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Abstract

Recently, several authors have studied maps where a function, describing the local diffusion
matrix of a diffusion process with a linear drift towards an attraction point, is mapped into the
average of that function with respect to the unique invariant measure of the diffusion process,
as a function of the attraction point. Such mappings arise in the analysis of infinite systems
of diffusions indexed by the hierarchical group, with a linear attractive interaction between
the components. In this context, the mappings are called renormalization transformations.
We consider such maps for catalytic Wright-Fisher diffusions. These are diffusions on the
unit square where the first component (the catalyst) performs an autonomous Wright-Fisher
diffusion, while the second component (the reactant) performs a Wright-Fisher diffusion with
a rate depending on the first component through a catalyzing function. We determine the
limit of rescaled iterates of renormalization transformations acting on the diffusion matrices
of such catalytic Wright-Fisher diffusions
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This paper is devoted to the study of a certain nonlinear map, acting on diffusion matrices. This
work has applications in the study of infinite systems of linearly interacting diffusion processes.
Such systems exhibit a phase transition between stable and clustering behavior. It is believed,
and in some very special cases proved, that near this phase transition, such systems show a
number of phenomena that are supposed to be typical for phase transitions in general, such as
scale invariance and universality on large space-time scales. Ultimately, the aim of the present
paper is to understand these phenomena for general linearly interacting diffusions, and more
specifically for a special class of diffusions, called catalytic Wright-Fisher diffusions. Although the
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bulk of this paper is devoted to the proof of one theorem (Theorem 1.4) about one transformation
(defined in (1.2)), we come back to the relevance of our work for interacting diffusions in the
discussion in Section 4 and in an appendix.

Several authors [BCGdH95, BCGdH97, dHS98, Sch98, CDG04] have studied maps where a
function, describing the local diffusion matrix of a diffusion process, is mapped into the average
of that function with respect to the unique invariant measure of the diffusion process itself.
Such mappings arise in the analysis of infinite systems of diffusion processes indexed by the
hierarchical group, with a linear attractive interaction between the components [DG93a, DGI6,
DGV95]. In this context, the mappings are called renormalization transformations. We follow
this terminology. For more on the relation between hierarchically interacting diffusions and
renormalization transformations, see Appendix A.1.

Formally, such renormalization transformations can be defined as follows.

Definition 1.1 (Renormalization class and transformation) Let D C R? be nonempty,
convex, and open. Let W be a collection of continuous functions w from the closure D into the
space Mi of symmetric non-negative definite d x d real matrices, such that A\w € W for every
A>0,weEW. We call W a prerenormalization class on D if the following three conditions are
satisfied:

(i) For each constant ¢ > 0, w € W, and x € D, the martingale problem for the operator Ag"
is well-posed, where

d

d
AP F(Y) = e (@i =y g f ) + D wiW g fv)  weD), (L)

i=1 ij=1

and the domain of A3 is the space of real functions on D that can be extended to a twice
continuously differentiable function on R¢ with compact support.

(ii) For each ¢ > 0, w € W, and x € D, the martingale problem for A7" has a unique
stationary solution with invariant law denoted by vg™.

(iii) For each ¢ >0, w € W,z € D, and i,j = 1,...,d, one has /Dyi’w(dyﬂwij(y)] < 00.

If W is a prerenormalization class, then we define for each ¢ > 0 and w € W a matrix-valued
function F.w on D by

Fow(z) = / vo (dy)w(y) (x € D). (1.2)

D

We say that W is a renormalization class on D if in addition:
(iv) For each ¢ > 0 and w € W, the function Frw is an element of W.
If W is a renormalization class and ¢ > 0, then the map F. : W — W defined by (1.2) is called

the renormalization transformation on W with migration constant c. In (1.1), w is called the
diffusion matriz and x the attraction point. &
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Remark 1.2 (Associated SDE) It is well-known that D-valued (weak) solutions y =
(y',...,y% to the stochastic differential equation (SDE)

n
dyi:c(xi—yi)dt—l—\/ﬁZGij(yt)dBi (t>0,i=1,...,d), (1.3)
j=1
where B = (B!,...,B") is n-dimensional (standard) Brownian motion (n > 1), solve the

martingale problem for AZ" if the d x n matrix-valued function o is continuous and satisfies
> i Oik0jk = wij. Conversely [EK86, Theorem 5.3.3], every solution to the martingale problem
for A" can be represented as a solution to the SDE (1.3), where there is some freedom in the
choice of the root o of the diffusion matrix w. &

In the present paper, we concern ourselves with the following renormalization class on [0, 1]2.

Definition 1.3 (Renormalization class of catalytic Wright-Fisher diffusions) We set
Weat := {w*P : a > 0, p € H}, where

apr oy . (x1(l— 1) 0 _ 9
w*P(x) ( 0 p(@)wa(1 — 2) (x = (z1,22) € ]0,1]%), (1.4)
and
H := {p : p a real function on [0,1], p > 0, p Lipschitz continuous}. (1.5)

Moreover, we put
Hlﬂ“ = {p en: 1{p(0)>0} =1, 1{p(1)>0} = T} (lvT =0, 1)7 (16)
and set W2 = {w™? : a0 >0, p € Hiry (L,r=0,1). <&

Note that we do not require that p > 0 on (0,1) (compare the remarks below Lemma 2.4).

By Remark 1.2, solutions y = (y*!, y?) to the martingale problem for A%V can be represented
as solutions to the SDE

(i) dy; =c(z1—y})dt +/2ay}(1 — y})dB;, W

(i) dy?=c(ez —yD)dt + /2y )y2(1 - y?)dBE.

We call y! the Wright-Fisher catalyst with resampling rate a and y? the Wright-Fisher reactant
with catalyzing function p.

For any renormalization class ¥V and any sequence of (strictly) positive migration constants
(ck)k>0, we define iterated renormalization transformations F' () W — W, as follows:

FOty .= F, (F™w) (n>0) with FOw:=w (w € Weat)- (1.8)
We set sg := 0 and
n—1
1
Sp = — (1 <n<o0). (1.9)
k=0 *

Here is our main result:
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Theorem 1.4 (Main result)
(a) The set Weat is a renormalization class on [0,1)2 and F.(W4) C Wé; (¢>0,1,r=0,1).

cat
(b) Fix (positive) migration constants (ci)k>0 such that

(i) sp, — o0 and (ii) Sntl 1+~* (1.10)

n—oo Sy M—00

for some v* > 0. Ifw € Wégt (I,r =0,1), then uniformly on [0, 1]?,

snFMw — w*, (1.11)

n—oo
where the limit w* s the unique solution in Wi;:t to the equation

(i) (14" Fy ™ = w? if v >0,
1 e B . . o (1.12)
(i) 3 Z wij(x)mw (x) +w*(x)=0 (x €0,1]%) if v*=0.

ij=1

(c) The matriz w* is of the form w* = w™P", where p* = pz‘m,y* € H,, depends on l,r, and ~*.
One has
Pooy =0 and piy-=1  forally* >0. (1.13)

For each v* > 0, the function palﬁ* is concave, nondecreasing, and satisfies palﬁ*(O) = 0,
palﬁ*(l) = 1. By symmetry, analoguous statements hold for pi o ,«.

Conditions (1.10) (i) and (ii) are satisfied, for example, for ¢, = (1 + v*)~*. Note that the
functions pg .« and pj; .« are independent of v* > 0. We believe that on the other hand,
PO,1~+ 18 mOt constant as a function of 4*, but we have not proved this.

The function pj ; ( is the unique nonnegative solution to the equation

Ja(l = 2) Zp(x) + p(a)(1 = p(x)) =0 (z€0,1)) (1.14)

with boundary conditions p(0) = 0 and p(1) > 0. This function occurred before in the work of
Greven, Klenke, and Wakolbinger [GKWO01, formulas (1.10)—(1.11)]. In Section 4.1 we discuss
the relation between their work and ours.

Outline In Part I of the paper (Sections 1-4) we present our results and our main techniques
for proving them. Part II (Sections 5-9) contains detailed proofs. Since the motivation for
studying renormalization classes comes from the study of linearly interacting diffusions on the
hierarchical group, we explain this connection in Appendix A.

Outline of Part I In the next section, we place our main result in a broader context. We give a
more thorough introduction to the theory of renormalization classes on compact sets and discuss
earlier results on this topic. In Section 3, we discuss special properties of the renormalization
class Weat from Definition 1.3. In particular, we show how techniques from the theory of spatial
branching processes can be used to prove Theorem 1.4. In Section 4 we discuss the relation of
our work with that in [GKWO01] and mention some open problems.
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Notation If E is a separable, locally compact, metrizable space, then C(E) denotes the space
of continuous real functions on E. If F is compact then we equip C(E) with the supremum
norm || - ||eo. We let B(E) denote the space of all bounded Borel measurable real functions on
E. We write C4(E) and Cp 1)(E) for the spaces of all f € C(F) with f > 0and 0 < f < 1,
respectively, and define B, (FE) and Bjy)(E) analogously. We let M(E) denote the space of
all finite measures on FE, equipped with the topology of weak convergence. The subspaces of
probability measures is denoted by M;j(E). We write N(E) for the space of finite counting
measures, i.e., measures of the form v = " 6, with z1,..., 2, € E (m > 0). We interpret
v as a collection of particles, situated at positions z1,...,%y,. For p € M(FE) and f € B(F)
we use the notation (u, f) := [ fdp and |u| := p(E). By definition, Dg[0, 00) is the space of
cadlag functions w : [0,00) — F, equipped with the Skorohod topology. We denote the law of a
random variable y by L(y). If y = (y¢)¢>0 is a Markov process in E and = € E, then P* denotes
the law of y started in yg = x. If p is a probability law on E then P* denotes the law of y
started with initial law £(yo) = p. For time-inhomogeneous processes, we use the notation P“®
or Pb# to denote the law of the process started at time ¢ with initial state y; = « or initial law
L(y:) = p, respectively. We let E*, E¥, ... etc. denote expectation with respect to P*, P* ...
respectively.

A cknowledgements We thank Anton Wakolbinger and Martin Mohle for pointing out reference
[Ewe04] and the fact that the distribution in (5.17) is a S-distribution. We thank the referee for
a careful reading of an earlier version of the manuscript.

2 Renormalization classes on compact sets

2.1 Some general facts and heuristics

In this section, we explain that our main result is a special case of a type of theorem that
we believe holds for many more renormalization classes on compact sets in R%. Moreover, we
describe some elementary properties that hold generally for such renormalization classes. The
proofs of Lemmas 2.1-2.8 can be found in Section 5.1 below.

Fix a prerenormalization class W on a set D where D C R¢ is open, bounded, and convex.
Then W is a subset of the cone C(D, Mi) of continuous Mﬁ—valued functions on D. We equip
C(D, Mi) with the topology of uniform convergence. Our first lemma says that the equilibrium
measures v, and the renormalized diffusion matrices F.w(x) are continuous in their parameters.

Lemma 2.1 (Continuity in parameters)

(a) The map (x,c,w) — vg" from D x (0,00) x W into M1(D) is continuous.

(b) The map (z,c,w) — Faw(x) from D x (0,00) x W into M¢ is continuous.
In particular, x +— vy is a continuous probability kernel on D, and F.w € C(D, Mﬁ) for all
¢ > 0 and w € W. Recall from Definition 1.1 that Adw € W for all w € W and A > 0. The

reason why we have included this assumption is that it is convenient to have the next scaling
lemma around, which is a consequence of time scaling.
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Figure 1: Effective boundaries for w € Weat.

Lemma 2.2 (Scaling property of renormalization transformations) One has

(i) ppeAW — e B
Ae>0 D). 2.1
(i) Fre(Aw)=AF.w (Ae>0, weW, x€D) 2.1)

The following simple lemma will play a crucial role in what follows.

Lemma 2.3 (Mean and covariance matrix) For all v € D and i,j = 1,...,d, the mean
and covariances of vy are given by

D (2.2)
(i) /D Ve (dy) (y: — 2:) (g — 7) = 2 Faw ().

(i) / Ve (dy) (g — 1) = O,

For any w € C(D, M%), we call
OwD :={zx €D :wyj(x)=0Vi,j=1,...,d} (2.3)

the effective boundary of D (associated with w). If y is a solution to the martingale problem
for the operator Zgjzl wij(y)ﬁgyj (i.e., the operator in (1.1) without the drift), then, by
martingale convergence, y; converges a.s. to a limit y.o; it is not hard to see that y., € 9, D
a.s. The next lemma says that the effective boundary is invariant under renormalization.

Lemma 2.4 (Invariance of effective boundary) One has Op.wD = 0y,D for all w € W,
c>0.

For example, for diffusion matrices w from the renormalization class W = W,u, there oc-
cur four different effective boundaries, depending on whether w € Wclé;%, Wcoéi, Wclé;g, or WCOB’L?.
These effective boundaries are depicted in Figure 1. The statement from Theorem 1.4 (a) that

FC(WM) C Wért is just the translation of Lemma 2.4 to the special set-up there.

cat a
Note that for the effective boundary of a diffusion matrix w € Wy, it is irrelevant whether
the catalyzing function p is positive or zero on (0,1). This explains, up to some degree, why
in Theorem 1.4 we do not need the assumption that p > 0 on (0, 1), while for renormalization
classes on a one-dimensional interval [a, b], it has been customary to require that w > 0 on (a, b).

From now on, let YW be a renormalization class, i.e., W satisfies also condition (iv) from Defi-
nition 1.1. Fix a sequence of (positive) migration constants (cx)g>0. By definition, the iterated
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probability kernels K™ associated with a diffusion matrix w € W (and the constants (cx)x>0)
are the probability kernels on D defined inductively by

KW (dz) = / e POy K0 (dz) (n>0) with K2O(dy) == 5,(dy),  (2.4)

D

with F(") as in (1.8). Note that

_ /DK;u,(n)(dy)w(y) (x €D, n>0). (2.5)

The next lemma follows by iteration from Lemmas 2.1 and 2.3. In their essence, this lemma and
Lemma 2.6 below go back to [BCGdH95].

Lemma 2.5 (Basic properties of iterated probability kernels) For each w € W, the
KM gre continuous probability kernels on D. Moreover, for all z € D, i,j = 1,...,d, and

w,(n)

n > 0, the mean and covariance matriz of Ky are given by

(i) | RO - 20 =0

(2.6)
(i) / K2 (dy) (yi — 20) (g5 — 25) = snF P wij(x).

We equip the space C(D, M1(D)) of continuous probability kernels on D with the topology of
uniform convergence (since M (D) is compact, there is a unique uniform structure on Mj(D)
generating the topology). For ‘nice’ renormalization classes, it seems reasonable to conjecture
that the kernels K*(") converge as n — oo to some limit K** in C(D, M1(D)). If this happens,
then formula (2.6) (ii) tells us that the rescaled renormalized diffusion matrices s, F™w converge
uniformly on D to the covariance matrix of K“*. This gives a heuristic explanation why we
need to rescale the iterates F(™w with the scaling constants s, from (1.9) to get a nontrivial
limit in (1.11).

We now explain the relevance of the conditions (1.10) (i) and (ii) in the present more general
context. If the iterated kernels converge to a limit K™*, then condition (1.10) (i) guarantees
that this limit is concentrated on the effective boundary:

Lemma 2.6 (Concentration on the effective boundary) If s, — oo, then for any f €
n—oo
C(D) such that f =0 on dy,D:

lim sup‘/ K™ (dy) f(y)| = (2.7)

n—oo

In fact, the condition s, — oo guarantees that the corresponding system of hierarchically in-
teracting diffusions with migration constants (cx)i>0 clusters in the local mean field limit, see
[DGY93a, Theorem 3] or Appendix A.1 below.

To explain also the relevance of condition (1.10) (ii), we observe that using Lemma 2.2, we can
convert the rescaled iterates s, F("™ into (usual, not rescaled) iterates of another transformation.
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For this purpose, it will be convenient to modify the definition of our scaling constants s,, a little
bit. Fix some § > 0 and put
Sp =0+ sn (n>0). (2.8)

Define rescaled renormalization transformations FW : W — W by
Fyw:= (1+7~)F ,w (v>0, weW). (2.9)

Using (2.1) (ii), one easily deduces that

5. FWw=TF, o---oF,(fw) (weW, n>1), (2.10)

where )
= > 0). 2.11
Tn 3.Cn (n = ) ( )

We can reformulate the conditions (1.10) (i) and (ii) in terms of the constants (v )n>0. Indeed,
it is not hard to check' that equivalent formulations of condition (1.10) (i) are:

(i) s, — o0, (il)) 3, — oo, (iii) nyn— . (2.12)

n—oo n—oo
Since S,41/3, = 1 + 7y, we see moreover that, for any v* € [0, 00|, equivalent formulations of

condition (1.10) (ii) are:

G) e G I gyt () e — (2.13)

Sy n—0o0 Sy n—oo n—00

If 0 < v* < oo, then, in the light of (2.10), we expect o F™w to converge to a fixed point of the
transformation F',«. If v* = 0, the situation is more complex. In this case, we expect the orbit
S F™w — §n+1F("+1)w — ---, for large n, to approximate a continuous flow, the generator of
which is

d
T (Ew - w) =1 Z:: )o2ew(w) +w(z)  (x€D). (2.14)

To see that the right-hand side of this equation equals the left-hand side if w is twice contin-
uously differentiable, one needs a Taylor expansion of w together with the moment formulas
(2.2) for v2/7*  Under condition condition (2.12) (iii), we expect this continuous flow to reach
equilibrium.

In the light if these considerations, we are led to at the following general conjecture.

Conjecture 2.7 (Limits of rescaled renormalized diffusion matrices) Assume that s, —
00 and Spy1/Sn — 1+ 7" for some v* € [0,00]. Then, for any w € W,

snFMyw — w*, (2.15)

n—oo

'To see this, let S € (0,00] denote the limit of the S, and note that on the one hand, > 1/(sn Cn
oo log(l + 1/(Bncn)) = log(I1,, Sn+1/35n) = log(5-/51), while on the other hand > 1/(Sncn) < [],.(
1/(Sncn)) = I1,, Sn+1/5n = 5o /51

) >
1+
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where w* satisfies

(i) Fpw*=w" if 0<v" < oo,
d
.. * 2 * Y . *
(i) 2 Z wij(w)#amjw*(a:) +w*(x)=0 (x € D) if v¥=0, (2.16)
ij=1 o
(iii) lim Fw*=w* if v = o0.

Y00

We call (2.16) (ii), which is in some sense the v* — 0 limit of the fixed point equation (2.16) (i),
the asymptotic fized point equation. A version of formula (2.16) (ii) occured in [Swa99, for-
mula (1.3.5)] (a minus sign is missing there).

In particular, one may hope that for a given effective boundary, the equations in (2.16) have a
unique solution. Our main result (Theorem 1.4) confirms this conjecture for the renormalization
class Weat and for v* < oco. In the next section, we discuss numerical evidence that supports
Conjecture 2.7 in the case v* = 0 for other renormalization classes on compacta as well.

In previous work on renormalization classes, fixed shapes have played an important role. By
definition, for any prerenormalization class W, a fized shape is a subclass W C W of the form
W = {\w: X >0} with 0 % w € W, such that F,(W) C W for all ¢ > 0. The next lemma
describes how fixed shapes for renormalization classes on compact sets typically arise.

Lemma 2.8 (Fixed shapes) Assume that for each 0 < * < oo, there is a 0 # w* = w3. € W

such that snF(”)w — wi* whenever w € W, s, — 00, and Sp41/Sn — 1 +*. Then:
n—oo

(a) wy. is the unique solution in W of equation (2.16) (i).

(b) If w* = w3 does not depend on ~*, then

F.(w*) =(3+H7w*  (Ae>0). (2.17)

[

Moreover, {\w* : X > 0} is the unique fized shape in W.

(c) If the wi. for different values of v* are not constant multiples of each other, then W contains
no fixed shapes.

Note that by Theorem 1.4, Wg{;% is a renormalization class satisfying the general assumptions of
Lemma 2.8. The unique solution of (2.16) (i) in Wit is of the form w* = w'?” where p* = P01+
We conjecture that the pf ; .« for different values of v* are not constant multiples of each other,

0,1 .
and, as a consequence, that YW ; contains no fixed shapes.

