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Abstract

Consider bond percolation on the square latticeZ2 where each edge is independently
open with probability p. For some positive constants p0 ∈ (0, 1), ε1 and ε2, the follow-
ing holds: if p > p0, then with probability at least 1− ε1

n4 there are at least ε2n
logn

disjoint

open left-right crossings in Bn := [0, n]2 each having length at most 2n, for all n ≥ 2.
Using the proof of the above, we obtain positive speed for first passage percolation
with independent and identically distributed edge passage times {t(ei)}i satisfying

E (log t(e1))
+ < ∞; namely, lim supn

Tpl(0,n)

n
≤ Q a.s. for some constant Q < ∞,

where Tpl(0, n) denotes the minimum passage time from the point (0, 0) to the line
x = n taken over all paths contained in Bn. Finally, we also obtain deviation corre-
sponding estimates for nonidentical passage times satisfying infiP(t(ei) = 0) > 1

2
.
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1 Introduction

Consider bond percolation in Z2 where each bond is independently open with prob-
ability p. A bond that is not open is said to be closed. For integer M ≥ 1 and ε > 0, let
Rn,ε(M) denote the rectangle [0, n]×[0, d(M log n)1+εe]. Here dxe represents the smallest
integer greater than x. All constants mentioned henceforth are independent of n. A path
Π = (e1, ..., et) of edges contained in Rn,ε(M) is said to be an open left-right crossing if
every ei is open and e1 intersects the left side of Rn,ε(M) and et touches the right side
of Rn,ε(M).

Proposition 1.1. Fix δ > 0 and ε > 0.

(i) If p > 1
2 , there are positive constants C1 = C1(p, δ, ε) so that with probability at least

1− C1

nδ
, there exists an open left-right crossing of Rn,ε(1), for all n ≥ 1.

(ii) If p > 2
3 , there are positive constants M2 = M2(p, δ) and C2 = C2(p, δ) so that with

probability at least 1 − C2

nδ
, there exists an open left-right crossing of Rn,0(M2), for all

n ≥ 1.

(iii) If p > p0 :=
(
1− 3−8

) 1
2 , there are positive constants M3 = M3(p, δ) and C3 =

C3(p, δ) so that with probability at least 1 − C3

nδ
, there exists an open left-right crossing

of Rn,0(M3) containing at most 2n edges, for all n ≥ 1.
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Disjoint crossings, positive speed and deviation estimates

The proof of (i) uses the exponential decay theorem for subcritical percolation (Chap-
ter 4, Bollobas and Riordan (2006)). For (ii), we use a contour argument without re-
sorting to the exponential decay theorem. Finally, we use oriented paths to control the
length of the crossings in (iii). For further analysis regarding critical values for oriented
percolation, we refer to Durrett (1984) and references therein.

The following result is a consequence of Proposition 1.1. For n ≥ 1, let Bn := [0, n]2.

Theorem 1.2. Fix δ > 0 and ε > 0 and let p0 be as in Proposition 1.1.
(i) If p > 1

2 , there are positive constants γ1 = γ1(p, δ, ε) and C1 = C1(p, δ, ε) so that with
probability at least 1 − C1

nδ
, there are at least γ1n

(logn)1+ε disjoint open left-right crossings
of Bn, for all n ≥ 2.

(ii) If p > 2
3 , there are positive constants γ2 = γ2(p, δ) and C2 = C2(p, δ) so that with

probability at least 1− C2

nδ
, there are at least γ2n

logn open left-right crossings of Bn, for all
n ≥ 2.

(iii) If p > p0, there are positive constants γ3 = γ3(p, δ) and C3 = C3(p, δ) so that with
probability at least 1 − C3

nδ
, there are at least γ3n

logn open left-right crossings of Bn, each
containing at most 2n edges, for all n ≥ 2.

As an application of Proposition 1.1, we obtain positive speed and deviation esti-
mates for first passage percolation.

