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Last zero time or maximum time of
the winding number of Brownian motions
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Abstract

In this paper we consider the winding number, 6(s), of planar Brownian motion and
study asymptotic behavior of the process of the maximum time, the time when 6(s)
attains the maximum in the interval 0 < s < t. We find the limit law of its logarithm
with a suitable normalization factor and the upper growth rate of the maximum time
process itself. We also show that the process of the last zero time of 6(s) in [0, ¢] has
the same law as the maximum time process.
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1 Introduction and Main results

In this paper we seek for an analogue of the arcsine law of the linear Brownian
motion for the argument of a complex Brownian motion {W(t) = Wy (t) + iWa(t) : t > 0}
started at W(0) = (1,0). Skew-product representation tells us that there exist two
independent linear Brownian motions {B(t) : t > 0} and {B(t) : t > 0} such that

W (t) = exp(B(H(t)) + iB(H(t))) for all ¢ > 0, (1.1)

where

H(t) = /0 WCE:Z)Q =inf{u >0: /0" exp(2B(s))ds > t},

which entails that B is independent of || and hence of H, while log |W| is time change
of B (cf. e.g., [5], Theorem 7.26).

We let 0(t) = B(H(t)) so that 6(t) = arg W (t), which we call the winding number.
Without loss of generality we suppose 6(0) = 0. The well-known result of Spitzer [9]
states the convergence of 20(t)/logt in law:

lim P 20() <al = l/ dix
t—00 logt T ) o 1422

It is shown in [1] that for any increasing function f : (0,00) — (0, 00)

o(t)

limsup—= =0o0oroco a.s. (1.2)
t—o00 (t)

*Department of Mathematics, Tokyo Institute of Technology, Japan. E-mail: okada.i.aa@m.titech.ac.jp


http://dx.doi.org/10.1214/ECP.v19-3485
http://ecp.ejpecp.org/
mailto:okada.i.aa@m.titech.ac.jp

Last zero time or maximum time of the winding number of Brownian motions

_1

70 ;dt converges or diverges and

according as the integral f o

1
liminf —— sup{f(s),1 <s<t}=0oroco a.s.

RO

according as the integral [ o t(f; (gtz)Q dt diverges or converges; moreover, it is shown that

the square root of the random time H(¢) is subjected to the same growth law as of ¢ in
(1.2) and the lim inf behavior of H(t) is also given. Another proof of (1.2) is given in [8].
Also, it is shown in [7]

log log log ¢
08 08 0BT p{|0(s)],1 < s < t} = % as..

lim inf

t—o0 ogt

Before advancing our result we recall the two arcsine laws whose analogues are

studied in this paper. Let {B(¢) : t > 0} be a standard linear Brownian motion started

at zero and denote by Z; the time when the maximum of B, in the interval 0 < s < tis

attained. Then, the process Z; and the process sup{s € [0,t] : B(s) = 0}, the last zero of

Brownian motion in the time interval [0, ¢], are subject to the same law, and according

to Lévy’s arcsine law the scaled variable Z;/t is subject to the arcsin law. (cf. e.g., [5]

Theorem 5.26 and 5.28)

In order to state the results of this paper we set

4 dx dy
Via) = — . 1.3
(@) = 22 //(Kyw 1+ 221442 (1.3)

We also define a random variable M; € [0, t] by

O(M;) = max 6(s),
s€[0,t]

the time when 6(s) attains the maximum in the interval 0 < s < ¢, and a random variable
Lt by

L, =sup{s € [0,t] : 0(s) = 0},

the last zero of 6(s) in [0, ¢]. According to Theorem 2.11 of [5] a linear Brownian motion
attains its maximum at a single point on each finite interval with probability one. In
view of the representation 6(¢) = B(H (t)), it therefore follows that the maximiser M, is
uniquely determined for all £ with probability one.

Theorem 1.1. (a) Forevery 0 <a <1
log M,

lim P22 <) = v 2 ).

t—00 logt l1—-a

{Lt:t >0} =4 {M; : t >0}

(b) It holds that

Theorem 1.2. Let «(t) be a positive function that is non-increasing, tends to zero as
t — oo and satisfies

2a(t%) > a(t), (1.4)
and put
> a(t)]1 t
oy~ | a(t)|loga(t)]
tlogt
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Then, with probability one

M,
liminf —% = oo or 0
t—o00 tUé(t)

according as the integral I{a} converges or diverges.