Many facts and conjectures that we have discussed can be generalized to renormalization classes
on unbounded D, but in this case, the second moments of the iterated kernels K-(™) may
diverge as n — oo. As a result, because of formula (2.6) (ii), the s, may no longer be the right
scaling factors to find a nontrivial limit of the renormalized diffusion matrices; see, for example,

[BCGAHIT].
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2.2 Numerical solutions to the asymptotic fixed point equation

Let t — w(t, -) be a solution to the continuous flow with the generator in (2.14), i.e., w is an
M_‘ﬁ valued solution to the nonlinear partial differential equation

d
88 (t,x) = %Z tm)axam w(t,z) +w(t,x) (t>0, € D). (2.18)
2,7=1

Solutions to (2.18) are quite easy to simulate on a computer. We have simulated solutions for
all kind of diffusion matrices (including nondiagonal ones) on the unit square [0,1]?, with the
effective boundaries 1-6 depicted in Figure 2. For all initial diffusion matrices w(0, - ) we tried,
the solution converged as t — oo to a fixed point w*. In all cases except case 6, the fixed point
was unique. The fixed points are listed in Figure 2. The functions pj, o and ¢* from Figure 2
are plotted in Figure 3. Here pj; ( is the function from Theorem 1.4 (c).

The fixed points for the effective boundaries in cases 1,2, and 4 are the unique solutions of
equation (1.12) (i) from Theorem 1.4 in the classes Wi, Woi, and W2, respectively. The
simulations suggest that the domain of attraction of these fixed points (Wlthln the class of “all”
diffusion matrices on [0,1]2) is actually a lot larger than the classes Whi, W2l and W20

The function ¢* from case 3 satisfies ¢*(z1,1) = 21(1 — 1) and is zero on the other parts of the
boundary. In contrast to what one might perhaps guess in view of case 2, ¢* is not of the form
q*(x1,22) = f(x2)x1(1 — x1) for some function f.

Case 5 is somewhat degenerate since in this case the fixed point is not continuous.

The only case where the fixed point is not unique is case 6. Here, m can be any positive
definite matrix, while g*, depending on m, is the unique solution on (0,1)? of the equation
1+ 3 Z?,jzl M) %;”g* (x) = 0, with zero boundary conditions.

2.3 Previous rigorous results

In this section we discuss some results that have been derived previously for renormalization
classes on compact sets.

Theorem 2.9 [BCGdH95, DGV95] (Universality class of Wright-Fisher models) Let
D:={zx e R:z; >0V, Z?Zla:i < 1}, and let {eq,...,eq}, with ey := (0,...,0) and

= (1,0,...,0),..., eq:=(0,...,0,1) be the extremal points of D. Let w;‘j(:n) = x(0i5 — x5)
(reD,i,j=1,...,d) denote the standard Wright-Fisher diffusion matriz, and assume that W
is a renormalization class on D such that w* € W and 8,D = {eq,...,eq} for allw € W. Let

(ck)k>0 be migration constants such that s, — oo as n — oo. Then, for all w € W, uniformly
on D,

snFMw — w* (2.19)

n—oo

The convergence in (2.19) is a consequence of Lemmas 2.5 and 2.6: The first moment formula
(2.6) (i) and (2.7) show that Ko converges to the unique distribution on {ep,...,eq} with
mean z, and by the second moment formula (2.6) (i) this implies the convergence of s, F'™w.
In order for the iterates in (2.19) to be well-defined, Theorem 2.9 assumes that a renormalization
class W of diffusion matrices w on D with effective boundary {ey,...,eq} is given. The problem
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case

effective boundary

fixed points w* of (2.18)

O

$1(1—$1) 0
0 x2(1 — x2)

561(1 — .%'1) 0
0 po10(x1)22(1 — 22)

q*(xth) 0
0 q*(z2, 1)

1'1(1 - 171) 0
0 0

1 (L= 21)lfg,50p O
0 0

mi1
m21

mi2

g*(xlva) Moo

Figure 2: Fixed points of the flow (2.18).
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Figure 3: The functions pj; o and ¢* from cases 2 and 3 of Figure 2.
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of finding a nontrivial example of such a renormalization class is open in dimensions greater
than one. In the one-dimensional case, however, the following result is known.

Lemma 2.10 [DG93b] (Renormalization class on the unit interval) The set
Whe :={w € C[0,1] :w =0 on {0,1}, w >0 on (0,1), w Lipschitz} (2.20)
is a renormalization class on [0, 1].

About renormalization of isotropic diffusions, the following result is known. Below, 0D := D\D
denotes the topological boundary of D.

Theorem 2.11 [dHS98] (Universality class of isotropic models) Let D C R? be open,
bounded, and convex and let m € Mi be fized and (strictly) positive definite. Set w;-"j(:v) =
mi;g*(x), where g* is the unique solution of 1 + %E” mij#;zjg*(m) =0 forx € D and
g"(z) =0 for x € OD. Assume that W is a renormalization class on D such that w* € W and
such that each w € W is of the form

wij(z) =mglx)  (x €D, i,j=1,...,d), (2.21)

for some g € C(D) satisfying g >0 on D and g =0 on dD. Let (c)k>0 be migration constants
such that s, — oo as n — oo. Then, for all w € W, uniformly on D,

snFMw — w* (2.22)

n—0oo

The proof of Theorem 2.11 follows the same lines as the proof of Theorem 2.9, with the dif-
ference that in this case one needs to generalize the first moment formula (2.6) (i) in the
sense that fEK;U’(n)(dy)h(y) = h(z) for any m-harmonic function h, i.e., h € C(D) satisfy-
ing >, mij%;x_h(x) = 0 for € D. The kernel K™ now converges to the m-harmonic
10T
measure on 9D with mean x, and this implies (2.22).
Again, in dimensions d > 2, the problem of finding a ‘reasonable’ class W satisfying the as-
sumptions of Theorem 2.11 is so far unresolved. The problem with verifying conditions (i)—(iv)
from Definition 1.1 in an explicit set-up is that (i) and (ii) usually require some smoothness of
w, while (iv) requires that one can prove the same smoothness for F.w, which is difficult.
The proofs of Theorems 2.9 and 2.11 are based on the same principle. For any diffusion ma-
trix w, let H, denote the class of w-harmonic functions, i.e., functions h € C(D) satisfying
> i Wij (m)#;zjh(x) = 0 on D. If w belongs to one of the renormalization classes in Theo-
rems 2.9 and 2.11, then H,, has the property that T h(Hy) C Hy for all ¢ > 0, 2 € D, and
t >0, where T¢ h(y) := h(z + (y — x)e”") is the semigroup with generator Zi:l c(x; — yi)Ty-?
e., the operator in (1.1) without the diffusion part. In this case we say that w has invari-
ant harmonics; see [Swa00]. As a consequence, one can prove that the iterated kernels satisfy
[5 Ke (n (dy)h(y) = h(z) for all h € H, and = € D. If s,, — 0o, then this implies that K2
converges to the unique H,-harmonic measure on 0, D with mean x. Diffusion matrices from
Weat do not in general have invariant harmonics. Therefore, to prove Theorem 1.4, we need new
techniques.
Note that in the renormalization classes from Theorems 2.9 and 2.11, the unique attraction point
w* does not depend on v*. Therefore, by Lemma 2.8, these renormalization classes contain a
unique fixed shape, which is given by {Aw* : A > 0}.
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3 Connection with branching theory

From now on, we focuss on the renormalization class W,,;. We will show that for this renor-
malization class, the rescaled renormalization transformations F from (2.9) can be expressed in
terms of the log-Laplace operators of a discrete time branching process on [0, 1]. This will allow
us to use techniques from the theory of spatial branching processes to verify Conjecture 2.7 for
the renormalization class W4 in the case v* < oco.

3.1 Poisson-cluster branching processes

We first need some concepts and facts from branching theory. Finite measure-valued branching
processes (on R) in discrete time have been introduced by Jifina [Jir64]. We need to consider
only a special class. Let E be a separable, locally compact, and metrizable space. We call a
continuous map Q from E into M;(M(E)) a continuous cluster mechanism. By definition, an
M(E)-valued random variable X is a Poisson cluster measure on E with locally finite intensity
measure p and continuous cluster mechanism Q, if its log-Laplace transform satisfies

~tog e~ ¥ 1) = [ pian)(1 - /M(E)Q<m,dx>e—<><’f>) (feB(B). (1)

For given p and @, such a Poisson cluster measure exists, and is unique in distribution, provided
that the right-hand side of (3.1) is finite for f = 1. It may be constructed as X = ), x.,, where
> ; 0z, is a (possibly infinite) Poisson point measure with intensity p, and given x1, s, ..., the
Xz1s Xaos - - - are independent random variables with laws Q(xq, - ), Q(z2, - ),. .., respectively.

Now fix a finite sequence of functions ¢ € C;(F) and continuous cluster mechanisms Qy, (k =
1,...,n), define

U f(z) == qk(x)(l - Qu(, dx) e~ X f>) (teE, feBy(E), k=1,....,n), (3.2)

M(E)

and assume that

sup U l(x) < oo (k=1,...,n). (3.3)
el

Then Uy, maps B (FE) into By (FE) for each k, and for each M(FE)-valued initial state X, there
exists a (time-inhomogeneous) Markov chain (Xp,...,&,) in M(FE), such that X}, given Xj_1,
is a Poisson cluster measure with intensity qpX%_1 and cluster mechanism Qp. It is not hard
to see that

B[ (@ )] = e (wthoolhf) (e M(E), fe B.(B)). (3.4)

We call X = (&Xp,...,X,) the Poisson-cluster branching process on E with weight functions
q1,- - -, qn and cluster mechanisms Q1, ..., Q,. The operator U, is called the log-Laplace operator
of the transition law from Xj;_; to Xj. Note that we can write (3.4) in the suggestive form

PH[Pois(fX,) = 0] = P[Pois((Uy o olnf)u) =0]. (3.5)

Here, if Z is an M(FE)-valued random variable, then Pois(Z) denotes an N (E)-valued random
variable such that conditioned on Z, Pois(Z) is a Poisson point measure with intensity Z.
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3.2 The renormalization branching process

We will now construct a Poisson-cluster branching process on [0, 1] of a special kind, and show
that the rescaled renormalization transformations on W,.; can be expressed in terms of the
log-Laplace operators of this branching process.

By Corollary 5.4 below, for each v > 0 and x € [0, 1], the SDE

dy(t) = 5 (z — y(1)dt + v/2y(t)(1 — y(1)dB(?), (3.6)

has a unique (in law) stationary solution. We denote this solution by (y2(¢))ier. Let 7, be
an independent exponentially distributed random variable with mean -, and define a random
measure on [0, 1] by

Ty
2 ;:/0 St (1> 0, ze[0,1]). (3.7)

The Poisson-cluster branching process that we are about to define will have clusters that are
distributed as Z7. To define its (constant) weight functions and its continuous (by Corollary 5.10
below) cluster mechanisms, we put

¢y=3+1 and  Q(z,-)=L(Z]) (v>0, z€0,1). (3.8)

We let U, denote the log-Laplace operator with weight function ¢, and cluster mechanism Q.,
ie.,

it =a(1- [ omage ) @ebal feB 150, (39
M([0,1])

We now establish the connection between renormalization transformations on W, and log-
Laplace operators.

Proposition 3.1 (Identification of the renormalization transformation) Let F'., be the
rescaled renormalization transformation on Weay defined in (2.9). Then

F,le’p = whUp (pe™H, v>0). (3.10)

Fix a diffusion matrix w™? € W, and migration constants (cx)i>o. Define constants s,, and v,
as in (2.8) and (2.11), respectively, where 3 := 1/a. Then Proposition 3.1 and formula (2.10)
show that

S FWapop — LUy 00U (3), (3.11)

Here U, _,,...,Uy, are the log-Laplace operators of the Poisson-cluster branching process X' =
(X_n, ..., Xy) with weight functions ¢, ,,...,¢,, and cluster mechanisms Q., ,,...,Q,,. Note
that in order to concatenate the operators Fi., ,,...,F, in the right order, where n increases
to infinity, we have to start the process X at a sequence of times tending to —oo. We call X
(started at some time —n in an initial law £(X_,)) the renormalization branching process. By
formulas (3.4) and (3.11), the study of the limiting behavior of rescaled iterated renormalization
transformations on W,,t reduces to the study of the renormalization branching process X in the
limit n — oo.
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3.3 Convergence to a time-homogeneous process

Let X = (X_,,..., ) be the renormalization branching process introduced in the last section.
If the constants (7x)k>0 satisfy >, v, = 0o and 7, — 7* for some v* € [0, 00), then X is almost
time-homogeneous for large n. More precisely, we will prove the following convergence result.

Theorem 3.2 (Convergence to a time-homogenous branching process) Assume that
L(X_p) = u for some probability law p on M([0,1]).
n—oo

(a) If 0 < v* < o0, then
L(Xy Xt = cy YT, ), (3.12)

where Y7 is the time-homogenous branching process with log-Laplace operator U+ in each step
and initial law E(yg*) = p.

(b) If v* =0, then

L((Xoru0)iz0) = £(9) 20). (313
where = denotes weak convergence of laws on path space, k,(t) := min{k : 0 < k < n,

Z?:_kl v < t}, and YO is the super-Wright-Fisher diffusion with activity and growth parame-
ter both identically 1 and initial law £(Y]) = p.

The super-Wright-Fisher diffusion was studied in [FS03]. By definition, J° is the time-homoge-
neous Markov process in M0, 1] with continuous sample paths, whose Laplace functionals are
given by

0 0
e~ VA = e~ WU (e M0,1], fe By0,1], t>0). (3.14)
Here U f = u; is the unique mild solution of the semilinear Cauchy equation
{ %ut(m’) = %x(l — :z:)aa—;ut(x) + u(z)(1 —w(z)) (¢ >0, z€]0,1]), (3.15)
uQ :f.

For a further study of the renormalization branching process X and its limiting processes )"
(v* > 0) we will use the technique of embedded particle systems, which we explain in the next
section.

3.4 Weighted and Poissonized branching processes

In this section, we explain how from a Poisson-cluster branching process it is possible to construct
other branching processes by weighting and Poissonization. We first need to introduce spatial
branching particle systems in some generality.

Let E again be separable, locally compact, and metrizable. For v € N(E) and f € By 1)(E),
we adopt the notation

fO =1 and fY:= Hf(acz) when v = Zézi (m>1). (3.16)
i=1 i=1
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We call a continuous map = — Q(z, -) from E into M;(N(E)) a continuous offspring mecha-
nism.

Fix continuous offspring mechanisms @y (1 < k < n), and let (Xy,...,X,,) be a Markov chain
in NV(E) such that, given that X1 = >_.", 0,, the next step of the chain X} is a sum of
independent random variables with laws Qg (z;, -) (i =1,...,m). Then

E' (1=t =(A~Uio--oUnf)  (vEN(E). f€Boy(E).  (317)

where Uy, : Bjg 1)(E) — Bjo1)(E) is defined as

Upf(a) =1 - /N L@ U sksn s e B fe BB (19)

We call Uy the generating operator of the transition law from X 1 to X, and we call X =
(Xo,...,Xp) the branching particle system on E with generating operators Uy,...,U,. It is
often useful to write (3.17) in the suggestive form

P?[Thing(X,) = 0] = P[Thiny,o...ct;, 7(v) = 0] (v e N(E), f e Byy(E)). (3.19)

Here, if v is an N(E)-valued random variable and f € Bjg(E), then Thiny(v) denotes an
N (E)-valued random variable such that conditioned on v, Thin¢(v) is obtained from v by
independently throwing away particles from v, where a particle at x is kept with probability
f(z). One has the elementary relations

Thiny(Thing(v)) == Thinsy(v) and Thing(Pois(u)) Z Pois(fu), (3.20)

where Z denotes equality in distribution.

We are now ready to describe weighted and Poissonized branching processes. Let X =
(X0, ..., Xn) be a Poisson-cluster branching process on E, with continuous weight functions
q1,---,qn, continuous cluster mechanisms Qj,...,Q,, and log-Laplace operators Us,...,U,
given by (3.2) and satisfying (3.3). Let ZF denote an M(E)-valued random variable with
law Qg(z, -). Let h € Cy(E) be bounded, h # 0, and put E* := {x € E : h(z) > 0}. For
f € By (E"), define hf € B (E) by hf(x) := h(z)f(z) if x € E" and hf(z) := 0 otherwise.

Proposition 3.3 (Weighting of Poisson-cluster branching processes) Assume that there
exists a constant K < oo such that Uph < Kh for all k =1,...,n. Then there exists a Poisson-

cluster branching process X" = (X[, ..., X") on E" with weight functions (q},...,q") given by
q,@ := qr./h, continuous cluster mechanisms Q’f, .., Q" given by
Mz, ) = L(hZF) (z € EM), (3.21)

and log-Laplace operators Z/l{l, e ,L{fj satisfying
WULT=Up(hf)  (f € Ba(E"). (3.22)
The processes X and X" are related by

L(XD) = L(hXy)  implies LX) = L(hXy) (0 <Kk <n). (3.23)
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Proposition 3.4 (Poissonization of Poisson-cluster branching processes) Assume that
Uph < h for allk =1,...,n. Then there exists a branching particle system X" = (X(})Z, XD

on E™ with continuous offspring mechanisms Q?, ., QP given by
Ry ) .— ar(z) : ky ~ _ qr(z) ) h
Qhe, ) =G PPois(hzl) € ]+ (1 ho )50( ) (z e EM), (3.24)
and generating operators UJ, ... UM satisfying
hURLf o= Ug(hf)  (f € Boy(E")). (3.25)

The processes X and X" are related by

L(X}) = L(Pois(hXp)) implies L(X]) = L(Pois(hXy))  (0<k <n). (3.26)

Here, the right-hand side of (3.24) is always a probability measure, despite that it may happen
that gx(x)/h(z) > 1. The (straightforward) proofs of Propositions 3.3 and 3.4 can be found
in Section 7.1 below. If (3.23) holds then we say that X" is obtained from X by weighting
with density h. If (3.26) holds then we say that X" is obtained from X by Poissonization with
density h. Proposition 3.4 says that a Poisson-cluster branching process X contains, in a way,
certain ‘embedded’ branching particle systems X". Poissonization relations for superprocesses
and embedded particle systems have enjoyed considerable attention, see [FS04] and references
therein.

A function h € B4 (F) such that Uih < h is called Uy -superharmonic. If the reverse inequality
holds we say that h is Uy -subharmonic. If Uyh = h then h is called Uy -harmonic.

3.5 Extinction versus unbounded growth for embedded particle systems

In this section we explain how embedded particle systems can be used to prove Theorem 1.4.
Throughout this section (y;)k>0 are positive constants such that ) v, = oo and v, — v* for
some v* € [0,00), and X = (X_,,...,Ap) is the renormalization branching process on [0, 1]
defined in Section 3.2. We write

UM =U, ool (3.27)
In view of formula (3.11), in order to prove Theorem 1.4, we need the following result.

Proposition 3.5 (Limits of iterated log-Laplace operators) Uniformly on [0, 1],

(i) Jim u"p=1 (p € Hia),
(if) lim UMp=0 (p € Hop), (3.28)

(i) lim U™p=p; . (p € Ho),

where pq .+ 1 [0,1] — [0,1] is a function depending on v* but not on p € Ho,1-
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e, X h)
—n>o »“+0
obtained from X" by Poissonization with functions A1 1, ho,0 and hg 1 taken from the classes Hy 1,
Ho,0, and Ho 1, respectively. More precisely, we will use the functions

In our proof of Proposition 3.5, we will use embedded particle systems X" = (X h

h171(.1‘) = 1,
hoo(z) :=z(1 — ), (z € [0,1]). (3.29)
hojl(x) =1 (1 — x)7,

The choice of these functions is up to a certain degree arbitrary, and guided by what is most
convenient in proofs. This applies in particular to the function hg 1; see the remarks following
Lemma 3.8.

