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Abstract

We study the evolution of the interface for the one-dimensional voter model. We show that
if the random walk kernel associated with the voter model has finite γth moment for some
γ > 3, then the evolution of the interface boundaries converge weakly to a Brownian motion
under diffusive scaling. This extends recent work of Newman, Ravishankar and Sun. Our
result is optimal in the sense that finite γth moment is necessary for this convergence for
all γ ∈ (0, 3). We also obtain relatively sharp estimates for the tail distribution of the size
of the equilibrium interface, extending earlier results of Cox and Durrett, and Belhaouari,
Mountford and Valle
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1 Introduction

In this article we consider the one-dimensional voter model specified by a random walk transition
kernel q(·, ·), which is an Interacting Particle System with configuration space Ω = {0, 1}Z and
is formally described by the generator G acting on local functions F : Ω → R (i.e., F depends
on only a finite number of coordinates of Z),

(GF )(η) =
∑
x∈Z

∑
y∈Z

q(x, y)1{η(x) 6= η(y)}[F (ηx)− F (η)] , η ∈ Ω

where

ηx(z) =
{

η(z), if z 6= x
1− η(z), if z = x .

By a result of Liggett (see [7]), G is the generator of a Feller process (ηt)t≥0 on Ω. In this paper
we will also impose the following conditions on the transition kernel q(·, ·):

(i) q(·, ·) is translation invariant, i.e., there exists a probability kernel p (·) on Z such that
q(x, y) = p (y − x) for all x, y ∈ Z.

(ii) The probability kernel p (·) is irreducible, i.e., {x : p(x) > 0} generates Z.

(iii) There exists γ ≥ 1 such that
∑

x∈Z |x|γp (x) < +∞.

Later on we will fix the values of γ according to the results we aim to prove. We also denote by
µ the first moment of p

µ :=
∑
x∈Z

xp(x) ,

which exists by (iii).

Let η1,0 be the Heavyside configuration on Ω, i.e., the configuration:

η1,0(z) =
{

1, if z ≤ 0
0, if z ≥ 1 ,

and consider the voter model (ηt)t≥0 starting at η1,0. For each time t > 0, let

rt = sup{x : ηt(x) = 1} and lt = inf{x : ηt(x) = 0},

which are respectively the positions of the rightmost 1 and the leftmost 0. We call the voter
model configuration between the coordinates lt and rt the voter model interface, and rt − lt + 1
is the interface size. Note that condition (iii) on the probability kernel p (·) implies that the
interfaces are almost surely finite for all t ≥ 0 and thus well defined. To see this, we first observe
that the rate at which the interface size increases is bounded above by∑

x<0<y

{p (y − x) + p (x− y)} =
∑
z∈Z

|z|p (z) < ∞ . (1.1)

Moreover this is the rate at which the system initially changes if it starts at η1,0.
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When γ ≥ 2, Belhaouari, Mountford and Valle [1] proved that the interface is tight, i.e., the
random variables (rt − lt)t≥0 are tight. This extends earlier work of Cox and Durrett [4], which
showed the tightness result when γ ≥ 3. Belhaouari, Mountford and Valle also showed that, if∑

x∈Z |x|γp (x) = ∞ for some γ ∈ (0, 2), then the tightness result fails. Thus second moment
is, in some sense, optimal. Note that the tightness of the interface is a feature of the one-
dimensional model. For voter models in dimension two or more, the so-called hybrid zone grows
as
√

t as was shown in [4].

In this paper we examine two questions for the voter model interface: the evolution of the
interface boundaries, and the tail behavior of the equilibrium distribution of the interface which
is known to exist whenever the interface is tight. Third moment will turn out to be critical in
these cases.

From now on we will assume p (·) is symmetric, and in particular µ = 0, which is by no means a
restriction on our results since the general case is obtained by subtracting the drift and working
with the symmetric part of p (·):

ps(x) =
p (x) + p (−x)

2
.

The first question arises from the observation of Cox and Durrett [4] that, if (rt− `t)t≥0 is tight,
then the finite-dimensional distributions of(rtN2

N

)
t≥0

and
(

ltN2

N

)
t≥0

converge to those of a Brownian motion with speed

σ :=

(∑
z∈Z

z2p(z)

)1/2

. (1.2)

As usual, let D([0,+∞), R) be the space of right continuous functions with left limits from
[0,+∞) to R, endowed with the Skorohod topology. The question we address is, as N → ∞,
whether or not the distributions on D([0,+∞), R) of(rtN2

N

)
t≥0

and
(

ltN2

N

)
t≥0

converge weakly to a one-dimensional σ-speed Brownian Motion, i.e, (σBt)t≥0, where (Bt)t≥0 is
a standard one-dimensional Brownian Motion. We show:

Theorem 1.1. For the one-dimensional voter model defined as above

(i) If γ > 3, then the path distributions on D([0,+∞), R) of(rtN2

N

)
t≥0

and
(

ltN2

N

)
t≥0

converge weakly to a one-dimensional σ-speed Brownian Motion with σ defined in (1.2).
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(ii) For ( rtN2

N )t≥0

(
resp. ( ltN2

N )t≥0

)
to converge to a Brownian motion, it is necessary that

∑
x∈Z

|x|3

logβ(|x| ∨ 2)
p (x) < ∞ for all β > 1.

In particular, if for some 1 ≤ γ < γ̃ < 3 we have
∑

x |x|γ̃p (x) = ∞, then {( rtN2

N )t≥0}(
resp. ( ltN2

N )t≥0

)
is not a tight family in D([0,+∞), R), and hence cannot converge in

distribution to a Brownian motion.

Remark 1. Theorem 1.1(i) extends a recent result of Newman, Ravishankar and Sun [9], in
which they obtained the same result for γ ≥ 5 as a corollary of the convergence of systems of
coalescing random walks to the so-called Brownian web under a finite fifth moment assumption.
The difficulty in establishing Theorem 1.1(i) and the convergence of coalescing random walks to
the Brownian web lie both in tightness. In fact the tightness conditions for the two convergences
are essentially equivalent. Consequently, we can improve the convergence of coalescing random
walks to the Brownian web from a finite fifth moment assumption to a finite γth assumption for
any γ > 3. We formulate this as a theorem.

Theorem 1.2. Let X1 denote the random set of continuous time rate 1 coalescing random walk
paths with one walker starting from every point on the space-time lattice Z×R, where the random
walk increments all have distribution p (·). Let Xδ denote X1 diffusively rescaled, i.e., scale space
by δ/σ and time by δ2. If γ > 3, then in the topology of the Brownian web [9], Xδ converges
weakly to the standard Brownian web W̄ as δ → 0. A necessary condition for this convergence
is again

∑
x∈Z

|x|3
logβ(|x|∨2)

p (x) < ∞ for all β > 1.

It should be noted that the failure of convergence to a Brownian motion does not preclude the
existence of Ni ↑ ∞ such that

( r
N2

i
t

Ni

)
t≥0

converges to a Brownian motion. Loss of tightness is

due to “unreasonable” large jumps. Theorem 1.3 below shows that, when 2 < γ < 3, tightness
can be restored by suppressing rare large jumps near the voter model interface, and again we
have convergence of the boundary of the voter model interface to a Brownian motion.

Before stating Theorem 1.3, we fix some notation and recall a usual construction of the voter
model. We start with the construction of the voter model through the Harris system. Let
{N x,y}x,y∈Z be independent Poisson point processes with intensity p(y − x) for each x, y ∈ Z.
From an initial configuration η0 in Ω, we set at time t ∈ N x,y:

ηt(z) =
{

ηt−(z), if z 6= x
ηt−(y), if z = x .

From the same Poisson point processes, we construct the system of coalescing random walks as
follows. We can think of the Poisson points in N x,y as marks at site x occurring at the Poisson
times. For each space-time point (x, t) we start a random walk Xx,t evolving backward in time
such that whenever the walk hits a mark in N u,v (i.e., for s ∈ (0, t), (t−s) ∈ N u,v and u = Xx,t

s ),
it jumps from site u to site v. When two such random walks meet, which occurs because one
walk jumps on top of the other walk, they coalesce into a single random walk starting from the
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space-time point where they first met. We define by ζs the Markov process which describes the
positions of the coalescing particles at time s. If ζs starts at time t with one particle from every
site of A for some A ⊂ Z, then we use the notation

ζt
s(A) := {Xx,t

s : x ∈ A} ,

where the superscript is the time in the voter model when the walks first started, and the
subscript is the time for the coalescing random walks. It is well known that ζt is the dual
process of ηt (see Liggett’s book [7]), and we obtain directly from the Harris construction that

{ηt(·) ≡ 1 on A} = {η0(·) ≡ 1 on ζt
t (A)}

for all A ⊂ Z.

Theorem 1.3. Take 2 < γ < 3 and fix 0 < θ < γ−2
γ . For N ≥ 1, let (ηN

t )t≥0 be described as
the voter model according to the same Harris system and also starting from η1,0 except that a
flip from 0 to 1 at a site x at time t is suppressed if it results from the “influence” of a site y
with |x− y| ≥ N1−θ and [x ∧ y, x ∨ y] ∩ [rN

t− −N, rN
t−] 6= φ, where rN

t is the rightmost 1 for the
process ηN

· . Then

(i)
(

rN
tN2

N

)
t≥0

converge in distribution to a σ-speed Brownian Motion with σ defined in (1.2).

(ii) As N →∞, the integral
1

N2

∫ TN2

0
IrN

s 6=rs
ds

tends to 0 in probability for all T > 0.

Remark 2. There is no novelty in claiming that for ( rtN2

N )t≥0, there is a sequence of processes
(γN

t )t≥0 which converges in distribution to a Brownian motion, such that with probability tending
to 1 as N tends to infinity, γN

t is close to rtN2

N most of the time. The value of the previous result
is in the fact that there is a very natural candidate for such a process. Thus the main interest
of Theorem 1.3 lies in the lower bound θ > 0. By truncating jumps of size at least N1−θ for

some fixed θ > 0, the tightness of the interface boundary evolution {(
rN
tN2

N )t≥0}N∈N is restored.
The upper bound θ < γ

γ−2 simply says that with higher moments, we can truncate more jumps
without affecting the limiting distribution.

