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Abstract

A coagulation model on a finite spatial grid is considered. Particles of discrete masses
jump randomly between sites and, while located at the same site, stick together according
to some coagulation kernel. The asymptotic behavior (for increasing particle numbers) of
this model is studied in the situation when the coagulation kernel grows sufficiently fast so
that the phenomenon of gelation is observed. Weak accumulation points of an appropriate
sequence of measure-valued processes are characterized in terms of solutions of a nonlinear
equation. A natural description of the behavior of the gel is obtained by using the one-
point compactification of the size space. Two aspects of the limiting equation are of special
interest. First, for a certain class of coagulation kernels, this equation differs from a naive
extension of Smoluchowski’s coagulation equation. Second, due to spatial inhomogeneity, an
equation for the time evolution of the gel mass density has to be added. The jump rates
are assumed to vanish with increasing particle masses so that the gel is immobile. Two
different gel growth mechanisms (active and passive gel) are found depending on the type of
the coagulation kernel.

Key words: Spatial coagulation model; post-gelation behavior; stochastic particle systems

AMS 2000 Subject Classification: Primary 60K40.

Submitted to EJP on June 2 2006, final version accepted September 18 2006.

893

http://www.math.washington.edu/~ejpecp/


1 Introduction

We consider a particle system(
xN

i (t), αN
i (t)

)
, i = 1, . . . , nN (t) , t ≥ 0 . (1.1)

The state space of a single particle is

Z = {1, 2, . . .} ×G , (1.2)

where G is a finite set of (spatial) locations. Particles jump between sites

(x, α) → (x, β)

according to some rate function and, while located at the same site, stick together

(x, α), (y, α) → (x+ y, α)

following stochastic rules determined by some coagulation kernel. The index N = 1, 2, . . .
denotes the number of monomers (units of size 1) in the system so that

nN (t)∑
i=1

xN
i (t) = N , ∀ t ≥ 0 . (1.3)

The discrete (both in space and size) model described above was used in [27] as an approximation
to the spatially continuous coagulation equation with diffusion

∂

∂t
c(t, k, r) = D(k) ∆r c(t, k, r)+ (1.4)

1
2

∑
x+y=k

K(x, y) c(t, x, r) c(t, y, r)− c(t, k, r)
∞∑

y=1

K(k, y) c(t, y, r) .

The solution c(t, k, r) is interpreted as the average number density of clusters of size k at time
t and position r . The symbol ∆r denotes the Laplace operator with respect to the position
variable, D(k) are size-dependent diffusion coefficients and K is the coagulation kernel. If there
is no dependence on r (spatial homogeneity), then the diffusion term disappears and equation
(1.4) reduces to Smoluchowski’s coagulation equation [30]

d

dt
c(t, k) = (1.5)

1
2

∑
x+y=k

K(x, y) c(t, x) c(t, y)− c(t, k)
∞∑

y=1

K(k, y) c(t, y) ,

when considering the specific kernel

K(x, y) =
(
x−1/3 + y−1/3

)(
x1/3 + y1/3

)
. (1.6)

894



Theoretical investigations of the gelation phenomenon go back to the paper [10] on conden-
sation polymerization. Flory studied the size distribution of polymers and established critical
conditions (in terms of a parameter called “extent of reaction”) for the formation of “infinitely
large” molecules (gel). Developing this approach, Stockmayer [26] pointed out a connection of
the polymer size distribution with equation (1.5), where

K(x, y) = [(f − 2)x+ 2] [(f − 2) y + 2] . (1.7)

Polymeric molecules (k-mers) are composed of k monomeric units. Each monomeric unit carries
f functional groups capable of reacting with each other. Thus, the kernel (1.7) represents the
number of possible links between x-mers and y-mers. Note that an equation with the commonly
used multiplicative kernel

K(x, y) = x y (1.8)

can be obtained from equation (1.5) with the kernel (1.7) in the limit f → ∞ , when time
is appropriately scaled. Stockmayer [26] argued with Flory about the correct post-gelation
behavior and proposed a solution different from Flory’s. Early reviews of the subject were given
in [11] and [12, Ch. IX]. An extended discussion of different solutions after the gel point and
corresponding modified equations can be found in [32] (f = 3) and [34] (f > 2). The paper [32]
contains a rather complete list of relevant earlier references.