Lemma 3.6 (Embedded particle system with hy1) The function hiy from (3.29) is Uy -
harmonic for each v > 0. The corresponding embedded particle system X"t on [0, 1] satisfies

P Xg €] = b (3.30)

n—oo

uniformly® for all z € [0,1].

In (3.30) and similar formulas below, = denotes weak convergence of probability measures on
[0,00]. Thus, (3.30) says that for processes started with one particle on the position x at times
—n, the number of particles at time zero converges to infinity as n — oo.

Lemma 3.7 (Embedded particle system with hoo) The function hog from (3.29) is Uy -
superharmonic for each v > 0. The corresponding embedded particle system X0 on (0,1) is
critical and satisfies

PO [1X0 €] = & (3.31)

n—oo

locally uniformly for all x € (0,1).

Here, a branching particle system X is called critical if each particle produces on average one
offspring (in each time step and independent of its position). Formula (3.31) says that the em-
bedded particle system X"0.0 gets extinct during the time interval {—n,...,0} with probability
tending to one as n — co. We can summarize Lemmas 3.6 and 3.7 by saying that the embedded
particle system associated with hq; grows unboundedly while the embedded particle system
associated with hg o becomes extinct as n — oo.

We now consider the embedded particle system X"0.1 with hoi1 € Ho,1 as in (3.29). It turns
out that this system either gets extinct or grows unboundedly, each with a positive probability.
In order to determine these probabilities, we need to consider embedded particle systems for
the time-homogeneous processes 7~ (v* € [0,00)) from (3.12) and (3.13). If h € Ho is Uys-
superharmonic for some * > 0, then Poissonizing the process )" with h yields a branching
particle system on (0, 1] which we denote by Y7 = (Yf’h7 Yf*’h, ...). Likewise, if h € Ho; is
twice continuously differentiable and satisfies

Lo(1 - 2) Ln(x) — h(@)(1 - h(z)) <0, (3.32)

2Since M [0, o0] is compact in the topology of weak convergence, there is a unique uniform structure compatible
with the topology, and therefore it makes sense to talk about uniform convergence of M; |0, co]-valued functions

(in this case, z — P~™0% [|Xgl’1\ €-]).
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then Poissonizing the super-Wright-Fisher diffusion ) with h yields a continuous-time branching
particle system on (0,1], which we denote by Y% = (Yto’h)tzo. For example, for m > 4, the
function h(x) :=1— (1 — z)™ satisfies (3.32).

Lemma 3.8 (Embedded particle system with hg1) The function ho1 from (3.29) is Uy-
superharmonic for each v > 0. The corresponding embedded particle system X1 on (0,1]
satisfies
_ h
P (| Xg0 €] = pye ()60 + (1 = pye ()0, (3.33)

n—oo

locally uniformly for all x € (0,1], where

(3.34)

Py "N 20VE>0]  (0<7y* < o0),
py-(x) =

PrlyMOr 20wt >0 (v =0).

Lemma 3.8 is one of the most technical lemmas in this paper. In all places where it is used, hg 1
could be replaced by any other function with roughly the same shape (concave, increasing, with
finite slope at zero) that is U,-superharmonic for each v > 0. The problem is to show that such
functions exist at all. Functions of the form hA(z) := 1 — (1 — )™ are convenient in calculations,
since they can be treated using duality. The lowest value of the exponent for which our bounds
work turns out to be m = 7.

We now explain how Lemmas 3.6-3.8 imply Proposition 3.5. In doing so, it will be more con-
venient to work with weighted branching processes than with Poissonized branching processes.
A little argument (which can be found in Lemma 7.12 below) shows that Lemmas 3.6-3.8 are
equivalent to the next proposition.

Proposition 3.9 (Extinction versus unbounded growth) Let hy 1, hoo, and ho1 be as in
(3.29). For v* € [0,00), put pi 1 ,+ (%) := 1, pjg.,«(2) :== 0 (z € [0,1]), and

palﬁ*(O) =0 and palﬂ* (x) = ho1(z)py(x) (x € (0,1]), (3.35)

with py as in (3.34). Then, for (I,r) = (1,1),(0,0), and (0,1),

P [(Xo by € -] = e Plra@gy 4 (1= ¢ Pira @yg (3.36)

n—oo

uniformly for all z € [0,1].

Formula (3.36) says that the weighted branching process X" exhibits a form of ‘extinction
versus unbounded growth’. More precisely, for large n the total mass of h;,Xp is close to 0 or
oo with high probability.

Proof of Proposition 3.5 By (3.4),
UM p(z) = —log B [e~{X0:P)]  (pe B,[0,1], z € [0,1)). (3.37)
We first prove formula (3.28) (ii). For (I,r) = (0,0), formula (3.36) says that

P_n’5”[<X0,h0,0> €] = & (3.38)

n—oo
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uniformly for all € [0,1]. If p € Ho, then we can find r > 0 such that p < rhgo. Therefore,
(3.38) implies that for any p € Ho,

P [(X,p) € -] = do. (3.39)
By (3.37) it follows that

where the limits in (3.39) and (3.40) are uniform in x € [0,1]. This proves formula (3.28) (ii).
To prove formula (3.28) (iii), note that for any p € Hp1 we can choose 0 < r— < r4 such that
r—ho1 < p+hoo < r1ho1. Therefore, (3.36) implies that

P52 [( Xy, p) + (Ko hoo) € -] = e POt (g (1= e Phan®))5 (3.41)

n—o0

Using moreover (3.38), we see that

P™%[(Xy,p) €] = e P01y (@) 5, + (1- e P01y ("7))500. (3.42)
By (3.37), it follows that
UMp(z) = —log B0 [¢~(X0:P)] — pe(a) (3.43)

where all limits are uniform in = € [0,1]. This proves (3.28) (iii). The proof of (3.28) (i) is
similar but easier. n

4 Discussion, open problems

4.1 Discussion

Consider a ([0, 1]2)22—valued process X = (X¢)¢ezz = (Xé,xg)gez% solving a system of SDE’s of
the form

dx% (t)= Z (x%)(t) — x%(t)) dt + \/2ax% (t)(1— x% (1)) ngl (1),

n:[n—¢|=1 (4.1)
dxg(t) = Z (X,?](t) — Xg(t)) dt + \/2p(x§ (t))xg(t)(l - xg(t)) ng(t),

n: In—¢|=1

where a > 0 is a constant, p is a nonnegative function on [0, 1] satisfying p(0) = 0 and p(1) > 0,
and (Bé)zz% is a collection of independent Brownian motions. We call x a system of linearly
interacting catalytic Wright-Fisher diffusions with catalyzation function p. It is expected that x
clusters, i.e., x(t) converges in distribution as ¢ — oo to a limit (x¢(00))¢cz2 such that x¢(o0) =
x0(00) for all ¢& € Z* and xp(c0) takes values in the effective boundary associated with the
diffusion matrix w*? (see (2.3)). Heuristic arguments, based on renormalization, yield a formula

for the clustering distribution L£(xo(c0)) in terms of the diffusion matrix w* which is the unique
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solution of the asymptotic fixed point equation (2.16) (ii) in the renormalization class Wgéi; see
Conjecture A.3 in Appendix A.2 below.

The present paper is inspired by the work of Greven, Klenke and Wakolbinger [GKWO01]. They
study a model that is closely related to (4.1), but where x! is replaced by a voter model. They
show that their model clusters and determine its clustering distribution £(x¢(c0)), which turns
out to coincide with the mentioned prediction for (4.1) based on renormalization theory. In fact,
they believe their results to hold for the model in (4.1) too, but they could not prove this due to
certain technical difficulties that a [0, 1]-valued catalyst would create, compared to the simpler
{0, 1}-valued voter model.

The work in [GKWO1] not only provides the main motivation for the present paper, but also
inspired some of our techniques for proving Theorem 1.4. This concerns in particular the proof
of Proposition 3.1, which makes the connection between renormalization transformations and a
branching process. We hope that conversely, our techniques may shed some light on the problems
left open by [GKWO01], in particular, the question whether their results stay true if the voter
model catalyst is replaced by a Wright-Fisher catalyst. It seems plausible that their results may
not hold for the model in (4.1) if the catalyzing function p grows too fast at 0. On the other
hand, our proofs suggest that p with a finite slope at 0 should be OK. (In particular, while
deriving formula (3.41), we use that p can be bounded from above by rhg; for some r. > 0,
which requires that p has a finite slope at 0.)

Our results are also interesting in the wider program of studying renormalization classes in the
sense of Definition 1.1. We conjecture that the class Wga’i, unlike all renormalization classes
studied previously, contains no fixed shapes (see the discussion following Lemma 2.8). In fact,
we expect this to be the usual situation. In this sense, the renormalization classes studied so far

were all of a special type.

4.2 Open problems

The general program of studying renormalization classes in the sense of Definition 1.1 contains
a wealth of open problems. In our proofs, we make heavy use of the single-way nature of the
catalyzation in (1.7), in particular, the fact that y' is an autonomous process which allows
one to condition on y! and consider y? as a process in a random environment created by y'.
As soon as one leaves the single-way catalytic regime one runs into several difficulties, both
technically (it is hard to prove that a given class of matrices is a renormalization class in the
sense of Definition 1.1) and conceptually (it is not clear when solutions to the asymptotic fixed
shape equation (2.16) (ii) are unique). Therefore, it seems at present hard to verify the complete
picture for renormalization classes on the unit square that arises from the numerical simulations
described in Section 2.2 and Figures 2 and 3, unless one or more essential new ideas are added.

In this context, the study of the nonlinear partial differential equation (2.18) and its fixed points
seems to be a challenging problem. This may be a hard problem from an analytic point of view,
since the equation is degenerate and not in divergence form. For the renormalization class Weat,
the quasilinear equation (2.18) reduces to the semilinear equation (3.15), which is analytically
easier to treat and moreover has a probabilistic interpretation in terms of a superprocess. For a
study of the semilinear equation (3.15) we refer to [FS03]. We do not know whether solutions
to equation (2.18) can in general be represented in terms of a stochastic process of some sort.
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Even for the renormalization class W,.s, several interesting problems are left open. One of the
most urgent ones is to prove that the functions pg; .« are not constant in *, and therefore, by

Lemma 2.8 (c), Wga’é contains no fixed shapes. Moreover, we have not investigated the iterated
renormalization transformations in the regime v* = co. Also, we believe that the convergence
in (3.28) (ii) does not hold if the condition that p is Lipschitz is dropped, in particular, if p has
an infinite slope at 0 or an infinite negative slope at 1. For p € Ho o, it seems plausible that a
properly rescaled version of the iterates U(™p converges to a universal limit, but we have not
investigated this either. Finally, we have not investigated the convergence of the iterated kernels
K™ from (2.4) (in particular, we have not verified Conjecture A.2) for the renormalization

class Weat.

Our methods, combined with those in [BCGdH95], can probably be extended to study the action
of iterated renormalization transformations on diffusion matrices of the following more general
form (compared to (1.4)):

g9(z1) 0 2
w(x) = ( 0 pl)ms(l— x2)> (x =€ [0,1]7), (4.2)
where ¢g : [0,1] — R is Lipschitz, g(0) = g(1) = 0, ¢ > 0 on (0,1), and p € H as before.
This would, however, require a lot of extra technical work and probably not generate much
new insight. The numerical simulations mentioned in Section 2.2 suggest that many diffusion
matrices of an even more general form than (4.2) also converge under renormalization to the
limit points w* from Theorem 1.4, but we don’t know how to prove this.

Part 11

Outline of Part II In Section 5, we verify that W,,¢ is a renormalization class, we prove Propo-
sition 3.1, which connects the renormalization transformations F, to the log-Laplace operators
U, and we collect a number of technical properties of the operators U, that will be needed later
on. In Section 6 we prove Theorem 3.2 about the convergence of the renormalization branching
process to a time-homogeneous limit. In Section 7, we prove the statements from Section 3.5
about extinction versus unbounded growth of embedded particle systems, with the exception of
Lemma 3.7, which is proved in Section 8. In Section 9, finally, we combine the results derived
by that point to prove our main theorem.

5 The renormalization class W,

In this section we prove Theorem 1.4 (a) and Proposition 3.1, as well as Lemmas 2.1-2.8 from
Section 2. The section is organized according to the techniques used. Section 5.1 collects some
facts that hold for general renormalization classes on compact sets. In Section 5.2 we use the
SDE (1.7) to couple catalytic Wright-Fisher diffusions. In Section 5.3 we apply the moment
duality for the Wright-Fisher diffusion to the catalyst and to the reactant conditioned on the
catalyst. In Section 5.4 we prove that monotone concave catalyzing functions form a preserved
class under renormalization.
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5.1 Renormalization classes on compact sets

In this section, we prove the lemmas stated in Section 2. Recall that D C R? is open, bounded,
and convex, and that VW is a prerenormalization class on D, equipped with the topology of
uniform convergence.

Proof of Lemma 2.1 To see that (z,c,w) — vz is continuous, let (z,, c,, w,) be a sequence
converging in D x (0,00) x W to a limit (z,c,w). By the compactness of D, the sequence

(Va0 is tight, and each limit point v* satisfies

W AZYfy=0  (fecP(D)). (5.1)

Therefore, by [EK86, Theorem 4.9.17], v* is an invariant law for the martingale problem associ-
ated with A7". Since we are assuming uniqueness of the invariant law, v* = vy and therefore

v = vy, The continuity of F.w(z) is a simple consequence of the continuity of vz, &

Proof of Lemma 2.2 Formula (2.1) (i) follows from the fact that rescaling the time in solutions
(yt)t>0 to the martingale problem for Az" by a factor A has no influence on the invariant law.
Formula (2.1) (ii) is a direct consequence of formula (2.1) (i). n

Proof of Lemma 2.3 This follows by inserting the functions f(z) = x; and f(z) = x;x; into
the equilibrium equation (5.1). ]

Proof of Lemma 2.4 If x € 9,D, then y, := x (t > 0) is a stationary solution to the
martingale problem for A7, and therefore v7" = §, and F.w(x) = w(z) = 0. On the other
hand, if & 9, D, then y; := x (¢ > 0) is not a stationary solution to the martingale problem
for Acw and therefore [7 vy dy)|y — :Jc|2 > 0. Let tr( (y)) := >, wii(y) denote the trace of
w(y). By (2.2) (ii), 1tr(Fw 1 Gve”(dy)tr(w(y)) = [5ve" (dy)|ly—=|* > 0 and therefore
w(z) # 0. n

From now on assume that W is a renormalization class. Note that
Kwn) = pen—,FO D o (n>1), (5.2)
where we denote the composition of two probability kernels K, L on D by

(KL)ud) = [ Ko@)y (a2) (5.3)

Proof of Lemma 2.5 This is a direct consequence of Lemmas 2.1 and 2.3. In particular, the
relations (2.6) follow by iterating the relations (2.2). n

Proof of Lemma 2.6 Recall that tr(w(y)) denotes the trace of w(y). Formulas (2.5) and
(2.6) (ii) show that

/Ki”’(”)(dy) ly —af = sn/K;‘”(")(dy) tr(w(y))- (5.4)
D D

Since D is compact, the left-hand side of this equation is bounded uniformly in € D and n > 1,
and therefore, since we are assuming s,, — 00,

lim sup / K2 (dy)tr(w(y)) = 0. (5.5)

n—=03eDJD
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Since w is symmetric and nonnegative definite, tr(w(y)) is nonnegative, and zero if and only if
y € OuD. If f € C(D) satisfies f = 0 on 9, D, then, for every e > 0, the sets Cp, := {z € D :
|f(z)| > e+ mtr(w(x))} are compact with Cp, | ) as m T oo, so there exists an m (depending
on ¢) such that |f| < e + mtr(w). Therefore,

iimsup sup | [ 5240 (ay)1(0)] < timsup sup [ 240 @)l f0)

n—oo LD n—%0  zeD

(5.6)
< e+ mlimsup sup /K;“’(") (dy)tr(w(y)) =e.
n—o0 xeDJD
Since € > 0 is arbitrary, (2.7) follows. n

Proof of Lemma 2.8 By (2.10), (2.12), and (2.13), w}. = limy,_,co(Fy+)"w for each w € W.
By Lemma 2.1 (b), Fly« : W — W is continuous, so w
proves part (a).

Now let 0 # w € W and assume that W = {Mw : A > 0} is a fixed shape. Then W >

spFMy —s w;* whenever s, — oo and s,41/s, — 1 +7* for some 0 < v* < oo, which shows
n—oo

that W = {/\w:* : A > 0}. Thus, W can contain at most one fixed shape, and if it does, then
the w’. for different values of v* must be constant multiples of each other. This proves part (c)
and the uniqueness statement in part (b).

*

%+ is the unique fixed point of F.«. This

To complete the proof of part (b), note that if w* = w« does not depend on v, then w* € W
solves (2.16) (i) for all 0 < v* < oo, hence Fow* = (14 2)~!w* for all ¢ > 0, and therefore, by
scaling (Lemma 2.2), Fe(Aw*) = AF,/\(w*) = A(1 + %)_111)* = (3 + )~ tw*. |

5.2 Coupling of catalytic Wright-Fisher diffusions

In this section we verify condition (i) of Definition 1.1 for the class Weat, and we prepare for
the verification of conditions (ii)—(iv) in Section 5.3. In fact, we will show that the larger
class Weat = {w™? : a > 0, p € C[0,1]} is also a renormalization class, and the equivalents
of Theorem 1.4 (a) and Proposition 3.1 remain true for this larger class. (We do not know,
however, if the convergence statements in Theorem 1.4 (b) also hold in this larger class; see the
discussion in Section 4.2.)

For each ¢ > 0, w € Weat and z € [0, 1], the operator A3 is a densely defined linear operator
on C([0,1]%) that maps the identity function into zero and, as one easily verifies, satisfies the
positive maximum principle. Since [0, 1]? is compact, the existence of a solution to the martingale
problem for A%", for each [0, 1]>-valued initial condition, now follows from general theory (see
[RW87], Theorem 5.23.5, or [EK86, Theorem 4.5.4 and Remark 4.5.5]).

We are therefore left with the task of verifying uniqueness of solutions to the martingale problem
for A7". By [EK86, Problem 4.19, Corollary 5.3.4, and Theorem 5.3.6], it suffices to show that
solutions to (1.7) are pathwise unique.

Lemma 5.1 (Monotone coupling of Wright-Fisher diffusions) Assume that 0 < x <
Z <1, ¢ > 0 and that (P:)i>0 is a progressively measurable, nonnegative process such that
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SUP;>0 weq Pi(w) < 0o. Lety,y be [0,1]-valued solutions to the SDE’s

dy;=c(x —y)dt + /2Py (1 — y¢)d By,

- o = = 5.7
dy:=c (T — yi)dt + /2PByi(1 — y¢)d B, (5.7)
where in both equations B is the same Brownian motion. If yo < yo a.s., then

yi<y: Yt>0 a.s. (5.8)

Proof This is an easy adaptation of a technique due to Yamada and Watanabe [YW71]. Since

0+ d?x = 00, it is possible to choose py, € C[0,00) such that [° p,(x)dz =1 and

0< pul) < - 1(0.)() (> 0). (59)

_ /0 o /O "0z po(2). (5.10)

One easily verifies that ¢, (), ¢, (z), and x¢! (z) are nonnegative and converge, as n — oo, to
V0, V0, and 0, respectively. By Ito’s formula:

Define ¢,, € C?(R) by

Elpn(yt — yi)] = El¢n(yo — YO (i)

/ L8 (ys — §))ds — ¢ / B[ O(ys—go)ds (i)
+/0 { (\/ysl—ys \/ysl—ys)) (s — )]dS- (iii)

(5.11)

Here the terms in (ii) are nonpositive, and hence, letting n — oo and using the elementary
estimate

V=9 - Vil =9l <ly—al* (7<), (5.12)
the properties of ¢,,, and the fact that the process P is uniformly bounded, we find that

EOV (yt —y:)] < E[0V (yo — ¥0)] =0, (5.13)

by our assumption that yo < yo. This shows that y; < y; a.s. for each fixed ¢ > 0, and by the
continuity of sample paths the statement holds for all ¢ > 0 almost surely. |

Corollary 5.2 (Pathwise uniqueness) For all ¢ > 0, a > 0, p € C4+[0,1] and = € [0,1],
solutions to the SDE (1.7) are pathwise unique.