Let {Θx : Ω → Ω, x ∈ Z} be the group of translations on Ω, i.e., (η ◦ Θx)(y) = η(y + x) for
every x ∈ Z and η ∈ Ω. The second question we address concerns the equilibrium distribution
of the voter model interface (ηt ◦Θ`t)t≥0, when such an equilibrium exists. Cox and Durrett [4]
observed that (ηt ◦Θ`t |N)t≥0, the configuration of ηt ◦Θ`t restricted to the positive coordinates,
evolves as an irreducible Markov chain with countable state space

Ω̃ =

ξ ∈ {0, 1}N :
∑
x≥1

ξ(x) < ∞

 .
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Therefore a unique equilibrium distribution π exists for (ηt ◦ Θ`t |N)t≥0 if and only if it is a
positive recurrent Markov chain. Cox and Durret proved that, when the probability kernel p (·)
has finite third moment, (ηt ◦ Θ`t |N)t≥0 is indeed positive recurrent and a unique equilibrium
π exists. Belhaouari, Mountford and Valle [1] recently extended this result to kernels p (·) with
finite second moment, which was shown to be optimal.

Cox and Durrett also noted that if the equilibrium distribution π exists, then excluding the trivial
nearest neighbor case, the equilibrium has Eπ[Γ] = ∞ where Γ = Γ(ξ) = sup{x : ξ(x) = 1} for
ξ ∈ Ω̃ is the interface size. In fact, as we will see, under finite second moment assumpt ion on
the probability kernel p (·), there exists a constant C = Cp ∈ (0,∞) such that

π{ξ : Γ(ξ) ≥ M} ≥ Cp

M
for all M ∈ N,

extending Theorem 6 of Cox and Durrett [4]. Furthermore, we show that M−1 is the correct
order for π{η : Γ(η) ≥ M} as M tends to infinity if p (·) possesses a moment strictly higher than
3, but not so if p (·) fails to have a moment strictly less than 3.

Theorem 1.4. For the non-nearest neighbor one-dimensional voter model defined as above

(i) If γ ≥ 2, then there exists C1 > 0 such that for all M ∈ N

π{ξ : Γ(ξ) ≥ M} ≥ C1

M
. (1.3)

(ii) If γ > 3, then there exists C2 > 0 such that for all M ∈ N

π{ξ : Γ(ξ) ≥ M} ≤ C2

M
. (1.4)

(iii) Let α = sup{γ :
∑

x∈Z |x|γp (x) < ∞}. If α ∈ (2, 3), then

lim sup
n→∞

log π{ξ : Γ(ξ) ≥ n}
log n

≥ 2− α. (1.5)

Furthermore, there exist choices of p (·) = pα(·) with α ∈ (2, 3) and

π{ξ : Γ(ξ) ≥ n} ≥ C

nα−2
(1.6)

for some constant C > 0.

This paper is divided in the following way: Sections 2, 3 and 4 are respectively devoted to the
proofs of Theorems 1.1 and 1.2, 1.3, and 1.4. We end with section 5 with the statement and
proof of some results needed in the previous sections.
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2 Proof of Theorem 1.1 and 1.2

By standard results for convergence of distributions on the path space D([0,+∞), R) (see for
instance Billingsley’s book [3], Chapter 3), we have that the convergence to the σ-speed Brownian
Motion in Theorem 1.1 is a consequence of the following results:

Lemma 2.1. If γ ≥ 2, then for every n ∈ N and 0 < t1 < t2 < ... < tn in [0,∞) the finite-
dimensional distribution(

rt1N2

σN
√

t1
,

rt2N2 − rt1N2

σN
√

t2 − t1
, ... ,

rtnN2 − rtn−1N2

σN
√

tn − tn−1

)
converges weakly to a centered n-dimensional Gaussian vector of covariance matrix equal to the
identity. Moreover the same holds if we replace rt by lt.

Proposition 2.2. If γ > 3, then for every ε > 0 and T > 0

lim
δ→0

lim sup
N→∞

P

 sup
|t−s|<δ
s,t∈[0,T ]

∣∣∣∣rtN2 − rsN2

N

∣∣∣∣ > ε

 = 0 . (2.1)

In particular if the finite-dimensional distributions of
( rtN2

N

)
t≥0

are tight, we have that the path
distribution is also tight and every limit point is concentrated on continuous paths. The same
holds if we replace rt by lt.

By Lemma 2.1 and Proposition 2.2 we have Theorem 1.1.

Lemma 2.1 is a simple consequence of the Markov property, the observations of Cox and Durrett
[4] and Theorem 2 of Belhaouari-Mountford-Valle [1] where it was shown that for γ ≥ 2 the
distribution of rtN2

σN converges to a standard normal random variable (see also Theorem 5 in Cox
and Durrett [4] where the case γ ≥ 3 was initially considered).

We are only going to carry out the proof of (2.1) for rt since the result of the proposition follows
for lt by interchanging the roles of 0’s and 1’s in the voter model.

Note that by the right continuity of rt, the event in (2.1) is included in

⋃
0≤i≤bT

δ
c

{
sup

s∈[iδ,(i+1)δ)

∣∣∣∣rsN2 − riδN2

N

∣∣∣∣ > ε

4

}
.

By the Markov property, the attractivity of the voter model and the tightness of the voter model
interface, (2.1) is therefore a consequence of the following result: for all ε > 0

lim sup
δ→0

δ−1 lim sup
N→+∞

P

[
sup

0≤t≤N2δ

|rt| ≥ εN

]
= 0 . (2.2)
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Let us first remark that in order to show (2.2) it is sufficient to show that

lim sup
δ→0

δ−1 lim sup
N→+∞

P

[
sup

0≤t≤N2δ

rt ≥ εN

]
= 0 . (2.3)

Indeed, from the last equation we obtain

lim sup
δ→0

δ−1 lim sup
N→+∞

P
[

inf
0≤t≤N2δ

rt ≤ −εN

]
= 0 . (2.4)

To see this note that rt ≥ lt − 1, thus (2.4) is a consequence of

lim sup
δ→0

δ−1 lim sup
N→+∞

P
[

inf
0≤t≤N2δ

lt ≤ −εN

]
= 0 , (2.5)

which is equivalent to (2.3) by interchanging the 0’s and 1’s in the voter model.

The proof of (2.3) to be presented is based on a chain argument for the dual coalescing random
walks process. We first observe that by duality, (2.3) is equivalent to showing that for all ε > 0,

lim
δ→0

δ−1 lim sup
N→+∞

P
[
ζt
t ([εN,+∞)) ∩ (−∞, 0] 6= φ for some t ∈ [0, δN2]

]
= 0 .

Now, if we take R := R(δ,N) =
√

δN and M = ε/
√

δ, we may rewrite the last expression as

lim
M→+∞

M2 lim sup
R→+∞

P
[
ζt
t ([MR, +∞)) ∩ (−∞, 0] 6= φ for some t ∈ [0, R2]

]
= 0 ,

which means that we have to estimate the probability that no dual coalescing random walk
starting at a site in [MR, +∞) at a time in the interval [0, R2] arrives at time t = 0 at a site to
the left of the origin. It is easy to check that the condition above, and hence Proposition 2.2 is
a consequence of the following:

Proposition 2.3. If γ > 3, then for R > 0 sufficiently large and 2b ≤ M < 2b+1, for some
b ∈ N the probability

P
[
ζt
t ([MR, +∞)) ∩ (−∞, 0] 6= φ for some t ∈ [0, R2]

]
is bounded above by a constant times∑

k≥b

{
1

22kR
γ−3

2

+ e−c2k
+ 2kR4e−c2k(1−β)R

(1−β)
2 + 2ke−c22k

}
(2.6)

for some c > 0 and 0 < β < 1.

Proof:

The proof is based on a chain argument which we first describe informally. Without loss of
generality we fix M = 2b. The event stated in the proposition is a union of the events that
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Figure 1: Illustration of the j-th step of the chain argument.

some backward random walk starting from [2kR, 2k+1R]× [0, R2] (k ≥ b) hits the negative axis
at time 0. Therefore it suffices to consider such events.

The first step is to discard the event that at least one of the backward coalescing random walks
Xx,s starting in Ik,R = [2kR, 2k+1R] × [0, R2] has escaped from a small neighborhood around
Ik,R before reaching time level K1b s

K1
c, where bxc = max{m ∈ Z : m ≤ x}. The constant K1

will be chosen later. We call this small neighborhood around Ik,R the first-step interval, and the
times {nK1}0≤n≤bR2

K1
c the first-step times. So after this first step we just have to consider the

system of coalescing random walks starting on each site of the first-step interval at each of the
first-step times.

In the second step of our argument, we let these particles evolve backward in time until they
reach the second-step times: {n(2K1)}0≤n≤b R2

2K1
c. I.e., if a walk starts at time lK1, we let it

evolve until time (l− 1)K1 if l is odd, and until time (l− 2)K1 if l is even. We then discard the
event that either some of these particles have escaped from a small neighborhood around the
first-step interval, which we call the second-step interval, or the density of the particles alive at
each of the second-step times in the second-step interval has not been reduced by a fixed factor
0 < p < 1.

We now continue by induction. In the jth-step, (see Figure 1) we have particles starting from the
(j−1)th-step interval with density at most pj−2 at each of the (j−1)th-step times. We let these
particles evolve backward in time until the next jth-step times: {n(2j−1K1)}0≤n≤b R2

2j−1K1
c. We

then discard the event that either some of these particles have escaped from a small neighborhood
around the (j − 1)th-step interval, which we call the jth-step interval, or the density of the
particles alive at each of the jth-step times in the jth-step interval has not been reduced below
pj−1.

We repeat this procedure until the Jth-step with J of order log R, when the only Jth-step time
left in [0, R2] is 0. The rate p will be chosen such that at the Jth-step, the number of particles
alive at time 0 is of the order of a constant which is uniformly bounded in R but which still
depends on k. The Jth-step interval will be chosen to be contained in [0, 3 · 2kR].