Rigorous results concerning the derivation of the spatially inhomogeneous coagulation equation
(1.4) from systems of diffusing spherical particles, interacting at contact, were obtained in [18]
(constant kernel) and [24] (kernel (1.6)). Stochastic models of coagulation in the spatially
homogeneous case go back to [22], [14], [21]. In those papers the coagulation kernel, which
contains the information about the microscopic behavior of the physical system, is postulated.
An extended review of the subject was given in [2]. We also refer to the recent paper [13]
studying the spatially homogeneous case with rather general gelling kernels. When combining
the Marcus-Lushnikov approach with spatial inhomogeneity, particles coagulate with a certain
rate when they are close enough to each other (e.g., in the same cell). Convergence results for
such models with non-gelling kernels were obtained in [15] (bounded kernel) and [3] (sub-linear
kernel). The two-site case of the van Dongen model described above (with D(k) = 1 and kernel
(1.8)) was studied in [25]. Analytical results concerning the coagulation equation with diffusion
(1.4) (and references to earlier studies) can be found, e.g., in [19] and [20] (see also [8, Section 8]).

Equation (1.4) with constant diffusion coefficients D(k) = 1 and the multiplicative kernel (1.8)
was studied in [17]. The following equation for the gel mass density g(t, r) was suggested,

∂

∂t
g(t, r) = ∆r g(t, r) +R , (1.9)

where

R = lim
k→∞

k∑
x=1

∞∑
y=k−x+1

x2 c(t, x, r) y c(t, y, r) (1.10)

is a “Radon measure describing the rate of gel production”. Considering diffusion coefficients
D(k) vanishing sufficiently fast (with k → ∞) and the multiplicative kernel (1.8), van Dongen
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[27] proposed a modification of equation (1.4), namely

∂

∂t
c(t, k, r) = D(k) ∆r c(t, k, r)+ (1.11)

1
2

∑
x+y=k

x y c(t, x, r) c(t, y, r)− k c(t, k, r)

 ∞∑
y=1

y c(t, y, r) + g(t, r)

 ,
where the time evolution of the gel mass density is determined by the equation

∂

∂t
g(t, r) = g(t, r)

∞∑
k=1

k2 c(t, k, r) . (1.12)

The paper is organized as follows. In Section 2 the asymptotic behavior (as N → ∞) of the
particle system (1.1) is studied. Weak accumulation points of an appropriately scaled sequence
of measure-valued processes (based on (1.1)) are shown to be concentrated on the set of so-
lutions of a nonlinear equation. The results cover the situation, when the coagulation kernel
grows sufficiently fast so that the phenomenon of gelation is observed. Using the one-point
compactification of the size space and considering mass density instead of number density leads
to a natural description of the behavior of the gel under rather general assumptions on the co-
agulation kernel. Section 3 is concerned with properties of the limiting equation. Two aspects
are of special interest. First, for a certain class of coagulation kernels, this equation differs from
a naive extension of Smoluchowski’s coagulation equation (as, e.g., (1.11) compared to (1.4)).
Second, an equation for the time evolution of the gel mass density has to be added (as, e.g.,
(1.9) or (1.12)). Note that the second aspect is absent in the spatially homogeneous situation,
since the gel mass density is determined just as the mass defect of the solution c(t, k) . In the
spatially inhomogeneous situation the gel is distributed over different sites and gel equations
are of interest. In general, they describe both the spatial motion and the growth of the gel. In
this paper the case of vanishing diffusion coefficients is considered so that the gel is immobile.
The growth behavior depends on the kernel and is determined by terms of the type occurring
in (1.10) or (1.12). Finally, Section 4 contains most of the technical proofs.