Proof Let (y!,y?) and (¥ ) be solutions to (1.7) relative to the same pair (B!, B?) of
Brownian motions, Wlth (v$,y2) = (§,¥%). Applying Lemma 5.1, with inequality in both
directions, we see that y! = y! a S. Applylng Lemma 5.1 two more times, this time using that
y' = §! a.s., we see that also y? = y? a.s. |

1
1
Yo>
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Corollary 5.3 (Exponential coupling) Assume that © € [0,1], ¢ > 0, and o > 0. Lety,y
be solutions to the SDE

dy: = c¢(x — y¢)dt + /2ay (1 — y4)d By, (5.14)

relative to the same Brownian motion B. Then
Elly: —yil] = e Ellyo — yol]. (5.15)

Proof If yop = y and yo = ¢ are deterministic and y < ¢, then by Lemma 5.1 and a simple
moment calculation

E(lyi —yil] = Elyt —yi = e |§ —yl. (5.16)
The same argument applies when y > g. The general case where yy and yo are random follows
by conditioning on (yq,¥yo)- |

Corollary 5.4 (Ergodicity) The Markov process defined by the SDE (3.6) has a unique in-
variant law T3 and is ergodic, i.e, solutions to (3.6) started in an arbitrary initial law L(yo)
satisfy L(y+) = rs.

—00

Proof Since our process is a Feller diffusion on a compactum, the existence of an invariant law
follows from a simple time averaging argument. Now start one solution y of (3.6) in this invariant
law and let y be any other solution, relative to the same Brownian motion. Corollary 5.3 then
gives ergodicity and, in particular, uniqueness of the invariant law. [ |

Remark 5.5 (Density of invariant law) It is well-known (see, for example [Ewe04, for-
mula (5.70)]) that T} is a B3(aq, ag)-distribution, where oy := x/v and ay := (1 — z)/7, i.e.,
I'7 =6, (x € {0,1}) and

M) = [y ey (e (0.0) (.17

<

We conclude this section with a lemma that prepares for the verification of condition (iv) in
Definition 1.1 for the class Weat.

Lemma 5.6 (Monotone coupling of stationary Wright-Fisher diffusions) Assume that
c>0,a>0and0<x <z <1. Then the pair of equations

dy;=c(xz — y)dt + /2ay(1 — y;)d B,

- . = - 5.18
dy: =c (& — y¢)dt + v/2ay:(1 — y¢)d By (5.18)

has a unique stationary solution (y¢,¥¢)ter. This stationary solution satisfies

y: < yt VteR a.s. (519)
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Proof Let (y¢,¥:)i>0 be a solution of (5.18) and let (y;},¥;)i>0 be another one, relative to the
same Brownian motion B. Then, by Lemma 5.3, E[|ly; — y;|] — 0 and also E||ly: — y;|] — 0 as
t — oo. Hence we may argue as in the proof of Corollary 5.4 that (5.18) has a unique invariant
law and is ergodic. Now start a solution of (5.18) in an initial condition such that yo < yo. By
ergodicity, the law of this solution converges as t — oo to the invariant law of (5.18) and using
Lemma 5.1 we see that this invariant law is concentrated on {(y,%) € [0,1]? : y < 7}. Now
consider, on the whole real time axis, the stationary solution to (5.18) with this invariant law.
Applying Lemma 5.1 once more, we see that (5.19) holds. |

5.3 Duality for catalytic Wright-Fisher diffusions

In this section we prove Theorem 1.4 (a) and Proposition 3.1. Moreover, we will show that
their statements remain true if the renormalization class W, is replaced by the larger class
Weat = {w*P : a > 0, p € C¢[0,1]}. We begin by recalling the usual moment duality for
Wright-Fisher diffusions.

For v > 0 and z € [0, 1], let y be a solution to the SDE

dy(t) = 5 (z — y(1)dt + v/2y(t)(1 — y(t))dB(?), (5.20)

i.e., y is a Wright-Fisher diffusion with a linear drift towards x. It is well-known that y has a
moment dual. To be precise, let (¢,1) be a Markov process in N? = {0, 1,...}? that jumps as:

(@, 1) = (¢ — 1,2) with rate ¢¢(¢s — 1)

(G, 90) = (de — Ly +1)  with rate ¢ (5.21)

Then one has the following duality relation (see for example Lemma 2.3 in [Shi80] or Proposi-
tion 1.5 in [GKWO01])

EY[ypa™] = Emm) [yd)txwt] (y € 0,1], (n,m) € N?), (5.22)

where 0° := 1. The duality in (5.22) has the following heuristic explanation. Consider a
population containing a fixed, large number of organisms, that come in two genetic types, say I
and II. Each pair of organisms in the population is resampled with rate 2. This means that one
organism of the pair (chosen at random) dies, while the other organism produces one child of
its own genetic type. Moreover, each organism is replaced with rate % by an organism chosen
from an infinite reservoir where the frequency of type I has the fixed value x. In the limit
that the number of organisms in the population is large, the relative frequency y; of type I
organisms follows the SDE (5.20). Now E[y}'] is the probability that n organisms sampled from
the population at time ¢ are all of type I. In order to find this probability, we follow the ancestors
of these organisms back in time. Viewed backwards in time, these ancestors live for a while in the
population, until, with rate %, they jump to the infinite reservoir. Moreover, due to resampling,
each pair of ancestors coalesces with rate 2 to one common ancestor. Denoting the number of
ancestors that lived at time ¢ —s in the population and in the reservoir by ¢ and 1), respectively,
we see that the probability that all ancestors are of type I is E¥[y?] = E(™0)[y%¢z¥t]. This gives
a heuristic explanation of (5.22).
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Since eventually all ancestors of the process (¢,%) end up in the reservoir, we have (¢4, 9:) —
(0,%00) as t — oo a.s. for some N-valued random variable 1),. Taking the limit t — oo in (5.22),
we see that the moments of the invariant law I'} from Corollary 5.4 are given by:

[ty =00 =0, (5.23)

It is not hard to obtain an inductive formula for the moments of I';,, which can then be solved
to yield the formula

n—1
x + ky
) (dy)y"™ = >1). 5.24
[ ity [ =0 (521
In particular, it follows that
1
o 1—y)= 1—ux). 2
[ e - = =i -a) (5.25)

This is the important fized shape property of the Wright-Fisher diffusion (see formula (2.17)).
We now consider catalytic Wright-Fisher diffusions (y',y?) as in (1.7) with p € C,[0,1] and
apply duality to the catalyst y? conditioned on the reactant y'. Let (y;,y?)icr be a stationary
solution to the SDE (1.7) with ¢ = 1/v. Let (¢, %) be a N2-valued process defined on the same
probability space as (y!,y?), such that conditioned on the past path (yl,)s<o, the process (6, 7)
is a (time-inhomogeneous) Markov process that jumps as:

(Gt, Vt) — (D¢ — 1,9y) with rate p( Doe(dr — 1),

(b1, 0t) = (¢ — L,y +1)  with rate <Z5t (5.26)
Then, in analogy with (5.22),
Bl(y) e8|y )szol = EO™[(y2 )% (v Jaco] () €N, £20). (5.27)

We may interpret (5.26) by saying that pairs of ancestors in a finite population coalesce with
time-dependent rate 2p(y',) and ancestors jump to an infinite reservoir with constant rate %

Again, eventualy all ancestors end up in the reservoir, and therefore (gzgt, @t) — (0, 1/300) ast — o0
a.s. for some N-valued random variable ¢»,. Taking the limit ¢ — oo in (5.27) we find that

El(y3)" 25| (yL,)scol = B[ |(yL )ezo]  ((n,m) € N?, > 0). (5.28)

Lemma 5.7 (Uniqueness of invariant law) For each ¢ > 0, w € Weat, and x € [0,1]2, there
exists a unique invariant law vy for the martingale problem for AZ".

Proof Our process being a Feller diffusion on a compactum, the existence of an invariant law
follows from time averaging. We need to show uniqueness. If (y!, y?) = y,y?)icr is a stationary
solution, then y! is an autonomous process, and L(y}) = Fgl/ ¢, the unique invariant law from
Corollary 5.4. Therefore, L((y})ier) is determined uniquely by the requirement that (y!,y?) be
stationary. By (5.28), the conditional distribution of y3 given (yl)s<o is determined uniquely,
and therefore the joint distribution of y% and (yl)s<o is determined uniquely. In particular,
L(yl,¥3) = v2" is determined uniquely. ]
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Remark 5.8 (Reversibility) Although we have not checked this, it seems plausible that the
invariant law v from Lemma 5.7 is reversible. In many cases (densities of) reversible invariant
measures can be obtained in closed form by solving the equations of detailed balance. This is
the case, for example, for the one-dimensional Wright-Fisher diffusion. We have not attempted
this for the catalytic Wright-Fisher diffusion. <&

The next proposition implies Proposition 3.1 and prepares for the proof of Theorem 1.4 (a).

Proposition 5.9 (Extended renormalization class) The set Weat is a renormalization class
on [0,1]?, and
FoubP =P (pecy0,1], 7> 0). (5.29)

Proof To see that W, is a renormalization class we need to check conditions (i)—(iv) from
Definition 1.1. By Lemma 5.2, the martingale problem for Az" is well-posed for all ¢ > 0,
W € Weay and 2 € [0,1]2. By Lemma 5.7, the corresponding Feller process on [0, 1]? has a unique
invariant law v;*. This shows that conditions (i) and (ii) from Definition 1.1 are satisfied. Note
that by the compactness of [0, 1]?, any continuous function on [0, 1]? is bounded, so condition (iii)
is automatically satisfied. Hence W is a prerenormalization class. As a consequence, for any
p € C1[0,1], Fyw'P is well-defined by (1.2) and (2.9). We will now first prove (5.29) and then

show that W4t is a renormalization class.

Fix v > 0, p € C4[0,1], and = € [0,1]. Let (y;,y?)ter be a stationary solution to the SDE (1.7)
with @« =1 and ¢ = 1/7. Then

FywiP(x) = (1+7)Ew; P (v5,¥3)] (6,4 =1,2). (5.30)

Since wilj?p = 0if ¢ # j, it is clear that Fwwiljfp(x) =0if i # j. Since L(y}) =T it follows from

(5.25) that wahp(x) = z1(1 — z1). We are left with the task of showing that

Frwy? () = Uyp(r)z2(1 — x2). (5.31)
Here, by (2.2) (ii), _
Frwy ()= (1+7)Elp(yo)ys(1 - ¥3)]

(5.32)

(5 + DE[(yg — 22)°].

By (5.28), using the fact that E[y3] = x2 (which follows from (5.27) or more elementary from
(2.6) (1)), we find that

Bl(y2 — 22)%] = E[(y3)?] - (12)? = E®O[a}™] — (22)? = PCO[Jog = a(1 — 75).  (5.33)

Note that P(0) [zﬁoo = 1] is the probability that the two ancestors coalesce before one of them
leaves the population. The probability of noncoalescence is given by

p(2.0) [1200 =92 = E[e_ fOET’Y Qp(yl_t)dt], (5.34)
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where 7, is an exponentially distributed random variable with mean . Combining this with
(5.32) and (5.33) we find that
— )dt
Fww;ép( ):(%—i—l)E[l fO ply- t/z ]$2(1—$2)
=Uyp(21)2(1 — 32),

where we have used the definition of /.

We still have to show that W,y satisfies condition (iv) from Definition 1.1. For any a > 0 and
p € C4[0,1], by scaling (Lemma 2.2) and (5.29),
P o Wl
«

Q\’B

G+ i+

1
«

Q=

%)71[1%(%) (536)

=w

By Lemma 2.1, this diffusion matrix is continuous, which implies that ¢/« (£) is continuous. B

Our proof of Propostion 5.9 has a corollary.

Corollary 5.10 (Continuity in parameters) The map (x,7) — Q~(z,-) from [0, 1] x (0, c0)
to Mq1(M]0,1]) and the map (z,v,p) — Uyp(x) from [0,1]x (0, 00) xC4[0,1] to R are continuous.

Proof By Lemma 2.1, the diffusion matrix in (5. 36) is continuous in x,~, and p, which implies

the continuity of Uyp(x). It follows that the map (z,v) — [ Q,(z,dx)e —( f) is continuous
for all f € C,[0,1], so by [Kal76, Theorem 4.2], (z,v) — Q(z,-) is continuous. |

Proof of Theorem 1.4 (a) We need to show that We, is a renormalization class and that F,
maps the subclasses )/VCat into themselves. It has already been explained in Section 2 that the
latter fact is a consequence of Lemma, 2.4. Since in Proposition 5.9 it has been shown that Weas
is a renormalization class, we are left with the task to show that F. maps W, into itself. By
(5.29) and scaling, it suffices to show that {4, maps H into itself.

Fix 0 <z < ¥ < 1. By Lemma 5.6, we can couple the processes y, and y from (3.6) such that
ya () <yl(t) Vt<0 as. (5.37)

Since the function z — 1 — e™* on [0, co) is Lipschitz continuous with Lipschitz constant 1,

[Up(2) — Uyp(2)|
)( F B[ = e~ Jo POR/2)A (1 p e P t/2))dt]’
<@+ [ [ pi-r/2) —p<y1<—t/2>>»dt} (5.9

<@+ e[ [ 22 - yitle
— G4 DI(E S 2) = L+ ) —al,

where L is the Lipschitz constant of p and we have used the same exponentially distributed 7,
for y2 and y7. |
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5.4 Monotone and concave catalyzing functions

In this section we prove that the log-Laplace operators U, from (3.9) map monotone functions
into monotone functions, and monotone concave functions into monotone concave functions. We
do not know if in general U, maps concave functions into concave functions.

Proposition 5.11 (Preservation of monotonicity and concavity) Let v > 0. Then:
(a) If f € C4[0,1] is nondecreasing, then U, f is nondecreasing.

(b) If f € C4[0,1] is nondecreasing and concave, then U f is nondecreasing and concave.

Proof Our proof of Proposition 5.11 is in part based on ideas from [BCGdH97, Appendix A].
The proof is quite long and will depend on several lemmas. We remark that part (a) can be
proved in a more elementary way using Lemma 5.6.

We recall some facts from Hille-Yosida theory. A linear operator A on a Banach space V is
closable and its closure A generates a strongly continuous contraction semigroup (S;);>¢ if and
only if
(i) D(A) is dense,
(ii) A is dissipative, (5.39)
(iii) R(1 — «aA) is dense for some, and hence for all a > 0.

Here, for any linear operator B on V, D(B) and R(B) denote the domain and range of B,
respectively. For each a > 0, the operator (1 — aA) : D(A) — V is a bijection and its inverse
(1—aA)~!:V — D(A) is a bounded linear operator, given by

(1—ad)u= / S o~ tedt (ueV, a>0). (5.40)
0

If E is a compact metrizable space and C(FE) is the Banach space of continuous real functions
on F, equipped with the supremum norm, then a linear operator A on C(F) is closable and its
closure A generates a Feller semigroup if and only if (see [EK86, Theorem 4.2.2 and remarks on
page 166])

(i) 1€ D(A) and Al = 0,

(ii) D(A) is dense,

(iii) A satisfies the positive maximum principle,

(iv) R(1—aA) is dense for some, and hence for all o > 0.

(5.41)

If Egenerates a Feller semigroup and g € C(E), then the operator A+g (with domain D(A+g) :=
D(A)) generates a strongly continuous semigroup (S7);>¢ on C(E). If g < 0 then (57);>0 is
contractive. If (&);>0 is the Feller process with generator A, then one has the Feynman-Kac

representation

S9u(z) = E[u(e(t))eJo 9 (D)ds1 (120, ze B, g,uec(E)). (5.42)

Let C(([0,1]?) denote the space of continuous real functions on [0,1]? whose partial deriva-
tives up to m-th order exist and are continuous on [0,1]? (including the boundary), and
put C*)([0,1]?) := ), C™([0,1]?). Define a linear operator B on C([0,1]?) with domain
D(B) :=C)([0,1]%) by

—_

Bu(z,y) :==y(1 - y)%ﬂ(w,y) + 3@ —y) grul,y). (5.43)

617



Below, we will prove:

Lemma 5.12 (Feller semigroup) The closure in C([0,1]?) of the operator B generates a Feller
semigroup on C([0,1]?).

Write
Ci ={uec([0,1]*:u>0},
Crpi={uecW([0,1): Zu, £u >0}, (5.44)
Cot:={u e CP([0,1]%): %u,%u,%uZO}.

Let S denote the closure of a set S C C([0,1]%). We need the following lemma.

Lemma 5.13 (Preserved classes) Let g € C([0,1]?)
semigroup with generator B + g. Then, for each t > 0:

and let (S7)i>0 be the strongly continuous
(a) If g € Ci1, then S} maps C4 N Cyy into itself.

(b) If g € C14 NCay, then S§ maps C+ NCiy NCoy into itself.

To see why Lemma 5.13 implies Proposition 5.11, let (x(t), y(t))+>0 denote the Feller process in
[0,1]? generated by B. It is easy to see that x(t) = x(0) a.s. for all ¢+ > 0. For fixed x(0) = z,

the process (y(t))¢>0 is the diffusion given by the SDE (5.20). Therefore, by Feynman-Kac, for
each g € C([0,1]?),

t
By [edo 9(2:y($)ds) _ 5915 ), (5.45)
where 1 denotes the constant function 1 € C([0,1]%). By (3.9) and the stationarity of y3,

@)= (3 +1)(1- [T2anEYfe 20D (recp), (540)

where T'] is the invariant law of (y(¢));>o from Corollary 5.4 and 7, is an exponential time with
mean 7, independent of (y(t)):>0. Setting g(z,y) := —2f(y) in (5.45), using the ergodicity of
(¥(t))e>0 (see Corollary 5.4), we find that for each z € [0,1] and ¢ > 0,

/I‘”’(dy EY[e 2f0 ds _ hm /Pz ) € dy EY[e fo x,y(s ))ds]

(5.47)
= hm S0891(x, 2).
r—00
It follows from Lemma 5.13 that for each fixed r,¢, and z, the function z — S°S71(x,z) is
nondecreasing if f is nonincreasing, and nondecreasing and convex if f is nonincreasing and

concave. Therefore, taking the expectation over the randomness of 7, the claims follow from
(5.46) and (5.47). |

We still need to prove Lemmas 5.12 and 5.13

Proof of Lemma 5.12 It is easy to see that the operator B from (5.43) is densely defined,
satisfies the positive maximum principle, and maps the constant function 1 into 0. Therefore,
by Hille-Yosida (5.41), we must show that the range R(1 — aB) is dense in C([0, 1]?) for some,
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and hence for all @ > 0. Let P, denote the space of polynomials on [0,1]? of n-th and lower
order, i.e., the space of functions f : [0,1]> — R of the form

z,y) = Z am zFyl  with ag; =0 for k+1>n. (5.48)
k>0

Set Poo := U,, Pn- It is easy to see that B maps the space P, into itself, for each n > 0. Since
each P, is finite-dimensional, a simple argument (see [EK86, Proposition 1.3.5]) shows that the
image of Py, under 1 — aB is dense in C([0,1]?) for all but countably many, and hence for all
a> 0. n

As a first step towards proving Lemma 5.13, we prove:

Lemma 5.14 (Smooth solutions to Laplace equation) Let a > 0, g € C?)([0,1]), ¢ <0,
v € C([0,1]?), and assume that u € C(>)([0,1]?) solves the Laplace equation

(1—a(B+g))u=mo. (5.49)
(a) If g € C14, then v € Cy N Cyy4 implies u € Cy N Cy4.

(b) If g € Ci4 NCoy, then v € C4 NC14 N Coyt implies u € C+ NC14 N Coy.