We now give the details. In our approach the factor p is taken to be 2−1/2. The constant
K1 = 7K0 where K0 is the constant satisfying Proposition 5.4, which is necessary to guarantee
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the reduction in the number of particles. Note that K1 is independent of k and R. The j th-step
interval is obtained from the (j− 1)th-step intervals by adding intervals of length βR

j 2kR, where

βR
JR−j =

1
2(j + 1)2

,

and

JR = 1 +
⌈

1
log 2

log
(

R2

K1

)⌉
is taken to be the last step in the chain argument. Here dxe = min{m ∈ Z : m ≥ x}. We have
chosen JR because it is the step when 2JR−1K1 first exceeds R2 and the only JRth-step time in
[0, R2] is 0. With our choice of βR

j , we have that the JRth-step interval lies within [0, 3(2kR)],
and except for the events we discard, no random walk reaches level 0 before time 0.

Let us fix γ = 3 + ε in Theorem 1.1. The first step in the chain argument described above is
carried out by noting that the event we reject is a subset of the event{

For some k ≥ b and (x, s) ∈ [2kR, 2k+1R]× [0, R2],

|Xx,s
u − x| ≥ βR

1 2kR for some 0 ≤ u ≤ s−K1

⌊
s

K1

⌋ }
.

Since βR
1 = 1/(2J2

R) ≥ C/(log R)2, Lemma 5.5 implies that the probability of the above event is
bounded by ∑

k≥b

CK1(log R)2(3+ε)

22k+3εRε
(2.7)

for R sufficiently large. Therefore, for each k ≥ b, instead of considering all the coalescing
random walks starting from [2kR, 2k+1R] × [0, R2], we just have to consider coalescing random
walks starting from [(1−βR

1 )2kR, (2+βR
1 )2kR]×{nK1} where {nK1}0≤n≤bR2

K1
c are the first-step

times. By this observation, we only need to bound the probability of the event

Ak,R =
{

Xx,nK1
u ≤ 0 for some n = 1, ...,

⌊
R2

K1

⌋
, u ∈ [0, nK1]

and x ∈
[(

1− βR
1

)
2kR,

(
2 + βR

1

)
2kR

]}
.

We start by defining events which will allow us to write Ak,R in a convenient way. For n1 := n ∈ N
and for each 1 ≤ j ≤ JR − 1, define recursively

nj+1 =

{ ⌊
nj−1

2j

⌋
2j , if

⌊
nj−1

2j

⌋
2j ≥ 0

0 , otherwise .

For a random walk starting at time nK1 in the dual voter model, njK1 is its time coordinate
after the jth step of our chain argument. Then define

W k,R
1 =

{
|Xx,nK1

u − x| ≥ βR
2 2kR for some n = 1, ...,

⌊
R2

K1

⌋
,

u ∈ [0, (n− n2)K1] and x ∈
[(

1− βR
1

)
2kR,

(
2 + βR

1

)
2kR

]}
,

777



and for each 2 ≤ j ≤ JR − 1

W k,R
j =

{ ∣∣Xx,nK1

(n−nj)K1+u −Xx,nK1

(n−nj)K1

∣∣ ≥ βR
j+12

kR for some n = 1, ...,

⌊
R2

K1

⌋
,

u ∈ [0, (nj − nj+1)K1] and x ∈
[(

1− βR
1

)
2kR,

(
2 + βR

1

)
2kR

]}
.

Note that W k,R
j is the event that in the (j + 1)th step of the chain argument, some random

walk starting from a jth-step time makes an excursion of size βR
j+12

kR before it reaches the next
(j + 1)th-step time. Then we have

Ak,R ⊂
JR−1⋃
j=1

W k,R
j ,

since on the complement of
⋃JR−1

j=1 W k,R
j the random walks remain confined in the interval[(

1−
JR∑
i=1

βR
i

)
2kR,

(
2 +

JR∑
i=1

βR
i

)
2kR

]
⊂ [0, 3 · 2kR].

Now let Uk,R
j , 1 ≤ j ≤ JR − 1, be the event that for some 0 ≤ n ≤ b R2

2jK1
c the density of

coalescing random walks starting at (x, s) ∈
[(

1− βR
1

)
2kR,

(
2 + βR

1

)
2kR

]
× {lK1 : lj+1 = n2j}

that are alive in the (j + 1)th-step interval at time n2jK1 is greater than 2−
j
2 . In other words,

Uk,R
j is the event that after the (j + 1)th-step of the chain argument, the density of particles

in the (j + 1)th-step interval at some of the (j + 1)th-step times {n2jK1}0≤n≤b R2

2jK1
c is greater

than 2−
j
2 . The chain argument simply comes from the following decomposition:

JR−1⋃
j=1

W k,R
j ⊂

JR−1⋃
j=1

(
W k,R

j ∪ Uk,R
j

)

=
JR−1⋃
j=1

(
(W k,R

j ∪ Uk,R
j ) ∩

j−1⋂
i=1

(
W k,R

i ∪ Uk,R
i

)c)

=
JR−1⋃
j=1

(
W k,R

j ∩
j−1⋂
i=1

(
W k,R

i ∪ Uk,R
i

)c) (2.8)

∪
JR−1⋃
j=1

(
Uk,R

j ∩
j−1⋂
i=1

(
W k,R

i ∪ Uk,R
i

)c)
. (2.9)

We are going to estimate the probability of the events in (2.8) and (2.9).

We start with (2.9). It is clear from the definitions that the events Uk,R
i were introduced to obtain

the appropriate reduction on the density of random walks at each step of the chain argument.
The event Uk,R

j ∩
⋂j−1

i=1

(
W k,R

i ∪Uk,R
i

)c implies the existence of jth-step times t1 = (2m+1)2j−1K1

and t2 = (2m+2)2j−1K1 such that, after the jth-step of the chain argument, the walks at ti me
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t1 and t2 are inside the jth-step interval with density at most 2−
j−1
2 , and in the (j + 1)th-step

these walks stay within the (j + 1)th-step interval until the (j + 1)th-step time t0 = m2jK1,
when the density of remaining walks in the (j +1)th-step interval exceeds 2−

j
2 . We estimate the

probability of this last event by applying three times Proposition 5.4 with p = 2−
1
2 and L equal

to the size of the (j + 1)th-step interval, which we denote by Lk,R
j+1.

We may suppose that at most 2−
j−1
2 Lk.R

j+1 random walks are leaving from times t1 and t2. We let
both sets of walks evolve for a dual time interval of length 7−1 · 2j−1K1 = 2j−1K0. By applying
Proposition 5.4 with γ = 2−

j−1
2 , the density of particles starting at times t1 or t2 is reduced

by a factor of 2−
1
2 with large probability. Now we let the particles evolve further for a t ime

interval of length 2jK0. Apply Proposition 5.4 with γ = 2−
j
2 , the density of remaining particles

is reduced by another factor of 2−
1
2 with large probability. By a last application of Proposition

5.4 for another time interval of length 2j+1K0 with γ = 2−
j+1
2 we obtain that the total density of

random walks originating from the two j th-step times t1 (resp. t2) remaining at time t0 (resp.
t1) has been reduced by a factor 2−

3
2 . Finally we let the random walks remaining at time t1

evolve un till the (j + 1)th-step time t0, at which time the density of random walks has been
reduced by a factor 2 ·2−

3
2 = 2−

1
2 with large probability. By a decomposition similar to (2.8) and

(2.9) and using the Markov property, we can assume that before each application of Proposition
5.4, the random walks are all confined within the (j+1)th-step interval. All the events described

above have probability at least 1−Ce
−c 2kR

2j/2 . Since there are (b R2

2jK1
c+ 1) (j + 1)th-step times,

the probability of the event in (2.9) is bounded by

C

JR∑
j=0

R2

2jK1
exp

{
−c

2kR

2j/2

}
.

It is simple to verify that this last expression is bounded above by

C

∫ +∞

1
u2e−c2kudu ≤ Ce−c2k

.

Now we estimate the probability of the event in (2.8). For every j = 1, ..., JR − 1,

W k,R
j ∩

j−1⋂
i=1

(
W k,R

i

)c ∩ j−1⋂
i=1

(
Uk,R

i

)c
is contained in the event that at the jth-step times {n2j−1K1}1≤n≤b R2

2j−1K1
c, the random walks

are contained in the jth-step interval with density at most 2−
j−1
2 , and some of these walks move

by more than βR
j+1 2kR in a time interval of length 2jK1. If Xt denotes a random walk with

transition kernel q(x, y) = p(y − x) starting at 0, then the probability of the above event is
bounded by

R2

2j−1K1

2kR

2
j−1
2

P

(
sup

0≤t≤2jK1

|Xt| ≥ βR
j+1 2kR

)
, (2.10)

since
R2

2j−1K1

2kR

2
j−1
2

(2.11)
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bounds the number of walks we are considering. By Lemma 5.1 the probability in (2.10) is
dominated by a constant times

exp
{
−c
(
βR

j+1 2kR
)1−β

}
+ exp

−c

(
βR

j+1 2kR
)2

2jK1

+

(
1

βR
j+1 2kR

)3+ε

2jK1 .

Then multiplying by (2.11) and summing over 1 ≤ j ≤ JR, we obtain by straightforward
computations that if R is sufficiently large, then there exist constants c > 0 and c′ > 1 such that
the probability of the event in (2.8) is bounded above by a constant times

2kR4e−c2(1−β)kR
(1−β)

2 + 2k

∫ ∞

1
u3e

− c22ku2

log(c′u) du +
1

2(2+ε)kR
ε
2

. (2.12)

Adjusting the terms in the last expression we complete the proof of the proposition. �

Proof of (ii) in Theorem 1.1:

For the rescaled voter model interface boundaries ltN2

N and rtN2

N to converge to a σ-speed Brow-
nian motion, it is necessary that the boundaries cannot wander too far within a small period of
time, i.e., we must have

lim
t→0

lim sup
N→∞

P
[

sup
0≤s≤t

rsN2

N
> ε

]
= lim

t→0
lim sup
N→∞

P
[

inf
0≤s≤t

lsN2

N
< −ε

]
= 0. (2.13)

In terms of the dual system of coalescing random walks, this is equivalent to

lim
t→0

lim sup
N→∞

P
{
ζs
s ([εN,+∞)) ∩ (−∞, 0] 6= φ for some s ∈ [0, tN2]

}
= 0 (2.14)

and the same statement for its mirror event. If some random walk jump originating from
the region [εσN,∞) × [0, tN2] jumps across level 0 in one step (which we denote as the event
DN (ε, t)), then with probability at least α for some α > 0 depending only on the random walk
kernel p(·), that random walk will land on the negative axis at time 0 (in the dual voter model).
Thus (2.14) implies that

lim
t→0

lim sup
N→∞

P[DN (ε, t)] = 0 (2.15)

and the same statement for its mirror event. Since random walk jumps originating from
(−∞,−εN ] ∪ [εN,+∞) which crosses level 0 in one step occur as a Poisson process with rate∑∞

k=εN F (k) where F (k) =
∑

|x|≥k p(x), condition (2.15) implies that

lim sup
N→∞

N2
∞∑

k=εN

F (k) ≤ C < +∞.

