
E l e c t r o n i c

J
o

u
r n a l

o
f

P
r o b a b i l i t y

Vol. 11 (2006), Paper no. 26, pages 670–685.

Journal URL
http://www.math.washington.edu/~ejpecp/

Behavior of a second class particle in Hammersley’s

process

Eric Cator and Sergei Dobrynin
Delft Institute of Applied Mathematics

Delft University of Technology
Mekelweg 4, 2628 CD Delft

The Netherlands
e.a.cator@ewi.tudelft.nl

Abstract

In the case of a rarefaction fan in a non-stationary Hammersley process, we explicitly calcu-
late the asymptotic behavior of the process as we move out along a ray, and the asymptotic
distribution of the angle within the rarefaction fan of a second class particle and a dual
second class particle. Furthermore, we consider a stationary Hammersley process and use
the previous results to show that trajectories of a second class particle and a dual second
class particles touch with probability one, and we give some information on the area enclosed
by the two trajectories, up until the first intersection point. This is linked to the area of
influence of an added Poisson point in the plane
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1 Introduction

In [Hammersley (1972)], a discrete interacting particle process is introduced to study the
behavior of the length of longest increasing subsequences of random permutations. In
[Aldous and Diaconis (1995)], this discrete process is generalized to a continuous time inter-
acting particle process on the real line, and they use the ergodic decomposition theorem to show
local convergence to a Poisson process, when moving out along a ray. In this paper, we will
consider Hammersley’s process with sources and sinks, as introduced in [Groeneboom (2002)].
For an extensive description of this process, we refer to [Cator and Groeneboom (2005)], since
our results will be partly based on results derived in that paper. Here we will suffice with a brief
description, based on Figure 1.
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Figure 1: Space-time paths of the Hammersley’s process, with sources and sinks.

We consider the space-time paths of particles that started on the x-axis as sources, distributed
according to a Poisson distribution and we consider the t-axis as a time axis. In the positive
quadrant we have a Poisson process of what we call α-points (denoted in Figure 1 by ×). At the
time an α-point appears, the particle immediately to the right of it jumps to the location of the
α-point. Finally, we have a Poisson process of sinks on the t-axis. Each sink makes the leftmost
particle disappear. All three Poisson processes are assumed to be independent. To know the
particle configuration at time s, we intersect a line at time s with the space-time paths.

In [Cator and Groeneboom (2005)], a connection was made between the continuous time Ham-
mersley process and the behavior of second class particles, which are well studied in the litera-
ture on discrete interacting particle systems such as TASEP; see for example [Liggett (1999)].
For the Hammersley process, it is natural to consider two types of second class particles: the
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usual one, where one adds an extra particle at the origin, and a dual second class particle,
which corresponds to adding an extra sink at the origin (or removing the leftmost particle).
In fact, the trajectories of these two particles correspond to the two longest paths of the time-
reversed process such that all possible longest paths fall between these two longest paths. We
can study the trajectories of these two particles at the same time, that is, for one realization
of the Hammersley process. In this paper we study the behavior of a second class particle
and its dual particle in the case of a rarefaction fan, a phenomenon often observed in inter-
acting particle systems. In [Ferrari and Kipnis (1995)] this problem is considered for TASEP.
In [Seppäläinen (2002)] the Hammersley process is considered with general initial conditions,
but the rarefaction fan is not treated. Also, our methods are quite different and build more
on the ideas of [Cator and Groeneboom (2005)]. Around the time this paper was written, the
preprint [Colleti and Pimentel (2006)] appeared, where the asymptotic distribution of the an-
gle of the (dual) second class particle is also calculated (see Theorem 2.5), but not by proving the
asymptotic behavior of the Hammersley process in the rarefaction fan when moving out along a
ray (Theorem 2.2). They do state that the trajectory of a (dual) second class particle will almost
surely converge to a (random) line starting at the origin, relying on results obtained by Baik
and Raines using the RSK machinery. In the final section we will study the interaction between
a second class particle and its dual in the case of a stationary Hammersley process, and show
that they will touch with probability one. This should not be confused with the situation where
we have two second class particles, since the dual second class particle has different behavior
from a “normal” second class particle. We also study the area between the two trajectories up
until this point of touch. We did not find results in the literature on discrete interacting particle
systems that were similar to the results of our last section, so this interaction phenomenon may
be a specific feature of the Hammersley process.