Proof Let u¥ := %u, u®Y = %gyu, etc. denote the partial derivatives of u and similarly for v
and g, whenever they exist. Set ¢ := 1. Define linear operators B’ and B” on C([0,1]?) with

domains D(B’) = D(B") := (> ([0, 1]27) by
B/;:y(l—y)aa—;g+(c(x—y)+2 %—y))a%, (5.50)
B"i=y(1—y) 25 + (clz —y) +4(5 - 1) & '

fhen 9 Bu=(B —c)w, ZLBu=(B"—c—2)u¥
8y - ’ 8’!,/ - 9

QB’U/_ Bu* + cuY @B/u_ B'u® + cu? (551)
ox - Oz = .

Therefore, it is easy to see that

i) (1—a(B' —c+g))u¥=vY + ag¥u,

ii) (1 —a(B+g))u”=v"+ alcu? + g*u),
(i) (1= a(B"—2c—2+ g))u¥? =v% + a(2g¥u? + g¥%u), (5.52)
iv) (1 —-a(B" —c+ g))u™ =v™ + alcu?’ + g%u” + g™u + g*u?),

(v) (1 — a(B+ g9)u™ =v™ + a(2cu™ + 2¢g*u® + g**u),

where in (i) and (ii) we assume that v € C(([0,1]?) and in (iii)~(v) we assume that v €
C?([0,1]?). By Lemma 5.12, the closure of the operator B generates a Feller processes in
[0,1]%. Exactly the same proof shows that B’ and B” also generate Feller processes on [0,1]2.
Therefore, by Feynman-Kac, v is nonnegative if v is nonnegative and uY, . .., 4™ are nonnegative
if the right-hand sides of the equations (i)—(v) are well-defined and nonnegative. (Instead of
using Feynman-Kac, this follows more elementarily from the fact that B, B’, and B” satisfy the
positive maximum principle.) In particular, if g%, ¢* > 0 and v € C()([0,1]?), v, v, v* > 0, then
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it follows that u,u?,u® > 0. If moreover g¥¥, g*¥, g** > 0 and v € C?([0,1]?), v¥¥, v, v¥¥ > 0,
then also u%¥, u™¥, u%¥ > 0. ]

In order to prove Lemma 5.13, based on Lemma 5.14, we will show that the Laplace equation
(5.49) has smooth solutions u for sufficiently many functions v. Here ‘suffiently many’ will mean
dense in the topology of uniform convergence of functions and their derivatives up to second
order. To this aim, we make C(2)([0, 1]?) into a Banach space by equipping it with the norm

lll @) := [lell + NIl + lu® [+ ] + 2f[a™ ]|+ ). (5.53)
Here, to reduce notation, we denote the supremum norm by || f|| := || f||cc. Note the factor 2 in

the second term from the right in (5.53), which is crucial for the next key lemma.

Lemma 5.15 (Semigroup on twice diffferentiable functions) The closure in C?([0,1]?)
of the operator B generates a strongly continuous contraction semigroup on C)([0,1]?).

Proof We must check the conditions (i)—(iii) from (5.39). It is well-known (see for exam-
ple [EK86, Proposition 7.1 from the appendix]) that the space P of polynomials is dense in
C?([0,1)?). Therefore D(B) = C(>)([0,1]?) is dense, and copying the proof of Lemma 5.12 we
see that R(1 — aB) is dense for all but countably many «. To complete the proof, we must show
that B is dissipative, i.e., that

I(1=eB)ullg) = Julle)  (e>0, ueC([0,1])). (5.54)

Using (5.51), we calculate

(1= eBu=(1-=(B' o,

%(1 — €B)u: (1 — gB)um _ ECUy,

Z(1—eBJu=(1—e(B" —2c— 2))u?, (5.55)
822@/(1 - €B)U,: (1 — €(B/ C))umy _ 8cuyy7

%(1 —eB)u=(1 —eB)u"™ — 2ecu™.

Using the disipativity of B, B’, and B” with respect to the supremum norm (which follows from
the positive maximum principle) we see that ||(1 — (B’ — ¢))u”|| = (1 + ec)||(1 — 7 B)uvY|| >
(14 ec)||u?|| etc. We conclude therefore from (5.55) that

I(1 = eBull2) = |1 = eB)ul| + (1 = &(B" = c))u?|| + [|[(1 — eB)u"|| — e’
+H[(1 = e(B" = 2¢ = 2))u?|| + 2[|(1 = &(B' = ¢))u™|| — 2ec||[u””|
(1 = eB)u™|| = 2ecf[u™]

N (5.56)
> [lull + (1 + o) [u?l| + lu®]] — ecllu”]
H(L+e(2e +2) [ + 2(1 + eo)[u™]] — 2ec][u|
Hu® ] = 2ec]u™ ] = [lull2)
for each e > 0, which shows that B is dissipative with respect to the norm || - [ (2). |

Proof of Lemma 5.13 Let g € C?([0,1]?). Then u — gu is a bounded operator on both
C(]0,1]?) and €®([0,1]?), so we can choose a A > 0 such that

lgull < Allull - and [lgull2) < Allull2) (5.57)
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for all u in C([0,1]?) and C®([0,1]?), respectively. Put § := g — A\. By Lemma 5.12, B +
g generates a strongly continuous contraction semigroup (S7);>0 = (e*S7);>0 on C([0,1]?).
Note that R(1 — a(B + §)) is the space of all v € C([0,1]?) for which the Laplace equation
(1 —a(B + §))u = v has a solution u € C(*)(]0, 1]?). Therefore, by Lemma 5.14, for each a > 0:

(i) If g € Ci4, then (1 — (B + §))~! maps R(1 — a(B + §)) NCq NCiy into Cy NCyy.

(i) If g € Ci4 NCoy, then (1 — (B +g))~! maps R(1 — a(B +§)) NCy+ NCi4 NCoy
into C4+ NCi4 NCoy.

) (5.58)
By Lemma 5.15, the restriction of the semigroup (S7):>0 to ([0, 1]?) is strongly continuous
and contractive in the norm || - [|(2). Therefore, by Hille-Yosida (5.39), R(1 — a(B + g)) is dense
in C)([0,1]?) for each o > 0. Tt follows that R(1—a(B+ §))NCy NCiy is dense in C; NCy and
likewise R(1 — (B + g)) N C4 N C14 NCay is dense in Cy N Cyy NCay, both in the norm || - ||¢a).
Note that we need density in the norm || - [|(9) here: if we would only know that R(1— (B +g))
is a dense subset of C([0, 1]?) in the norm || - ||, then R(1 — a(B + §)) NC4+ NCy+ might be empty.
By approximation in the norm || - [|(9) it follows from (5.58) that:

(i) If g €Ciy, then (1 —a(B+ §))~! maps Cy NCy1y into itself.

_ 5.59
(ii) If g € C14 NCoy, then (1 — (B + §))~! maps C; NC1y NCoy into itself. (5:59)
Using also continuity in the norm || - || we find that:
(i) If g € Ciy, then (1 — a(B + §))~! maps C; NCy4 into itself. (5.60)
ii g € C1+ NCaqp, then (1 — a(B 4+ §))~! maps N Ci1a N Coy into itself. .
i) If Ci+ NCay, then (1 B ! CyNCiy NCoy If
For € > 0 let B
Ge=e Y ((1-eB+3g) " -1) (5.61)
be the Yosida approximation to B + §. Then
1
et = 1Y —(1—e(B+g) " (t=0), (5.62)
— n!
and therefore, by (5.60), for each ¢t > 0:
(i) If g € Ci4, then e maps C; NCy4 into itself. (5.63)
(ii) If g € C14 NCay, then e maps C, NCy; NCoy into itself. .
Finally
e MSIu = STy = ;12(1) eGety (t>0, uec(o,1?), (5.64)
so (5.63) implies that for each ¢ > 0:
(i) If g € Ci, then Sy maps C; N Cy4 into itself. (5.65)

(i) If g € C14+ NCoy, then SY maps C+ N Ciy N Coy into itself.

Using the continuity of SY in g (which follows from Feynman-Kac (5.42)) we arrive at the
statements in Lemma 5.13. n
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6 Convergence to a time-homogeneous process

6.1 Convergence of certain Markov chains

Section 6 is devoted to the proof of Theorem 3.2. In the present subsection, we start by for-
mulating a theorem about the convergence of certain Markov chains to continuous-time pro-
cesses. In Section 6.2 we specialize to Poisson-cluster branching processes and superprocesses.
In Section 6.3, finally, we carry out the necessary calculations for the specific processes from
Theorem 3.2.

Let E be a compact metrizable space. Let A : D(A) — C(E) be an operator defined on a domain
D(A) C C(E). We say that a process y = (y¢)¢>0 solves the martingale problem for A if y has
sample paths in Dg[0,00) and for each f € D(A), the process (Mtf)tzg given by

M= pv) = [ Arvaas @20 (6.1)

is a martingale with respect to the filtration generated by y. We say that existence (uniqueness)
holds for the martingale problem for A if for each probability measure y on E there is at least
one (at most one (in law)) solution y to the martingale problem for A with initial law L(yo) = p.
If both existence and uniqueness hold we say that the martingale problem is well-posed. For
each n > 0, let X" = (Xén), e ,Xf;()n)) (with 1 < m(n) < oo) be a (time-inhomogeneous)
Markov process in E with k-th step transition probabilities

Py(z,dy) = P[XV e dy|x{™ = 2] (1 <k<m(n)). (6.2)

We assume that the Py are continuous probability kernels on F. Let (5,(€n))1gkgm(n) be positive
constants. Set

A f(@) = )7 /E Pe,dy)f(y) — () (1<k<m(n), feC(B).  (63)

Define t(gn) =0 and

k
t,gn) = Zel(n) (1 <k <m(n)), (6.4)
=1
and put
K () = max {k : 0<k<m(n), " <t} (t>0). (6.5)

Define processes y() = (ygn))tzo with sample paths in Dg[0, c0) by

v = x0) o  (E=0). (6.6)

By definition, a space A of real functions is called an algebra if A is a linear space and f,g € A
implies fg € A.

Theorem 6.1 (Convergence of Markov chains) Assume that E(Xén)) = 1 asn — oo for
some probability law p on E. Suppose that there exists at most one (in law) solution to the
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martingale problem for A with initial law p. Assume that the linear span of D(A) contains an
algebra that separates points. Assume that

(n)
(i) lim > e =co, (i) lim sup e =0, (6.7)
n—oo k:l n—oo k; tgcn)ST
and
Gim sup A - Afle =0 (f€D(A)) (6.8)
ket <T

for each T > 0. Then there exists a unique solution y to the martingale problem for A with
wnitial law p and moreover E(y(”)) = L(y), where = denotes weak convergence of probability
measures on Dg[0,00).

Proof We apply [EK86, Corollary 4.8.15]. Fix f € D(A). We start by observing that

k
P =S MAM (™) (0 < k< m(n)) (6.9)

=1

~

is a martingale with respect to the filtration generated by X (™ and therefore,

k(™) (1)
) —Z; 65")A§")f(y§g)l) (t >0) (6.10)

is a martingale with respect to the filtration generated by y(™. Put

1] = tlg?;(t) (t>0) (6.11)
and set : o o
and
(n) (n) Lom
6 =g [ a0 (6.13)
t n

Then we can rewrite the martingale in (6.10) as

t
e — / oM ds. (6.14)
0

By [EK86, Corollary 4.8.15] and the compactness of the state space, it suffices to check the
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following conditions on ¢(™ and ¢

(i) sup supE[|§§n)H < 00,
n>N t<T

(ii) sup supE[|¢§"’|] < 0,
n>N t<T
(iii) lim E ( (n) _ H (y™) } _
) =1, (6.15)
(iv) lim B (a4 — H (yn ]_
- =1
(v) lim B| sup \sﬁ’” f(P)}} 0,

n=o0  LteQn[0,T]
(vi) sup E[||<Z>(”)HP,T} < 00 for some p € (1, 0],
n>N

for some N > 0 and foreach T >0,r>1,0< s <---<s, <T,and hy,...,h, € HCC(E).
Here H is separating, i.e., [hdy = [hdv for all h € H implies 4 = v whenever p,v are
probability measures on E. In (vi):

T
ol = ([ loorae)” 1 <p<o0) (6.16)

and ||g|loo,7 denotes the essential supremum of g over [0, T7].

The conditions (6.15) (i)—(vi) are implied by the stronger conditions

(0 Jim s [l6" - 151"l =
N o= (n) (6.17)
(i)  lim 0iup lot™ = Afyi™) =

where we denote the essential supremum norm of a real-valued random variable X by [|X||s :=
inf{K >0:|X| < K a.s.}. Condition (6.17) (ii) is implied by (6.7) (i) and (6.8). To see that
also (6.17) (i) holds, set

M, == sup |6, (6.18)
0<t<T
and estimate
sup Hft(n) - f(ygn))Hoo <M, sup{sgl) : 1 <k <m(n), tén) <T}. (6.19)

0<t<T

Condition (6.17) (ii) implies that limsup,, M,, < oo and therefore the right-hand side of (6.19)
tends to zero by assumption (6.7) (ii). n

6.2 Convergence of certain branching processes

In this section we apply Theorem 6.1 to certain branching processes and superprocesses.

Throughout this section, E is a compact metrizable space and A : D(A) — C(FE) is a linear
operator on C(E) such that the closure A of A generates a Feller process £ = (&);>0 in E with
Feller semigroup (P;);>o given by P, f(x) := E*[f(&)] (t > 0, f € C(E)).
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Let o € C4(F) and f, f € C(E). By definition, a function ¢ — w; from [0,00) into C(E) is a
classical solution to the semilinear Cauchy problem

%ut = Auy + Buy — au? (t >0),
uo=f

if t — wuy is continuously differentiable (in C(F)), us € D(A) for all ¢ > 0, and (6.20) holds. We
say that u is a mild solution to (6.20) if ¢ — wu; is continuous and

(6.20)

u = P f+ /Ot P_s(Bus — aug)ds (t>0). (6.21)

Lemma 6.2 (Mild and classical solutions) Equation (6.20) has a unique C(E)-valued mild
solution u for each f € C+(FE), and f > 0 implies that uy > 0 for allt > 0. If moreover f € D(A)
then u is a classical solution. For each t > 0, u; depends continuously on f € C4(FE).

Proof It follows from [Paz83, Theorems 6.1.2, 6.1.4, and 6.1.5] that for each f € C(F), (6.20)
has a unique solution (ut)o<¢t<7 up to an explosion time 7', and that this is a classical solution
if f € D(A). Moreover, u; depends continuously on f. Using comparison arguments based on
the fact that A satisfies the positive maximum principle (which follows from Hille-Yosida (5.41))
one easily proves the other statements; compare [FS04, Lemmas 23 and 24]. |

We denote the (mild or classical) solution of (6.20) by Uy f := uy; then Uy : Co(E) — C4(F) are
continuous operators and U = (U;)+>0 is a (nonlinear) semigroup on C (E).

Since E is compact, the spaces {uy € M(E) : p(E) < M} are compact for each M > 0. In
particular, M(FE) is locally compact. We denote its one-point compactification by M(E)s =
M(E) U {oo}. We define functions Fy € C(M(E)s) by Ff(oo) := 0 and

Fi(p) = e~ 1) (fecu(B), >0, pe ME)). (6.22)
We introduce an operator G with domain
D(G) == {Fy: f € D(A), f >0}, (6.23)
given by GFy(c0) := 0 and
GFf(p) = —{u, Af + Bf —af2) e~ 0} (ue m(B). (6.24)
Note that GF; € C(M(E)s) for all F; € D(G).

Proposition 6.3 ((A, «, 3)-superprocesses) The martingale problem for the operator G is
well-posed. The solutions to this martingale problem define a Feller process Y = (Vi)t>0 in
M(E) s with continuous sample paths, called the (A, o, 3)-superprocess. If Yo = oo then J; = oo
forallt > 0. If Yo = u € M(E) then

Brle= Vb)) = e~ thf)  (rec,(m)). (6.25)
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Proof Results of this type are well-known, see for example [EK86, Theorem 9.4.3], [Fit88],
and [ER91, Théoreme 7]. Since, however, it is not completely straightforward to derive the
proposition above from these references, we give a concise autonomous proof of most of our
statements. Only for the continuity of sample paths we refer the reader to [Fit88, Corollary (4.7)]
or [ER91, Corollaire 9].

We are going to extend G to an operator G that is linear and satisfies the conditions of the
Hille-Yosida Theorem (5.41). For any v € C;(F) and p € M(FE), let Clust,(x) denote a random
measure such that on {y = 0}, Clust,(p) is equal to p, and on {7y > 0}, Clust,(u) is a Poisson
cluster measure with intensity %u and cluster mechanism Q(z,:) = L(7y(y)0z), Where 7, is
exponentially distributed with mean ~(z). It is not hard to see that

E[e_<C1uSt’Y(:u’>7f>] = e_<:u’a V7f> (f c C(E)’ f> O)’ (626)

where V, f(z) = (ﬁ +7(z))~!. Note that since V,1 is bounded, the previously mentioned

Poisson cluster measure mentioned above is well-defined. By definition, we put Clust, (co) := oc.
Define a linear operator G, on C(M(FE))s) by

GoF (1) = lim e N (E[F(Clusteq(p))] — F()) (6.27)

with as domain D(G,) the space of all F' € C(M(E)«) for which the limit exists. Define a linear
operator Gg by
GpF () := lim =™ (F((1 + £B)p) — F (1)) (6.28)

with domain D(Gg) := C(M(FE))s). Define P} : M(E)s — M(E)s by (Pip, f) == (1, P.f)
(t>0, feC(E), pe€ M(E)) and Pfoo := 00 (t > 0). Finally, let G4 be the linear operator on
C(M(E))so) defined by

GxF (n) := lim e (F(Pp) = F(u)), (6.29)

with as domain D(G5) the space of all F' for which the limit exists. Define an operator G by

G = Go+Gs+ Gy, (6.30)

~ —_

with domain D(G) := D(G) N D(G5). If f € D(A), f >0, and F is as in (6.22), then it is not
hard to see that QFf(m) =0 and

GFy(p) ==~ Af + Bf —af? e I (ue m(E). (6.31)

In particular, G extends the operator G from (6.24). Since D(A) is dense in C(E), it is easy to see
that {Fy : f € D(A), f > 0} is dense in C(M(E)). Hence D(G) is dense. Using (6.27)-(6.29)
it is not hard to show that G satisfies the positive maximum principle. Moreover, by Lemma 6.2,
for f € D(A) with f > 0, the function ¢ — Fy, s from [0,00) into C(M(E)) is continuously

~

differentiable, satisfies Fy;, ¢ € D(G) for all t > 0, and
%Futf = GFUtf (t>0). (6.32)

From this it is not hard to see that G also satisfies condition (5.41) (ii), so the closure of G
generates a Feller semigroup (S;);>0 on C(M(E)«). It is easy to see that S Fy = Fy,f (t > 0).
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By [EK86, Theorem 4.2.7], this semigroup corresponds to a Feller process ) with cadlag sample
paths in M(E)s. This means that EX[Ff(V;)] = Fy, r(p) for all f € D(A) with f > 0. If u = oo
this shows that )} = oo for all ¢t > 0. If u € M(E) we obtain (6.25) for f € D(A), f > 0; the
general case follows by approximation. [ |

Now let (ge)->0 be continuous weight functions and let (Q. ).~ be continuous cluster mechanisms
on E. Assume that

x) = / Qc(z,dx)(x, 1) < 0 (x € E) (6.33)
and define probability kernels K. on E by
[ Kty / Q.(z, ). /) (f € B(E)). (6.34)
For each n > 0, let (5;(€n))1§k§m(n) (with 1 < m(n) < o) be positive constants. Let X =
(Xg(n), . ,XT():L()”)) be a Poisson-cluster branching process with weight functions q(m)s -G (n)
1 m(n)
and cluster mechanisms Q (m),...,Q ) . Define t,(cn) and k™(t) as in (6.4)-(6.5). Define
1 m(n)
processes V(™ by
()= xm (t>0). (6.35)

t k() (1)

Theorem 6.4 (Convergence of Poisson-cluster branching processes) Assume that
L'(Xén)) = p as n — oo for some probability law p on M(E). Suppose that the constants
akn) fulfill (6.7). Assume that

() (o) [ QA0 1) =1+ 8(2) + ofe),
(i) (2) [ QA0 1) ==2a(2) + ofe), (6.36)
(i) .(0) [ Qo) () gy =of6)
for each § > 0, and
[ Ko di)fw) = 1(0) + Af (@) + o) (6.37)

for each f € D(A), uniformly in x as e — 0. Then L(Y™) = L(Y), where Y is the (A, a, 5)-
superprocess with initial law p.