In particular,

sup
N∈Z+

N2
∞∑

k=N

F (k) ≤ Cε < +∞. (2.16)
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Let H(y) = y3 log−β(y ∨ 2) for some β > 0. Let H(1)(k) = H(k) − H(k − 1) and H(2)(k) =
H(1)(k)−H(1)(k−1) = H(k)+H(k−2)−2H(k−1), which are the discrete gradient and laplacian
of H. Then for k ≥ k0 for some k0 ∈ Z+, 0 < H(2)(k) < 8k log−β k. Denote G(k) =

∑∞
i=k F (i).

Then (2.16) is the same as G(k) ≤ Cε
k2 for all k ∈ Z+. Recall that ps(k) = p(k)+p(−k)

2 , we have
by summation by parts

∑
k∈Z

H(|k|)p(k) =
∞∑

k=1

2H(k)ps(k)

=
k0−1∑
k=1

2H(k)ps(k) + H(k0)F (k0) +
∞∑

k=k0+1

H(1)(k)F (k)

=
k0−1∑
k=1

2H(k)ps(k) + H(k0)F (k0)

+H(1)(k0 + 1)G(k0 + 1) +
∞∑

k=k0+2

H(2)(k)G(k)

≤
k0−1∑
k=1

2H(k)ps(k) + H(k0)F (k0)

+H(1)(k0 + 1)G(k0 + 1) +
∞∑

k=k0+2

8k

logβ k
· Cε

k2

< ∞

for β > 1. This concludes the proof. �

We end this section with

Proof of Theorem 1.2: In [5, 6], the standard Brownian web W̄ is defined as a random
variable taking values in the space of compact sets of paths (see [5, 6] for more details), which
is essentially a system of one-dimensional coalescing Brownian motions with one Brownian path
starting from every space-time point. In [9], it was shown that under diffusive scaling, the
random set of coalescing random walk paths with one walker starting from every point on the
space-time lattice Z × Z converges to W̄ in the topology of the Brownian web (the details for
the continuous time walks case is given in [11]), provided that the random walk jump kernel p(·)
has finite fifth moment. To improve their result from finite fifth moment to finite γ-th moment
for any γ > 3, we only need to verify the tightness criterion (T1) formulated in [9], the other
convergence criteria require either only finite second moment or tightness.

Recall the tightness criteria (T1) in [9],

(T1) lim
t↓0

1
t

lim sup
δ↓0

sup
(x0,t0)∈ΛL,T

µδ(At,u(x0, t0)) = 0, ∀u > 0,

where ΛL,T = [−L,L] × [−T, T ], µδ is the distribution of Xδ, R(x0, t0;u, t) is the rectangle
[x0 − u, x0 + u] × [t0, t0 + t], and At,u(x0, t0) is the event that (see Figure 2) the random set
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Figure 2: Illustration of the event At,u(x0, t0).

of coalescing walk paths contains a path touching both R(x0, t0;u, t) and (at a later time) the
left or right boundary of the bigger rectangle R(x0, t0; 2u, 2t). In [9], in order to guarantee the
continuity of paths, the random walk paths are taken to be the interpolation between consecutive
space-time points where jumps take place. Thus the contribution to the event At,u(x0, t0) is
either due to interpolated line segments intersecting the inner rectangle R(x0, t0;u, t) and then
not landing inside the intermediate rectangle R(x0, t0; 3u/2, 2t), which can be shown to have 0
probability in the limit δ → 0 if p(·) has finite third moment; or it is due to some random walk
originating from inside R(x0, t0; 3u/2, 2t) and then reaches either level −2u or 2u before time
2t. In terms of the unscaled random walk paths, and note the symmetry between left and right
boundaries, condition (T1) reduces to

lim
t↓0

1
t

lim sup
δ→0

P
{

ζs1
s2

([
uσ

2δ
,
7uσ

2δ
]) ∩ (−∞, 0] 6= φ for some 0 ≤ s2 < s1 ≤

t

δ2

}
= 0,

which by the reflection principle for random walks is further implied by

lim
t↓0

1
t

lim sup
δ→0

P
{

ζs
s ([

uσ

2δ
,
7uσ

2δ
]) ∩ (−∞, 0] 6= φ for some 0 ≤ s ≤ t

δ2

}
= 0,

which is a direct consequence of Proposition 2.3. This establishes the first part of Theorem 1.2.

It is easily seen that the tightness of {Xδ} imposes certain equicontinuity conditions on the
random walk paths, and the condition in (2.15) and its mirror statement are also necessary for
the tightness of {Xδ}, and hence the convergence of Xδ (with δ = 1

N ) to the standard Brownian

web W̄. Therefore, we must also have
∑

x∈Z
|x|3

logβ(|x|∨2)
p (x) < ∞ for all β > 1. �

3 Proof of Theorem 1.3

In this section we assume that 2 < γ < 3 and we fix 0 < θ < γ−2
γ .

We recall the definition of (ηN
t )t≥0 on Ω. The evolution of this process is described by the

same Harris system on which we constructed (ηt)t≥0, i.e., the family of Poisson point processes
{N x,y}x,y∈Z, except that if t ∈ N x,y ∪ N y,x, for some y > x with y − x ≥ N1−θ and [x, y] ∩
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[rN
t−−N, rN

t−] 6= φ, then a flip from 0 to 1 at x or y, if it should occur, is suppressed. We also let
(ηN

t )t≥0 start from the Heavyside configuration η1,0. We also recall that we denote by rN
t the

position of its rightmost ”1”.

Since (ηt)t≥0 and (ηN
t )t≥0 are generated by the same Harris system and they start with the same

configuration, it is natural to believe that rN
t = rt for ”most” 0 ≤ t ≤ N2 with high probability.

To see this we use the additive structure of the voter model to show (ii) in Theorem 1.3.

For a fixed realization of the process (ηN
t )t≥0, we denote by t1 < ... < tk the times of the

suppressed jumps in the time interval [0, TN2] and by x1, ..., xk the target sites, i.e., the sites
where the suppressed flips should have occurred. Now let (ηti,xi

t )t≥0 be voter models constructed
on the same Harris system starting at time ti with a single 1 at site xi. As usual we denote by
rti,xi
t , t ≥ ti, the position of the rightmost ”1”. It is straightforward to verify that

0 ≤ rt − rN
t = max

1≤i≤k
ti≤t

(rti,xi
t − rN

t ) ∨ 0 .

The random set of times {ti} is a Poisson point process on [0, N2] with rate at most∑
[x,y]∩[−N,0]6=φ

y−x≥N1−θ

{p(y − x) + p(x− y)} ≤
∑

|x|≥N1−θ

|x|p(x) + (N + 1)
∑

|x|≥N1−θ

p(x) ,

which is further bounded by
2
∑

x∈Z |x|αp(x)
N (1−θ)α−1

for every α > 1. Therefore if we take α = γ, then by the choice of θ and the assumption that
the γ-moment of the transition probability is finite, we have that the rate decreases as N−(1+ε)

for ε = (1− θ)γ − 2 > 0.

Lemma 3.1. Let {(ti, xi)}i∈N with t1 < t2 < · · · denote the random set of space-time points in
the Harris system where a flip is suppressed in (ηN

t )t≥0. Let K = max{i ∈ N : ti ≤ TN2}, and
let

τi = inf{t ≥ ti : ηti,xi
t ≡ 0 on Z} − ti .

Then
P[τi ≥ N2 for some 1 ≤ i ≤ K] → 0 as N →∞ ,

and for all i ∈ N,
E[τi; τi ≤ N2] ≤ CN .

Moreover, from these estimates we have that

N−2E

[
K∑

i=1

τi

∣∣∣τi ≤ N2 for all 1 ≤ i ≤ K

]
→ 0 as N →∞ .
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Proof:

The proof is basically a corollary of Lemma 5.6, which gives that the lifetime τ of a single particle
voter model satisfies

P[τ ≥ t] ≤ C√
t

for some C > 0. Thus, by the strong Markov Property

P[τi ≥ N2 for some 1 ≤ i ≤ K] ≤
+∞∑
k=0

P[τk ≥ N2| tk ≤ TN2] P[tk ≤ TN2]

= P[τ1 ≥ N2] E[K]

≤ C

N
· TN2 ·

2
∑

x∈Z |x|γp(x)
N (1−θ)γ−1

=
C ′

N ε
,

which gives the first assertion in the lemma. The verification of E[τi; τi ≤ N2] ≤ CN is trivial.
Now from the first two assertions in the lemma we obtain easily the third one. �

Now to complete the proof of (ii) in Theorem 1.3, observe that if s ∈ [0, TN2] then rN
s 6= rs only

if s ∈ ∪K
i=1[ti, (τi + ti) ∧ TN2), and then∫ TN2

0
IrN

s 6=rs
ds ≤

K∑
i=1

((τi + ti) ∧ TN2)− ti) ≤
K∑

i=1

(τi ∧ TN2) .

The result follows from the previous lemma by usual estimates.

Now we show (i) in Theorem 1.3. The convergence of the finite-dimensional distributions follows
from a similar argument as the proof of (ii) in Theorem 1.3, which treats ηN

t as a perturbation
of ηt. We omit the details. Similar to (2.1) — (2.3) in the proof of Theorem 1.1, tightness can
be reduced to showing that for all ε > 0,

lim sup
δ→0

δ−1 lim sup
N→+∞

P

[
sup

0≤t≤δN2

rN
t ≥ εN

]
= 0, (3.1)

for which we can adapt the proof of Theorem 1.1. As the next lemma shows, it suffices to
consider the system of coalescing random walks with jumps of size greater than or equal to
N1−θ suppressed.