2 Second class particles in a rarefaction fan

Let λ, µ be two positive reals, such that λµ < 1. Let t 7→ Lλ,µ(·, t) be Hammersley’s process
developing in time t, generated by a Poisson process of sources on the positive x-axis of intensity
λ, a Poisson process of sinks on the time axis of intensity µ and a Poisson process on R2

+ of
intensity 1, where these Poisson processes are independent. Here, Lλ,µ(·, t) signifies the counting
process that counts the number of Hammersley particles on the half-line (0,∞) × {t}. As
was shown in [Groeneboom (2002)], the case λµ = 1 corresponds to a stationary Hammersley
process, which means that for each t ≥ 0, Lλ,µ(·, t) is a Poisson process with intensity λ.

As we mentioned in the introduction, we will consider two kinds of second class particles. A
“normal” second class particle is created by putting an extra source in the origin. A dual second
class particle is created by putting an extra sink in the origin. The trajectories (Xt, t) of a
second class particle and (X ′

t, t) of a dual second class particle are shown in Figure 2. Note that
we always have X ′

t ≥ Xt.

Now consider the reversed process, where we use the North exits through [0, x]×{t} as sources,
the East exits through {x}× [0, t] as sinks and the β-points (these are the upper-right corners of
the space-time paths) as our Poisson process in [0, x]× [0, t]. Burke’s Theorem for Hammersley’s
process (see [Cator and Groeneboom (2005)]) shows that this process is again a stationary
Hammersley process, if we start with a stationary process. It is not hard to see from Figure 2
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Figure 2: Trajectories of (Xt, t) and (X ′
t, t)

that the trajectories of X and X ′ correspond to longest paths from (x, t) to (0, 0) in the reversed
process.

A second class particle and a dual second class particle are symmetrical with respect to the
main diagonal in the following sense: the reflected trajectory of a dual second class particle is
a trajectory of a ”normal” second class particle for the reflected realization, that is, with the
sources and sinks intensity exchanged.

A very important property of second class and dual second class particles is given in the following
lemma, which is slightly more general than Lemma 2.2 in [Cator and Groeneboom (2005)], but
the proofs of these two lemma’s are very similar, and therefore omitted here.

Lemma 2.1 Consider a Hammersley process L with some configuration of sources and sinks.
Define two coupled Hammersley processes L and L such that all three processes use the same
α-points. Furthermore, L uses the same sources as L, but only a subset of the sinks of L,
whereas L uses the same sinks as L, but only a subset of the sources of L. Denote with X and
X ′ a second class particle respectively a dual second class particle for the process L. Then the
space-time paths of L and L coincide below the trajectory of X, whereas the space-time paths of
L and L coincide above the trajectory of X ′.

The reader can verify this lemma by looking at Figure 2.

The results in this section are also valid when λ and/or µ are equal to 0, if we keep in mind that
whenever λ = 0, a dual second class particle remains on the x-axis (so X ′

t = +∞ for t > 0),
whereas when µ = 0, a second class particle remains on the t-axis (so Xt = 0 for t > 0).

For ρ > 0, we denote by t 7→ Lρ(·, t) a stationary Hammersley process, generated by a process
of sources of intensity ρ, a process of sinks of intensity 1/ρ and a process of α-points of intensity
1.

Throughout this section we are interested in the asymptotic behavior of the non-stationary
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process Lλ,µ and trajectories of its second class and dual second class particles. We recall here the
corresponding results for a stationary process, obtained in [Cator and Groeneboom (2005)].

Theorem 2.1 (Cator and Groeneboom) Let t → Lρ(·, t) be a stationary Hammersley pro-
cess with intensity of sources ρ and intensity of sinks 1/ρ. Let Xt be the x-coordinate of a second
class particle at time t and X ′

t be the x-coordinate of a dual second class particle at time t.

Then:

(i) t−1Xt → 1/ρ2 almost surely as t →∞
(ii) t−1X ′

t → 1/ρ2 almost surely as t →∞

This theorem combines the results of Theorem 2.1 and Remark 2.1 of
[Cator and Groeneboom (2005)]. We can now show the following theorem, describing
the asymptotic local intensities of the process Lλ,µ when moving out along a ray t = ax, for
a > 0.

