) as a random variable defined on the total probability space (ΘN × Γ,P). The
equivalence can be easily seen by the definition of P.

The implications (ii) ⇔ (iii) ⇒ (iv) are direct consequences of the Lp convergence
theorem for martingales. The non evident part is the sufficiency of the condition (i)
for the quenched Lp convergence of Wn, which is also necessary in the independent
environment case.

It can be easily seen that ∀p > 0, E logEξ(
Z1

m0
)p <∞ if and only if E log+Eξ| Z1

m0
−1|p <

∞, where and hereafter we use the following usual notations:

log+ x = max(log x, 0), log− x = max(− log x, 0).

Next we give a description of the quenched Lp convergence rate, with the notations

a ∧ b = min(a, b), a ∨ b = max(a, b).

Theorem 1.2 (Exponential rate of quenched Lp convergence). Let p > 1, ρ > 1 and
m = exp(E logm0) > 1.

(a) If E logEξ

(
Z1

m0

)p
<∞, then

lim
n→∞

ρn(Eξ|W −Wn|p)1/p = 0 a.s. for ρ < min{m1−1/p,m1/2}.

(b) If E log−Eξ

∣∣∣ Z1

m0
− 1
∣∣∣p∧2

<∞ and E log+Eξ

∣∣∣ Z1

m0
− 1
∣∣∣p∨2

<∞, then a.s.

lim sup
n→∞

ρn(Eξ|W −Wn|p)1/p

{
= 0 if ρ < ρ̄c,

> 0 if ρ > ρ̄c,

where ρ̄c = m1/2 = exp( 1
2E logm0) > 1.
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Lp convergence for BPRE

We mention that the theorem is valid with evident interpretation even if E logm0 =∞
(so that m =∞).

Theorem 1.2(a) shows that Wn →W in Lp under Pξ at an exponential rate; Theorem
1.2(b) means that ρ̄c is the critical value of ρ > 1 for which ρn(W −Wn)→ 0 in Lp under
Pξ for almost all ξ.

For the classical Galton-Watson process, Theorem 1.2(a) reduces to the result of Liu
[17] that if EZp1 <∞, then ρn(W −Wn)→ 0 in Lp for 1 < ρ < min{m1−1/p,m1/2}, where
m = EZ1 ∈ (1,∞); Theorem 1.2(b) can be obtained by a result of Alsmeyer & Iksanov et
al. [1] on branching random walks.

Recall that for a Galton-Watson process with m = EZ1 ∈ (1,∞) and P(W > 0) > 0,
Asmussen [2] showed that for p ∈ (1, 2), W −Wn = o(m−n/q) a.s. if and only if EZp1 <∞,
where 1/p + 1/q = 1. As an application of Theorem 1.2, we immediately obtain the
following similar result for a branching process in a random environment.

Corollary 1.3 (Exponential rate of a.s. convergence). Let p ∈ (1, 2) andm = exp(E logm0) ∈
(0,∞). If E logEξ(

Z1

m0
)p <∞, then ∀ε > 0,

W −Wn = o(m−
n

q+ε ) a.s., (1.6)

where 1/p+ 1/q = 1.

In fact, to see the conclusion, let ρ1 = m
1

q+ε and take ρ satisfying ρ1 < ρ < m1/q. By
Theorem 1.2(a), ρn(Eξ|W −Wn|p)1/p → 0, so that

Eξ

(∑
n

ρn1 |W −Wn|

)
≤

(
Eξ

(∑
n

ρn1 |W −Wn|

)p)1/p

≤
∑
n

(
ρ1

ρ

)n
ρn(Eξ|W −Wn|p)1/p <∞ a.s.. (1.7)

Therefore the series
∑
n ρ

n
1 |W −Wn| converges a.s., which implies (1.6).

Corollary 1.3 has recently been shown by Huang & Liu [13] by a truncating argument.
The approach here is quite different.

We now turn to the annealed Lp convergence of Wn. When the environment is i.i.d.,
a necessary and sufficient condition was shown by Guivarc’h and Liu ([11], Theorem 3).

Proposition 1.4 (Annealed Lp convergence [11]). Assume that (ξn) are i.i.d. and p > 1.
Then the following assertions are equivalent:

(i) E
(
Z1

m0

)p
<∞ and Em1−p

0 < 1; (ii) supnEW
p
n <∞;

(iii) Wn →W in Lp under P; (iv) 0 < EW p <∞.

We shall prove the following theorem about the rate of convergence.

Theorem 1.5 (Exponential rate of annealed Lp convergence). Assume that (ξn) are i.i.d..
Let p > 1 and ρ > 1.

(a) Assume that E
(
Z1

m0

)p
<∞ and Em1−p

0 < 1. Then

lim
n→∞

ρn(E|W −Wn|p)1/p = 0 for ρ < ρ0,

where ρ0 > 1 is defined by

ρ0 =

{
(Em1−p

0 )−1/p if p ∈ (1, 2),

min{(Em1−p
0 )−1/p, (Em

−p/2
0 )−1/p} if p ≥ 2.
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Lp convergence for BPRE

(b) Assume that P(W1 = 1) < 1 and that either of the following conditions is
satisfied:

(i) p ∈ (1, 2), E

(
Eξ

(
Z1

m0

)2
)p/2

<∞, Em−p/20 logm0 > 0 and Em−p/2−1
0 Z1 log+ Z1 <∞;

(ii) p ≥ 2 and E( Z1

m0
)p <∞.

Set

ρc =

{
(Em

−p/2
0 )−1/p if p ∈ (1, 2),

min{(Em1−p
0 )−1/p, (Em

−p/2
0 )−1/p} if p ≥ 2.

Then

lim sup
n→∞

ρn(E|W −Wn|p)1/p

{
= 0 if ρ < ρc,

> 0 if ρ > ρc.

Remark 1.6. By the convexity of the function Em−x0 , the condition Em−p/20 logm0 > 0

implies that Em−x0 is strictly decreasing on (−∞, p2 ]. Thus Em−p/20 < Em1−p
0 for p ∈ (1, 2),

so that ρ0 ≤ ρc.
Theorem 1.5(a) implies that Wn →W in Lp under P (annealed) at an exponential rate.

Theorem 1.5(b) shows that under certain moment conditions, ρc is the critical value of
ρ > 1 for the annealed Lp convergence of ρn(W −Wn) to 0, while Theorem 1.2(b) shows
that ρ̄c is the critical value for the quenched Lp convergence. Notice that by Jensen’s
inequality,

Em
−p/2
0 = E exp(−p

2
logm0) ≥ exp(−p

2
E logm0),

so that (Em
−p/2
0 )−1/p ≤ exp( 1

2E logm0). This shows that ρc ≤ ρ̄c.

Finally, thanks to the exponential rates of Wn to W , we get the convergence of the
series

∑
n |W −Wn| by arguments similar to (1.7).

Corollary 1.7 (Convergence of the series). Let p > 1. If E logEξ

(
Z1

m0

)p
< ∞, then the

series
∑
n |W −Wn| converges a.s. and in Lp under Pξ for almost all ξ. If additionally

(ξn) are i.i.d. and E
(
Z1

m0

)p
<∞, the convergence also holds in Lp under P.