Lemma 3.2. For almost every realization of the Harris system in the time interval [0, δN2] with
sup0≤t≤δN2 rN

t ≥ εN for some 0 < ε < 1, there exists a dual backward random walk starting from
some site in {Z ∩ [εN,+∞)} × [0, δN2] which attains the left of the origin before time 0, where
all jumps of size greater than or equal to N1−θ in the Harris system have been suppressed.

Proof:

Since (ηN
t )t≥0 starts from the Heavyside configuration, for a realization of the Harris system with

sup0≤s≤δN2 rN
s ≥ εN , by duality, in the same Harris system with jumps that are discarded in the

definition of (ηN
t )t≥0 suppressed, we can find a backward random walk which starts from some

site (x, s) ∈ {Z ∩ [εN,+∞)} × [0, δN2] with ηN
s (x) = 1 and attains the left of the origin before
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reaching time 0. If by the time the walk first reaches the left of the origin, it has made no jumps
of size greater than or equal to N1−θ, we are done; otherwise when the first large jump occurs
the ra ndom walk must be to the right of the origin, and by the definition of ηN

t , either the jump
does not induce a flip from 0 to 1, in which case we can ignore this large jump and continue
tracing backward in time; or the rightmost 1 must be at least at a distance N to the right of
the position of the random walk before the jump, in which case since ε < 1, at this time there
is a dual random walk i n Z∩ [εN,+∞) which also attains the left of the origin before reaching
time 0. Now either this second random walk makes no jump of size greater than or equal to
N1−θ before it reaches time 0, or we repeat the previous argument to find another random walk
starting in {Z ∩ [εN,+∞)} × [0, δN2] which also att ains the left of the origin before reaching
time 0. For almost surely all realizations of the Harris system, the above procedure can only be
iterated a finite number of times. The lemma then follows. �

Lemma 3.2 reduces (3.1) to an analogous statement for a system of coalescing random walks
with jumps larger than or equal to N1−θ suppressed.

Take 0 < σ < θ and let ε′ := (1−θ)(3−γ)
σ . Then∑

|x|≤N1−θ

|x|3+ε′p(x) ≤ N (1−θ)(3+ε′−γ)
∑
x∈Z

|x|γp(x) ≤ CN (1−θ+σ)ε′ . (3.2)

The estimate required here is the same as in the proof of Theorem 1.1, except that as we
increase the index N , the random walk kernel also changes and its (3 + ε′)th-moment increases
as CN (1−θ+σ)ε′ . Therefore it remains to correct the exponents in Proposition 2.3. Denote by
ζN the system of coalescing random walks with jumps larger than or equal to N1−θ suppressed,
and recall that R =

√
δN and M = ε/

√
δ in our argument, (3.1) then follows from

Proposition 3.3. For R > 0 sufficiently large and 2b ≤ M < 2b+1 for some b ∈ N, the
probability

P
{

ζN,t
t ([MR, +∞)) ∩ (−∞, 0] 6= φ for some t ∈ [0, R2]

}
is bounded above by a constant times

∑
k≥b

{
1

22kδε′R
(θ−σ)ε′

2

+ e−c2k
+ 2kR4e−c2k(1−β)R

(1−β)
2 + 2ke−c22k

}
(3.3)

for some c > 0 and 0 < β < 1.

The only term that has changed from Proposition 2.3 is the first term, which arises from the
application of Lemma 5.5. We have incorporated the fact that the 3+ ε′ moment of the random
walk with large jumps suppressed grows as CN (1−θ+σ)ε′ , and we have employed a tighter bound
for the power of R than stated in Proposition 2.3. The other three terms remain unchanged
because the second term comes from the particle reduction argument derived from applications
of Proposition 5.4, while the third and forth terms come from the Gaussian correction on Lemma
5.1. The constants in these three terms only depend on the second moment of the truncated
random walks which is uniformly bounded. The verification of this last assertion only need some
more concern in the case of the second term due to applications of Lemma 5.2. But if we go
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through the proof of Theorem T1 in section 7 and Proposition P4 in Section 32 of [10], we see
that in order to obtain uniformity in Lemma 5.2 for a family of random walks, we only need
uniform bounds on the characteristic functions associated to the walks in the family, which are
clearly satisfied by the family of random walks with suppressed jumps. This concludes the proof
of Theorem 1.3. �

4 Proof of Theorem 1.4

4.1 Proof of (i) in Theorem 1.4

We start by proving (i) in Theorem 1.4. Since (ηt ◦ Θ`t |N)t≥0 is a positive recurrent Markov
chain on Ω̃, by usual convergence results, we only have to show that starting from the Heavyside
configuration for every t and M sufficiently large

P (rt − lt ≥ M) ≥ C

M
,

for some C > 0 independent of M ant t. Now fix λ > 0, this last probability is bounded below
by

P (rt − lt ≥ M, rt−λM2 − lt−λM2 ≤ M)
= P (rt − lt ≥ M |rt−λM2 − lt−λM2 ≤ M)P (rt−λM2 − lt−λM2 ≤ M) ,

which by tightness is bounded below by

1
2
P (rt − lt ≥ M |rt−λM2 − lt−λM2 ≤ M)

for M sufficiently large. To estimate the last probability we introduce some notation first, let
(X−M

t )t≥0 and (XM
t )t≥0 be two independent random walks starting respectively at −M and M

at time 0 with transition probability p(·). Denote ZM
t = XM

t −X−M
t . For every set A ⊂ Z, let

τA be the stopping time
inf{t ≥ 0 : ZM

t ∈ A} .

If A = {x}, we denote τA simply by τx. Then by duality and the Markov property after
translating the system to have the leftmost 0 at the origin by time t− λM2 we obtain that

P (rt − lt ≥ 2M |rt−λM2 − lt−λM2 ≤ M) ≥ P (τ0 > λM2;X−M
λM2 ≥ M ;XM

λM2 ≤ −M) .

Part (i) of Theorem 1.4 then follows from the next result:

Lemma 4.1. If p(·) is a non-nearest neighbor transition probability and has zero mean and finite
second moment, then we can take λ sufficiently large such that for some C > 0 independent of
M and for all M sufficiently large,

P (τ0 > λM2;X−M
λM2 ≥ M ;XM

λM2 ≤ −M) ≥ C

M
. (4.1)
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Let As(M,k, x) be the event

{τx,x+k
0 > λM2 − s; Xx+k

λM2−s
≥ M ;Xx

λM2−s ≤ −M} ,

where as before, for every x and y, (Xx
t )t≥0 and (Xy

t )t≥0 denote two independent random walks
starting respectively at x and y with transition probability p(·), and

τx,x+k
0 = inf{t ≥ 0 : Xx+k

t −Xx
t = 0} .

To prove Lemma 4.1 we apply the following result:

Lemma 4.2. Let K ∈ N be fixed. For all l ∈ N sufficiently large, there exists some C > 0 such
that for all s ≤ λM2/2, |x| < lM and 0 < k ≤ K, and M sufficiently large

P (As(M,k, x)) >
C

M
.

Proof of Lemma 4.1:

Let Z− denote Z ∩ (−∞, 0]. The probability in (4.1) is then bounded below by

P

(
τZ− <

λM2

2
; τ0 > λM2; X−M

λM2 ≥ M ;XM
λM2 ≤ −M

)
which by the Strong Markov property is greater than or equal to∑

|x|≤lM

∑
1≤k≤K

∫ λM2/2

0
P
(
τZ− ∈ ds;X−M

s = x + k, XM
s = x

)
P (As(M,k, x)) ,

where l ∈ N is some fixed large constant. Now applying Lemma 4.2 we have that the probability
in (4.1) is bounded below by

C

M

∑
|x|≤lM

∑
1≤k≤K

P

(
τZ− <

λM2

2
;X−M

τZ−
= x + k, XM

τZ−
= x

)
Thus to finish the proof we have to show that∑

|x|≤lM

∑
1≤k≤K

P

(
τZ− <

λM2

2
;X−M

τZ−
= x + k, XM

τZ−
= x

)
(4.2)

is bounded below uniformly over M by some positive constant.
Let D = {(x, x + k) : 1 ≤ k ≤ K and |x| < lM}, then this last expression can be rewritten as

P

(
τZ− ≤

λM2

2
;
(
XM

τZ−
, X−M

τZ−

)
∈ D

)
≥ P

(
τZ− ≤

λM2

2

)
− P

(
τZ− ≤

λM2

2
; X−M

τZ−
−XM

τZ−
= 0 or > K

)
−P

(
τZ− ≤

λM2

2
;
∣∣∣XM

τZ−

∣∣∣ ≥ lM

)
≥ P

(
τZ− ≤

λM2

2

)
− P

(
ZM

τZ−
= 0 or < −K

)
− P

(
sup

0≤t≤λM2/2

∣∣XM
t

∣∣ ≥ lM

)
.
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We claim that the second term can be bounded uniformly away from 1 for large M by taking
K large. This follows from a standard result for random walks (see, e.g., Proposition 24.7 in
[10]), which states that: if a mean zero random walk ZM

t starting from 2M > 0 has finite
second moment, then the overshoot ZM

τZ−
converges to a limiting probability distribution on

Z− as 2M → +∞. The distribution is concentrated at 0 only if the random walk is nearest-
neighbor. Then by Donsker’s invariance principle, the first term can be made arbitrarily close
to 1 uniformly over large M by taking λ large, and finally the last term can be made arbitrarily
close to 0 uniformly over large M by taking l sufficiently large. With appropriate choices for
K, λ and l, we can guarantee that (4.2) is bounded below by a positive constant uniformly for
large M , which completes the proof of the Lemma. �

It remains to prove Lemma 4.2.

Proof of Lemma 4.2:

By the Markov property the probability of As(M,k, x) is greater than or equal to∑
(l1,l2)∈D1

P
(
τx,x+k
0 > λM2/4, Xx

λM2/4 = l1; Xx+k
λM2/4

= l2

)
P (Bs(l1, l2,M)) ,

where
D1 = {(l1, l2) : l2 − l1 > 2M ; l2 < 2lM ; l1 > −2lM} .

and for r = r(M, s) := 3λM2/4− s

Bs(l1, l2,M) = {τ l1,l2
0 > r(M, s), X l2

r(M,s) ≥ M ; X l1
r(M,s) ≤ −M}

The proof is then complete with the following two claims.