Theorem 2.2 Let a > 0. Consider the random particle configuration with counting process

y 7→ Lλ,µ(x + y, ax)− Lλ,µ(x, ax), y ≥ −x.

Then:

(i) If a > 1/µ2, the process converges in distribution, as x → ∞, to a homogeneous Poisson
process on R, with intensity 1/µ.

(ii) If 1/µ2 > a > λ2, the process converges in distribution, as x → ∞, to a homogeneous
Poisson process on R, with intensity

√
a.

(iii) If λ2 > a, the process converges in distribution, as x → ∞, to a homogeneous Poisson
process on R, with intensity λ.

Proof:
(i) We couple the process Lλ,µ with a stationary process L1/µ via the same realization of the
Poisson process in R2

+, the same realization of sinks on the t-axis, and a ”thickened” set of
sources. This means that we independently add to the Poisson process of intensity λ on the x-
axis a Poisson process of intensity 1/µ− λ. This way of coupling (when only one set is changed
(thinned or thickened) and the two others are kept fixed) will be used throughout the paper
without further explanation.

Let (X ′
t, t) be the trajectory of an isolated dual second class particle at zero of the process L1/µ.

As the process Lλ,µ can be obtained from L1/µ by removing the added sources, the space-time
paths of both processes coincide above the trajectory (X ′

t, t) (Lemma 2.1). Now it is enough to
apply Theorem 2.1, stating that X ′

t/t almost surely converges to µ2, and to use the stationarity
of L1/µ.
(ii) This proof is analogous to the proof of Corollary 2.1, (i), in
[Cator and Groeneboom (2005)]. Let a′ be such that 1/µ2 > a′ > a. Note that

√
a′ > λ

and 1/
√

a′ > µ. Now we couple the process Lλ,µ with a process L√a′ generated by the same
realization of points on the plane and thickened sets of sources and sinks of intensities

√
a′ and

1/
√

a′ correspondingly.

674



0 λ

µ

t = 1
µ2 x t = λ2x

x

1/µ λ
√

a

t

rarefaction fan


............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
............
........

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

............................................................................................

Figure 3: Illustration of Theorem 2.2

Below the trajectory (Xt, t) of an isolated second class particle at zero of L√a′ , the space-time
paths of L√a′ coincide with the space-time paths of the process L̄√a′ , which is obtained by
removing all sinks (again Lemma 2.1).

Note that for any t, the set of intersections of space-time paths of the process Lλ,µ with the
horizontal level t is contained in the set of intersection of space-times paths of L̄√a′ with the
horizontal level t. In other words, at all times the process L̄√a′ contains the particles of Lλ,µ,
and may have more particles, since the first process has more sources and less sinks. It follows
that the set of intersections of space-time paths of Lλ,µ with any horizontal interval lying to the
right of the trajectory (Xt, t) is contained in the set of intersections of paths of L√a′ with this
interval.

Similarly, we consider a′′ such that a > a′′ > λ2 and couple Lλ,µ with L√a′′ . Now we have
that above the trajectory (X ′

t, t) of an isolated dual second class particle at zero of L√a′′ , the
space-time paths of L√a′′ coincide with the paths of L√a′′ , which is obtained by removing all
sources. This time we conclude that the set of intersections of space-time paths of Lλ,µ with
any horizontal interval lying to the left of the trajectory (X ′

t, t) contains the set of intersections
of paths of L√a′′ with this interval.

The situation is now as follows: if we fix R > 0 and consider the process Lλ,µ on the
horizontal interval [x − R, x + R] × {ax}, we know that for any fixed a′ and a′′ such that
1/µ2 > a′ > a > a′′ > λ2 and for x big enough, the particles of this process are a subset of
the stationary process L√a′ and a superset of the stationary process L√a′′ . Now we are exactly
in the situation of the proof of the Corollary 2.1, (i), [Cator and Groeneboom (2005)] and
statement (ii) follows by considering the Laplace transform of the number of particles in fixed
disjoint intervals and using dominated convergence.
(iii) The proof of the last statement proceeds along the same lines as the proof of statement
(i). Couple Lλ,µ with Lλ, note that their space-time paths coincide below the trajectory (Xt, t)
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of an isolated second class particle at zero of the process Lλ and use Theorem 2.1 and the
stationarity of Lλ.