It may be worth noting that the distribution function V(a/(1 —a)) (0 < ¢ < 1) is

expressed as
a @1 U
1% = 1 du.
(1—a> /02u—10g1—uu

a7 xdx ~ loge
V(C)_A T +e?)  2-1 7Y

dcfzv<1ia> - (1_1a)2V’<1ia> (a#%%

and we find the density asserted above.

Indeed,

where

2 Proofs

2.1 Proof of Theorem 1.1

Let {N(¢) : t > 0} be the maximum process of a winding number {0(¢) : ¢t > 0}, i.e.
the process defined by

N(t) = 0(s).
(t) nax (s)

Lemma 2.1. Ifa > 0, then P(N(t) > a) = 2P(6(t) > a) = P(|0(t)| > a).
Proof. By reflection principle [5], (Theorem 2.21) it holds that for any ¢ > 0

fax B(l) =a | B(t)]

By Skew-product representation B(¢) is independent of |W ()

pendent of H(t) = [ W%)lg, it holds

, hence since B(l) is inde-
max B(H(1) =4 |BH(D)]

showing the assertion of the lemma. O

Lemma 2.2. {N(t) —0(t) : t >0} =4 {|0(¢)| : t > 0}.

Proof. According to Lévy’s representation of the reflecting Brownian motion [5], (The-
orem 2.34) we have

{max B() ~ B(1) 1> 0} =4 {|B()| : 1 > 0}.

Hence as in the preceding proof,

{max BUH(D) ~ BH() : ¢ > 0} = {|BHE)| s ¢ > 0},

as desired. O
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Proof of Theorem 1.1. Lemma 2.2 together with Lemma 2.1 show that the process { M :
s > 0} has the same law as {L, : s > 0}, being nothing but the last zero of the process
{N(t) —6(t) : 0 < ¢ < s} for any s. So it remains to prove part (a). Fix a € (0,1).
Set T, = inf{l > 0 : |W(I)| = ¢}, for which we sometimes write T'(¢) for typographical
reasons. We first prove the upper bound. By (1.1) it holds that

P(M; <t*) =P( max B(H(u)) > max B(H(u)))

0<u<te te<u<t
—P( max B(H(w)) — BUH(t")) > max B(H(w) - BH())

=P( max B(H(u)) — B(H(t%)) > max B(H(u)) — B(H(t%))), (2.1)

0<u<ie te<u<t

where B is a linear Brownian motion started at zero which is 1ndependent of W Corre-

sponding to (1.1) we can write W (0) = (1,0), arg W (I) = B(H (1) fo IW( T with
W independent of W, and put 7, = inf{l > 0 : [W(l)| = ¢}. By Lemma 2.1 and Lemma
2.2 we have maxo<y<¢« B(H(u)) — B(H(t*)) =4 maxo<y<te B(H(u)), and therefore
P( max B(H(u) = BUH(t") > max B(H() — B(H({")
=P( max B(H(u)) > max B(H(u)) — B(H(t%))). (2.2)

o<u<te te<u<t

By standard large deviation result (cf. e.g., [4], (11) and (12)), given ¢ > 0, it holds that
for all sufficiently large ¢

P(taSTm,Tl;e St)zl—e.
t 2 t 2

Therefore, we get

0<u<ta ta<u<t
<P( max B(H(u)) > L., max B(H(u)) — B(H(Tt%))) +e (2.3)
0<u<T(t*) T ) <u<T (')

Also, strong Markov property tells us

/Tt125 dm /Ttla,225 dm
=—d 5
7. (W(mP 0 W (m)|?
2

t

and H(Tf%) - H(Tt%g) is independent of H(Tf%e ).
So, if we set for a,b < oo

Q(a,b) = P( max B(H(u))> max B(ﬁ(u))),

0<u<T(a) 0<u<T(b)
it holds that
P max  B(H(u) > max B(H(w)) = B(H(T aze))) = Q%" 47 ).
0<u<T(t"5%) T <u<T (17 t=
(2.4)

Note that by Skew-product representation B(t)( resp. B(t)) is independent of H (Tt ate )(
resp. ﬁ(ft%e ). Then, if §(1) = B(H(l)), by reflection principle we get

a+te 2e ~ ~ ~
Q= ,t ) = P(IBH(T,aye))| > [B(H(T,1-0-2:))|)
= P(I0(T oy )| > |§(T~t1_a2_2€) ). (2.5)
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Moreover, since §(7,.) follows the Cauchy distribution with parameter |logr| (cf. e.g.,
[6], Section 5, Exercise 2.16, [11], Proposition 2.3, and [12] ), we get

a+e€
= V _—
) (1 —a— 2¢
Therefore, since ¢ is arbitrary, this gives the desired upper bound.