Claim 1: There exists C > 0 such that

inf
(l1,l2)∈D1

inf
s≤λM2/2

P (Bs(l1, l2,M)) ≥ C

uniformly over M sufficiently large.

Claim 2: There exists C > 0 such that

inf
1≤k≤K

inf
|x|≤lM

∑
(l1,l2)∈D1

P
(
τx,x+k
0 > λM2/4, Xx

λM2/4 = l1, Xx+k
λM2/4

= l2

)
≥ C

M
(4.3)

uniformly over M sufficiently large.

Proof of claim 1:

Since Bs(l1, l2,M) contains{
max

m<r(M,s)
X l1

m < l1 + M ; X l1
r(M,s) < l1 − (2l − 1)M

}
∩
{

min
m<r(M,s)

X l2
m > l2 −M ; X l2

r(M,s) > l2 + (2l − 1)M
}

,
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by independence and reflection symmetry,

P (Bs(l1, l2,M)) ≥ P

{
min

t<r(M,s)
X0

t > −M ; X0
r(M,s) > (2l − 1)M

}2

.

Since λM2/4 ≤ r(M, s) ≤ 3λM2/4, by Donsker’s invariance principle the above quantity is
uniformly bounded below by some C > 0 for M sufficiently large. This establishes Claim 1.

Proof of Claim 2:

We write the sum in (4.3) as

CP
(
τx,x+k
0 > λM2/4; (Xx

λM2/4, X
x+k
λM2/4

) ∈ D1

)
which by the definition of D1 is greater than or equal to

P
(
τx,x+k
0 > λM2/4; Xx+k

λM2/4
−Xx

λM2/4 > 2M
)

−P
(
τx,x+k
0 > λM2/4; Xx+k

λM2/4
> 2lM or Xx

λM2/4 < −2lM
)

.

The first term in this expression is bounded below by C/M for some constant C > 0, dependent
only on K. This follows from Theorem B in the Appendix of [4], which states that the conditional
distribution of Zk

λM2/M := (Xx+k
λM2 − Xx

λM2)/M conditioned on τ0 > λM2 converges to a two-
sided Rayleigh distribution. For the second term, we apply Lemma 2 in [1] and then Lemma
5.2, to dominate it by

CP (τx,x+k
0 > λM2)P

 sup
0≤t≤λM2

2

X0
t > lM

 ≤ C

M
P

 sup
0≤t≤λM2

2

X0
t > lM

 ,

where C depends only on K. Since P

(
sup

0≤t≤λM2

2

X0
t > lM

)
can be made arbitrarily small

uniformly for large M if l is sufficiently large, and 1 ≤ k ≤ K, we obtain the desired uniform
bound in Claim 2. �

4.2 Proof of (ii) in Theorem 1.4

We still consider the voter model (ηt : t ≥ 0) starting from the initial Heavyside configuration.
Under the assumption γ > 3, P(rt − `t ≥ M) converges to π(ξ : Γ(ξ) ≥ M) as t → +∞.
Therefore, to prove Theorem 1.4 (ii), it suffices to show that, for every M > 0, if t is sufficiently
large, then

P(rt − lt ≥ M) ≤ C

M

for some C > 0 independent on M and t.

We now fix N ∈ N and assume M = 2N , which is not a restriction to the result since 2N ≤
M < 2N+1 for some N ∈ N and the inequality (1.4) remains valid by replacing C2 with 2C2. In
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Figure 3: Illustration of the event V N
k .

the following t will be >> 22N . Let ∆t(s), for s < t, be the event that a crossing of two dual
coalescing random walks starting at time t (in the voter model) occurs in the dual time interval
(s, t] and by the dual time t they are on opposite sides of the origin, i.e, there exists u, v ∈ Z
with Xu,t

s < Xv,t
s and Xv,t

t ≤ 0 < Xu,t
t .

From the estimates in the proof of lemma 5 in Cox and Durrett [4], one can show that P(∆t(s)) ≤
C/
√

s, if we have that P(0 ∈ ζs
s (Z)) ≤ C/

√
s, which holds if p(·) has finite second moment (see

Lemma 5.6). Therefore, all we have to show is that

P
(
{rt − lt ≥ 2N} ∩ (∆t(4N ))c

)
≤ C

2N
(4.4)

for some C independent of t and N . We denote the event {rt − lt ≥ 2N} ∩ (∆t(4N ))c by V N

which is a subset of ∪N
k=0V

N
k where V N

k is the event that (see Figure 3) there exists x, y ∈ Z
with y − x ≥ 2N such that, for the coalescing walks Xx,t

s and Xy,t
s ,

(i) Xx,t
s < Xy,t

s for every 0 ≤ s ≤ 4k−1;

(ii) There exists s ∈ (4k−1, 4k] with Xx,t
s > Xy,t

s ;

(iii) Xx,t
t > 0 and Xy,t

t ≤ 0.

For k = 0 we replace 4k−1 by 0. We will obtain suitable bounds on V N
k which will enable us to

conclude that
∑N

k=0 P (V N
k ) ≤ C

2N .

Fix 0 ≤ k ≤ N . For 0 ≤ s ≤ t and y ∈ Z, we call

Ry(s) :=
{

supx∈Z{|x− y| : Xx,t
s = y} , if there exists x such that Xx,t

s = y
0 , otherwise

the range of the coalescing random walk at (s, y) ∈ (0, t]×Z. Obviously V N
k is contained in the

event that there exists x, y in ζt
4k−1(Z) with x < y such that

(i) Rx(4k−1) + Ry(4k−1) + |y − x| ≥ 2N ;

(ii) There exists s ∈ (4k−1, 4k] with Xx,t−4k−1

s−4k−1 > Xy,t−4k−1

s−4k−1 ;
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(iii) Xx,t−4k−1

t−4k−1 > 0, Xy,t−4k−1

t−4k−1 ≤ 0,

which we denote by Ṽ N
k .

We call the crossing between two coalescing random walks a relevant crossing if it satisfies
conditions (i) and (ii) in the definition of Ṽ N

k up to the time of the crossing. We are interested
in the density of relevant crossings between random walks in the time interval (4k−1, 4k] and (as
is also relevant) the size of the overshoot, i.e., the distance between the random walks just after
crossing. To begin we consider separately three cases:

(i) The random walks at time 4k−1 are at x < y with |x− y| ≤ 2k−1 (so it is ”reasonable” to
expect the random walks to cross in the time interval (4k−1, 4k], and either Rx(4k−1) or
Ry(4k−1) must exceed 2N−2 ).

(ii) The random walks are separated at time 4k−1 by at least 2k−1 but no more than 2N−1 (so
either Rx(4k−1) or Ry(4k−1) must exceed 2N−2).

(iii) The random walks are separated at time 4k−1 by at least 2N−1. In this case we disregard
the size of the range.

Before dealing specifically with each case, we shall consider estimates on the density of particles
in ζt

4k(Z) with range greater than m2k. We first consider the density of random walks at time
4k which move by more than m2k in the time interval (4k, 4k+1]. By Lemma 5.6, the density of
particles in ζt

4k(Z) is bounded by C
2k . By the Markov property and Lemma 5.1, we obtain the

following result:

Lemma 4.3. For every 0 < β < 1, there exists c, C ∈ (0,∞) such that for every k ∈ N and
m ≥ 1, the probability that a fixed site y ∈ Z satisfies y ∈ ζt

4k(Z), and the backward random walk
starting at (y, t− 4k) makes an excursion of size at least m2k before reaching time level t− 4k+1

is bounded by
C

2k

(
e−c(m2k)1−β

+ e−cm2
+

1
m3+ε2k(1+ε)

)
.

As a corollary, we have

Lemma 4.4. For every 0 < β < 1, there exists c, C ∈ (0,∞) so that for every k ∈ N and m ≥ 1,
the density of y ∈ ζt

22k(Z) whose range is greater than m2k is bounded by

C

2k

(
2ke−c(m2k)1−β

+ e−cm2
+

1
m3+ε2k(1+ε)

)
.

Proof:

Let dl,k be the density of coalescing random walks remaining at time 4l, which on interval
(4l, 4l+1] move by more than ( ∞∑

r=1

1
r2

)−1
m2k

(k − l)2
.

791



By Lemma 4.3 we have that dl,k is bounded above by

C

2l

[
e
−c

“
m2k

(k−l)2

”1−β

+ e
−c(m2k−l)2

(k−l)4 +
(k − l)2(3+ε)

(m2k−l)3+ε2l(1+ε)

]
.

It is not difficult to see that
∑

l<k dl,k provides an upper bound for the density we seek. Summing
the above bounds for dl,k establishes the lemma. �

We can now estimate the relevant crossing densities and overshoot size in cases (i), (ii) and (iii)
above. More precisely, we will estimate the expectation of the overshoot between two random
walks starting at x < y at time 4k−1 restricted to the event that: x, y ∈ ζt

4k−1(Z), Rx and Ry

are compatible with y − x as stated in cases (i) –(iii), and the two walks cross before time 4k.
From now on, we fix β ∈ (0, 1).

Case (i): Since if the two events {x ∈ ζt
4k−1(Z)} ∩ {Rx(4k−1) > 2N−2} and {y ∈ ζt

4k−1(Z)}
both occur, they always occur on disjoint trajectories of random walks in the dual time interval
[0, 4k−1], we may apply the van den Berg-Kesten-Reimer inequality (see Lemma 4 in [2] and the
discussion therein) which together with the previous lemma implies that the probability that
x, y ∈ ζt

4k−1(Z) and at least one has range 2N−2 is less than

C

4k

(
2ke−c2N(1−β)

+ e−c4N−k
+

4k

2N(3+ε)

)
.

Moreover the expectation of the overshoot (see [4])

Xx,t−4k−1

τ −Xy,t−4k−1

τ

on the event τ ≤ 4k − 4k−1 = 3 · 4k−1 where

τ = inf{s > 0 : Xx,t−4k−1

s −Xy,t−4k−1

s ≥ 0}

is the time of crossing, is uniformly bounded over k and y − x.

Case (ii): In this case we must also take into account that the probability of the two random
walks crossing before time 4k is small. We analyze this by dividing up the crossing into two
cases. In the first case the two random walks halve the distance between them before crossing.
In the second case the crossing occurs due to a jump of order y − x.