�

Let Fλ,µ(x, t) be the flux of the process Lλ,µ at (x, t), which we define by the number of space-
time paths of Lλ,µ contained in the rectangle [0, x]×[0, t]. Note that Fλ,µ(x, t) can be represented
as the number of crossings of the interval [0, x]×{t} by space-time paths of Lλ,µ plus the number
of crossings of the interval {0} × [0, t]. It is also equal to the number of crossings of the interval
[0, x]× {0} plus the number of crossings of the interval {x} × [0, t] by space-time paths of Lλ,µ.

Definition 2.3 When moving out along a ray t = ax, we define the local intensity function
I(x, h) by the following formula:

I(x, h) = E(Fλ,µ(x + h, ax)− Fλ,µ(x, ax)).

We suppress the dependence on a, λ and µ in our notation.

Note that
I(x, h) = E(Lλ,µ(x + h, ax)− Lλ,µ(x, ax)),

so it is equal to the expected number of crossings of the interval [x, x + h]×{ax} by space-time
paths of the process Lλ,µ.

Corollary 2.4 Fix the positive constants a, λ and µ. We have

lim
x→∞

I(x, h) =


h/µ, a ≥ 1/µ2,
√

a · h, 1/µ2 > a ≥ λ2

λ · h, λ2 > a ≥ 0.

Proof: Coupling in a standard way the process Lλ,µ with the process L1/µ (adding sources), we
can estimate

Lλ,µ(x + h, ax)− Lλ,µ(x, ax) ≤ L1/µ(x + h, ax)− L1/µ(x, ax)

for any realization and any x ≥ 0. Define for x ≥ 0

Ax = Lλ,µ(x + h, ax)− Lλ,µ(x, ax) and Bx = L1/µ(x + h, ax)− L1/µ(x, ax).

Define a random variable A, whose distribution depends on the fixed parameters a, λ and µ, as
follows:

A ∼


Pois(h/µ), a ≥ 1/µ2,

Pois(
√

a · h), 1/µ2 > a ≥ λ2

Pois(λ · h), λ2 > a ≥ 0.

Theorem 2.2 shows that
Ax

d−→ A (x →∞).
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Furthermore,
∀ x ≥ 0 : Bx ∼ Pois(h/µ).

For any M > 0 we have

E(Ax) = E(Ax ∧M) + E((Ax −M)1{Ax>M}).

Also,

∀ x > 0 : E((Ax −M)1{Ax>M}) ≤ E((Bx −M)1{Bx>M}) = E((B0 −M)1{B0>M}).

Since
lim

x→∞
E(Ax ∧M) = E(A ∧M), lim

M→∞
E(A ∧M) = EA

and
lim

M→∞
E((B0 −M)1{B0>M}) = 0,

we conclude that
lim

x→∞
E(Ax) = EA.

�

In the next theorem we will discuss the behavior of Xt and X ′
t, the second class particle and the

dual second class particle of the process Lλ,µ.

Theorem 2.5 Let Lλ,µ be the non-stationary Hammersley process defined above. Let Xt be the
x-coordinate at time t of a second class particle starting at zero. Then

lim
x→∞

P (Xax > x) =


1, a ≥ 1/µ2,
√

a−λ
1/µ−λ, 1/µ2 > a ≥ λ2

0, λ2 > a ≥ 0.

Proof: To prove this theorem we will calculate the derivative ∂
∂hI(x, h)|h=0. The proof is

inspired by the proof of Theorem 1, [Ferrari and Kipnis (1995)], where the analogous problem
for TASEP is solved.

Fix t and x and consider some small h > 0. We couple the process Lλ,µ with a process L̂λ,µ

constructed in the following way. Consider the same Poisson realizations of points in the plane.
Consider the same realization of sinks. Consider the same realization of sources on the interval
(h,∞)× {0}. On the interval [0, h]× {0} we add an independent Poisson process of sources of
intensity 1/µ− λ. The situation is illustrated in Figure 4.