The rest of this paper is organized as follows. In Section 2, we consider the Lp

convergence of the martingale Wn and its exponential rate for a branching process in a
varying environment. In Sections 3 and 4, we study the random environment case, and
give the proofs of the main results: in Section 3, we consider the quenched case and
prove Theorems 1.1 and 1.2; in Section 4, we consider the annealed case and give the
proof of Theorem 1.5.

2 Branching process in a varying environment

In this section, as preliminaries, we study the Lp convergence and its convergence
rate for a branching process (Zn) in a varying environment (BPVE). By definition,

Z0 = 1, Zn+1 =

Zn∑
i=1

Xn,i (n ≥ 0), (2.1)

where Xn,i(i = 1, 2, · · · ) denotes the number of offspring of the ith particle in the nth
generation, each Xn,i has distribution p(n) = (pk(n))k∈N on N = {0, 1, · · · }, where

pk(n) ≥ 0,
∑
k

pk(n) = 1 and
∑
k

kpk(n) ∈ (0,∞);
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all the random variables Xn,i(n ≥ 0, i ≥ 1) are independent of each other. Let (Γ,P) be
the underlying probability space. For n ≥ 0 and p ≥ 1, set

mn(p) = EXp
n,i =

∑
k

kppk(n), mn = mn(1), (2.2)

and

m̄n(p) = E

∣∣∣∣Xn,i

mn
− 1

∣∣∣∣p =
∑
k

∣∣∣∣k −mn

mn

∣∣∣∣p pk(n). (2.3)

Let F0 = {∅,Γ} and Fn = σ((Xl,i : 0 ≤ l ≤ n − 1, i = 1, 2, · · · )) be the σ-field
generated by Xl,i (0 ≤ l ≤ n− 1, i = 1, 2, · · · ). Similarly to the case of BPRE, set

P0 = 1, Pn =

n−1∏
i=0

mi (n ≥ 1). (2.4)

Then the normalized population size Wn = Zn/Pn is a non-negative martingale with
respect to the filtration Fn, and limn→∞Wn = W a.s. for some non-negative random
variable W with EW ≤ 1. It is well known that there is a non-negative but possibly
infinite random variable Z∞ such that Zn → Z∞ in distribution as n → ∞. We are
interested in the supercritical case where P(Z∞ = 0) < 1, so that by ([14], Corollary 3),

either
∞∑
n=0

(1− p1(n)) <∞, or lim
n→∞

Pn =∞. Here we assume that lim
n→∞

Pn =∞.

We are interested in the Lp convergence of the martingale Wn and its convergence
rate. We have the following theorem.

Theorem 2.1 (Exponential rate of Lp convergence ofWn for BPVE). Let (Zn) be the BPVE
defined in (2.1) and let ρ ≥ 1.

(i) Let p ∈ (1, 2). If the series
∑
n ρ

pnP
p(1/r−1)
n m̄n(r)p/r <∞ for some r ∈ [p, 2], then

(E|W −Wn|p)1/p = o(ρ−n). (2.5)

Conversely, if lim inf
n→∞

logPn

n > 0 and (2.5) holds, then we have for any s > 0, the

series
∑
n P
−s−p/2
n m̄n(p) <∞, and

∑
n ρ1

pnP
−s−p/2
n m̄n(p) <∞ for all ρ1 ∈ (1, ρ) if

ρ > 1.

(ii) Let p ≥ 2. If the series
∑
n ρ

2nP−1
n m̄n(p)2/p <∞, then (2.5) holds. Conversely,

if (2.5) holds, then we have for any r ∈ [2, p], the series
∑
n P

p(1/r−1)
n m̄n(r)p/r <∞,

and
∑
n ρ1

pnP
p(1/r−1)
n m̄n(r)p/r <∞ for all ρ1 ∈ (1, ρ) if ρ > 1.

When ρ = 1, Theorem 2.1 actually show a criteria for the Lp convergence of Wn,
or equivalently, supnEW

p
n < ∞. In particular, for p = 2, one can see that supnEW

2
n =

1 +
∞∑
n=0

P−1
n m̄n(2). So supnEW

2
n < ∞ if and only if

∑
n P
−1
n m̄n(2) < ∞, as shown by

Jagers ([14], Theorem 4).

2.1 The martingale {Ân}
To estimate the exponential rate of Lp convergence of Wn, following [1], we consider

the series

A(ρ) =

∞∑
n=0

ρn(W −Wn) (ρ > 1). (2.6)

Here A(ρ) denotes the series; it will also denote the sum of the series when the series
converges. The convergence of the series A(ρ) reflects the exponential rate of W −Wn.
More precisely, if the series A(ρ) converges a.s. (resp. in Lp, p > 1), then ρn(W−Wn)→ 0
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a.s. (resp. in Lp). Conversely, if ρn(W −Wn)→ 0 a.s. (resp. in Lp), then for ρ1 ∈ (1, ρ),
the series A(ρ1) converges a.s. (resp. in Lp). Moreover, according to Remark 2.2 below,
we shall see that the Lp convergence of the series A(ρ) implies its a.s. convergence.

As in [1], we introduce an associated martingale {Ân}. Let ρ ≥ 1, and define

Ân = Ân(ρ) =

n∑
k=0

ρk(Wk+1 −Wk), Â(ρ) =

∞∑
n=0

ρn(Wn+1 −Wn). (2.7)

As in the case of A(ρ), here Â(ρ) also denotes the series and it also denote the sum of the
series when the series converges. It is easy to see that {(Ân;Fn+1)} forms a martingale.
In particular, for ρ = 1, Ân = Wn+1 − 1. By the convergence theorems for martingales,
supnE|Ân|p <∞ implies that the series Â(ρ) converges a.s. and in Lp. Therefore the Lp

convergence of Â(ρ) is equivalent to supnE|Ân|p < ∞. Moreover, if Â(ρ) converges in
Lp, then it also converges a.s..

It is known that the series A(ρ) and Â(ρ) have the following relations.

Lemma 2.2 ([1], Lemma 3.1). Let p > 1 and ρ > 1. The series A(ρ) converges a.s. (resp.
in Lp) if and only if the same is true for the series Â(ρ).

Remark 2.3. According to the relations between Ân and Â(ρ) stated above, Lemma
2.2 in fact tells us that A(ρ) converges in Lp if and only if supnE|Ân|p <∞, and the Lp

convergence of A(ρ) implies its a.s. convergence.

We shall study the Lp convergence of A(ρ) through the existence of the pth-moment
of the martingale {Ân}. The main tool is Burkholder’s inequality for martingales.

Lemma 2.4 (Burkholder’s inequality, see e.g. [9]). Let {Sn} be a L1 martingale with
S0 = 0. Let Qn = (

∑n
k=1(Sk − Sk−1)2)1/2 and Q = (

∑∞
n=1(Sn − Sn−1)2)1/2. Then ∀p > 1,

cp ‖ Qn ‖p≤‖ Sn ‖p≤ Cp ‖ Qn ‖p,

cp ‖ Q ‖p≤ sup
n
‖ Sn ‖p≤ Cp ‖ Q ‖p,

where cp = (p− 1)/18p3/2, Cp = 18p3/2/(p− 1)1/2.

Put
ap =

[
(p− 1)/18p3/2

]p
and bp =

[
18p3/2/(p− 1)1/2

]p
.

The following lemma gives the relations between supnE|Ân|p and E|Wn+1 −Wn|p that
we shall use later.