Let

τ ′ = inf
{

s > 0 : Xy,t−4k−1

s −Xx,t−4k−1

s <
y − x

2

}
.

Then as in Case (i),
E[Xx,t−4k−1

τ −Xy,t−4k−1

τ | τ ′ < τ ]

792



is uniformly bounded by some constant C > 0. Therefore

E
[
Xx,t−4k−1

τ −Xy,t−4k−1

τ ; τ ′ < τ ≤ 3 · 4k−1; x, y ∈ ζt
4k−1(Z); Rx or Ry ≥ 2N−2

]
≤ C P

(
τ ′ < 3 · 4k−1

)
P
(
x, y ∈ ζt

4k−1(Z); Rx or Ry ≥ 2N−2
)

≤ C P
(
x, y ∈ ζt

4k−1(Z); Rx or Ry ≥ 2N−2
)

×
(

e−c|x−y|1−β
+ e

−c
(x−y)2

4k +
4k

|x− y|3+ε

)
≤ C

4k

(
2ke−c2N(1−β)

+ e−c4N−k
+

4k

2N(3+ε)

)
×
(

e−c|x−y|1−β
+ e

−c
(x−y)2

4k +
4k

|x− y|3+ε

)
.

On the other hand it is easily seen (by estimating the rates at which a large jump occurs, see
Section 3 for details) that

E[Xx,t−4k−1

τ −Xyt−4k−1

τ , τ = τ ′ < 3 · 4k−1] ≤ C
4k

|x− y|2+ε

and so we have a contribution

C

4k

(
2ke−c2(1−β)N

+ e−c4N−k
+

4k

2N(3+ε)

)
4k

|x− y|2+ε
.

Case (iii): In this case we argue as in (ii) except the factor(
2ke−c2(1−β)N

+ e−c4N−k
+

4k

2N(3+ε)

)
is dropped as we make no assumption on the size of Rx or Ry. So our bound is

C

4k

(
4k

|x− y|2+ε
+ e−c|x−y|1−β

+ e
−c

(x−y)2

4k +
4k

|x− y|(3+ε)

)
.

From the three cases above, we can sum over y ∈ Z and verify that, for a given site x ∈ Z,
the total expected overshoot associated with relevant crossings in the time interval (4k−1, 4k]
involving (x, 4k−1) and (y, 4k−1) for all possible y ∈ Z is bounded by

C

(
1

2N(1+ε)
+ e−c2N(1−β)

+
e−c4N−k

2k

)
. (4.5)

We say a d-crossover (d ∈ N) occurs at site x ∈ Z at time s ∈ (4k−1, 4k] if at this time (dual
time, for coalescing random walks) a relevant crossing occurs leaving particles at sites x and
x + d immediately after the crossing. We de note the indicator function for such a crossover by
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Ik(s, x, d). By translation invariance, the distribution of {Ik(s, x, d)}s∈(4k−1,4k] is independent of
x ∈ Z.

Let Xx
s and Xx+d

s be two independent random walks with transition probability p(·) starting at
x and x + d at time 0, and let τx,x+d = inf{s : Xx

s = Xx+d
s } . Then

P (Ṽ N
k ) ≤

∑
d∈N

∑
x∈Z

E

[∫ 4k

4k−1

Ik(s, x, d)P
(
Xx

t−s ≤ 0 < Xx+d
t−s , τx,x+d > t− s

)
ds

]

=
∑
d∈N

E

[∫ 4k

4k−1

Ik(s, 0, d)
∑
x∈Z

P
(
Xx

t−s ≤ 0 < Xx+d
t−s , τx,x+d > t− s

)
ds

]
.

If we know that ∑
x∈Z

P
(
Xx

t−s ≤ 0 < Xx+d
t−s , τx,x+d > t− s

)
≤ Cd (4.6)

for some C > 0 independent of k, d, s, t and N , and

E

[∑
d∈N

d

∫ 4k

4k−1

Ik(s, 0, d)ds

]
≤ C

(
1

2N(1+ε)
+ e−c2N(1−β)

+
e−c4N−k

2k

)
, (4.7)

then substituting (4.6) and (4.7) into the bound for P (Ṽ N
k ) gives

N∑
k=0

P (Ṽ N
k ) ≤ C

N∑
k=0

(
1

2N(1+ε)
+ e−c2N(1−β)

+
e−c4N−k

2k

)
≤ C ′

2N

for some C ′ > 0 uniformly over all large t and N and we are done.

If we denote Zd
s′ = Xx+d

s′ −Xx
s′ , (Zd

s′)
+ = Zd

s′ ∨ 0 and τ0 = inf{s′ : Zd
s′ = 0}, then by translation

invariance, it is not difficult to see that∑
x∈Z

P
(
Xx

t−s ≤ 0 < Xx+d
t−s , τx,x+d > t− s

)
= E[(Zd

t−s)
+, τ0 > t− s] ≤ Cd,

where the inequality with C > 0 uniform over d and t is a standard result for random walks (see
Lemma 2 in [4]).

Finally, to show (4.7), we note that the left hand side is the expected overshoot of relevant
crossings where one of the two random walks after the crossing is at 0. By translation invariance
this is bounded above by the expected overshoot associated with relevant crossings in the time
interval (4k−1, 4k] involving (0, 4k−1) and (y, 4k−1) for every y > 0, which is estim ated in (4.5).
Indeed, let Fk(x, y;m,m + d) be the indicator function of the event that a relevant crossover
occurs before time 4k due to random walks starting at sites x and y at time 4k−1, and immediately
after the crossover the walks are at positions m and m + d. Then by translation invariance and
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a change of variable

E

[∑
d∈N

d

∫ 4k

4k−1

Ik(s, 0, d)ds

]
≤ E

[∑
d∈N

d
∑
x<y

Fk(x, y; 0, d)

]

= E

∑
d∈N

d
∑

x∈Z,y>0

Fk(x, x + y; 0, d)


=

∑
y>0

E

[∑
d∈N

d
∑
x∈Z

Fk(0, y;−x,−x + d)

]
.

4.3 Proof of (iii) in Theorem 1.4

We know from [1] that if γ ≥ 2, then the voter model interface evolves as a positive recurrent
chain, and hence the equilibrium distribution π exists. In particular, π{ξ0} > 0 where ξ0 is the
trivial interface of the Heavyside configuration η1,0. Let ξt denote the interface configuration at
time t starting with ξ0, and let ν denote its distribution. Then

π{ξ : Γ(ξ) ≥ n} > π{ξ0}ν{Γ(ξt) ≥ n} (4.8)

for all t > 0. To prove (1.5), it then suffices to show

lim sup
n→∞

log ν{Γ(ξn2) ≥ n}
log n

≥ 2− α. (4.9)

Let X2n
t and X5n

t denote the positions at time t of two independent random walks with transition
probability p(·) starting at 2n and 5n at time 0. Let A denote the event that X2n

t ∈ [n, 3n] for
all t ∈ [0, n2], and let Bs, s ∈ [0, n2], denote the event that X5n

t ∈ [4n, 6n] for all t ∈ [0, s) and
X5n

t ∈ (−∞,−n] for all t ∈ [s, n2]. Event Bs can only occur if X5n
t makes a large negative jump

at time s. By duality between voter models and coalescing random walks,

ν{Γ(ξn2) ≥ 3n} ≥ P {ηn2(2n) = 0, ηn2(5n) = 1}

≥ P

 ⋃
s∈[0,n2]

(A ∩Bs)

 = P (A) P

 ⋃
s∈[0,n2]

Bs

 .

Condition on X5n
t staying inside [4n, 6n] before time s and making a negative jump of size at

least −8n at time s, we have by the strong Markov property that

P

 ⋃
s∈[0,n2]

Bs

 ≥
∫ n2

0
P

 ⋂
t∈[0,s)

{
X5n

t ∈ [4n, 6n]
}

 ∑
y≤−8n

p(y)


· P

 ⋂
t∈[s,n2]

{
X5n

t ≤ −n
} ∣∣∣ X5n

s ≤ −2n

 ds.
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By Donsker’s invariance principle, the probability of each of the three events: A,
⋂

t∈[0,s)

{
X5n

t ∈

[4n, 6n]
}

and
{ ⋂

t∈[s,n2]

{X5n
t ≤ −n} |X5n

s ≤ −2n
}

, is at lea st β for some β > 0 independent of

n and s ∈ [0, n2]. Therefore,

ν{Γ(ξn2) ≥ n} ≥ ν{Γ(ξn2) ≥ 3n} ≥ β3n2

 ∑
y≤−8n

p(y)

 ,

which we may symmetrize to obtain

ν{Γ(ξn2) ≥ n} ≥ β3

2
n2

 ∑
|y|≥8n

p(y)

 . (4.10)

If (4.9) fails, then there exists some n0 ∈ N and ε > 0 such that, for all n ≥ n0,∑
|y|≥8n

p(y) ≤ 2
β3n2

ν{Γ(ξn2) ≥ n} ≤ C

nα+ε
,

which implies that ∑
y∈Z

|y|α+ ε
2 p(y) < ∞,

contradicting our assumption. This proves the first part of (iii) in Theorem 1.4. To find random
walk jump kernel p(·) satisfying (1.6), we can choose p(·) with

∑
|y|≥n p(y) ∼ Cn−α for some

C > 0. (1.6) then follows directly from (4.8) and (4.10). �

5 Technical Estimates

The following lemmas for random walks will be needed.