Note that the process L̂λ,µ, restricted to the rectangle [0, h]× [0, t], is a stationary Hammersley
process with intensity of sources 1/µ and intensity of sinks µ. Thus, the set of crossings of space-
time trajectories of L̂λ,µ with the vertical segment {h}× [0, t] is a Poisson process of intensity µ,
independent of the sources on (h,∞)×{0} and of the Poisson points in (h,∞)×[0, t] (this follows
from the stationarity of the Hammersley process when viewed from left to right). Now it follows
that the number of space-time paths of the process L̂λ,µ inside the rectangle [h, x + h] × [0, t]
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Figure 4: trajectory Xh
t of added point (•) hits the right side and the flux F̄λ,µ(x, t) is decreased;

for this realization it decreases from 4 to 3.

(which we will denote by F̂λ,µ(x, t)), has the same distribution as the flux of the process Lλ,µ on
the rectangle [0, x]× [0, t].

We are interested in the difference

Fλ,µ(x + h, t)− F̂λ,µ(x, t). (2.1)

This difference is equal to the difference between the number of space-time paths of the process
Lλ,µ in the rectangle [0, x + h]× [0, t] and the number of space-time paths of the process L̂λ,µ in
the rectangle [h, x + h]× [0, t].

As we are interested in the expectation of this difference only up to the first order of h when
h ↓ 0, we can distinguish two cases. In the first case there is no extra source in [0, h] × {0},
which means that the space-time paths of Lλ,µ and L̂λ,µ are the same. In the second case there
is an extra source in [0, h]× {0}.
In the first case the difference (2.1) is equal to the number of sources of Lλ,µ in [0, h] × {0},
since those sources are not counted in F̂λ,µ(x, t). Clearly, the expected number of sources in
[0, h]× {0} equals λh.

In the second case we have to be more careful. First of all, the probability of having an extra
source equals, in first order, (1/µ−λ)h. The added source can affect the space-time paths of the
original Lλ,µ inside the rectangle [h, x+h]× [0, t] and can change the flux. Note that the change
in the space-time paths will happen above the trajectory of the added point, considered as a
second-class particle. If this trajectory hits the right side of the rectangle (i.e. {x+h}× [0, t]), it
follows that one of the intersections of space-time paths of Lλ,µ with the right side is eliminated
in L̄(λ, µ); see Figure 4. Thus, in this case the difference (2.1) is +1. But if the trajectory of the
added point (which we define by Xh

t ) does not hit the vertical segment {x+h}× [0, t], it follows
that the sets of intersections are the same for both processes and the difference is zero again.
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Now we can conclude that

E(Fλ,µ(x + h, t)− Fλ,µ(x, t)) = λh + (1/µ− λ)hP (Xh
t > x + h) + O(h2). (2.2)

Taking t = ax, dividing by h and taking the limit h → 0 we have

∂

∂h
I(x, h)|h=0 = λ + (1/µ− λ)P (Xax > x).

From this it follows that ∂I(x,h)
∂h is non-increasing in h ∈ [−1, 1] for any fixed x ≥ 1. Indeed, fix

h0 ∈ [−1, 1]. Use (2.2) to conclude that

∂

∂h
I(x, h)|h=h0 =

∂

∂h
I(x + h0, h)|h=0 = λ + (1/µ− λ)P (Xax > x + h0).

The probability P (Xax > x + h0) obviously does not increase in h0.

We are now in the following situation: we have a family {I(x, h) : x ≥ 1} of functions of h, where
h ∈ [−1, 1]. For all x the function I(x, h) is differentiable on [−1, 1] and concave. Moreover,
we know that the family I(x, h) has a pointwise limit, which is also differentiable on [−1, 1]
(Corollary 2.4). It follows that the family of derivatives also converges to the derivative of the
limit, in other words

lim
x→∞

lim
h→0

1
h

I(x, h) = lim
h→0

lim
x→∞

1
h

I(x, h).

This is a standard result from analysis.

It follows that

λ + (1/µ− λ) lim
x→∞

P (Xax > x) =


1/µ, a ≥ 1/µ2,
√

a, 1/µ2 > a ≥ λ2

λ, λ2 > a ≥ 0

which finishes the proof of the theorem.
�

Corollary 2.6 Let Lλ,µ be the non-stationary Hammersley process defined above. Let X ′
t be the

x-coordinate at time t of a dual isolated second class particle at zero. Then

lim
x→∞

P (X ′
ax > x) =


1, a ≥ 1/µ2,
1/λ−

√
1/a

1/λ−µ, 1/µ2 > a ≥ λ2

0, λ2 > a ≥ 0.