Next, we prove the lower bound. By standard large deviation result (cf. e.g., [4],
(11) and (12)), given € > 0, it holds that for all sufficiently large ¢

a+te l—a—2e

QUF ' 5) = P(O(T o)

> |§(Tt 1-a-2¢ )

). (2.6)

PTaze <t t<Tiic)>1—¢ (2.7)
t 2 t 2
Moreover, by repeating the argument in (2.3) and (2.4), we get

P( max B(H(u) > max B(H(u)) ~ B(H(t"))
>Q(t Tt T ) —e
Therefore, repeating the arguments in (2.1), (2.2), (2.5) and (2.6), we get

P(M; < 1*) =P( max B(H()) > max B(H(u)) - B(H(t")))
>Q°F 1) —
a—e€
VT e
yielding the lower bound. O

2.2 Proof of Theorem 1.2
Proof of Theorem 1.2. We first prove liminf; .., Mt/to‘(t) = oo if I{a} < co. We may
replace a(t) by a(t) V (loglogt)~2. Indeed, if we set

a(t) = a(t)1{a(t) > (loglogt)~?} + (loglogt) *1{a(t) < (loglogt) 2},

I{a} < oo. By standard large deviation result (cf. e.g., [4], (11) and (12)) for any ¢ < oo
there exist 0 < ¢1, ¢ < oo such that

P(qt*® < 7MW T3 72M) < 4) > 1 — ¢ exp(—t2*®). (2.8)

Therefore, by the same arguments as made for (2.1), (2.2), (2.3), (2.4), (2.5) and (2.6)
we infer that for any ¢ < oo

P(M, < gt**®) =P( max B(H(u)) — B(H(qt**®)) > max B(H(u)) — B(H(gt**®")))
Ogugqt4("(‘> qt4°‘(t)§u§t
SQ(t4a(t),t%75a(t)) T eXp(ftCZQ(t))
da(t

v ot
3 — ba(t)
We set ¢, = exp(e™). Then, noting that V(a(n)) < a(n)|log a(n)
that for some C' < oo

) + ¢ exp(—te2@®),

, we deduce from (2.8)

P(M,, <ty < Ca(t,)|loga(t,)| + c1 exp(—te2etn)),

The sum of the right-hand side over n is finite since >, a(t,)|log a(t,)| < oo if I{a} <
o0, and a(t) > (loglogt)~2 according to our assumption. Thus, by Borel-Cantelli lemma
for any ¢ < oo, with probability one

M,
tia(tn)

> q for almost all n. (2.9)

ECP 19 (2014), paper 64. ecp.ejpecp.org
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Note that if we choose t such that ¢, < t < t,,41, then tffl(t") > t*®) and from (2.9) it

follows that M; > M;, > qt®® for all sufficiently large n. Hence,

. My
htrggolfm>q a.s..

Since ¢ < oo is arbitrary, this concludes the proof.
Next, we prove liminf;_, Mt/to‘(t) = 0 assuming that I{a} = co. Forany a < b < oo,
we set

0*la,b] = max{0(¢t) : T, <t < Ty},
and define M[a, b] via
O(M]a,b])) = 6*[a,b] and T, < Mla,b] < Ty.
Recall we have set ¢, = exp(e™). For ¢ > 0, denote by A,, the event

M[qt%(t”), tn] < T(qti“(t”)).