Here = denotes weak convergence of probability measures on D g0, 00).

Proof We apply Theorem 6.1 to the operator G, where we use the fact that if we view
M1 (Dpay(y[0,00)) as a subspace of M1(D ). [0,00)) (note the compactification), equipped
with the topology of weak convergence, then the induced topology on M (Dy(g)[0, 00)) is again
the topology of weak convergence.

By Proposition 6.3, solutions to the martingale problem for G are unique. Since FyFy = Fri,
and D(A) is a linear space, the linear span of the domain of G is an algebra. Using the fact that
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D(A) is dense in C(E) we see that this algebra separates points. Therefore, we are left with the
task to check (6.8).

Define U, : C (E) — C4(E) by
U f(2) = q.(2) / Qe d)(1— eI (weE, fec,o,1], f>0,>0), (638)
and define transition probabilities P.(j1,dv) on M(E)w by P.(00, -) i= 6x and
/Pe(,u,dy)e_<V’ f) = e= (U 1), (6.39)
We will show that
lim [[e Uef = f) = (Af + Bf —af?)| o =0 (F€D(A), £>0).  (640)
Together with (6.39) this implies that
[ P ) ) = Fy) + <G +ole) (FEDA), £50, (6D

uniformly in g € M(E) as € — 0. Therefore, the result follows from Theorem 6.1.
It remains to prove (6.40). Set g(z) :=1—z 4 32% — ™% (2 > 0) and write

U.f(z) = g-(v) / Qc(z, dx) (O, ) = 506 /2 + 9((x. )))- (6.42)

o) :/Ozdy/oydx/oxdte_t (2> 0), (6.43)

it is easy to see that g is nondecreasing on [0,00) and (since 0 < e™* < 1 and [fdte " <1)

Since

0<g(2) < 52°NL2° (z>0). (6.44)

Using these facts and (6.36) (ii) and (iii), we find that

(o) [ @l d0g(. 1)
< Hfllooqa(af){/Qa(w,dx)g(<x,1>)1{<X,1>ga}+/Qa(x7dx)g(<xa 1>)1{<X,1>>5}}

(6.45)
< ”f”oo(k(x){é(s/ (2, dX) (x, 1)* Liy1y<s) + 5 / Qe (z, dx)(x, 1>21{<X,1>>5}}
= 18] flloo (e 2a(z) + 0(€)) + 0(g).
Since this holds for any § > 0, we conclude that
(o) [ Qula gl 1)) = ofe) (6.46)
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uniformly in z as ¢ — 0. By (6.36) (i) and (6.37),
@) [ Qo0 s) = (o) [ Qo fen) ([ Ketwd) )
= (1 +ef(x) + 0(6)) (f(a;) +eAf(x) + 0(5))
= [(x) +eB(x)f(x) +eAf(2) + ofe).

Finally, write

¢-(2) / Q. (,dx) (x. f)?

= ¢:(x) / Qe (, ) ({x, £(2))* +20x, f(@) (x, f = F(2)) + {x. f = f(2))?).

Then, by (6.36) (ii),

(2 [ Qe £ = Fa)? (e 20(a) + of:).
We will prove that
(o) [ Q. d0 £ = F(@)? = o).
Then, by Holder’s inequality, (6.36) (ii), and (6.50),

g (2) / O, dx) (x. f — F(@)){x. f(2))]

< () [ Qe s = £@)) 7 (a0) [ anter@)?)”
< (o(e)(2e(z)e + 0(6)))1/2 = o(g).
Inserting (6.49), (6.50) and (6.51) into (6.48) we find that

4e(2) / Q. (z,dx) (x, £)? = £ 20(2) f(x)? + o(¢).

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)

Inserting (6.46), (6.47) and (6.52) into (6.42), we arrive at (6.40). We still need to prove (6.50).

To this aim, we estimate, using (6.47),

QE(x)/Qe(xvdX)O(:f_f($)>21{(x,1)§6}

<f — £(2)loote() / Q. (. dx)(x. f — f(x))
= 311 = F(@) oo (AL () + 0(2))
and, using (6.36) (iii),

(o) [ QA0 £ = £ o)
<1F = @) lotele) [ Qe 1 L) = ofc)
It follows that
(o) [ Qe dV £ = 1) < B = F(@)l AL (w) + ofe)

for any ¢ > 0. This implies (6.50) and completes the proof of (6.40).
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6.3 Application to the renormalization branching process

Proof of Theorem 3.2 (a) For any fo,..., fi € C+[0,1] one has by repeated use of (3.4) and
the Markov property,

E[ <X—mf0> <X—n+k7fk>]

e
= E[ —( X, fo) . o Xntk—1, fr1 +u"/n—kfk?>] (6.56)
== Ele” ( —mgk>]
where we define inductively
go:=[fr and gmy1:= fe—m-1 +Uy,_\ i Im- (6.57)

By the compactness of [0,1] and Corollary 5.10, the map (v, f) +— U, f from (0, 00) x C4[0,1]
to C4+[0,1] (equipped with the supremum norm) is continuous. Using this fact and (6.56)—(6.57)
we find that

E[6_<X—N7 f0> ce e_<X*’n+k7fl€>j| N E[e_<yzj:7,7 f0> e e_<yz:1+k’fk>i| (658)
Since fi,..., fr are arbitrary, (3.12) follows. |

Proof of Theorem 3.2 (b) We apply Theorem 6.4 to the weight functions ¢, and cluster
mechanisms Q. from (3.8) and to Awr = x(1 — :U)d22 with domain D(Awr) = €0, 1], and

a = 3 =1. It is well-known that Awp generates a Feller semigroup [EK86, Theorem 8.2.8]. We
observe that

e aoten = B2 [ s2-0)] =280 B 620)] = 7 [ THan s, (659
where I'} is the equilibrium law of the process y, from Corollary 5.4. It follows from (5.24) that
O [T -a-o,
T B (6.60)
(i) [ T -2 =00,
uniformly in z as v — 0. Therefore, for any § > 0,
0 [ruae-o-o
@) [ -2 =y - 2) + o), (6.61)
(i) [ Ty =00,
uniformly in z as v — 0. Consequently, a Taylor expansion of f around z yields

/Tl(dy)f(iv) = f(@) +vhe(l —2) L f(@) + o)  (f €CP[o,1]), (6.62)
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uniformly in x as v — 0. (For details, in particular the uniformity in z, see for example
Proposition [Swa99, B.1.1].) This shows that condition (6.37) is satisfied. Moreover,

/ 9, (w, dy) (x, 1) = E27] =7,

[ @@ d0te? = Blen 2 = [ e = 27, (6.63)
/Q«,(Hﬁ, dX)<X7 1>3 = E[(QTW)S] = /OOO Zg%e_Z/’de = 6737

which, using the fact that ¢, = (% + 1), gives
b [ Q@ a0ben =147,
qu/ Qy (z,dx){x, 1)* = 2y + 0(v), (6.64)
0 [ Q)b = o).

This shows that (6.36) is fulfilled. In particular,

%/ Qy (z, dx) (X, 1)* 1y 1y56) < 61%/ Qy(z,dx)(x,1)* = o(v) (6.65)

for all § > 0. [ |

7 Embedded particle systems

In this section we use embedded particle systems to prove Proposition 3.5. An essential ingredient
in the proofs is Proposition 7.15 (a), which will be proved in the Section 8.

7.1 Weighting and Poissonization

Proof of Proposition 3.3 Obviously ¢} € C,(E") for each k = 1,...,n. Since h € C4(F) and
h is bounded, it is easy to see that the map u +— hyu from M(E) into M(E") is continuous, and
therefore the cluster mechanisms defined in (3.21) are continuous. Since

h (@) o (hZ,, f) _ Uk(hf)(Z) h h
U f(z) = o) Ell—e ]= o) (x € B, f € By (E"), (7.1)
formula (3.22) holds on E". To see that (3.22) holds on E\E", note that by assumption Uy,h <

Kh for some K < oo, so if x € E\E", then Uyh(x) = 0. By monotonicity also U, (hf)(x) = 0,

while h]'f(x) = 0 by definition. Since sup,epn U1(z) = sup,epn ) < K < oo, the log-

Laplace operators Z/{,? satisfy (3.3). If X is started in an initial state X, then the Poisson-cluster
branching process X" with log-Laplace operators Z/{{1 Y ,Z/If{ started in Xoh = hXj satisfies

E[e—<th,f>] :E[€_<X0’u1 O Ouk(hf)>]

7.2
_ ple— (X0 Ul oo UM — gL~ (X)) (fe BL(EM), (7:2)
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which proves (3.23). n

Proof of Proposition 3.4 We start by noting that by (3.2),

Ue (@) = a(@) B[ - e 22 )] = u(@) P[Pois(f28) £0] (€ B, [ € By(E). (13)
Into (3.24), we insert

P[Pois(hZF) € -]

= P[Pois(hZF) € - | Pois(hZF) # 0] P[Pois(h2f) # 0] + 6y P[Pois(h2k) = 0). (74)

Here and in similar formulas below, if in a conditional probability the symbol Pois(-) occurs
twice with the same argument, then it always refers to the same random variable (and not to
independent Poisson point measures with the same intensity, for example). Using moreover (7.3)
we can rewrite (3.24) as

_ Uph(w) hx) — Ush(x)
h(x) ()

In particular, since we are assuming that h is Ug-subharmonic, this shows that QZ($, <) is
a probability measure. Let X" be the branching particle system with offspring mechanisms
Q?,...,QQ. Let Z™* be random variables such that £(Z£’k) = QZ(J;, -). Then, by (3.18),
(3.24), (3.20), and (7.3),

Qi(x, -) P[Pois(h2F) € -| Pois(h2F) # 0] +

do(-)- (7.5)

Ul f(z) = P[Thing(ZM*) £ 0] = q’“(x)P[Thinf(Pois(hzg)) £ 0]

h(x) 7.6
= B ppgishf 28y £0) = L (hf)(@)  (xe EY) "
h(z) : W) " '

If 2 € E\E", then U (hf)(x) < Up(h)(x) < h(z) = 0 =: hU"(f)(x). This proves (3.25). To see
that QZ is a continuous offspring mechanism, by [Kal76, Theorem 4.2] it suffices to show that
z— [ QNx, du)e_<’/’ 9) is continuous for all bounded g € C4 (E™). Indeed, setting f :=1—e79,
one has [ Q!(z,dv)e = 9) = [Ql(z,dv)(1 — )Y = 1 — Ul f(z) = 1 — Up(hf)(x)/h(z) which
is continuous on E” by the continuity of ¢; and Qj.

To see that also (3.26) holds, just note that by (3.19), (3.25), and (3.5),

PEEOSE [Thin (X)) = 0] = P[Thingn,. g ;(Pois(hp)) = 0]
= P[Pois((hUJ o --- o U f)) = 0] = P[Pois((Uy o - - - o U (hf)) 1) = 0] (7.7)
= PH[Pois(hf&,) = 0] = P#[Thiny(Pois(hX,)) = 0].

Since this formula holds for all f € B[Ojl](Eh), formula (3.26) follows. n

Remark 7.1 (Boundedness of h) Propositions 3.3 and 3.4 generalize to the case that h is
unbounded, except that in this case the cluster mechanism in (3.21) and the offspring mechanism
in (3.24) need in general not be continuous. Here, in order for (3.22) and (3.25) to be well-defined,
one needs to extend the definition of Uy, f to unbounded functions f, but this can always be done
unambiguously [FS03, Lemma 9. <&

632



7.2 Sub- and superharmonic functions

This section contains a number of pivotal calculations involving the log-Laplace operators U,
from (3.9). In particular, we will prove that the functions hi 1, hoo, and ho; from (3.29) are
U,-superharmonic.

We start with an observation that holds for general log-Laplace operators.

Lemma 7.2 (Constant multiples) Let U be a log-Laplace operator of the form (3.2) satisfying
(3.3) and let f € BL(E). ThenU(rf) <rtUf for allr > 1, andU(rf) > rUUf for all 0 <r < 1.
In particular, if f is U-superharmonic then rf is U-superharmonic for each r > 1, and if f is
U -subharmonic then rf is U-superharmonic for each 0 < r < 1.

Proof If X is a branching process and U is the log-Laplace operator of the transition law from
Xy to &) then, using Jensen’s inequality, for all r > 1,

e~ U f)) — Eu[e—<Xl,Tf>] _ Eu[(e—w,f)y] > (Eu[e—%,f)])?“ _ ol rUf)

(7.8)
Since this holds for all u € M(E), it follows that U(rf) < rUd f. The proof of the statements for
0 <r <1 is the same but with the inequality signs reversed. |
We next turn our attention to the functions hq; and hoo from (3.29).
Lemma 7.3 (The catalyzing function h; ;) One has
1+
U (rhig) (@) = 1— (1,7 >0, z€[0,1]). (7.9)
T

In particular, hy 1 is Uy-harmonic for each v > 0.

Proof Recall (3.7)-(3.9). Let 01/, be an exponentially distributed random variable with mean
1/r, independent of 7.,. Then

T

U (rha) (@) = (2 + DE[L— e~ Jo 74 = ( i

+ I)P[Ul/r < T’Y] = (% + 1) 1 + ’Y’ (710)

2=

which yields (7.9). [

Lemma 7.4 (The catalyzing function hoo) One has U, (rhoo) < rhog for each v,r > 0.
Proof Let I'} be the invariant law from Corollary 5.4. Then, for any v > 0 and f € B[0,1],
—(ZY
U f@)= L+ DE[1 - e EN] < (L 4 1)B[ZY, 1)

. (7.11)
=($+1)E[/0 fyd(=t/2))dt] = A1 +)(T5, f)  (x<€]0,1]),

where we have used that 7, is independent of y; and has mean ~. In particular, setting f = rhg o
and using (5.25) we find that Uy (rhoo) < rho. |

The aim of the remainder of this section is to derive various bounds on U, f for f € Ho 1. We
start with a formula for U, f that holds for general [0, 1]-valued functions f.
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Lemma 7.5 (Action of U, on [0, 1]-valued functions) Let y; be the stationary solution to
(5.6) and let 7,2 be an independent exponentially distributed random variable with mean v/2.

Let (3;)i>1 be independent exponentially distributed random variables with mean L independent

PR
of ya and T2, and let oy = Z§:1 Bi (k>0). Then

1= f@) =B ] (0-1062-o)] (>0, feBeyo1, z€0,1]). (712)

k>0: 01, <7y

Proof By Lemma 7.3, the constant function hqi(z) := 1 satisfies U,h1,1 = hy for all v >
0. Therefore, by Proposition 3.4, Poissonizing the Poisson-cluster branching process X with

the density hq 1 yields a branching particle system X hin — (XE;I, . ,Xg Y1) with generating
h1,1 h1,1
operators U, ", ..., U, ", where
h
Uy"' f=Uf  (f € Bpylo,1], v >0). (7.13)

By (3.18) and (7.5),

UM f(a) =1 - B[(1- pyPois(Z2) | Pois(Z]) #0] (f € Bjpy)[0,1], z € [0,1], v > 0). (7.14)

Therefore, (7.12) will follow provided that

P[Pois(2]) € - | Pois(2]) # 0] = c( S0 w(,ak)). (7.15)

Yz
k>0: 01, <7 /2

Indeed, it is not hard to see that

Pois(Z]) 2 Y 01 op)- (7.16)

k>0: o, <7 /2

This follows from the facts that 27 = 2 fOT”/Q 5y;(_8)ds and

Y. 0o ZPois21. ,q)- (7.17)

k>0: o, <7 /2

Conditioning Pois(2 L—r, /2’0]) on being nonzero means conditioning on 7,5 > 07. Since T, /5 —
o1, conditioned on being nonnegative, is exponentially distributed with mean 7/2, using the
stationarity of y,, we arrive at (7.15). |

The next lemma generalizes the duality (5.22) to mixed moments of the Wright-Fisher diffusion y
at multiple times. We can interpret the left-hand side of (7.18) as the probability that mq, ..., my,
organisms sampled from the population at times t1,...,t, are all of the genetic type 1.

Lemma 7.6 (Sampling at multiple times) Fiz 0 < t; < --- < t, = t and nonnegative
integers my, ..., my. Lety be the diffusion in (5.20). Then

EY [kl;[lygjk} = E[y?a%], (7.18)
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where (@s, 1hs)seoy i o Markov process in N? started in (¢o,%0) = (mn,0), that jumps deter-
ministically as
(ps,Vs) = (ps +mp,s) at time t—1tp (k<n), (7.19)

and between these deterministic times jumps with rates as in (5.21).

Proof Induction, with repeated application of (5.22) and the Markov property. |

For any m > 1, we put
hp(x):=1—(1—2z)™ (x €10,1]). (7.20)

The next lemma shows that we have particular good control on the action of I/, on the functions
P -

Lemma 7.7 (Action of U/, on the functions h,,) Let m > 1 and let 7, be an exponentially
distributed random variable with mean ~. Conditional on T, let (¢}, 1;)i>0 be a Markov process
in N2, started in (¢f,v) = (m,0) that jumps at time t as:

(o1, Y1) — (¢ — 1,%1) with rate ¢j(¢y — 1),
(04, 91) = (¢, — L +1)  with rate 29}, (7.21)
(Gl ) — (6 +m,ul)  with rate 1, , .

Then the limit lim;_,o 1, =: . exists a.s., and
Ush(z) = EMO[1 — (1 —2)¥>]  (m>1, z€[0,1)). (7.22)
Proof Let y, 7/, and (o%)r>0 be as in Lemma 7.5. Then, by (7.12),
Upm(@)=1-E[ T (1 =yil-o0)"]- (7.23)
k>0: 01, <T /2

Let (¢/,v') = (¢},1,)t>0 be a N*-valued process started in (¢f, ) = (m,0) such that condi-
tioned on 7, and (0% )k>0, (¢',¢’) is a Markov process that jumps deterministically as

(81, 01) = (¢ +m, ) at time o (k>1: o) <7yp0) (7.24)

and between these times jumps with rates as in (5.21). Then (¢}, ;) — (0,9..) as t — oo a.s.
for some N-valued random variable ¢, and (7.22) follows from Lemma 7.6, using the symmetry
y < 1 —y. Since 011 — o are independent exponentially distributed random variables with
mean one, (¢',1’) is the Markov process with jump rates as in (7.21). |

The next result is a simple application of Lemma 7.7.

Lemma 7.8 (The catalyzing function h;) The function hi(x) = z (x € [0,1]) is Uy-
subharmonic for each v > 0.

Proof Since ¢, > 1 a.s., one has 1 — (1 — z)¥ > z a.s. (z € [0,1]) in (7.22). In particular,
setting m = 1 yields Uy hy > hy. |

We now set out to prove that h7, which is the function hg; from (3.29), is U,-superharmonic. In
order to do so, we will derive upper bounds on the expectation of ¢,_. We derive two estimates:
one that is good for small v and one that is good for large ~.
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In order to avoid tedious formal arguments, it will be convenient to recall the interpretation of
the process (¢,1’) and Lemma 7.6. Recall from the discussion following (5.22) that (y2(t))ier
describes the equilibrium frequency of genetic type I as a function of time in a population that
is in genetic exchange with an infinite reservoir. From this population we sample at times —oy,
(k >0, o) < 7,/2) each time m individuals, and ask for the probability that they are not all
of the genetic type II. In order to find this probability, we follow the ancestors of the sampled
individuals back in time. Then ¢, and 1), are the number of ancestors that lived at time —¢ in
the population and the reservoir, respectively, and E[1 — (1 — z)¥%] is the probability that at
least one ancestor is of type I.