Proof: This follows from the symmetry of the trajectories of a second class particle and a dual
second class particle (reversing the role of x and t, interchanging λ and µ and replacing a by
1/a).

�
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3 Second class particles and dual second class particles in the
stationary case

Now we will turn our attention to the stationary case. Let λ > 0 and consider the Hammersley
process Lλ with intensity of sources λ, intensity of sinks 1/λ and intensity of α-points 1. As
it follows from [Cator and Groeneboom (2005)] (see also Theorem 2.1), the trajectories of a
second class particle at zero, (Xt, t), and of a dual second class particle, (X ′

t, t), both asymptot-
ically tend to the ray t = λ2x. We will prove that these trajectories intersect with probability
one and provide some information on the area enclosed by these trajectories, the origin and the
first intersection point.

Theorem 3.1 Let Lλ be the stationary Hammersley process defined above and let (Xt, t) and
(X ′

t, t) be the trajectories of a second class and a dual second class particle respectively. Then
(Xt, t) and (X ′

t, t) intersect with probability one.

Proof: To prove this theorem we will again use coupling. Consider the standard coupling of Lλ

with Lλ,0 by removing all sinks. The space-time paths of Lλ and Lλ,0 coincide strictly below the
trajectory (Xt, t) (Lemma 2.1). Choose a realization such that (X ′

t, t) tends to the ray t = λ2x.
If (X ′

t, t) and (Xt, t) do not intersect for this realization, then the trajectory of a dual second
class particle of the process Lλ,0 coincides with (X ′

t, t) and, consequently, will also tend to the
ray t = λ2x. Suppose this event has probability ε > 0. Denote X ′

0(t) as the x-coordinate at
time t of a dual second class particle for the process Lλ,0. The previous discussion shows that

P ( lim
x→∞

X ′
0(λ

2x)/x = 1) ≥ ε.

Then for any a > λ2, we would have

P (∃ M : ∀ x ≥ M : X ′
0(λ

2x) >
λ2

a
x) ≥ ε

This implies that there exists M > 0 such that

P (∀ x ≥ M : X ′
0(λ

2x) >
λ2

a
x) ≥ ε/2.

This in turn implies

∀ x ≥ M : P (X ′
0(λ

2x) >
λ2

a
x) ≥ ε/2 ⇔ ∀ y ≥ a

λ2
M : P (X ′

0(ay) > y) ≥ ε/2

This contradicts Corollary 2.6 for a close enough to λ2, which proves that (Xt, t) and (X ′
t, t)

intersect with probability one.
�

Now we will study the expected area enclosed by the trajectories of a second class and a dual
second class particle. The main idea comes from the following observation: suppose we have a
realization of a stationary Hammersley process in the positive quadrant. Now we add an extra
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Figure 5: In the left picture, the flux at the point (x, t) increases, for this realization from 2 to
3. In the right picture, the flux at (x, t) remains the same, for this realization equal to 2.

α-point at (u, v). How does this change the space-time paths? The situation is depicted in
Figure 5.

Adding an extra α-point at (u, v) moves the first particle immediately to the right of (u, v) to
(u, v); this corresponds to a dual second class particle that starts at (u, v). However, since there
is now a particle at (u, v), the first “sink”, or crossing on {u} × (v,∞), also disappears, which
corresponds to a “normal” second class particle that starts at (u, v). Within the region, enclosed
by the trajectories of the second class particle and the dual second class particle, the space-time
paths will change in such a way that the flux F (x, t) is increased by 1 for each (x, t) within the
trajectories. However, the first time the two trajectories meet (which happens with probability
1, according to Theorem 3.1), the two particles annihilate each other (since one corresponds to
an extra source, whereas the other corresponds to an extra sink). This means that the shaded
area in Figure 5, between the two trajectories, is the only area where the space-time paths are
changed, and within this area the flux is increased by 1.

Now we define the following ”rainfall”process, which will emulate the adding of extra α-points to
a stationary Hammersley process. We define this process in [0,∞)3, where the first two variables
x and t are the same as we have seen before, but the third parameter τ is a kind of external
time parameter. Consider three independent Poisson processes in this space: a Poisson process
of intensity 1 on the plane [0,∞) × {0} × [0,∞), a Poisson process of intensity 1 on the plane
{0} × [0,∞)× [0,∞) and a Poisson process with intensity measure 2τdxdtdτ on [0,∞)3.