Lemma 2.5. Let p > 1. Then:

(i) For p ∈ (1, 2) and N ≥ 1,

apN
p/2−1

N−1∑
n=0

ρpnE|Wn+1 −Wn|p ≤ sup
n
E|Ân|p ≤ bp

∞∑
n=0

ρpnE|Wn+1 −Wn|p. (2.8)

(ii) For p = 2,

sup
n
E|Ân|2 =

∞∑
n=0

ρ2nE|Wn+1 −Wn|2. (2.9)

(iii) For p > 2,

ap

∞∑
n=0

ρpnE|Wn+1 −Wn|p ≤ sup
n
E|Ân|p ≤ bp

( ∞∑
n=0

ρ2n(E|Wn+1 −Wn|p)2/p

)p/2
.

(2.10)
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Proof. Firstly, (2.9) is obvious by the orthogonality of martingale. The upper bound in
(2.8) and (2.10) are directly from Burkholder’s inequality. The lower bound in (2.8) can
be obtained following similar arguments in [1] (p.25).

Remark 2.6. For a BPRE, notice that {Wn} is a martingale under both Pξ (for every
ξ) and P, and the same is true for {Ân}. Thus Lemmas 2.2 and 2.5 hold for both
expectations Eξ and E.

Let

X̄n,i =
Xn,i

mn
, X̄n = X̄n,1. (2.11)

From the definitions of Zn and Wn, we have

Wn+1 −Wn =
1

Pn

Zn∑
i=1

(X̄n,i − 1). (2.12)

This fact leads us to estimate E|Wn+1 −Wn|p through the moments of X̄n − 1.

Lemma 2.7. Let p > 1, n ≥ 0. Then:

(i) For p ∈ (1, 2) and r ∈ [p, 2],

apP
−p/2
n EW p/2

n E|X̄n − 1|p ≤ E|Wn+1 −Wn|p ≤ bpP p(1/r−1)
n (E|X̄n − 1|r)p/r. (2.13)

(ii) For p = 2,

E|Wn+1 −Wn|2 = P−1
n E|X̄n − 1|2. (2.14)

(iii) For p > 2 and r ∈ [2, p],

apP
p(1/r−1)
n (E|X̄n − 1|r)p/r ≤ E|Wn+1 −Wn|p ≤ bpP−p/2n EW p/2

n E|X̄n − 1|p. (2.15)

Proof. We first prove (ii). By (2.12),

E|Wn+1 −Wn|2 =
1

P 2
n

E

Zn∑
i=1

(X̄n,i − 1)2 = P−1
n E|X̄n − 1|2.

We then prove (i) and (iii). Let p > 1. Fix n ≥ 0 and let

S0 = 0, Sk = P−1
n

k∑
i=1

(X̄n,i − 1)1{Zn≥i}.

Let G0 = Fn and Gk = σ(Fn, Xn,i, 1 ≤ i ≤ k). It is not difficult to verify that {Sk} forms
a martingale with respect to Gk and {Sk} is uniformly integrable, so that supk E|Sk|p =

E|S|p, where S = lim
k→∞

Sk = P−1
n

∑Zn

i=1(X̄n,i−1) = Wn+1−Wn. By Burkholder’s inequality,

apE

∣∣∣∣∣
∞∑
k=1

(Sk − Sk−1)2

∣∣∣∣∣
p/2

≤ E|S|p ≤ bpE

∣∣∣∣∣
∞∑
k=1

(Sk − Sk−1)2

∣∣∣∣∣
p/2

,

which means that

apE

∣∣∣∣∣ 1

P 2
n

Zn∑
i=1

(X̄n,i − 1)2

∣∣∣∣∣
p/2

≤ E|Wn+1 −Wn|p ≤ bpE

∣∣∣∣∣ 1

P 2
n

Zn∑
i=1

(X̄n,i − 1)2

∣∣∣∣∣
p/2

. (2.16)
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Lp convergence for BPRE

For p ∈ (1, 2) and r ∈ [p, 2], by the concavity of xr/2, xp/r and xp/2, we have

E

∣∣∣∣∣ 1

P 2
n

Zn∑
i=1

(X̄n,i − 1)2

∣∣∣∣∣
p/2

≤ P−pn (E

Zn∑
i=1

|X̄n,i − 1|r)p/r ≤ P p(1/r−1)
n (E|X̄n − 1|r)p/r, (2.17)

and

E

∣∣∣∣∣ 1

P 2
n

Zn∑
i=1

(X̄n,i − 1)2

∣∣∣∣∣
p/2

≥ P−pn EZp/2−1
n

Zn∑
i=1

|X̄n,i − 1|p = P−p/2n EW p/2
n E|X̄n − 1|p.(2.18)

Combing (2.17), (2.18) with (2.16), we obtain (2.13).
For p > 2 and r ∈ [2, p], since xr/2, xp/r and xp/2 are convex, (2.17) holds with ” ≤ ”

replaced by ” ≥ ”, while (2.18) holds with ” ≥ ” replaced by ” ≤ ”.

2.2 Moments of {Ân}; Proof of Theorem 2.1

In this section, we study the pth-moment of {Ân}, and prove Theorem 2.1.

Proposition 2.8 (Moments of Ân for BPVE). Let ρ ≥ 1.

(i) Let p ∈ (1, 2). If
∑
n ρ

pnP
p(1/r−1)
n m̄n(r)p/r <∞ for some r ∈ [p, 2], then

sup
n
E|Ân|p <∞. (2.19)

Conversely, if lim inf
n→∞

logPn

n > 0 and (2.19) holds, then
∑
n ρ

pnP
−s−p/2
n m̄n(p) <∞ for

any s > 0.

(ii) Let p ≥ 2. If
∑
n ρ

2nP−1
n m̄n(p)2/p <∞, then (2.19) holds. Conversely, if (2.19)

holds, then for any r ∈ [2, p],
∑
n ρ

pnP
p(1/r−1)
n m̄n(r)p/r <∞.

Before the proof of Proposition 2.8, we give another lower bound of supnE|Ân|p for
p ∈ (1, 2), which is different from (2.8).

Lemma 2.9. Let p ∈ (1, 2) and s > 0. If η = η(s) :=
∑
n P
−s
n <∞, then

sup
n
E|Ân|p ≥ apηp/2−1

∞∑
n=0

ρpnP s(p/2−1)
n E|Wn+1 −Wn|p. (2.20)

Proof. Applying Burkholder’s inequality and Jensen’s inequality, we get

sup
n
E|Ân|p ≥ apE

∣∣∣∣∣
∞∑
n=0

ρ2n(Wn+1 −Wn)2

∣∣∣∣∣
p/2

= apE

( ∞∑
n=0

1

ηP sn
(ηP snρ

2n|Wn+1 −Wn|2)

)p/2

≥ apE

∞∑
n=0

1

ηP sn
(ηP snρ

2n|Wn+1 −Wn|2)p/2

= apη
p/2−1

∞∑
n=0

ρpnP s(p/2−1)
n E|Wn+1 −Wn|p.

So (2.20) is proved.