Lemma 7.9 (Bound for small v) For each v € (0,00) and m > 1,

1 1% 144
—EMOy 1< = = : 7.25
= [m_m;lm Xon(7) (7.25)
The function X, is concave and satisfies xm(0) =1 for each m > 1.
Proof Note that
E[{k>0: op <7 p}|] =1+ (7.26)

We can estimate (¢', ') from above by a process where ancestors from individuals sampled at
different times cannot coalesce. Therefore,

EmO ! 1< (1+4)E™O) [y, (7.27)

where (¢, 1) is the Markov process in (5.21). Note that if (¢,) is in the state (m + 1,0), then
the next jump is to (m, 1) with probability

Lim+1 1
- i ) = (7.28)
Sm+1)+mim+1) 1+my
and to (m,0) with one minus this probability. Therefore,
1
B0, 1 E™D [y (1 _ )E(m,o) .
el = Pl + (1 ) Pl
_ EmO [y 1) (1 - )E<m70> . .
T (Bl 1) + (1= ) B0l (729
= B0 [yhy, :
Vo] + 1+ my
By induction, it follows that
m—1
(m 0
[thoo] = Zzg 1 +w (7.30)
Inserting this into (7.27) we arrive at (7.25). Finally, since
9% 1+~  2i(i—1) ,
g - >0, v >0), 7.31
021+iy  (1+i) (120, v20) (7:31)
the function x,, is convex. [ |
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Lemma 7.10 (Bound for large ~) For each v € (0,00) and m > 1,

1 3
(mao) / < l — —
Bl < (541 2+ 5 (7.32)
k=1
Proof We start by observing that %E [v)] = %E [#}], and therefore
Bl =1 [ Elgar (7.33)
0

Unlike in the proof of the last lemma, this time we cannot fully ignore the coalescence of ancestors
sampled at different times. In order to deal with this we use a trick: at time zero we introduce
an extra ancestor that can only jump to the reservoir when ¢ > 7, and there are no other
ancestors left in the population. We further assume that all other ancestors do not jump to the
reservoir on their own. Let & be one as long as this extra ancestor is in the population and zero
otherwise, and let ¢} be the number of other ancestors in the population according to these new
rules. Then we have at a Markov process (£, ¢”) started in (o, ¢j) = (1,m) that jumps as:

(&.00) = (& 9! —1)  with rate (¢f +1)g

(ftv :&l) - (gta g + m) with rate ]‘{T,Y/2<t}7 (734)

(ft, 2’) — (ft - 1, qzﬁé’) with rate %1{@/22,5}1{#/:0}.
It is not hard to show that (£,¢") and ¢’ can be coupled such that & + ¢ > ¢} for all t > 0. We
now simplify even further and ignore all coalescence between ancestors belonging to the process
¢” that are introduced at different times. Let gzﬁgk) be the number of ancestors in the population
that were introduced at the time oy (k > 0). Thus, for ¢ < o one has ¢£k) =0, for t = o}, one
has qﬁl(fk) = m, while for t > oy, the process ¢§k) jumps from n to n — 1 with rate (n+ 1)n. Then
it is not hard to see that, for an appropriate coupling, ¢; < Ekzo: oR<T /2 ¢,§ ) for all t > 0. We

let £’ be a process such that £ =1 and & jumps to zero with rate

1
a2t II oo (7.35)

k>0:01,<T, /2

Then for an appropriate coupling &, > & (¢ > 0). Thus, we can estimate

/OOOE[qbg]dtg/OooE[gg]dH/oooE[ 3 ¢§’“)}dt. (7.36)

k>0:0p <Ty/2

Set p:=inf{t > 7,5 ¢§k) =0 Vk > 0 with o}, < 7,2} and 7 := inf{t > 0: & = 0}. Then

| Bl = Biral+ Blo— sl + Blr =gl = 3y + Blp=mpl. (13)

Since

_ <
Elp 7/2]_/0 E'[l{zb(mﬁw/2 im?éo}]dt

S/OOOE[ D sy

k2010k<7',y/2

(7.38)
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using moreover (7.36) and (7.37), we can estimate

= Bl 3 > (k)
/0 E[¢t]dt§27+/0 E[ > (@ +1{¢§k>¢0})}dt. (7.39)

k>0:01,<7y /2

Since EH{k >0: o < T,-Y/Q}H = 1+, we obtain
0o , § fe’e) )
/0 Bt < 5+ (149) [ Bl 410 11 (7.40)

Since gzﬁlgo) jumps from n to n — 1 with rate (n+ 1)n, the expected total time that qﬁgo) = n equals
1/((n+ 1)n), and therefore

o0 (0) _ m 1 B m l
/o Elor™ + 110 4o ldt = ; (n+ l)n(n L)) = ;:1 n’ (741)
Inserting this into (7.40), using (7.33), we arrive at (7.32). n

Lemma 7.11 (The catalyzing function hgi) One has Uy(ho1) < hoa for each v > 0.
Moreover, for each r > 1 and v > 0,

Uy (rho1)(x)
sup ——————— < L. 7.42
2e01]  Thoa(z) (7.42)

Proof Recall from (3.29) that ho1(x) = hy(z) =1 — (1 —2)7 (z € [0,1]). We will show that
ETOy ] <7 (7.43)

for each vy € (0,00). The function X, (7y) from Lemma 7.9 satisfies
(1)—iig<1 (m >5) (7.44)
. - m n=1 n "= . ‘

Since x., () is concave in 7 and satisfies x,,(0) = 1, it follows that x,,(y) < 1forall0 <y <1
and m > 5. By Lemma 7.10, for all v > 1,

EMO 1<2y — 4 S em (m >17). (7.45)

Therefore, if m > 7, then m' := EO[y/ | < m. It follows by (7.22) and Jensen’s inequality
applied to the concave function z +— 1 — (1 — x)* that

Uphm(z) <1—(1— )Wl =1 - (1= 2)™ <hp(z) (@ €[0,1], v>0).  (7.46)
This shows that h,, is U,-superharmonic for each v > 0. By Lemma 7.2, for each r > 1,

Uy (rhon)(2) _ 1Us () (&) _ 1= (1= )™

@) S thm@) S 1-—apm €01 (7.47)
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By Lemma 7.3 and the monotonicity of I,

Uy(rh)(@) _ Uy(r)(@) _ 147y 1

Since the right-hand side of (7.47) is smaller than 1 for x € (0,1) and tends to m'/m < 1 as
x — 0, since the right-hand side of (7.48) is smaller than 1 for x in an open neighborhood of 1,
and since both bounds are continuous, (7.42) follows. |

7.3 Extinction versus unbounded growth

In this section we show that Lemmas 3.6-3.8 are equivalent to Proposition 3.9. (This follows
from the equivalence of conditions (i) and (ii) in Lemma 7.12 below.) We moreover prove
Lemmas 3.6 and 3.8 and prepare for the proof of Lemma 3.7. We start with some general facts
about log-Laplace operators and branching processes.

For the next lemma, let E be a separable, locally compact, metrizable space. For n > 0, let
gn € C+(F) be continuous weight functions, let Q,, be continuous cluster mechanisms on F, and
assume that the associated log-Laplace operators U, defined in (3.2) satisfy (3.3). Assume that
0 # h € Cy(E) is bounded and U,-superharmonic for all n, let E" := {x € E : h(z) > 0},
and define generating operators U : B[O’H(Eh) — Bp1)(F) as in (3.25). For each n > 0,
let (XO("), Xl(n)) be a one-step Poisson cluster branching process with log-Laplace operator U,

and let (Xén)’h, X fn)’h) be the one-step branching particle system with generating operator U".
(In a typical application of this lemma, the operators U,, will be iterates of other log-Laplace

operators, and Xo(n),Xl(n) will be the initial and final state, respectively, of a Poisson cluster
branching process with many time steps.)

Lemma 7.12 (Extinction versus unbounded growth) Assume that p € C[Ovl](Eh) and put

z)p(x if x h

Then the following statements are equivalent:

. n),h
() P*[x{"" €] = ple)du + (1= p(x))d
locally uniformly for x € E",

() Pe[(x™ nye ] = e P+ (1- e P@))5,

n—o0

locally uniformly for x € E,

(i) Un(Ah)(z) — p(z)
logcz_i;; uniformly forx € E Y\ >0,

(iv) I0< A <A <oo: Up(Ah)(x) — p(x)
locally uniformly for x € Z?HOO (i=1,2).
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Proof of Lemma 7.12 It is not hard to see that (i) is equivalent to

P [Thiny(X™") £ 0] — p(a) (7.50)

n—oo

locally uniformly for z € E" for all 0 < A < 1. It follows from (3.19) and (3.25) that
h(z) PO [Thiny (X ™" £ 0] = hUR(\)(z) = U(MR)(z) (z € E), so (i) is equivalent to

() Un(A)(x) — p()
locally uniformly forx € E V0 < A < 1.
By (3.4), condition (ii) implies that

o —Un(AR)(2) _ pis [6—)\<X1,h>] _, ¢ p(®) (7.51)

n—oo

locally uniformly for x € E for all A > 0, and therefore (ii) implies (iii). Obviously (iii)=
(i) =(iv) so we are done if we show that (iv)=-(ii). Indeed, (iv) implies that

Eax[e—mxfw,m _ 6—)\2<X1(”)7h>} 0 (7.52)

locally uniformly for x € F, which shows that
P e < (x!™ hy < C] — 0 (7.53)
for all 0 < ¢ < C < oo0. Using (iv) once more we arive at (ii). n

Our next lemma gives sufficient conditions for the n-th iterates of a single log-Laplace operator U
to satisfy the equivalent conditions of Lemma 7.12. Let E (again) be separable, locally compact,
and metrizable. Let ¢ € C4(F) be a weight function, Q a continuous cluster mechanism on
E, and assume that the associated log-Laplace operator U defined in (3.2) satisfies (3.3). Let
X = (Xp, X1, ...) be the Poisson-cluster branching process with log-Laplace operator U in each
step, let 0 # h € C(E) be bounded and U-superharmonic, and let X" = (X[, X},...) denote
the branching particle system on E” obtained from X by Poissonization with a {-superharmonic
function h, in the sense of Proposition 3.4.

Lemma 7.13 (Sufficient condition for extinction versus unbounded growth) Assume

that
Uh(x)

reEh h(l’)

Then the process X" started in any initial law L(X}) € Mq(E") satisfies

<1 (7.54)

klim X} =00 or 3k>0st XP=0 a.s. (7.55)
—00

Moreover, if the function p : E" — [0,1] defined by
p(x):=P%[X"£0 vn>0 (zeEM (7.56)

satisfies inf ,c pn p(x) > 0, then p is continuous.
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Proof of Lemma 7.13 Let A denote the tail event A = {X/ # 0 ¥n > 0} and let (Fy)x>0 be
the filtration generated by X". Then, by the Markov property and continuity of the conditional
expectation with respect to increasing limits of o-fields (see Complement 10(b) from [Loe63,
Section 29] or [Loe78, Section 32])

PIX! #£0Vn > 0/Xy] = P(A|F) —la as (7.57)
In particular, this implies that a.s. on the event A one must have P[X[', | = 0] X}'] — 0 a.s. By
(3.19) and (3.25), Po%[X} # 0] = UM (x) = (Uh(z))/h(x), which is uniformly bounded away
from one by (7.54). Therefore, P[X[", | = 0|X}] — 0 a.s. on A is only possible if the number of
particles tends to infinity.

The continuity of p can be proved by a straightforward adaptation of the proof of [FS04, Propo-
sition 5 (d)] to the present setting with discrete time and noncompact space E. An essential
ingredient in the proof, apart from (7.54), is the fact that the map v — PY[X! € -] from N (E)
to My (N(E)) is continuous, which follows from the continuity of Q". |

We now turn our attention more specifically to the renormalization branching process X. In the
remainder of this section, (y;)r>0 is a sequence of positive constants such that ), v, = oo and
Yn — ¥ for some v* € [0,00), and X = (X_,,..., X)) is the Poisson cluster branching process
on [0,1] defined in Section 3.2. We put U™ := U, , o---olly,. If0 # h € C[0,1] is Us,-
superharmonic for all k£ > 0, then X and X" denote the branching process and the branching
particle system on {z € [0,1] : h(z) > 0} obtained from X by weighting and Poissonizing with
h in the sense of Propositions 3.3 and 3.4, respectively.

Proof of Lemma 3.6 By induction, it follows from Lemma 7.3 that

o1+ k)

UM (\hy ) = —— (A > 0). (7.58)
Fo(l+m) — 143
It is not hard to see (compare the footnote at (2.12)) that
H(l + k) = oo if and only if Z'yk = 00. (7.59)
k=0 k=0
Therefore, since we are assuming that ) v, = oo,
UM (Nh1y) — b, (7.60)

uniformly on [0, 1] for all A > 0. The result now follows from Lemma 7.12 (with h = hy; and
plz) =1 (z € [0,1])). u

Remark 7.14 (Conditions on (v,),>0) Our proof of Lemma 3.6 does not use that v, — ~*
for some 7* € [0,00). On the other hand, the proof shows that ) =, = oo is a necessary
condition for (3.30). &
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We do not know if the assumption that v, — +* for some v* € [0, 00) is needed in Lemma 3.7.
We guess that it can be dropped, but it will greatly simplify proofs to have it around.

We will show that in order to prove Lemmas 3.7 and 3.8, it suffices to prove their analogues
for embedded particle systems in the time-homogeneous processes Y7 (y* € [0,00)). More
precisely, we will derive Lemmas 3.7 and 3.8 from the following two results. Below, (U):>0
is the log-Laplace semigroup of the super-Wright-Fisher diffusion }°, defined in (3.15). The
functions pg; .« (7" € [0,00)) are defined in (3.35).

Proposition 7.15 (Time-homogeneous embedded particle system with hg )

(a) For any v* > 0, one has (Uy+)"hoo — 0 uniformly on [0, 1].
n—oo
(b) One has Uhg o P~ 0 wuniformly on [0, 1].

Proposition 7.16 (Time-homogeneous embedded particle system with hg ;)

(a) For any v* > 0, one has (Uy<)"(Aho,1) — p§ 1+ uniformly on [0,1], for all A > 0.

(b) One has UP(\ho,1) b Po.1,0 uniformly on [0,1], for all A > 0.

Proposition 7.15 (a) will be proved in Section 8.2.

Proof of Proposition 7.16 (a) By formula (7.42) from Lemma 7.11, for each r > 1 the

function rhg; satisfies condition (7.54) from Lemma 7.13. Set p(z) := P% [YJ*’MO’1 # 0 Vn).
Then, by (3.19) and (3.25),

plr)= lim Péw[YJ*”"hw 0] = ,}ggo (U3 1 (@)

n—oo rhoa(x) T Tho,l( )
where hi(xz) = = (z € [0,1]) is the U,+-subharmonic function from Lemma 7.8. It follows that
inf,c (0,17 p(x) > 0 and therefore, by Lemma 7.13, p is continuous in z.

By Lemma 7.13, we see that the Poissonized particle system X7"0.1 exhibits extinction ver-
sus unbounded growth in the sense of Lemma 7.12, which implies the statement in Proposi-
tion 7.16 (a). n

Proof of Propositions 7.15 (b) and 7.16 (b) These statements follow from results in [FS03].
Indeed, [F'S03, Proposition 2] implies that for any f € B4[0,1] and z € [0, 1],
U0 () — 0 it £(0) = £(1) =

Uy f(x) t_>—o>opam* (x) if £(0)=0, f(1)>0 (7.62)

To see that the convergence in (7.62) is in fact uniform in = € [0,1] we use the fact that each
function f € B,[0,1] with f(0) = f(1) = 0 can be bounded as f < 1) for some r > 1, and
that each function f € B4[0,1] with f(0) = 0 and f(1) > 0 can be bounded as ely;y < f <7l
for some 0 < ¢ < 1 and r > 1. Therefore, by the monotonity of U, it suffices to show that
UL (1)), U (rlay), and Up(elgyy) converge uniformly on [0,1]. By [FS03, Lemma 15], these
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functions are continuous for each ¢ > 0, and since moreover the limit functions are continuous,
it suffices to show that the convergence is monotone. Thus, we claim that

U (r1p1)) 1 0 (r>1),
UL (r1(0,1)) L Po 1 (r>1), (7.63)
U (elg1y) 1951, (0<e<).

By (an obvious analogue of) Lemma 7.2, it suffices to show that 1(0 1) and 1oy are Uuy-

superharmonic, while 1y is ¢{-subharmonic for each t > 0. Let (VP"1),5¢ be the branching

particle system obtained from (y?)tzo by Poissonization with the constant function hq; := 1.
Then Y01 is a system of binary splitting Wright-Fisher diffusions, which was also studied in
[FS03]. One has (compare (3.19))

U 0.1y (r) = P[Thinggy, , (52) # 0] = P [Thing, , (V") # 0] = P [V ((0,1) > 0]
(7.64)
Likewise,
0 S [y 0:h1,1 0 3o 1y 011
UL o) (w) = PEIPH(0,1]) > 0] and - U1y () = PR (1) > 0L (7.65)

Using the fact that the points 0,1 are traps for the Wright-Fisher diffusion and that in a binary
splitting Wright-Fisher diffusion, particles never die, it is easy to see that P [Yto’hl’1 ((0,1)) > 0]

and P% [Y;O’hl’l((o, 1]) > 0] are nonincreasing in ¢, while P% [Y;O’hl’l({l}) > (] is nondecreasing
in ?. |

We now show that Propositions 7.15 and 7.16 imply Lemmas 3.7 and 3.8, respectively.

Proof of Lemma 3.7 We start with the proof that the embedded particle system X0 ig
critical. For any f € B.[0,1] and k > 1, we have, by Poissonization (Proposition 3.4) and the
definition of X,

hoo(z) E~F0= (X h(;cil»fﬂ = phLPoisthooda)) [ h(;v?‘rl’fﬂ = B0 [(Pois(ho 0 X_k+1), f)]

= B (X1, hoof)] = (2 + DE[Z], hoof)] = (2 + DT hoof),
2 8!
(7.66)
where I'} is the invariant law of y) from Corollary 5.4. In particular, setting f = 1 gives
_ h
hoo(a) E7MO[|X708 ] = hoo(x) by (5.25).
To prove (3.31), by Lemma 7.12 it suffices to show that
U™ (Ahgg) — 0 (7.67)

n—0o0

uniformly on [0, 1] for all 0 < A < 1. We first treat the case v* > 0. Then, by Theorem 3.2 (a),
for each fixed { > 1 and f € C4[0,1],

Uy ool f — (Uy)'f (7.68)
uniformly on [0, 1]. Therefore, by a diagonal argument, we can find I(n) — oo such that

H(UW*)l(n)hO,O — Uy, oly, I(n) ho OH oo — 0. (7.69)
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Using the fact that the function hgg is Uy-superharmonic for each v > 0 and the monotonicity
of the operators U, we derive from Proposition 7.15 (a) that

u(n) ()\hovo) S u’an ©---0 u’Yn—l( )h070 — (770)

n n—00

uniformly on [0, 1] for all 0 < A < 1. This proves (7.67) in the case v* > 0.