2 Asymptotic behavior of the stochastic model

We represent the particle system (1.1) in form of measures

XN (t, dx, dα) =
1
N

nN (t)∑
i=1

xN
i (t) δ(xN

i (t),αN
i (t))(dx, dα) (2.1)

on the state space (1.2), where δz denotes the delta-measure concentrated in z ∈ Z . The
transition kernel of the corresponding jump process is

λN (µ,B) =
n∑

i=1

∑
β∈G

κ(xi, αi, β) 1B(J1(µ, i, β)) + (2.2)

1
2N

∑
1≤i6=j≤n

δαi,αj K(xi, xj , αi) 1B(J2(µ, i, j)) ,
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where 1B denotes the indicator function of a set B , δα,β is Kronecker’s symbol, κ and K are
non-negative functions on {1, 2, . . .} ×G2 and {1, 2, . . .}2 ×G , respectively, and

J1(µ, i, β) = µ+
1
N

[
xi δ(xi,β) − xi δ(xi,αi)

]
, (2.3)

J2(µ, i, j) = µ+
1
N

[
(xi + xj) δ(xi+xj ,αi) − xi δ(xi,αi) − xj δ(xj ,αj)

]
are jump transformations. The kernel (2.2) is defined on the state space of the process (2.1) (cf.
(1.2)),

EN = (2.4){
1
N

n∑
i=1

xi δ(xi,αi) : n ≥ 1 , (xi, αi) ∈ Z , i = 1, . . . , n ,
n∑

i=1

xi = N

}
.

It satisfies

λN (µ,EN ) =
n∑

i=1

∑
β∈G

κ(xi, αi, β) +
1

2N

∑
1≤i6=j≤n

δαi,αj K(xi, xj , αi)

≤ N

 sup
1≤x≤N, α∈G

∑
β∈G

κ(x, α, β) + sup
1≤x,y≤N, α∈G

K(x, y, α)

 .
The pathwise behavior of the process in terms of particles is obtained from the kernel (2.2). The
jump process is regular, since the kernel is bounded.

Consider the space

Z ′ = ({1, 2, . . .} ∪ {∞})×G , (2.5)

where {1, 2, . . .} ∪ {∞} is the one-point compactification of {1, 2, . . .} . Continuous functions
ϕ ∈ C(Z ′) are functions on Z (cf. (1.2)) with finite limits

ϕ(∞, α) := lim
x→∞

ϕ(x, α) , ∀α ∈ G . (2.6)

Let P(Z ′) denote the space of probability measures on Z ′ equipped with the topology of weak
convergence. For ϕ ∈ C(Z ′) and µ ∈ P(Z ′) , we introduce the notations

〈ϕ, µ〉 =
∫
Z′
ϕ(x, α)µ(dx, dα)

and

G(ϕ, µ) =
∫
Z′

∑
β∈G

κ(x, α, β)
[
ϕ(x, β)− ϕ(x, α)

]
µ(dx, dα) +

1
2

∫
Z′

∫
Z′
δα,β Fϕ(x, y, α)µ(dx, dα)µ(dy, dβ) , (2.7)

where

Fϕ(x, y, α) = (2.8)
K(x, y, α)

x y

[
(x+ y)ϕ(x+ y, α)− xϕ(x, α)− y ϕ(y, α)

]
, x, y <∞ ,
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and

Fϕ(∞, y, α) =
[
ϕ(∞, α)− ϕ(y, α)

]
lim

x→∞

K(x, y, α)
x

,

Fϕ(x,∞, α) = Fϕ(∞, x, α) , Fϕ(∞,∞, α) = 0 , (2.9)

κ(∞, α, β) = lim
x→∞

κ(x, α, β) .