1.1 First passage percolation

Consider the square lattice Z2 with edges {ei}i≥1. The passage times {t(ei)}i≥1 are
independent and identically distributed (i.i.d.) having the same distribution as a random
variable X. For a path π containing k edges g1, ..., gk, let T (π) :=

∑k
i=1 t(gi) denote its

passage time. Let Tll(0, n) = minπ T (π) be the minimum passage time from the line
x = 0 to the line x = n where the minimum is taken over all paths π contained in
Bn. Similarly, Tpl(0, n) and Tpp(0, n) = minπ T (π) be, respectively, the minimum passage
time from (0, 0) to the line x = n and from (0, 0) to (n, 0), again over all paths contained
in Bn. Clearly,

Tll(0, n) ≤ Tpl(0, n) ≤ Tpp(0, n) a.s.

We have the following result.

Theorem 1.3. If P(X <∞) = 1, there exists a finite constant Q1 ≥ 0 so that:
(i) lim supn

Tll(0,n)
n ≤ Q1 a.s.

If E(logX)+ <∞, there exists a finite constant Q2 ≥ 0 so that:

(ii) lim supn
Tpl(0,n)

n ≤ Q2 a.s.
(iii) For every ε > 0, we have

P

(
Tpp(0, n)

n
> Q2 + ε

)
−→ 0

as n→∞.
If EX <∞, then:
(iv) lim supn

Tpp(0,n)
n ≤ EX a.s.

If we think of n
Tpp(0,n)

, n
Tpl(0,n)

or n
Tll(0,n)

as the corresponding speed of first passage
percolation, then (i)-(iv) of the above result implies positive speed even if expected
passage time is not finite.

Suppose now the passage time is zero with large probability. It is then intuitive to
expect infinite speed and we have the following result.

Proposition 1.4. Suppose one of the following two conditions hold:
(i) P(X = 0) > 1

2 and EY 1+η <∞ for some η > 0, where Y = (logX)+.
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(ii) P(X = 0) > 2
3 and E(logX)+ <∞.

We have that Tpl(0,n)
n −→ 0 a.s. as n→∞ and Tpp(0,n)

n −→ 0 in probability as n→∞.

Finally, we obtain deviation estimates for first passage percolation with independent
passage times but not necessarily identically distributed.

Theorem 1.5. Suppose infiP(t(ei) = 0) > 1
2 and infiP(t(ei) <∞) = 1.

(i) We have Tll(0,n)
n −→ 0 a.s. as n→∞.

(ii) If supiEt(ei) <∞, then
ETpp(0, n) ≤ C1(log n)2 (1.1)

for all n ≥ 1 and for some positive constants β1 and C1. In particular, we have Tpp(0,n)
n −→

0 in probability as n→∞.
(iii) If supiEt(ei)

K <∞ for some K > 1, we have

P
(
Tpp(0, n) ≥ nβ2

)
≤ C2

nβ3
(1.2)

for all n ≥ 1 and for some positive constants β2 < min
(

1, 1
K−1

)
, β3 > 1 and C2. In

particular, we have Tpp(0,n)
n −→ 0 a.s. as n→∞.

(iv) If supiEe
st(ei) <∞ for some s > 0, we have

P
(
Tpp(0, n) ≥ β4(log n)3

)
≤ C3

nβ5
(1.3)

for all n ≥ 1 and for some positive constants β4, β5 > 1 and C3.

The proof of the above theorem uses Proposition 1.1(i) which in turn uses the expo-
nential decay theorem. If suppose infiP(t(ei) = 0) > 2

3 , the above result holds and is
also proved using Proposition 1.1(ii).

The paper is organized as follows: In Section 2, we prove Theorems 1.3 and 1.5
assuming Proposition 1.1. In Section 3, we prove Proposition 1.1.

2 Proof of Theorems 1.3 and 1.5

Proof of Theorem 1.3: We prove (iv) first. If EX < ∞, then the result follows from
strong law of large numbers since

Tb(0, n)

n
≤ 1

n

n∑
i=1

t(fi).