Proof of Proposition 2.8. (i) By Lemmas 2.5 and 2.7, for r ∈ [p, 2],

sup
n
E|Ân|p ≤ C

∞∑
n=0

ρpnE|Wn+1 −Wn|p ≤ C
∞∑
n=0

ρpnP p(1/r−1)
n (E|X̄n − 1|r)p/r.
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Here and throughout this paper C denotes a general positive constant (maybe different
from line to line). Hence supnE|Ân|p < ∞, if

∑
n ρ

pnP
p(1/r−1)
n m̄n(r)p/r < ∞ for some

r ∈ [p, 2]. Conversely, assume that supnE|Ân|p < ∞. For any s > 0, let s′ = 2s
2−p > 0.

Since η = η(s′) <∞, by (2.20) and Lemma 2.7,

sup
n
E|Ân|p ≥ Cηp/2−1 inf

n
EW p/2

n

∞∑
n=0

ρpnP−s−p/2n m̄n(p).

Thus
∑
n ρ

pnP
−s−p/2
n m̄n(p) <∞, ∀s > 0.

(ii) For p = 2, by (2.9) and (2.14),

sup
n
E|Ân|2 =

∞∑
n=0

ρ2nP−1
n E|X̄n − 1|2 =

∞∑
n=0

ρ2nP−1
n m̄n(2).

Thus supnE|Ân|2 <∞ if and only if
∑
n ρ

2nP−1
n m̄n(2) <∞.

Let p > 2. We first assume that
∑
n ρ

2nP−1
n (E|X̄n − 1|p)2/p (=

∑
n ρ

2nP−1
n m̄n(p)2/p )

<∞. By (2.10 ) and (2.15),

sup
n
E|Ân|p ≤ C

( ∞∑
n=0

ρ2n(E|Wn+1 −Wn|p)2/p

)p/2

≤ C

( ∞∑
n=0

ρ2nP−1
n (EW p/2

n )2/p(E|X̄n − 1|p)2/p

)p/2

≤ C sup
n
EW p/2

n

( ∞∑
n=0

ρ2nP−1
n (E|X̄n − 1|p)2/p

)p/2
<∞, (2.21)

provided that supnEW
p/2
n <∞, which holds obviously when supnEW

p
n <∞. Therefore,

it suffices to prove that for every integer b ≥ 1,

sup
n
EW p

n <∞ if
∑
n

P−1
n (E|X̄n − 1|p)2/p <∞, ∀p ∈ (2b, 2b+1]. (2.22)

We shall prove (2.22) by induction on b. For b = 1, we consider p ∈ (2, 22], so that
p/2 ∈ (1, 2]. By Hölder’s inequality,∑

n

P−1
n E|X̄n − 1|2 ≤

∑
n

P−1
n (E|X̄n − 1|p)2/p <∞.

Hence supnEW
2
n <∞, so that supnEW

p/2
n <∞. By (2.21) (with ρ = 1),

sup
n
E|Wn − 1|p ≤ C sup

n
EW p/2

n

( ∞∑
n=0

P−1
n (E|X̄n − 1|p)2/p

)p/2
<∞. (2.23)

So (2.22) holds for b = 1. Now assume that (2.22) holds for p ∈ (2b, 2b+1] for some integer
b ≥ 1. For p ∈ (2b+1, 2b+2], we have p/2 ∈ (2b, 2b+1]. By Hölder’s inequality,∑

n

P−1
n (E|X̄n − 1|p/2)4/p ≤

∑
n

P−1
n (E|X̄n − 1|p)2/p <∞.

Using (2.22) for p/2, we obtain supnEW
p/2
n < ∞, so that supnEW

p
n < ∞ from (2.23).

Therefore (2.22) still holds for p ∈ (2b+1, 2b+2], which implies that (2.22) holds for all
integers b ≥ 1.
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Conversely, assume that supnE|Ân|p <∞. Notice that by (2.10 ) and (2.15), ∀r ∈ [2, p],

sup
n
E|Ân|p ≥ C

∞∑
n=0

ρpnP p(1/r−1)
n (E|X̄n − 1|r)p/r.

This implies that
∑
n ρ

pnP
p(1/r−1)
n m̄n(r)p/r <∞, ∀r ∈ [2, p].

Now we give proof of Theorem 2.1.

Proof of Theorem 2.1. For ρ = 1, notice that Wn+1 − 1 = Ân(1) and Wn → W in Lp is
equivalent to supnEW

p
n < ∞. For ρ > 1, notice that the assertion supnE|Ân|p < ∞ is

equivalent to the Lp convergence of Â(ρ), which is also equivalent to the Lp convergence
of A(ρ) by Lemma 2.2. Applying Proposition 2.8 yields Theorem 2.1.

3 Quenched moments and quenched Lp convergence rate for BPRE;
Proofs of Theorems 1.1 and 1.2

Let us return to a BPRE (Zn). Notice that for each fixed ξ, (Zn) is a BPVE. So all the
results for BPVE can be directly applied to BPRE by considering the quenched law Pξ
and the corresponding expectation Eξ. The following lemma will be used to prove our
theorems for BPRE.

Lemma 3.1. Let (αn, βn)n≥0 be a stationary and ergodic sequence of non-negative
random variables. If E logα0 < 0 and E log+ β0 <∞, then

∞∑
n=0

α0 · · ·αn−1βn <∞ a.s.. (3.1)

Conversely, we have:

(a) if (αn, βn)n≥0 are i.i.d. and E logα0 ∈ (−∞, 0), then (3.1) implies that E log+ β0 <

∞;

(b) if E| log β0| <∞, then (3.1) implies that E logα0 ≤ 0.

Proof. The sufficiency is a direct consequence of the ergodic theorem and Cauchy’s test
for the convergence of series, remarking that if E logα0 < 0 and E log max(β0, 1) < ∞,
then

lim sup
n→∞

1

n
log(α0 · · ·αn−1 max(βn, 1)) < 0.

For the necessity, part (a) was shown in the proof of ([10], Theorem 4.1). For part (b),
again by Cauchy’s test, if (3.1) holds, then

lim sup
n→∞

(α0 · · ·αn−1βn)1/n ≤ 1 a.s.,

which is equivalent to

lim sup
n→∞

(
1

n

n−1∑
i=0

logαi +
1

n
log βn) ≤ 0 a.s..

By the ergodic theorem,

lim
n→∞

1

n

n−1∑
i=0

logαi = E logα0 a.s.,
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and

lim
n→∞

1

n
log βn = lim

n→∞

(
1

n

n∑
i=0

log βi −
1

n

n−1∑
i=0

log βi

)
= E log β0 − E log β0 = 0 a.s..

Hence E logα0 ≤ 0.

Applying Proposition 2.8 to the case in random environment, and thanks to Lemma
3.1, we obtain the following results for the quenched moments of Ân.

Proposition 3.2 (Quenched moments of Ân). Let ρ ≥ 1 and m = exp(E logm0) > 1.

(i) Let p ∈ (1, 2). If E log+Eξ| Z1

m0
− 1|r <∞ and ρ < m1−1/r for some r ∈ [p, 2], then

sup
n
Eξ|Ân|p <∞ a.s.. (3.2)

Conversely, if E
∣∣∣logEξ| Z1

m0
− 1|p

∣∣∣ <∞ and (3.2) holds, then ρ ≤ m1/2.

(ii) Let p ≥ 2. If E log+Eξ| Z1

m0
− 1|p <∞ and ρ < m1/2, then (3.2) holds. Conversely,

if E
∣∣∣logEξ| Z1

m0
− 1|r

∣∣∣ <∞ for some r ∈ [2, p] and (3.2) holds, then ρ ≤ m1−1/r.