Bringing in the set D = {n € N : a(ty) > zzog7 ), We shall prove 35°¢, ) P(A,) =
oo and

i inf > im1jep 2oh=1kep P(A; N Ak)
neD n—oo (Zn P(A]))Z

j=1,j€D

< 00, (2.10)

which together imply P(limsup,,cp o An) = 1 according to the Borel-Cantelli lemma
(cf. [10], p.319 or [3]) and Kolmogorov’s 0 — 1 law. First we prove | ., P(A,) = .
Note that it holds that for0 <a <b < ¢

b b ¢
P(0*[a,b] > 6*[b = P(6*[1,-] > 0*[—,—=]).
(6°[a.8) > 0°[b,)) = P@°[1, ] > 6°[, %)
Thus,
1
P(a*[qta(t)’thQ(t)] > 9*[qt2a(t),t]) — P(B*[l,t“(t)] > 9% [ta(t)’ 6tlfo¢(t)]).

Therefore, we get by the same argument as employed for (2.1), (2.2), (2.3), (2.4), (2.5)
and (2.6)

P(M[qt*", 1] < T(qt**®))
1
:P(é)*[l, ta(t)} > 9*[ta(t), 7t17a(t)])
q

=P( max B(H(u)) - BH(T(t*"))) > B(H(u)) — B(H(T(t*"))))

max
u<T(to(0) T(te()) <u<T(Lt1-o(0)

Q) }tkza(t))
q

a(t)
1 —2a(t) — (log tlog q)

_v( ) (2.11)

Moreover, using V(a(n)) < a(n)|log a(n)| again, we get for some C > 0

P(A,,) > Ca(ty)|log a(t,))-
It holds that }°, . p a(tn)[log a(ty)| = oo if I[{a} = oo, since 3, . a(ty)|log a(tn)| < .
Sowe get Y ., P(A,) = occ.
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Next we prove (2.10). We only need to consider > ;_, ;cp >y ;rep P(A;NAy). First
we consider 30, icp Y ker, , kep P(A;j N Ak) where Ry, ; = {k qtjo.‘(tj) > t,}. Note that
fora<b<c<d<oo '

M]a,b] — T, is independent of M|c,d] — T.. (2.12)
Then, since qtk( W) < tr < qta(t’) < t; when k is satisfied with qto‘(tj) > t, it holds that

P(A; N Ay) = P(A;)P(Ay). (2.13)

So, next we consider the case qta(tj) < t;. We denote by 4 ; the event M[qt’l(t’“) qt?(t-’)] <
T(tha(t")) Note that when k is satisfied with qt olts) - tk., we have A, C A}, j» and by

(2.12) P(A; N Ay ;) = P(A;)P(A} ;). Then, since by the same argument for (2.11)

P(A} ;) = V(,-ekai(t’i)), we get

Talt;)—ckalin)

PUAL N A  PUAS T 4 ) = PUAP(G) = PV (S S8 2aa)

Furthermore, since a(ty) < 2a(tg+1) due to the assumption (1.4), we get

;o eka(t )
> P(Ay ;) = > V(eja(tj) - :’“Oé(tk))

keRS ;. k<jkeD keRy ;,k<jkeD
o0 e _
V=g s @1
k=1 k=1

where R ; = {k : qt?(tj) < tx}. So, by (2.14) and (2.15) we get X', cp ZkeR;,j,keD P(A;N
Ag) < CZ?:LJ.GD P(A;). Combined with (2.13) this shows

Z ZPAmA,c Z ZP Ak+C’ZP

j=1,7€D k<j,keD j=1,7€D k<j,keD j=1,7€D
completing the proof of (2.10). Therefore, we can conclude that with probability one
Mgte®) 1] < T(qt?**))  infinitely often for n € D. (2.16)

On the other hand, by standard large deviation result (cf. e.g., [4], (11) and (12)) there
exist 0 < ¢3, ¢4 < oo such that

P(T(qt2*®) < qt5*®) 3 < T}) > 1 — c3 exp(—eqt™®).

Moreover, ) .3 exp(—catn")) < co. Then, by Borel-Cantelli lemma it holds that with

probability one

T(qt2(tn)) < qtbo(tn) My < Mlqte) t,], for almost all n € D. (2.17)
tF
So, by (2.16) and (2.17) it holds that

1 T O‘(tn)
hmme < liminf M, < liminf b < lim inf M

<1 a.s..
iS00 qt20000) = nebin-roo gg200(0) = nebmmsoo gi3a(tn) = neDinsroo (g20(0n)) s

The proof finishes since ¢ > 0 is arbitrary by replacing «(t) by %. O
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