This proves (iv). We now prove (i)-(iii).
(i) Since P(X < ∞) = 1, we choose N large so that P(X ≤ N) > p0. For M ≥ 1

let R′n,0(M) = [0, n] × [1,M log n + 1] be the shifted rectangle. Also for i ≥ 1, let fi
denote the edge from (i − 1, 0) to (i, 0). We set an edge e in R′n,0(M) to be open if its
passage time t(e) ≤ N. Set δ = 2 in Proposition 1.1 and let An denote the event that the
rectangle R′n,0(M) contains an open left-right crossing containing less than 2n edges,
where M = M3 is as in Proposition 1.1(iii). Since we only need to hit the line x = n

from the line x = 0, we have that

Tll(0, n)

n
≤ 2N + Jn11(Acn) (2.1)

where Jn = 1
n

∑n
i=1 t(fi). Since P(Acn) ≤ C1

n2 for some positive constant C1, we have that∑
n≥1

P(Acn) <∞.
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Thus by Borel-Cantelli Lemma, we have that P(lim infnAn) = 1 and this implies that

Jn11(Acn) −→ 0 a.s. (2.2)

as n→∞. This proves (i) with Q1 = 2N.

To prove (ii)-(iii), we assume henceforth that X < ∞ a.s. and EX = ∞. Choose N
sufficiently large so that P(X ≤ N) > p0. Set the edge e to be open if t(e) ≤ N. Clearly
each edge is independently open with probability at least p0.

We prove (iii) first and obtain (ii) as a Corollary.
(iii) Let {h1,i}1≤i≤M logn+1 be the set of edges forming the left vertical side ofR′n,0(M)

and including the edge from (0, 0) to (0, 1). Similarly let {hn,i}1≤i≤M logn+1 be the set of
edges forming the right vertical side of R′n,0(M) and including the edge from (n, 0) to
(n, 1). We then have that

Tpp(0, n) = Tpp(0, n)11(An) + Tpp(0, n)11(Acn)

≤

∑
j=1,n

M logn+1∑
i=1

t(hj,i) + 2Nn

 11(An) +

(
n∑
i=1

t(fi)

)
11(Acn). (2.3)

Thus
Tpp(0, n)

n
≤ 2N + I1,n + I2,n + Jn11(Acn) (2.4)

where

I1,n =
1

n

M logn+1∑
i=1

t(h1,i), I2,n =
1

n

M logn+1∑
i=1

t(hn,i)

and Jn is as in (2.1). From (2.2), the third term goes to zero a.s. as n → ∞. For the
first two terms, we apply Feller’s theorem (Theorem 8.9, Durrett (2001)) with an =

exp
(
n−1
M

)
. Indeed for am ≤ n < am+1, we have

1

n

M logn+1∑
i=1

t(h1,i) ≤
1

am

m+1∑
i=1

t(h1,i) =
e1/M

am+1

m+1∑
i=1

t(h1,i)

so that

lim sup
n

I1,n ≤ e1/M lim sup
m

1

am

m∑
i=1

t(h1,i). (2.5)

Since

P (t(h1,n) > an) = P

(
logX >

n− 1

M

)
= P

(
(logX)+ >

n− 1

M

)
for n ≥ 2, we have that∑

n

P (t(h1,n) > an) =
∑
n

P
(
M(logX)+ + 1 > n

)
≤ME(logX)+ + 2.

Since E(logX)+ <∞, we have from Feller’s theorem that the right hand side of (2.5) is
zero a.s. This implies that

I1,n −→ 0 a.s. (2.6)

as n→∞. Since I1,n has the same distribution as I2,n we have that

I2,n −→ 0 in probability.

From (2.4), the result (iii) then follows with Q2 = 2N.
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(ii) The analysis is the same as above except that we obtain

Tpl(0, n)

n
≤ 2N + I1,n + Jn11(Acn) (2.7)

instead of (2.5), since we only need to hit the line x = n. From (2.6) and (2.2), the result
then follows.

Proof of Proposition 1.4: We prove (ii) using Proposition 1.1(ii). An analogous anal-
ysis holds for (i) using Proposition 1.1(i). Fix δ = 2 in Proposition 1.1(ii) and let An
denote the event that the rectangle R′n,0(M) defined in proof of Theorem 1.3 contains a
left-right crossing containing only edges with zero passage time. Here M = M2 is as in
Proposition 1.1(ii). Arguing as in the paragraph preceding (2.4), we get that

Tpp(0, n)

n
≤ I1,n + I2,n + Jn11(Acn)

where I1,n, I2,n and Jn are as in (2.4). The result follows by an analogous analysis
following (2.4).