Proof. (i) Let p ∈ (1, 2). Suppose that E log+Eξ| Z1

m0
− 1|r <∞ and ρ < m1−1/r for some

r ∈ [p, 2]. Then by Lemma 3.1, the series
∑
n ρ

pnP
p(1/r−1)
n m̄n(r)p/r < ∞ a.s.. Thus

supnEξ|Ân|p <∞ a.s. by Proposition 2.8.

Conversely, suppose that E
∣∣∣logEξ| Z1

m0
− 1|p

∣∣∣ < ∞ and supnEξ|Ân|p < ∞ a.s.. By

Proposition 2.8, we have ∀s > 0,
∑
n ρ

pnP
−s−p/2
n m̄n(p) <∞ a.s.. Hence by Lemma 3.1,

ρ ≤ m1/2+s/p. Letting s→ 0, we get ρ ≤ m1/2.
(ii) Let p ≥ 2. Suppose that E log+Eξ| Z1

m0
− 1|p < ∞ and ρ < m1/2. Then by Lemma

3.1, the series
∑
n ρ

2nP−1
n m̄n(p)2/p < ∞ a.s., which implies that supnEξ|Ân|p < ∞ a.s.

by Proposition 2.8.

Conversely, suppose thatE
∣∣∣logEξ| Z1

m0
− 1|r

∣∣∣ <∞ for some r ∈ [2, p] and supnEξ|Ân|p <

∞ a.s.. Proposition 2.8 shows that
∑
n ρ

pnP
p(1/r−1)
n m̄n(r)p/r <∞ a.s., which implies that

ρ ≤ m1−1/r by Lemma 3.1.

Proof of Theorem 1.1. The implications "(ii)⇒ (iii)⇒ (iv)" are evident. And the implica-
tion "(i)⇒ (ii)" is directly from Proposition 3.2 (with ρ=1). We prove that (iv) implies (ii).
Notice that for n ≥ 1,

W =
1

Pn

Zn∑
i=1

W (n, i) a.s., (3.3)

where under Pξ, (W (n, i))i≥1 are independent of each other and independent of Zn,
with distribution Pξ(W (n, i) ∈ ·) = PTnξ(W ∈ ·). Here the notation T denotes the shift
operator such that Tnξ = (ξn, ξn+1, · · · ) if ξ = (ξ0, ξ1, · · · ). Taking conditional expectation
at both sides of (3.3), we see that

EξW = ETnξW a.s..

Therefore, by the ergodicity, EξW = c a.s. for some constant c ∈ [0,∞]. As EξW p > 0

a.s., we have c > 0. Again by (3.3) and Jensen’s inequality,

Eξ(W
p|Fn) ≥

(
Eξ

(
1

Pn

Zn∑
i=1

W (n, i)

∣∣∣∣∣Fn
))p

= cpW p
n a.s.,
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so that
EξW

p
n ≤ c−pEξW p a.s., ∀n ≥ 1.

Therefore, supnEξW
p
n ≤ c−pEξW p <∞ a.s. (so that c = 1 as then Wn →W in Lp under

Pξ).
We finally prove that (ii) implies (i) when the environment is i.i.d.. Assume that

(ξn)n≥0 are i.i.d, E logm0 <∞ and supnEξW
p
n <∞ a.s.. By Theorem 2.1, we have∑

n

P−s−p/2n m̄n(p) <∞ a.s.,∀s > 0, if p ∈ (1, 2),

and ∑
n

P 1−p
n m̄n(p) <∞ a.s. if p ≥ 2.

As (ξn)n≥0 are i.i.d. and E logm0 ∈ (0,∞), by Lemma 3.1, E log+Eξ| Z1

m0
− 1|p < ∞, so

that E logEξ

(
Z1

m0

)p
<∞.

By the relations among Ân, A(ρ) and ρn(W −Wn) (discussed at the beginning of
Section 2.1), together with Proposition 3.2, we immediately obtain the following criteria
for the quenched Lp convergence rate of Wn.

Theorem 3.3 (Exponential rate of quenched Lp convergence of Wn). Let ρ > 1 and
m = exp(E logm0) > 1.

(i) Let p ∈ (1, 2). If E logEξ

(
Z1

m0

)r
<∞ and ρ < m1−1/r for some r ∈ [p, 2], then

(Eξ|W −Wn|p)1/p = o(ρ−n) a.s.. (3.4)

Conversely, if E
∣∣∣logEξ

∣∣∣ Z1

m0
− 1
∣∣∣p∣∣∣ <∞ and (3.4) holds, then ρ ≤ m1/2.

(ii) Let p ≥ 2. If E logEξ

(
Z1

m0

)p
<∞ and ρ < m1/2, then (3.4) holds. Conversely, if

E

∣∣∣logEξ

∣∣∣ Z1

m0
− 1
∣∣∣r∣∣∣ <∞ for some r ∈ [2, p] and (3.4) holds, then ρ ≤ m1−1/r.

Proof of Theorem 1.2. The assertion (a) is a direct consequence of Theorem 3.3(i) with
r = p for p ∈ (1, 2) and Theorem 3.3(ii) for p ≥ 2.

For the assertion (b), since the Lp norm (Eξ|X|p)1/p is increasing in p and the function
log+ x is increasing in x, we have 1

p1
log+Eξ|X|p1 ≤ 1

p2
log+Eξ|X|p2 if 1 ≤ p1 ≤ p2.

Thus the condition E log+Eξ

∣∣∣ Z1

m0
− 1
∣∣∣p∨2

<∞ ensures that E log+Eξ

∣∣∣ Z1

m0
− 1
∣∣∣p <∞ and

E log+Eξ

∣∣∣ Z1

m0
− 1
∣∣∣2 < ∞. If ρ < m1/2, applying Theorem 3.3(i) with r = 2 for p ∈ (1, 2)

and Theorem 3.3(ii) for p ≥ 2, we have

lim
n→∞

ρn(Eξ|W −Wn|p)1/p = 0 a.s..

Now consider the case where ρ > m1/2. Denote

D = {ξ : lim
n→∞

ρn(Eξ|W −Wn|p)1/p = 0}.

First, we show that P(D) = 0 or 1. By the ergodicity, it suffices to show that T−1D = D

a.s.. By (3.3),

W =
1

m0

Z1∑
i=1

W (1, i) a.s..
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Similarly, we can write Wn as

Wn =
1

m0

Z1∑
i=0

Wn−1(1, i) a.s., (3.5)

where Wn(k, i) = Zn(k,i)
mk···mk+n−1

with Zn(k, i) denoting the branching process starting

with the ith particle in the kth generation. Under Pξ, the sequence (Wn(k, i))i≥1 are
independent of each other and independent of Zk, and have a common conditional
distribution Pξ(Wn(k, i) ∈ ·) = PTkξ(Wn ∈ ·). Therefore,

W −Wn =
1

m0

Z1∑
i=1

(W (1, i)−Wn−1(1, i)) a.s.. (3.6)

By (3.6) and the convexity of xp, we have

Eξ|W −Wn|p ≤ 1

mp
0

Eξ

(
Z1∑
i=1

|W (1, i)−Wn−1(1, i)|

)p

≤ 1

mp
0

EξZ
p−1
1

Z1∑
i=1

|W (1, i)−Wn−1(1, i)|p

= Eξ

(
Z1

m0

)p
ETξ|W −Wn−1|p. (3.7)

Therefore for almost all ξ, if Tξ ∈ D, then ξ ∈ D. So we have proved that T−1D ⊂ D

a.s.. On the other hand, notice that by Theorem 1.1, EξW = 1 a.s.. Using (3.6) and
Burkholder’s inequality, we get

Eξ|W −Wn|p ≥ C

mp
0

Eξ

(
Z1∑
i=1

(W (1, i)−Wn−1(1, i))2

)p/2

≥ C

mp
0

Eξ1{Z1≥1}

Z1∑
i=1

|W (1, i)−Wn−1(1, i)|p

= C
1− p0(ξ0)

mp
0

ETξ|W −Wn−1|p a.s.. (3.8)

Notice that p0(ξ0) < 1 since m0 ∈ (0,∞). It follows from (3.8) that for almost all ξ, if
ξ ∈ D, then Tξ ∈ D. Hence D ⊂ T−1D a.s.. So we have proved that T−1D = D a.s..