The proof in the case v* = 0 is similar. In this case, by Theorem 3.2 (b), for each fixed ¢ > 0
and f € C4[0,1],

Uy, 00Uy, . f(xn) —_ UL f(z) Va, — x € [0,1], (7.71)

which shows that Uy, , o---ol,,  f converges to UP f uniformly on [0,1]. By a diagonal
argument, we can find ¢(n) — oo such that

Hut()(h0,0> - u’)’nfl ©---0 u’mn(t(n))(hO,O)HOO njo>o 0, (7'72)
and the proof proceeds in the same way as before. |

Proof of Lemma 3.8 By Lemma 7.12 and the monotonicity of the operators U, it suffices to

show that
(i) lim supu(”)(ho,l) < P6,1,7*,
(ii) HminfU'"™(5ho,1) > Po1+

n—oo

uniformly on [0,1]. We first consider the case v* > 0. By (7.68) and a diagonal argument, we
can find [(n) — oo such that

H(Z/lv*)l(”)hm — Z/{»yn_l [OR oZ/{%H(n) hoJHOO n:;o 0. (774)

Therefore, by Proposition 7.16 (a), the fact that hg; is U, -superharmonic for each k£ > 0, and
the monotonicity of the operators U, we find that

U(”)h(],l < L{%_l 0---0 u’Ynfl(n)hOvl n?o)o pal,v*’ (775)

uniformly on [0,1]. This proves (7.73) (i). To prove also (7.73) (ii) we use the U,-subharmonic
(for each v > 0) function h; from Lemma 7.8. By Lemma 7.2 also %hl is U,-subharmonic. By
bounding %hl from above and below with multiples of hg 1 it is easy to derive from Proposi-
tion 7.16 (a) that

Uy )" (M) — Dl (7.76)
uniformly on [0, 1]. Arguing as before, we can find I(n) — oo such that

Therefore, by (7.76) and the facts that %hl is U, -subharmonic for each k£ > 0 and %hl < %ho,l,
U (Gho1) 2 Uy, 000U,y (5h1) — pha (7.78)
uniformly on [0, 1], which proves (7.73) (ii). The proof of (7.73) in case v* = 0 is completely

analogous. |

644



8 Extinction on the interior

8.1 Basic facts

In this section we prove Proposition 7.15 (a). To simplify notation, throughout this section h
denotes the function hgo. We fix 0 < v* < oo, we let Y := Y7"" denote the branching particle
system on (0,1) obtained from Y7 = (yg*,yf, ...) by Poissonization with A in the sense of
Proposition 3.4, and we denote its log-Laplace operator by U;L*. We will prove that

p(x) =PV £0Yn>0]=0  (z€(0,1)). (8.1)

Since for each n fixed, = — pp(z) := P%[Y® # 0] is a continuous function that decreases to
p(x), (8.1) implies that p,(z) — 0 locally uniformly on (0, 1), which, by an obvious analogon of
Lemma 7.12, yields Proposition 7.15 (a).

As a first step, we prove:

Lemma 8.1 (Continuous survival probability) One has either p(z) = 0 for all x € (0,1) or
there exists a continuous function p: (0,1) — [0, 1] such that p(xz) > p(x) > 0 for all x € (0,1).

Proof Put p(z) := h(x)p(x). We will show that either p = 0 on (0, 1) or there exists a continuous
function p: (0,1) — (0, 1] such that p > p on (0,1). Indeed,
p(z) = h(z)P%* [V, #0¥n > 0] = lim h(z)P* [V, # 0]

n

= h(z) lim (Uéb*)”l(x) = nll_)rrgo(uw*)”h(az) (x € (0,1)),

n—od

(8.2)

where we have used (3.19) and (3.25) in the last two steps. Using the continuity of U~ with
respect to decreasing sequences, it follows that

Uyp = p. (8.3)

We claim that for any f € Bjg 1[0, 1], one has the bounds
(CLf) Uy flx) <A+ f) (v>0, z€[0,1)). (8.4)
Indeed, by Lemma 7.5, Uy f(z) > 1— E[(1— f(y2(0)))] = (s, f), while the upper bound in (8.4)

follows from (7.11).

By Remark 5.5, (0,1) > — (T2, f) is continuous for all f € Byp,1[0, 1]. Moreover, (T2, f)=0
for some = € (0,1) if and only if f = 0 almost everywhere with respect to Lebesgue measure.

Applying these facts to f = p and v = ~*, using (8.3), we see that there are two possibilities.
Either p = 0 a.s. with respect to Lebesgue measure, and in this case p = 0 by the upper bound
in (8.4), or p is not almost everywhere zero with respect to Lebesgue measure, and in this case
the function x — p(z) := (I'7, f) is continuous, positive on (0,1), and estimates p from below
by the lower bound in (8.4). n

645



8.2 A representation for the Campbell law

(Local) extinction properties of critical branching processes are usually studied using Palm laws.
Our proof of formula (8.1) is no exception, except that we will use the closely related Campbell
laws. Loosely speaking, Palm laws describe a population that is size-biased at a given position,
plus ‘typical’ particle sampled from that position, while Campbell laws describe a population
that is size-biased as a whole, plus a ‘typical’ particle sampled from a random position.

Let P be a probability law on N(0,1) with fN(O,l) P(dv)|v| = 1. Then the size-biased law Psize
associated with P is the probability law on N(0, 1) defined by

Pan) = [ Py, ey (5.5)
The Campbell law associated with P is the probability law on (0,1) x N'(0,1) defined by

Pcamp(A x B) i= /

NGO P(dy) V(A)l{l/ c B} (8.6)

for all Borel-measurable A C (0,1) and B C N(0,1). If (v, V) isa (0,1) x N(0, 1)-valued random
variable with law Pcamp, then £(V') = Psize, and v is the position of a ‘typical’ particle chosen
from V.

Let

Prn(-) = PRV e ] (8.7)
denote the law of Y at time n, started at time 0 with one particle at position 2 € (0,1). Note
that by criticality, [ N(O,1) Pr"(dv)|v| = 1. Using again criticality, it is easy to see that in order
to prove the extinction formula (8.1), it suffices to show that

nlirgop?’”({l, ..,N})=0 (z€(0,1), N>1). (8.8)

S1ze

In order to prove (8.8), we will write down an expression for Péfmp. Let Q" denote the offspring
mechanism of Y, and, for fixed € (0,1), let Q}éamp (z, -) denote the Campbell law associated

with Q"(z, -). The next proposition is a time-inhomogeneous version of Kallenberg’s famous
backward tree technique; see [Lie81, Satz 8.2].

Proposition 8.2 (Representation of Campbell law) Let (v, Vi)r>0 be the Markov process
n (0,1) x N(0,1) with transition laws

P[(VIH—L Vk—H) S ‘ (Vk7 Vk) = (‘rvl/)] = Ql(l]amp(x7 ) (((E,I/) S (0’ 1) x N(Ov 1))7 (89)

started in (vo, Vo) = (64,0). Let (YMENEZ1 be branching particle systems with offspring mech-
anism Q", conditionally independent given (Vk, Vi)k>0, started in Yoh’(k) = Vi —dv,. Then

Pty = £(vns 00, + i v (8.10)
k=1
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Formula (8.10) says that the Campbell law at time n arises in such a way, that an ‘immortal’
particle at positions vg, ..., v, sheds off offspring V) — éy,,...,V, — dy,,, distributed according
to the size-biased law with one ‘typical’ particle taken out, and this offspring then evolve under
the usual forward dynamics till time n. Note that the position of the immortal particle (vi)g>0
is an autonomous Markov chain.

We need a bit of explicit control on Q’éamp.

Lemma 8.3 (Campbell law) One has

1
Qg A B) = 2
amp \*"» h(x)

/ P[Pois(h2]") € dx]x(A) L yeny. (8.11)

where the random measures Z7 are defined in (3.7).

Proof By the definition of the Campbell law (8.6), and (3.24),

Qo (2, A % B) = / Q" (. )X (D)L pen

L4 /P[Pois(hzv*) c A4 ey + (1 7+ 1) . (8.12)
h@) T {xeB} h(z)
N
Recall that by (3.7), i
= /0 " 12 (8.13)

where (y3 (t))icr is a stationary solution to the SDE (3.6) with v = 4*. By Lemma 8.3, the
transition law of the Markov chain (vj)g>o from Proposition 8.2 is given by

1 *
7+l L+

iy FPois(hZ) ) (ay)] = b )T (@), (814)

Plviir € dy|vi = z] =

where T is the invariant law of yJ from Corollary 5.4. In the next section we will prove the
following lemma.

Lemma 8.4 (Immortal particle stays in interior) The Markov chain (vi)i>o Started in
any vo =z € (0,1) satisfies

(Vi)k>0 has a cluster point in (0,1) a.s. (8.15)

We now show that Lemma 8.4, together with our previous results, implies Proposition 7.15 (a).

Proof of Proposition 7.15 (a) We need to prove (8.1). By our previous analysis, it suffices
to prove (8.8) under the assumption that p # 0. By Proposition 8.2,

Pi = L£(dy, + ; v, ). (8.16)
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Conditioned on (v, Vi)x>0, the (Y, ”")k=1,..n are independent random variables with

PlY™® 0] > P[y® £ 0¥m > 0] = P[Thin,(V; — by,) # 0]. (8.17)

Therefore, (8.8) will follow by Borel-Cantelli provided that we can show that
ZP Thin, (Vi — dv,) # 0|vi_1] =00 a.s. (8.18)
k=1

Define f(z) := P[Thin,(Vy—dv,) # 0|vi—1 = ] (z € (0,1)). We need to show that Y77, f(z) =
oo a.s. Using Lemma 8.1 and Lemma 8.3 we can estimate

F(2) > P[Thing(Vi—dv,) # O[vp_1 — 2] = /N oy Qa4 W) (1 =155} >0 (819

for all z € (0,1). Since Q.+, defined in (3.8), is a continuous cluster mechanism, also Q}éamp (x,-)
is continuous as a function of x, hence the bound in (8.19) is locally uniform on (0,1), hence
Lemma 8.4 implies that there is an € > 0 such that

P[Thin,(Vy — dy,) # 0|vi_1] > ¢ (8.20)

at infinitely many times k — 1, which in turn implies (8.18). |

8.3 The immortal particle
Proof of Lemma 8.4 Let K (z,dy) denote the transition kernel (on (0, 1)) of the Markov chain
(Vk)kZ()v i-e') by (814)7

K(o.dy) = (1497 2 =00 @) (8.21)

It follows from (5.24) that

/K(a:, dy)y(l —y) = a:((11 ;?ﬁ)af;? (8.22)

Set
_ /K(m,dy)y(l ) —a(l-2)  (ze(0,1)). (8.23)
Then -
M, :=vy(1=vn)=> glvi) (n>0) (8.24)
k=0

defines a martingale (M,,),>0. Since g > 0 in an open neighborhood of {0,1},

P[(vk)k>0 has no cluster point in (0,1)] < P[lim M, = —o0] =0, (8.25)
- n—oo
where in the last equality we have used that (M,,),>0 is a martingale. n
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9 Proof of the main result

Proof of Theorem 1.4 Part (a) has been proved in Section 5.3. It follows from (2.12), (2.13),
(3.10), and (3.11) that part (b) is equivalent to the following statement. Assuming that

o0
) Y w=cc and (i) 7 — (9.1)
n—oo
n=1
for some v* € [0, 00), one has, uniformly on [0, 1],
Uy, 40 0oly(p) — p}kﬂw*7 (9.2)
where p;, o 18 the unique solution in H; , of
(i) Uyp* =D~ if 0 <~* < o0,

2 9.3
(i) 32(1—2)Lp () - p*(z)(1 - p*()) =0 (z€[0,1]) ify*=0. 03

It follows from Proposition 3.5 that the left-hand side of (9.2) converges uniformly to a limit
P[ .~ which is given by (3.35). We must show 1° that Pl € Hir and 2° that pj, . is the
unique solution in this class to (9.3). We first treat the case v* > 0.

1° Since p g+ = 0 and pj 4 » = 1, it is obvious that pj - € Ho,0 and pj; o« € Hi1. Therefore,
by symmetry, it suffices to show that pf ; .« € Ho1. By Lemmas 7.8 and 7.11, z < p < 1-(1—2)7
implies < U,,p <1— (1 — )7 for each k. Iterating this relation, using (9.2), we find that

< poyqe(z) <1T—(1— )" (9.4)

By Proposition 5.11, the left-hand side of (9.2) is nondecreasing and concave in x if p is, so
taking the limit we find that p{; .« is nondecreasing and concave. Combining this with (9.4)
we conclude that pg, - is Lipschitz continuous. Moreover pj, .«(0) = 0 and pj; .+(1) = 1 so
p8717’y* e H071.

2° Taking the limit n — oo in (Uy)"p = Uy (Uy+)" 1p, using the continuity of Uy« (Corol-
lary 5.10) and (9.2), we find that Uy«pj,. . = p], .. It follows from (9.2) that pj, . is the only
solution in H;, to this equation.

For +* = 0, it has been shown in [FS03, Proposition 3] that p?,r,() is the unique solution in H;,
to (9.3) (ii). In particular, it has been shown there that pg ; ( is twice continuously differentiable
on [0, 1] (including the boundary). This proves parts (b) and (c) of the theorem. |

A Appendix: Infinite systems of linearly interacting diffusions

A.1 Hierarchically interacting diffusions

For any N > 2, the hierarchical group with freedom N is the set Qy of all sequences £ =
(&1,&a,...), with coordinates & in the finite set {0,..., N — 1}, which are different from 0 only
finitely often, equipped with componentwise addition modulo N. Setting

Il€]] := min{n >0:§ =0Vk >n} (€ € Qn), (A1)
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|€ — || is said to be the hierarchical distance between two sites £ and 1 in Qp.

Let D C R? be open and convex, and let W be a renormalization class on D. Let ¢ be a
continuous root of a diffusion matrix w € W as in Remark 1.2. Consider a collection x =
(x¢)ecqy of D-valued processes, solving a system of SDE’s of the form

dxe(t) = 3+ (37 (1) = xe() )dt + V20(xe(®)dBe(t) (120, €€ ), (A2)
k=0

where (Bg)ecq, is a collection of independent standard Brownian motions, with initial condition
x¢(0)=6€eD (& € Qn). (A.3)

Here the (cx)r>0 are positive constants satisfying >, cx/N¥ < oo, and xlg (t) denotes the k-block
average around &:

xb(t) = % S x,) (k> 0). (A4)

n:ll§—nll<k

(Note that [{n : ||¢ —n|| < k}| = N*.) Under suitable additional assumptions on &, one can
show that (A.2) has a unique (weak or strong) solution (see [DG93a, DG96, Swa00]). We call
x a system of hierarchically interacting D-valued diffusions with migration constants (c)k>0
and local diffusion rate w;; = Y, 0ix0jk. Such systems are used to model gene frequencies or
population sizes in population biology [SF83].

The long-time behavior of the system in (A.2) depends crucially on the recurrence versus tran-
sience of the continuous-time random walk on €2 which jumps from a point £ to a point 7 # &
with rate

an-&= Y. (A.5)
k==l

This random walk is recurrent if and only if

o0 1 o "

E — =00, where dj, = Chin (A.6)
dk N7

k=0 n=0

(see [DGY3a, Kle96]; a similar problem is treated in [DE68]). Assuming that the law of x(t)

=0 .
converges weakly as t — oo to the law of some D " -valued random variable x(cc), one expects
that in the recurrent case x(o0) must have the following properties:

(i) x¢(o0) = xp(0) a.s. Ve, n € Qn,

(ii) x¢(o0) € DD as.  VEEQy. (A.7)

Here 0,,D is the effective boundary of D, defined in (2.3). If x(¢) converges in law to a limit
x(00) satisfying (A.7), then we say that x clusters. In the transient case, it is believed that
solutions of (A.2) do not cluster. (For compact D these facts were proved in [Swa00].)

An important tool in the study of solutions to (A.2) is the so-called interaction chain. This is the
chain (x9(t),x3(t),...) of block-averages around the origin. Heuristic arguments suggest that
in the local mean field limit N — oo, the interaction chain converges to a certain well-defined
Markov chain.
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Conjecture A.1 Fiz w € W, § € D, and positive numbers (cx)r>0 such that for N large
enough, >, ck/N¥ < co. For all N large enough, let xV be a solution to (A.2)-(A.3), and
assume that ty are constants such that, for somen > 1, imy_,oo N~ "ty =T € [0,00). Then

(307" ()30 () ) = (2 1), (A.8)
where (I%,,, ..., 1) is a Markov chain with transition laws
PlIY € dy|T®,_, = 2] =vFP%dy)  (2€D, 0<k<n—1) (A.9)
and initial state
1Y, =yr, where dy;=c,(0—y)dt +v20" (y,)dB;, yo =0, (A.10)

and o™ is a root of the diffusion matriz F("w.

Rigorous versions of conjecture A.1 have been proved for renormalization classes on D = [0,1]
and D = [0,00) in [DG93a, DGI3b].

Note that the iterated kernels K™ (") defined in (2.4) are the transition probabilities from time
—n to time 0 of the interaction chain in the mean-field limit:

KM (dy) = P[I¥ € dy|I®, = ] (x €D, n>0). (A.11)

Lemma 2.6 expresses the fact that the system x”V clusters in the local mean-field limit N — oo.
The condition s,, — 0o in Lemma 2.6 means that Zkzo é = o0, which, in a sense, is the N — oo
limit of condition (A.6).

A.2 The clustering distribution of linearly interacting diffusions

Let D C R? be open, bounded, and convex, and let W be a renormalization class on D. Fix
migration constants (c)x>0 and assume that s, — oo and $,,41/s, — 1+~* for some v* € [0, oo].
Recall the definition of the iterated probability kernels K*(™) in (2.4). Recall Conjecture 2.7.
Assuming that the rescaled renormalized diffusion matrices s, F(w converge to a limit w*, we
can make a guess about the limit of the iterated probability kernels K*-(")

Conjecture A.2 (Limits of iterated probability kernels) Assume that s, F™Mw — w* as

n — oco. Then, for any w € W,
KM K* (A.12)

n—oo

where K* has the following description:

(i) If 0 < v* < o0, then
K* = lim P*[I)" € -], (A.13)

n—oo

*

where (I) )n>0 is the Markov chain with transition law P[Ig_*._1 €I =a] =0/

(ii) Ifv* =0, then
K} = lim P*[I{ € -], (A.14)

t—o0

where (I19)s>0 is the diffusion process with generator ch'l,j:1 wy; (y)ﬁgyj.
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(iii) If v* = oo, then
K = lim v}/7v", (A.15)

y—00

For each N > 2, let xV = (xév Jecay be a system of hierarchically interacting diffusions as in
(A.2) and (A.3). If ¥* = 0, then because of Conjectures A.1 and A.2, we expect® that

lim lim L(x)(N"T))=K; (T >0), (A.16)

n—oo N—o0o

where K* is the kernel in (A.14).

In particular, consider the case that the migration constants (cx)r>0 are of the form ¢ = r
for some r > 0. In this case, sp4+1/sn, — % V1, and s, — oo if and only if » < 1. One can
check (see (A.6)) that for fixed N > 2, the random walk with the kernel a in (A.5) is recurrent
if and only if » < 1. The critical case r = 1 corresponds to a critically recurrent random walk.
For a precise definition of critical recurrence, see [Kle96, formula (1.15)]. For r = 1, we expect
that the double limit in (A.16) can be replaced by a single limit. More precisely, for each fixed
N > 2, we expect that

k

lim £(x{'(t)) = K;. (A.17)

t—o0
In this case, we call Kj the clustering distribution of xV. The clustering distribution of linearly
interacting isotropic diffusions was studied in [Swa00]. We expect (A.17) to hold, even more
generally, for all systems of linearly interacting diffusions with a critically recurrent migration
mechanism. In particular, we expect (A.17) to hold for symmetric nearest-neighbor interaction
on Z% in the critical dimension d = 2. If one is ready to make this enormous leap of faith, then
combining Conjectures 2.7 and A.2, one arrives at the following conjecture.

Conjecture A.3 (Critical clustering) Let D C R? be open, bounded, and convex, and let W
be a renormalization class on D. Assume that the asymptotic fixed point equation (2.16) (ii)
has a unique solution w* in W. Let o be a continuous root of a diffusion matriz w € W. Let

— 72
X = (X¢)eezz be a D” -valued process, solving the system of SDE’s
dxe(t) = 3" (x(t) —x¢(1)) b + o (xe(t)) dBe 1) (A18)
n:In—¢l=1
with initial condition x¢(0) = 0 € D (¢ € Z?). Then

xe(t) = 12, (€ € 7?), (A.19)

t—o00

82
0y;0y;

where (1)s>0 is the diffusion with generator > wii(y) and initial condition 1§ = 6.

3For v* > 0, the situation is more complex. In this case at the right-hand side of (A.16) we expect the law
fﬁ p? [yr € dz]K}, where y solves the SDE dy: = %(9 —y:)dt + V20* (y+)dB: and o* is a root of the diffusion
matrix w*. Note that in this case the right-hand side of (A.16) depends on T'.
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