Proof of Theorem 1.5: We consider the shifted rectangleR′n,1(M) = [1, n]×[1, (log n)2+

1]. Let An denote the event that R′n,1(M) has a left-right crossing consisting of edges
with zero passage times. Following an analogous analysis as preceding (2.3) we obtain

Tpp(0, n) ≤

∑
j=1,n

(logn)2+1∑
i=1

t(hj,i)

 11(An) +

(
n∑
i=1

t(fi)

)
11(Acn). (2.8)

(i) follows by an analogous analysis as Proposition 1.4.

(ii) For the estimate on ETpp(0, n), we obtain from (2.8) that

ETpp(0, n) ≤ (2(log n)2 + 2)Et(h1,1) + E

(
n∑
i=1

t(fi)11(Acn)

)

= (2(log n)2 + 2)Et(h1,1) + E

(
n∑
i=1

t(fi)

)
P(Acn)

≤ (2(log n)2 + 2)Et(h1,1) + nEt(f1)
C1

n

for some constant C1 > 0. The second equality is because Acn is independent of {t(fi)}i.
This proves (1.1) in (ii). The convergence in probability follows since 1

nETpp(0, n) −→ 0

as n→∞.
(iii) Let δ > 0 be fixed. From (2.3) and from the estimate on P(Acn) in Proposition 1.1

we then have for x > 0 that

P (Tpp(0, n) > 2x)

≤ P

∑
j=1,n

(logn)2+1∑
i=1

t(hj,i) > 2x

+
C

nδ

≤ P

 ⋃
j=1,n

(logn)2+1⋃
i=1

{
t(hj,i) >

x

(log n)2 + 1

}+
C

nδ
.

≤
∑
j,i

P
(
t(hj,i) > x((log n)2 + 1)−1

)
+
C

nδ
. (2.9)
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We now set δ = 2 and x = ((log n)2 + 1)nθ in (2.9). Here we choose θ > 0 so that
max(1,K − 1) < θ−1 < K. Thus from (2.9), we get

P
(
Tpp(0, n) > (2(log n)2 + 2)nθ

)
≤

∑
i,j

P
(
t(hi,j) > nθ

)
+
C

nδ

≤ (2(log n)2 + 2)
1

nθK
sup
i
Et(ei)

K +
C

nδ
. (2.10)

This proves (1.3) in (iii). Since θK > 1 and θ < 1, we obtain from (2.10) and Borel-
Cantelli Lemma that Tpp(0,n)

n −→ 0 a.s. as n→∞.
(iv) We set δ = 2 and x = 2δ1(log n)3 in (2.9). From (2.9), we get

P
(
Tpp(0, n) > 4δ1(log n)3

)
≤

∑
i,j

P
(
t(hi,j) > 2δ1(log n)3((log n)2 + 1)−1

)
+
C

nδ

≤
∑
i,j

P (t(hi,j) > δ1 log n) +
C

nδ

≤
∑
i,j

e−sδ1 lognEest(hi,j) +
C

nδ

≤ (2(log n)2 + 2)e−sδ1 logn sup
i
Eest(ei) +

C

nδ
,

where the second estimate follows from Markov inequality. Choosing δ1 large, proves
(iv).

3 Proof of Proposition 1.1

Proof of Proposition 1.1(i) : Fix a midpoint x of an edge in the bottom side of Rn,ε(M).

From exponential decay theorem (Chapter 4, Bollobas and Riordan (2006)), we know
that a closed dual top bottom crossing of Rn,ε(M) intersecting x occurs with probability

at most exp
(
−C1

(logn)1+ε

(log logn)2

)
for some constant C1 > 0. This is seen by considering the

(log n)1+ε × (log n)1+ε box B′n(x) centred at x. If there is a closed dual top bottom cross-
ing, then there is a closed dual path intersecting x and hitting the boundary of B′n(x).

Since there are at most n choices for x, we have that a closed dual top bottom crossing
occurs with probability at most

n exp

(
−C1

(log n)1+ε

(log log n)2

)
≤ n exp (−(δ + 2) log n)

for all n sufficiently large. Since a closed dual top-bottom crossing or an open left-right
crossing of Rn,ε(M) always must occur (Chapter 1, Bollobas and Riordan (2006)), we
have the result.