Lemma 5.1. Let Xt be a centered continuous time one-dimensional random walk starting at
the origin and with finite 3 + ε moment for some ε > 0. Then for every 0 < β < 1, there exists
c, C > 0 such that

P

(
sup
t≤T

|Xt| ≥ M

)
≤

 C

(
e−cT + e−

cM2

T + T
M3+ε

)
, T > M

C
(
e−cM1−β

+ T
M3+ε

)
, T ≤ M

for all T,M > 0. In particular

P

(
sup
t≤T

|Xt| ≥ M

)
≤ C

(
e−cM1−β

+ e−
cM2

T +
T

M3+ε

)
for all T,M > 0.
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Proof: By the reflection principle for random walks, we only have to show that for every
0 < β < 1, there exists c, C > 0 such that

P (|XT | ≥ M) ≤

 C

(
e−cT + e−

cM2

T + T
M3+ε

)
, T > M

C
(
e−cM1−β

+ T
M3+ε

)
, T ≤ M

(5.1)

for all M,T > 0. To prove this inequality, we consider the following usual representation of Xt:
there exist centered i.i.d. random variables (Yn)n≥1 on Z with finite 3+ ε moment and a Poisson
process (Nt)t≥0 of parameter 1 independent of the Yn’s, such that

Xt =
Nt∑
j=0

Yj := SNt ,

where Y0 = 0. The analogue of (5.1) for discrete time random walks appears as corollary 1.8 in
[8], from which we obtain

P (|Sn| ≥ M) ≤ C

(
e−

cM2

n +
nE[|Y1|3+ε]

M3+ε

)
. (5.2)

It then follows that

P (|XT | ≥ M) =
∑

k

P (|Sk| ≥ M)P (NT = k)

≤ C
∑

k

(
e−

cM2

k +
kE[|Y1|3+ε]

M3+ε

)
P (NT = k)

≤ C

(
P (NT ≥ 3T ) + e−

cM2

3T +
E[NT ]E[|Y1|3+ε]

M3+ε

)
. (5.3)

By basic large deviations results for Poisson distribution, we have P (NT ≥ 3T ) ≤ C ′e−c′T for
some c′, C ′ > 0. Then after adjusting the constants, we obtain

P (|XT | ≥ M) ≤ C

(
e−cT + e

−cM2

T +
TE[|Y1|3+ε]

M3+ε

)
for every M > 0 and T > 0.

We now suppose T ≤ M . Back to the term after the first inequality in equation (5.3),

C
∑

k

(
e−

cM2

k +
kE[|Y1|3+ε]

M3+ε

)
P (NT = k)

≤ C

(
P (NT ≥ M1+β) + e−cM1−β

+
TE[|Y1|3+ε]

M3+ε

)
.

Since

P (NT ≥ M1+β) = e−T
∑

k≥M1+β

T k

k!
≤ TM1+β

(M1+β)!
≤ MM1+β

(M1+β)!
.

By Stirling’s formula, we can choose C > 0 large enough such that for all M > 0, P (NT ≥
M1+β) ≤ Ce−cM1−β

, thus concluding the proof. �
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Lemma 5.2. Let Xx
t and Xy

t be two independent identically distributed continuous time homo-
geneous random walks with finite second moments starting from positions x and y at time 0.
Let τx,y = inf{t > 0 : Xx

t = Xy
t } be the first meeting time of the two walks. Then there exists

C0 > 0 such that

P (τx,y > T ) ≤ C0√
T
|x− y|

for all x, y and T > 0.

Proof. This is a standard result. See, e.g., Proposition P4 in Section 32 of [10], or Lemma 2.2
of [9]. Both results are stated for discrete time random walks, but the continuous time analogue
follows readily from a standard large deviation estimate for Poisson processes.

Lemma 5.3. Given a system of 2J coalescing random walks indexed by their starting positions
{x(1)

1 , x
(1)
2 , ..., x

(J)
1 , x

(J)
2 } at time 0, if

x
(1)
1 < x

(1)
2 < · · · < x

(i)
1 < x

(i)
2 < · · · < x

(J)
1 < x

(J)
2 ,

and supi |x
(i)
1 −x

(i)
2 | ≤ M for some M > 0, then for any fixed time T > C2

0M2 with C0 satisfying
Lemma 5.2, the number of coalesced walks by time T stochastically dominates the sum of J
independent Bernoulli random variables {Y1, ..., YJ}, each with parameter 1 − C0M/

√
T . In

particular

P (the number of coalesced particles by time T is smaller than N)

≤ P

(
J∑

i=1

Yi ≤ N

)
.

Proof: To prove the lemma, we construct the system of coalescing random walks from the
system of independent walks. Given the trajectories of a system of independent walks starting
from positions {x(1)

1 , x
(1)
2 , ..., x

(J)
1 , x

(J)
2 } at time 0, the first time some walk, say x

(i)
1 , jumps to the

position of another walk, say x
(j)
2 , the walk x

(i)
1 is considered coalesced, i.e., from that time on,

it follows the same trajectory as walk x
(j)
2 , while the trajectory of walk x

(j)
2 remains unchanged.

Among the remaining distinct trajectories, we iterate this procedure until no more coalescing
takes place. Note that this construction is well defined, since almost surely no two random
walk jumps take place at the same time. The resulting collection of random walk trajectories is
distributed as a system of coalescing random walks.

In the above construction, almost surely, the number of coalesced walks by time T in the coa-
lescing system is bounded from below by the number of pairs {x(i)

1 , x
(i)
2 } (1 ≤ i ≤ J) for which

x
(i)
1 and x

(i)
2 meet before time T in the independent system. If x

(i)
1 meets x

(i)
2 in the independent

system at time t ≤ T , then in the coalescing system, either x
(i)
1 and x

(i)
2 haven’t coalesced with

other walks before time t, in which case the two will coalesce at time t; or one of the two walks
has coalesced with another walk before time t. In either case, whenever x

(i)
1 and x

(i)
2 meet in

the independent system, at least one of them will be coalesced in the coalescing system. The
asserted stochastic domination then follows by noting that Lemma 5.2 implies that each pair
{x(i)

1 , x
(i)
2 } has probability at least 1 − C0M/

√
T of meeting before time T in the independent

system. �
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Proposition 5.4. Let 1
2 < p < 1 be fixed. Consider a system of coalescing random walks starting

with at most γL particles inside an interval of length L at time 0. Let K0 = 64C2
0

(2p−1)4
, where C0 is

as in Lemma 5.2. If γL ≥ 8
2p−1 , then there exist constants C, c depending only on p such that,

the probability that the number of particles alive at time T = K0
γ2 is greater than pγL is bounded

above by Ce−cγL.

Proof: The basic idea is to apply Lemma 5.3 and large deviation bounds for Bernoulli random
variables. The choice of the constants K0 and T will become apparent in the proof.

Without loss of generality, we assume γL ∈ N. We only need to consider a system starting with
γL particles. If the initial number of particles is less than γL, we can always add extra particles
to the system which only increases the probability of having pγL particles survive by time T .

Let M be a positive integer to be determined later. Since the γL particles partition the interval
of length L into γL + 1 pieces, the number of adjacent pairs of particles of distance at most
M − 1 apart is at least γL− 1− L

M . Therefore the number of disjoint pairs of adjacent particles
of distance at most M − 1 apart is at least 1

2(γL− 2− L
M ). Each such pair coalesces before time

T with probability at least 1 − C0M/
√

T . By Lemma 5.3, the number of coalesced particles
stochastically dominates the sum of m := 1

2(γL− 2− L
M ) i.i.d. Bernoulli random variables with

parameter 1−C0M/
√

T , which we denote by Y1, · · · , Ym. If by time T , more than pγL particles
survive, then we must have

m∑
i=1

Yi ≤ (1− p)γL. (5.4)

Let p = 1+ε
2 with ε ∈ (0, 1), then we can rewrite (5.4) as

1
m

m∑
i=1

Yi ≤ (1− p)γL
1
2(γL− 2− L

M )
=

1− ε

1− 2
γL −

1
γM

. (5.5)

By our assumption 2
γL ≤ 1

4(2p−1) = ε
4 . If we choose M = 4

εγ , and let T = (2C0M
ε )2 = 64C2

0
ε4γ2 = K0

γ2 ,
then we have

1
m

m∑
i=1

Yi ≤
1− ε

1− ε/2
< 1− C0M/

√
T = 1− ε/2.

By standard large deviation estimates for Bernoulli random variables with parameter 1 − ε/2,
the probability of the event in (5.4) is bounded above by Ce−c′m for some C, c′ depending only
on p. Since m = 1

2(γL − 2 − L
M ) ≥ (1/2 − ε/4)γL by our choice of M and the assumption

γL ≥ 8
2p−1 , we have Ce−c′m ≤ Ce−c′(1/2−ε/4)γL = Ce−cγL, which concludes the proof of the

lemma. �

The next result allows us to carry out the first step in the chain argument of section 2.

Lemma 5.5. In the system of backward coalescing random walks {Xx,s}(x,s)∈Z×R dual to the
voter model, assume the random walk increment distribution p (·) has finite 3+ ε moment. Then
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there exists C > 0 depending only on p (·), such that for all K ≥ 1,

P
{

for some (x, s) ∈ [2kR, 2k+1R]× [0, R2],

|Xx,s
u − x| ≥ 2kR

(log R)2
for some 0 ≤ u ≤ s−Kbs− 1

K
c
}

is bounded above by
CK(log R)2(3+ε)

22k+3εRε

for all R sufficiently large.

Proof: Let Vx,s be the event as above but concerning only the random walk Xx,s
u , then denote

the event in the statement by V which is the union of Vx,s over all (x, s) ∈ [2kR, 2k+1R] ×
[0, R2]. Due to the coalescence, event V occurs only if Vx,s occurs either for some (x, s) with
s ∈ {K, 2K, · · · , bR2

K cK} ∪ {R2}, or for some (x, s) which is a Poisson point in the Harris
representation of the voter model detailed in Section 1. Therefore we can bound P (V ) by the
expected number of such points, which by the Strong Markov property of Poisson processes can
in turn be bounded by(

2kR(
R2

K
+ 1) + 2kR3

)
P

(
|Xu| ≥

2kR

(log R)2
for some 0 ≤ u ≤ K

)
,

where Xu is a random walk starting at the origin with transition probability p (·). By our
assumption that p (·) has finite 3 + ε moment, we can apply Lemma 5.1 and obtain

P (V ) ≤
(

2kR(
R2

K
+ 1) + 2kR3

)
C ·

e
−c( 2kR

log2 R
)1−β

+
K

( 2kR
log2 R

)3+ε

 ,

where C depends only on p (·). The Lemma then follows if we take R sufficiently large. �

We finish by stating a result on the lifetime of a single particle voter model.

Lemma 5.6. Let ζZ
t be the process of coalescing random walks starting from Z at time 0 where

all random walk increments are distributed according to a transition probability p(·) with finite
second moment. Then for all t > 0

P(0 ∈ ξZ
t ) ≤ C√

t

for some C > 0.

Proof: See Lemma 2.0.7 and the remark that follows it in [11].
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