For ρ > m1/2, assume that P(D) = 1, so that limn→∞ ρn(Eξ|W − Wn|p)1/p = 0

a.s.. Since the Lp norm is increasing in p and the function log− x is decreasing in
x, we have 1

p2
log−Eξ|X|p2 ≤ 1

p1
log−Eξ|X|p1 if 1 ≤ p1 ≤ p2. Therefore the condition

E log−Eξ

∣∣∣ Z1

m0
− 1
∣∣∣p∧2

<∞ ensures thatE log−Eξ

∣∣∣ Z1

m0
− 1
∣∣∣p <∞ andE log−Eξ

∣∣∣ Z1

m0
− 1
∣∣∣2 <

∞. So we have E
∣∣∣logEξ

∣∣∣ Z1

m0
− 1
∣∣∣p∣∣∣ <∞ and E

∣∣∣∣logEξ

∣∣∣ Z1

m0
− 1
∣∣∣2∣∣∣∣ <∞. Applying Theorem

3.3(i) for p ∈ (1, 2) and Theorem 3.3(ii) with r = 2 for p ≥ 2, we get ρ ≤ m1/2. This
contradicts the condition that ρ > m1/2. Thus P(D) = 0, which implies that

P

(
lim sup
n→∞

ρn(Eξ|W −Wn|p)1/p > 0

)
= P(Dc) = 1.

So the proof is finished.
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4 Annealed moments and annealed Lp convergence rate for BPRE;
Proof of Theorem 1.5

In this section, we consider a branching process in an i.i.d. environment: we assume
that (ξn)n≥0 are i.i.d.. We also assume that

P(W1 = 1) < 1, (4.1)

which avoids the trivial case where Wn = 1 a.s..

Let us study the annealed moments of Ân at first. We shall distinguish two cases: (i)
p ∈ (1, 2); (ii) p ≥ 2. Our approach is inspired by ideas from [1] and [16], especially for
the case where p ≥ 2.

4.1 Annealed moments of Ân: case p ≥ 2

We first consider the case where p ≥ 2.

Proposition 4.1 (Annealed moments of Ân for p ≥ 2). Let p ≥ 2 and ρ ≥ 1. Then

supnE|Ân|p <∞ if and only if E
(
Z1

m0

)p
<∞ and ρmax{(Em1−p

0 )1/p, (Em
−p/2
0 )1/p} < 1.

To prove Proposition 4.1 for p > 2, we need two lemmas below. Denote

un(s, r) = EP−sn W r
n (s ∈ R, r > 1). (4.2)

Lemma 4.2. For r > 2, un(s, r) satisfies the following recursive formula:

un(s, r)
1

r−1 ≤ (Em1−r−s
0 )

1
r−1un−1(s, r)

1
r−1 + (Em−s0 W r

1 )
1

r−1un−1(s, r − 1)
1

r−1 . (4.3)

Proof. Denote ϕ(k)
n (t) = ETkξe

itWn and ϕn(t) = ϕ
(0)
n (t) = Eξe

itWn . By (3.5), we get the
functional equation

ϕn(s) = Eξϕ
(1)
n−1(

t

m0
)Z1 a.s..

By differentiations, this yields

ϕ′n(t) = Eξ
Z1

m0

(
ϕ

(1)
n−1(

t

m0
)

)Z1−1(
ϕ

(1)
n−1(

t

m0
)

)′
a.s.. (4.4)

Recall that EξWn = 1 for all ξ and all n. Therefore we can define a random variable Vn
whose distribution is determined by

Eξg(Vn) = EξWng(Wn)

for all bounded and measurable function g. For each k ≥ 1, let V (k)
n be a random variable

with law Pξ(V
(k)
n ∈ ·) = PTkξ(Vn ∈ ·). Let Mn be a random variable independent of V (1)

n−1

under Pξ, whose distribution is determined by

Eξg(Mn) = Eξ
Z1

m0
g

(
1

m0

Z1−1∑
i=0

Wn−1(1, i)

)
,

for all bounded and measurable function g. (The probability space (Γ,G,Pξ) can be taken

large enough to define the random variables Vn, V (k)
n and Mn.) The Fourier transform of

Vn is
Eξe

itVn = EξWne
itWn = −iϕ′n(t).

So (4.4) implies that

Eξe
itVn = Eξe

it( 1
m0

V
(1)
n−1+Mn) a.s.,
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which is equivalent to the distributional equation

Vn
d
=

1

m0
V

(1)
n−1 +Mn

under Pξ. Therefore,

un(s, r) = EP−sn W r
n = EP−sn EξW

r
n = EP−sn EξV

r−1
n

= EP−sn Eξ

(
1

m0
V

(1)
n−1 +Mn

)r−1

= E
(
P
− s

r−1
n m−1

0 V
(1)
n−1 + P

− s
r−1

n Mn

)r−1

.

By the triangular inequality in Lr−1,

un(s, r)
1

r−1 ≤
(
EP−sn m1−r

0

(
V

(1)
n−1

)r−1
) 1

r−1

+
(
EP−sn Mr−1

n

) 1
r−1 . (4.5)

We now calculate the two expectations of the right hand side. We have

EP−sn m1−r
0

(
V

(1)
n−1

)r−1

= EP−sn m1−r
0 ETξV

r−1
n−1

= Em1−r−s
0 EP−sn V r−1

n−1

= Em1−r−s
0 un−1(s, r), (4.6)

and

EP−sn Mr−1
n = EP−sn EξM

r−1
n

= EP−sn Eξ
Z1

m0

(
1

m0

Z1−1∑
i=0

Wn−1(1, i)

)r−1

≤ EP−sn m−r0 EξZ
r
1ETξW

r−1
n−1

= Em−s0

(
Z1

m0

)r
EP−sn−1W

r−1
n−1

= Em−s0

(
Z1

m0

)r
un−1(s, r − 1). (4.7)

So (4.3) is a combination of (4.5), (4.6) and (4.7).

Remark 4.3. In particular, un(0, r) = EW r
n . By Lemma 4.2, we can obtain the recursive

formula for EW r
n:

(EW r
n)

1
r−1 ≤ (Emr−1

0 )
1

r−1 + (EW r
1 )

1
r−1 (EW r−1

n−1)
1

r−1 (r > 2).