Theorem 2.1. Assume

lim
x→∞

κ(x, α, β) = 0 , ∀α, β ∈ G . (2.10)

Let K be symmetric and such that

lim
x→∞

K(x, y, α)
x

<∞ , ∀α ∈ G , y = 1, 2, . . . , (2.11)

and

max
α∈G

K(x, y, α) ≤ CK x y , ∀x, y = 1, 2, . . . , (2.12)

for some CK > 0 . Assume

XN (0) ⇒ ν0 for some ν0 ∈ P(Z ′) , (2.13)

where the sign ⇒ denotes convergence in distribution.

Then the processes (2.1) form a relatively compact sequence of random variables with values in
D([0,∞),P(Z ′)) , where D denotes the Skorokhod space of right-continuous functions with left
limits. Every weak accumulation point X solves, almost surely, the limiting equation

〈ϕ,X(t)〉 = 〈ϕ, ν0〉+
∫ t

0
G(ϕ,X(s)) ds , ∀ t ≥ 0 , (2.14)

for all ϕ such that (cf. Remark 2.2)

ϕ(x, α) = c0(ϕ, α) , ∀x ≥ x̄(ϕ) , α ∈ G . (2.15)

Moreover, X is almost surely continuous.

Remark 2.2. Condition (2.15) means that the test functions are constant for sufficiently large
arguments, which is stronger than just continuity (cf. (2.6)).

Remark 2.3. Continuity of G(ϕ, µ) with respect to µ follows from the continuity of the functions
κ and Fϕ . The function κ is continuous, according to (2.10). The function (2.8), (2.9) is
continuous if (2.11) holds and ϕ has the form (2.15).

Remark 2.4. Note that (2.12) does not follow from (2.11). Indeed, consider the kernel
K(x, y) = x3 , if x = y , and 1 , otherwise.
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Remark 2.5. The measure-valued process (2.1) represents the particle mass concentration. It
counts the number of monomers (mass) of particles of a given size instead of the number of parti-
cles of a given size (particle number concentration) considered, e.g., in [5]. Note that the under-
lying particle process (1.1) has the “direct simulation” dynamics, not the “mass flow” dynamics
considered, e.g., in [4] and [31, Sect. 3]. The process (2.1) turned out to be most appropriate for
studying the post-gelation behavior.

Remark 2.6. Theorem 2.1 implies existence of solutions of equation (2.14). Very little is known
about uniqueness of post-gelation solutions. However, in Section 3 properties are obtained for
any solution of the limiting equation. One particular uniqueness result will be mentioned in
Section 3.3.1.

3 Properties of the limiting equation

Let

ν ∈ C([0,∞),P(Z ′)) (3.1)

be any solution of equation (2.14) (cf. Remark 2.6 and (2.5)).

3.1 Derivation of strong equations

Expression (2.7) takes the form

G(ϕ, µ) =
∞∑

x=1

∑
α,β∈G

κ(x, α, β)
[
ϕ(x, β)− ϕ(x, α)

]
µ(x, α) +

∑
α,β∈G

κ(∞, α, β)
[
ϕ(∞, β)− ϕ(∞, α)

]
µ(∞, α) +

1
2

∞∑
x,y=1

∑
α∈G

Fϕ(x, y, α)µ(x, α)µ(y, α) +

1
2

∑
α∈G

Fϕ(∞,∞, α)µ(∞, α)µ(∞, α) +

1
2

∞∑
y=1

∑
α∈G

Fϕ(∞, y, α)µ(∞, α)µ(y, α) +

1
2

∞∑
x=1

∑
α∈G

Fϕ(x,∞, α)µ(∞, α)µ(x, α) .
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Taking into account symmetry of K (and therefore Fϕ), (2.9) and (2.10), one obtains

G(ϕ, µ) =
∞∑

x=1

∑
α 6=β

κ(x, α, β)
[
ϕ(x, β)− ϕ(x, α)

]
µ(x, α)+ (3.2)

1
2

∞∑
x,y=1

∑
α∈G

K(x, y, α)
x y

[
(x+ y)ϕ(x+ y, α)− xϕ(x, α)− y ϕ(y, α)