Then define L(τ) as the Hammersley process at “time” τ that uses as its sources the projection
of all Poisson points in [0,∞) × {0} × [0, τ ] onto the x-axis, as its sinks the projection of all
Poisson points in {0} × [0,∞) × [0, τ ] onto the t-axis and as its α-points, the projection of all
Poisson points in [0,∞)2 × [0, τ ] onto the (x, t)-plane. It is easy to check that L(τ) will be a
stationary Hammersley process with source and sink intensity equal to τ , and the intensity of
α-points equal to τ2. The advantage of this construction lies in the fact that we have coupled a
family of stationary Hammersley processes.

We will use this process to prove the following theorem.

Theorem 3.2 Consider a Hammersley process with intensity of sources and sinks being τ and
intensity of α-points being τ2. Let O(τ) be the region in the plane enclosed by the trajectories
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(Xτ (t), t) and (X ′
τ (t), t) of a second class and a dual second class particle starting in the origin,

until their first intersection point. Fix x, t > 0 and let Area denote Lebesgue’s measure on the
plane. Then

EArea(O(τ) ∩ [0, x]× [0, t]) =
x + t

2τ
− 1

2τ
(E(x−Xτ (t))+ + E(t−Xτ (x))+).

Proof: Consider the rainfall process described above and let Fτ (x, t) be the flux at the point
(x, t) of the stationary process L(τ). To prove the theorem we will calculate the derivative

∂

∂τ
EFτ (x, t)

in two different ways.

Take some small dτ > 0 and note that, since the processes L(τ) and L(τ+dτ) are stationary, we
can calculate the expected flux at both times directly:

EFτ+dτ (x, t)− EFτ (x, t) = x(τ + dτ) + t(τ + dτ)− xτ − tτ = (x + t)dτ

and therefore we get
∂

∂τ
EFτ (x, t) = x + t. (3.3)

Now we consider a different way of calculating the difference

E(Fτ+dτ (x, t)− Fτ (x, t)). (3.4)

by using the coupling of L(τ) and L(τ+dτ). Up to the first order of dτ we can assume that in
the time interval [τ, τ + dτ ] there either falls one extra source onto the segment [0, x]×{0}, one
extra sink onto the segment {0}× [0, t] or one extra α-point inside the rectangle (0, x]× (0, t] (if
nothing happens the difference is of course zero).

In the first case the flux will only be changed if the trajectory of a second class particle, starting
at the dropped source on [0, x] × {0}, will cross the line [0,∞) × {t} to the left of the point
(x, t). In this case the flux will be increased by one. Similarly, in the second case the flux will
increase by one only if the trajectory of a dual second class particle starting at the dropped sink
on {0} × [0, t] will cross the line {x} × [0,∞) to the right of the point (x, t).

The area we are interested in arises from the third case. It follows from the explanation around
Figure 5, that the flux at (x, t) is increased by one only if (x, t) ∈ O(τ)(u, v), where (u, v) is the
location of the extra α-point and O(τ)(u, v) denotes the area described in the theorem, but here
the second class particle and the dual second class particle start at (u, v).

Combining all three cases we have

E(Fτ+dτ (x, t)− Fτ (x, t)) = dτ

x∫
0

P (Xτ,t(u, 0) < x)du + dτ

t∫
0

P (X ′
τ,t(0, v) > x)dv +

(3.5)

+ 2τdτ

x∫
0

t∫
0

P ((x, t) ∈ O(τ)(u, v))dudv + o(dτ),
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where Xτ,t(u, 0) and X ′
τ,t(0, v) are x-coordinates at time t of a second class and a dual second

class particle of L(τ), starting at points (u, 0) and (0, v) respectively.

Using the fact that in the stationary Hammersley process L(τ), O(τ) and O(τ)(u, v) have the
same distribution modulo a translation, we can rewrite the last integral of (3.5) in the following
way:

x∫
0

t∫
0

P ((x, t) ∈ O(τ)(u, v))dudv =

x∫
0

t∫
0

P ((x− u, t− v) ∈ O(τ))dudv =

= E
x∫

0

t∫
0

1O(τ)(u, v)dudv = EArea(O(τ) ∩ [0, x]× [0, t]).