Lemma 4.4. Let s ∈ R and r ∈ (b, b + 1], where b ≥ 1 is an integer. If Em−s0 < ∞ and

Em−s0

(
Z1

m0

)r
<∞, then

un(s, r) = O(n1+(b−1)r−(b−1)b/2(max{max
1≤i≤b

Emi−r−s
0 , Em−s0 })n).

Proof. We shall prove this lemma by induction on b. For b = 1, let r ∈ (1, 2]. By
Burkholder’s inequality,

EξW
r
n ≤ 1 + sup

n
Eξ|Wn − 1|r ≤ 1 + C

n−1∑
k=0

P 1−r
k Eξ|X̄n − 1|r a.s..
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Hence

un(s, r) = EP−sn EξW
r
n

≤ EP−sn

(
1 + C

n−1∑
k=0

P 1−r
k Eξ|X̄n − 1|r

)

= (Em−s0 )n + C

n−1∑
k=0

(Em1−r−s
0 )k(Em−s0 )n−k−1Em−s0 |X̄0 − 1|r

≤ (Em−s0 )n + Cnmax{Em1−r−s
0 , Em−s0 }n−1

= O(n(max{Em1−r−s
0 , Em−s0 })n).

So the conclusion holds for b = 1.
Now we assume that the conclusion is true for r ∈ (b, b + 1] for some integer b ≥ 1.

Then for r ∈ (b+ 1, b+ 2], r − 1 ∈ (b, b+ 1]. By Hölder’s inequality,

Em−s0

(
Z1

m0

)r−1

= Em
−s/r
0 m

−s(r−1)/r
0

(
Z1

m0

)r−1

≤ (Em−s0 )1/r

(
Em−s0

(
Z1

m0

)r)(r−1)/r

,

which implies that Em−s0 ( Z1

m0
)r−1 < ∞, since Em−s0 < ∞ and Em−s0 ( Z1

m0
)r < ∞. By the

induction assumption,

un−1(s, r − 1) = O((n− 1)1+(b−1)(r−1)−(b−1)b/2(max{max
1≤i≤b

Emi+1−r−s
0 , Em−s0 })n−1)

= O(n1+(b−1)(r−1)−(b−1)b/2(max{ max
2≤i≤b+1

Emi−r−s
0 , Em−s0 })n). (4.8)

It is easy to verify that any solution to the recursive inequality

cn ≤ αcn−1 +O(nγβn) (α, β, γ ≥ 0) (4.9)

satisfies cn = O(nγ+1 max{α, β}n). Lemma 4.2 and (4.8) show that un(s, r)
1

r−1 is a so-

lution of (4.9) with α = (Em1−r−s
0 )

1
r−1 , β = max{max2≤i≤b+1(Emi−r−s

0 )
1

r−1 , (Em−s0 )
1

r−1 }
and γ = 1+(b−1)(r−1)−(b−1)b/2

r−1 . Thus

un(s, r)
1

r−1 = O(nγ+1 max{α, β}n). (4.10)

Notice that γ + 1 = 1+br−b(b+1)/2
r−1 and

max{α, β} = max{ max
1≤i≤b+1

(Emi−r−s
0 )

1
r−1 , (Em−s0 )

1
r−1 }.

Hence (4.10) becomes

un(s, r) = O(n1+br−b(b+1)/2(max{ max
1≤i≤b+1

Emi−r−s
0 , Em−s0 })n).

So the conclusion still holds for r ∈ (b+ 1, b+ 2]. This completes the proof.

Remark 4.5. In Lemma 4.4, since 1− (b− 1)b/2 ≤ 0 for b ≥ 2, we in fact obtain

un(s, r) = O(n(max{Em1−r−s
0 , Em−s0 })n) for r ∈ (1, 2],

and for any integer b ≥ 1,

un(s, r) = O(nbr(max{ max
1≤i≤b+1

Emi−r−s
0 , Em−s0 })n) for r ∈ (b+ 1, b+ 2].
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Proof of Proposition 4.1. For p = 2, by Lemmas 2.5 and 2.7,

sup
n
E|Ân|2 =

∞∑
n=0

ρ2nE(P−1
n Eξ|X̄n − 1|2) = E|X̄0 − 1|2

∞∑
n=0

(
ρ2Em−1

0

)n
. (4.11)

Therefore, supnE|Ân|2 <∞ if and only if E( Z1

m0
)2 <∞ and ρ(Em−1

0 )1/2 < 1.

Now we consider the case where p > 2. Assume thatE
(
Z1

m0

)p
<∞ and ρmax{(Em1−p

0 )1/p,

(Em
−p/2
0 )1/p} < 1. By Lemma 2.5,

sup
n
E|Ân|p ≤ C

( ∞∑
n=0

ρ2n(E|Wn+1 −Wn|p)2/p

)p/2
.

To prove supnE|Ân|p <∞, it suffices to show that

∞∑
n=0

ρ2n(E|Wn+1 −Wn|p)2/p <∞.

By Lemma 2.7,

E|Wn+1 −Wn|p ≤ CEP−p/2n EξW
p/2
n Eξ|X̄n − 1|p

= CEP−p/2n W p/2
n E|X̄0 − 1|p

= Cun(p/2, p/2).

Notice that

Em
−p/2
0

(
Z1

m0

)p/2
= Em−p0 Z

p/2
1 1{Z1≥1} ≤ Em−p0 Zp11{Z1≥1} ≤ E

(
Z1

m0

)p
<∞,

and Em−p/20 < 1 <∞. Remark 4.4 shows that

un(p/2, p/2) = O(nγ(max{ max
1≤i≤b+1

Emi−p
0 ,Em

−p/2
0 })n)

for p/2 ∈ (b+ 1, b+ 2] with γ = 1 for b = 0 and γ = bp/2 for b ≥ 1. Notice that Emx
0 is log

convex. Therefore we have

max{ max
1≤i≤b+1

Emi−p
0 , Em

−p/2
0 } ≤ sup

1−p≤x≤−p/2
{Emx

0} = max{Em1−p
0 , Em

−p/2
0 }.

Thus
∞∑
n=0

ρ2n(E|Wn+1 −Wn|p)2/p ≤ C
∞∑
n=0

ρ2nn2γ/p(max{(Em1−p
0 )2/p, (Em

−p/2
0 )2/p})n.

The series in the right side of the above inequality is finite if and only if ρmax{(Em1−p
0 )1/p,

(Em
−p/2
0 )1/p}< 1.

Conversely, assume that supnE|Ân|p < ∞. Obviously, E
(
Z1

m0

)p
< ∞, since E| Z1

m0
−

1|p = E|Â0|p <∞. By Lemmas 2.5 and 2.7, we have ∀r ∈ [2, p],

sup
n
E|Ân|p ≥ C

∞∑
n=0

ρpnE|Wn+1 −Wn|p

≥ C

∞∑
n=0

ρpnEP p(1/r−1)
n (Eξ|X̄n − 1|r)p/r

= C

∞∑
n=0

ρpn(Em
p(1/r−1)
0 )nE(Eξ|X̄0 − 1|r)p/r.
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Thus ρ(Em
p(1/r−1)
0 )1/p < 1 holds for all r ∈ [2, p]. Taking r = p, 2, we get ρmax{(Em1−p

0 )1/p,

(Em
−p/2
0 )1/p} < 1.