Proof of Proposition 1.1(ii) : We use a counting argument and again the fact that
either an open left-right crossing occurs or a closed dual top-bottom crossing occurs
but not both. As above, we fix a midpoint x of an edge at the bottom side of Rn,0(M) and
suppose that there is a dual top-bottom crossing of Rn,0(M) with length k ≥ M log n,

intersecting x. There are at most 4.3k−1 dual paths intersecting x and each is closed
with probability (1− p)k. Since there are at most n choices for x, we have that a closed
dual top bottom crossing occurs with probability at most

n
∑

k≥M logn

4.3k−1(1− p)k ≤ 1

nδ+1
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provided M is large. The sum above is convergent since 1 − p < 1
3 . Fixing such an M

proves the result.
Proof of Proposition 1.1(iii) : Fix p0 > 0 and p > p0. We use comparison with oriented

percolation. We draw oriented arrows from (i, j) to (i + 1, j − 1) and from (i, j) to
(i + 1, j + 1). To draw arrows from (i, j) to (i + 1, j − 1), we let S1 and S2 be the bonds
from (i, j) to (i, j − 1) and from (i, j − 1) to (i+ 1, j − 1), respectively. Let Ei denote the
event that Si is open. We draw arrow from (i, j) to (i + 1, j − 1) if E1 ∩ E2 holds. An
analogous procedure is used for drawing oriented arrows from (i, j) to (i+ 1, j + 1).

We have that Pp(E1 ∩ E2) = p2 ≥ p20. We start from the left side of Rn,0(M) and
continue this oriented percolation process iteratively. Let Por denote the corresponding
probability measure and let LRn denote the event that there exists an oriented left-
right crossing of Rn,0(M). If LRn occurs, there is an open left-right crossing of Rn,0(M)

containing at most 2n edges in the original bond percolation. Using a contour argument
as in Durrett (1984), we have that

Por(LRn) ≥ 1− 1

nδ+1

provided p0 and M are large. Fixing such a p0 and M establishes the result.
To obtain the estimate on Por(LRn), we let C denote the collection of all oriented

paths starting from the left side Eleft of Rn,0(M). Recall that we grow the cluster from
Eleft and for every vertex x ∈ C, there is an oriented path from Eleft to x. As in Durrett
(1984), we place a square S′′x on each vertex x ∈ Z2 of C. If x = (i, j), then S′′x has
endvertices (i, j−1), (i+1, j), (i, j+1) and (i−1, j). The edges of S′′x are oriented in such
a way that the square S′′x forms a clockwise oriented contour around x. If two oriented
edges in opposite directions coincide, they “cancel" each other and we draw nothing.
There is an outermost contour Π of ∪x∈CS′′x that is oriented clockwise and encloses Eleft.
Oriented arrows with at least one end-vertex in C and crossing Π are called boundary
arrows and we say such arrows were terminated in the cluster growing process.

Suppose that there is no oriented left-right crossing of Rn,0(M). Let zu and zf denote
the rightmost points of intersection of Π and the top and bottom edge of Rn,0(M),

respectively. Let Π1 denote the part of Π from zu to zf . The path Π1 is contained in
Rn,0(M). We write LRcn =

⋃
1≤j≤n−1Aj ∩LRcn, where Aj denotes the event that Π1 cuts

the horizontal segment [j−1, j]×{MKn} of the top edge of RintT . Suppose that Aj ∩LRcn
occurs and suppose that Π1 contains k ≥M log n oriented edges.

We count up and down arrows as in Durrett (1984) and obtain a subset Π2 of Π1

consisting of at least k
8 edges, each cutting a boundary arrow that was independently

terminated. Since the number of choices of Π1 is at most 4.3k−1 and each boundary
arrow was terminated with probability at most 1− p20, we obtain that

Por(Aj ∩ LRcn) ≤ 4
∑

k≥M logn

3k−1
(
1− p20

)k/8 ≤ e−αM logn

for all n sufficiently large and for some constant α > 0, provided
p0 > (1− 3−8)1/2. Fixing such an p0, we get that

Por(LR
c
n) =

∑
1≤j≤n−1

Por(Aj ∩ LRcn) ≤ ne−αM logn ≤ 1

nδ+1
,

provided M is large.
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