Dividing both parts of (3.5) by dτ , taking the limit dτ → 0 and using (3.3) we arrive at

x + t =

x∫
0

P (Xτ,t(u, 0) < x)du +

t∫
0

P (X ′
τ,t(0, v) > x)dv + 2τEArea(O(τ) ∩ [0, x]× [0, t]).

Again using the stationarity of L(τ), we can see that

P (Xτ,t(u, 0) < x) = P (Xτ (t) < x− u)

and
P (X ′

τ,t(0, v) > x) = P (X ′
τ (t− v) > x).

This leads to

EArea(Oτ ∩ [0, x]× [0, t]) =
x + t

2τ
− 1

2τ

x∫
0

P (Xτ (t) < u)du− 1
2τ

t∫
0

P (X ′
τ (v) > x)dv. (3.6)

Consider the first integral on the right side of (3.6). We can rewrite it in the following way:

x∫
0

P (Xτ (t) < u)du = E(

x∫
0

1{Xτ (t)<u}du)

= E(x−Xτ (t))+.

Using the equality P (X ′
τ (v) > x) = P (Xτ (x) < v), which follows from the symmetry of the

process L(τ) (note that we have the same intensity of sources and sinks), we conclude a similar
formula for the second integral in (3.6)

t∫
0

P (X ′
τ (v) > x)dv = E(t−Xτ (x))+.

Combining these results we have proved that

EArea(O(τ) ∩ [0, x]× [0, t]) =
x + t

2τ
− 1

2τ
(E(x−Xτ (t))+ + E(t−Xτ (x))+). �
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This result is only valid for stationary Hammersley processes with equal source and sink intensity.
However, if we consider Lλ, a stationary Hammersley process with source intensity λ, sink
intensity 1/λ and intensity of α-points equal to 1, it is clear that this process has the same
distribution as the image of the process Lλ=1 under the map

Φλ(x, t) = (x/λ, λt).

This observation easily leads to the following corollary.

Corollary 3.3 Consider a stationary Hammersley Lλ. Let Oλ be the area in the plane enclosed
by the trajectories (Xt, t) and (X ′

t, t) of a second class and a dual second class particle starting
in the origin, until their first intersection point. Fix x, t > 0 and let Area denote Lebesgue’s
measure on the plane. Then

EArea(Oλ ∩ [0, x]× [0, t]) =
λx + t/λ

2
− λ

2
(E(x−Xt)+ + E(t/λ2 −Xλ2x)+).

Another interesting asymptotic corollary to Theorem 3.2 is the following.

Corollary 3.4 Consider a stationary Hammersley process Lλ.

1. For any fixed x0 > 0 we have

EArea(Oλ ∩ [0, x0]× [0,∞)) =
λx0 + λEXλ2x0

2
.

2. For any fixed t0 > 0 we have

EArea(Oλ ∩ [0,∞)× [0, t0]) =
t0/λ + λEXt0

2
.

3.

lim
x→∞

EArea(Oλ ∩ [0, x]× [0, λ2x])
x

= λ.

Proof: For the first statement, consider E(x−Xt)+. Note that

(x−Xt)+ → 0 a.s.

as t →∞. Since (x−Xt)+ is bounded by x, we get

E(x−Xt)+ → 0 (t →∞).

Now consider t/λ2 − E(t/λ2 −Xλ2x)+ = E(min(Xλ2x, t/λ2)). Clearly,

E(min(Xλ2x, t/λ2)) → EXλ2x (t →∞),

so the first statement is a direct consequence of these observations and Corollary 3.3. The proof
of the second statement is completely analogous.
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The last statement follows from the fact that in Lλ, we have

Xλ2x

x
→ 1 a.s.

Now we use dominated convergence to get the desired result from Corollary 3.3.
�

This last corollary seems to indicate that the two trajectories of the second class particle and the
dual second class particle run parallel at average vertical distance λ. However, the true behavior
of the two trajectories is that they often collide quite quickly, but with low probability they drift
away from each other, in which case Oλ∩ [0, x]× [0, λ2x] grows quadratically in x. It does follow
from Theorem 3.1 that eventually the two trajectories will touch. We wish to remark that it is
not hard, using the methods of [Cator and Groeneboom (2005)] and this paper, together with
some crude estimates, to show that EXt < +∞.
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