4.2 Annealed moments of Ân: case p ∈ (1, 2)

For the case where p ∈ (1, 2), we have the proposition below.

Proposition 4.6 (Annealed moments of Ân for p ∈ (1, 2)). Let p ∈ (1, 2) and ρ ≥ 1. If

E
(
Eξ

(
Z1

m0

)r)p/r
<∞ and ρ(Em

p(1/r−1)
0 )1/p < 1 for some r ∈ [p, 2], then

sup
n
E|Ân|p <∞. (4.12)

Conversely, if (4.12) holds, then E( Z1

m0
)p <∞ and ρ(Ems

0)−1/2s < 1 for all s > 0, so that

ρ ≤ exp( 1
2E logm0); if additionally Em−p/20 logm0 > 0 and Em−p/2−1

0 Z1 log+ Z1 <∞, then

ρ(Em
−p/2
0 )1/p < 1.

Proof. Suppose that E
(
Eξ

(
Z1

m0

)r)p/r
<∞ and ρ(Em

p(1/r−1)
0 )1/p < 1 for some r ∈ [p, 2].

By Lemma 2.7,

Eξ|Wn+1 −Wn|p ≤ CP p(1/r−1)
n (Eξ|X̄n − 1|r)p/r.

Taking expectation we obtain

E|Wn+1 −Wn|p ≤ C(Em
p(1/r−1)
0 )nE(Eξ|X̄0 − 1|r)p/r. (4.13)

Notice that

E(Eξ|X̄0 − 1|r)p/r ≤ C

(
E

(
Eξ

(
Z1

m0

)r)p/r
+ 1

)
<∞.

By Lemma 2.5 and (4.13),

sup
n
E|Ân|p ≤ C

∞∑
n=0

ρpnE|Wn+1 −Wn|p

≤ CE
(
Eξ|X̄0 − 1|r

)p/r ∞∑
n=0

ρpn(Em
p(1/r−1)
0 )n <∞.

Conversely, assume that supnE|Ân|p <∞. It is obvious that E| Z1

m0
−1|p = E|Â0|p <∞.

By Lemmas 2.5 and 2.7, we have ∀N ≥ 1,

sup
n
E|Ân|p ≥ CNp/2−1

N−1∑
n=0

ρpnE|Wn+1 −Wn|p

≥ CNp/2−1
N−1∑
n=0

ρpnEP−p/2n EξW
p/2
n Eξ|X̄n − 1|p

= CNp/2−1
N−1∑
n=0

ρpnEP−p/2n W p/2
n E|X̄0 − 1|p. (4.14)

The assumption P(W1 = 1) < 1 ensures that E|X̄0 − 1|p > 0. For α > 0, Hölder’s
inequality gives

EWα
n = EWα

n P
−α
n Pαn ≤ (EWαp1

n P−αp1n )1/p1(EPαq1n )1/q1 , (4.15)
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where p1, q1 > 1 and 1/p1 + 1/q1 = 1. For s > 0, take α = sp
p+2s , p1 = 1 + p/2s and

q1 = 1 + 2s/p. Then (4.15) becomes

(EWα
n )p1 ≤ EW p/2

n P−p/2n (Ems
0)pn/2s. (4.16)

Combing (4.16) with (4.14), we get

sup
n
E|Ân|p ≥ CNp/2−1

N−1∑
n=0

ρpn(Ems
0)−pn/2s(EWα

n )p1

≥ C(inf
n
EWα

n )p1Np/2−1
N−1∑
n=0

(
ρp(Ems

0)−p/2s
)n

.

Hence supnE|Ân|p < ∞ implies that ρ(Ems
0)−1/2s < 1 for all s > 0, so that log ρ <

1
2s logEms

0 for all s > 0. Notice that (Ems
0)1/s is increasing as s increases. We have

log ρ ≤ inf
s>0

1

2s
logEms

0 =
1

2
lim
s→0+

1

s
log(Ems

0) =
1

2
E logm0,

so that ρ ≤ exp( 1
2E logm0).

If additionally Em−p/20 logm0 > 0 and Em−p/2−1
0 Z1 log+ Z1 <∞, we introduce a new

BPRE. Denote the distribution of ξ0 by τ0. Define a new distribution τ̃0 as

τ̃0(dx) =
m(x)−p/2τ0(dx)

Em
−p/2
0

,

where m(x) = E[Z1|ξ0 = x] =
∑∞
k=0 kpk(x). Consider the new BPRE whose environ-

ment distribution is τ̃ = τ̃⊗N0 instead of τ = τ⊗N0 . The corresponding probability and
expectation are denoted by P̃ and Ẽ, respectively. Then

EP−p/2n W p/2
n = ẼW p/2

n (Em
−p/2
0 )n. (4.17)

Combing (4.17) with (4.14), we obtain

sup
n
E|Ân|p ≥ C inf

n
ẼW p/2

n Np/2−1
N−1∑
n=0

(
ρpEm

−p/2
0

)n
.

Notice that

Ẽ logm0 = Em
−p/2
0 logm0 > 0,

and

Ẽ
Z1

m0
log+ Z1 = Em

−p/2−1
0 Z1 log+ Z1 <∞.

Hence W is non-degenerate under P̃, i.e. P̃(W > 0) > 0 (cf. e.g. [5], [19]), so that

infn ẼW
p/2
n = ẼW p/2 > 0. Therefore, supnE|Ân|p < ∞ implies that ρ(Em

−p/2
0 )1/p <

1.

4.3 Exponential rate of Wn

Again, by the relations of Ân, A(ρ) and ρn(W −Wn) , combined with Propositions 4.1
and 4.6, we obtain the following criteria for the annealed Lp convergence rate of Wn.

Theorem 4.7 (Exponential rate of annealed Lp convergence ofWn). Let ρ > 1.
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(i) Let p ∈ (1, 2). If E
(
Eξ

(
Z1

m0

)r)p/r
< ∞ and ρ(Em

p(1/r−1)
0 )1/p < 1 for some

r ∈ [p, 2], then
(E|W −Wn|p)1/p = o(ρ−n). (4.18)

Conversely, if (4.18) holds, then ρ ≤ exp( 1
2E logm0); if additionally Em−p/20 logm0 >

0 and Em−p/2−1
0 Z1 log+ Z1 <∞, then ρ(Em

−p/2
0 )1/p ≤ 1.

(ii) Let p ≥ 2. If E( Z1

m0
)p < ∞ and ρmax{(Em1−p

0 )1/p, (Em
−p/2
0 )1/p} < 1, then

(4.18) holds. Conversely, if (4.18) holds, then ρmax{(Em1−p
0 )1/p, (Em

−p/2
0 )1/p} ≤ 1.

Note that ρpnE|W −Wn|p → 0 implies that ∀ρ1 ∈ (1, ρ), ρpn1 Eξ|W −Wn|p → 0 a.s. by
Borel-Cantelli’s lemma and Markov’s inequality. So under the conditions of Theorem
4.7, we can also obtain (3.4). However, by Jensen’s inequality, it can be seen that the
conditions of Theorem 4.7 are stronger than those of Theorem 3.3.

The proof of Theorem 1.5 is now easy.

Proof of Theorem 1.5. Theorem 1.5 is a direct consequence of Theorem 4.7: taking r = p

in Theorem 4.7 gives (a), and taking r = 2 yields (b).
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