]
×

µ(x, α)µ(y, α) +
∞∑

y=1

∑
α∈G

[ϕ(∞, α)− ϕ(y, α)] K̃(∞, y, α)µ(∞, α)µ(y, α) ,

where (cf. (2.11))

K̃(∞, y, α) = lim
x→∞

K(x, y, α)
x

. (3.3)

Remark 3.1. The solution (3.1) satisfies equation (2.14) for any test function ϕ of the form

dk,γ(x, α) = δk,x δγ,α , dk,γ(∞, α) = 0 (3.4)

and

ψk,γ(x, α) = 1[k,∞)(x) δγ,α , ψk,γ(∞, α) = δγ,α , (3.5)

where k = 1, 2, . . . and γ ∈ G , since these functions satisfy (2.15).

3.1.1 Sol equations

One obtains from (3.2), with ϕ of the form (3.4), that

G(dk,γ , µ) =
∑
α 6=γ

κ(k, α, γ)µ(k, α)−
∑
β 6=γ

κ(k, γ, β)µ(k, γ)+

1
2

∑
x+y=k

K(x, y, γ)
x y

(x+ y)µ(x, γ)µ(y, γ)−

1
2

∞∑
y=1

K(k, y, γ)
k y

k µ(k, γ)µ(y, γ)−

1
2

∞∑
x=1

K(x, k, γ)
x k

k µ(x, γ)µ(k, γ)− K̃(∞, k, γ)µ(∞, γ)µ(k, γ)

=
∑
α 6=γ

κ(k, α, γ)µ(k, α)− µ(k, γ)
∑
β 6=γ

κ(k, γ, β) +

k

2

∑
x+y=k

K(x, y, γ)
x y

µ(x, γ)µ(y, γ)−

µ(k, γ)

[ ∞∑
x=1

K(x, k, γ)
x

µ(x, γ) + K̃(∞, k, γ)µ(∞, γ)

]
. (3.6)
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Equation (2.14), with the representation (3.6), provides the sol equations

ν(t, k, γ) = ν(0, k, γ) +
∫ t

0

[∑
α 6=γ

κ(k, α, γ) ν(s, k, α)−

ν(s, k, γ)
∑
β 6=γ

κ(k, γ, β) +
k

2

k−1∑
x=1

K(x, k − x, γ)
x (k − x)

ν(s, x, γ) ν(s, k − x, γ)−

ν(s, k, γ)
∞∑

x=1

K(x, k, γ)
x

ν(s, x, γ)− ν(s, k, γ) K̃(∞, k, γ) ν(s,∞, γ)

]
ds ,

∀ t ≥ 0 , k = 1, 2, . . . , γ ∈ G . (3.7)

3.1.2 Gel equations

Now we are going to obtain equations for ν(t,∞, γ) , γ ∈ G . Note that

ν(t,∞, γ) = lim
k→∞

〈ψk,γ , ν(t)〉 , ∀ t ≥ 0 , (3.8)

where the functions ψk,γ are defined in (3.5). The starting point is the system of equations (cf.
Remark 3.1)

〈ψk,γ , ν(t)〉 = 〈ψk,γ , ν(0)〉+
∫ t

0
G(ψk,γ , ν(s)) ds ,

∀ t ≥ 0 , k = 1, 2, . . . . (3.9)

It follows from (3.8) and (3.9) that

∃ lim
k→∞

∫ t

0
G(ψk,γ , ν(s)) ds . (3.10)
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One obtains from (3.2), with ϕ of the form (3.5), that

G(ψk,γ , µ) =
∞∑

x=k

∑
α 6=γ

κ(x, α, γ)µ(x, α)− µ(x, γ)
∑
β 6=γ

κ(x, γ, β)

+

1
2

k−1∑
x=1

k−1∑
y=k−x

K(x, y, γ)
x y

(x+ y)µ(x, γ)µ(y, γ) +

1
2

k−1∑
x=1

∞∑
y=k

K(x, y, γ)
x y

xµ(x, γ)µ(y, γ) +

1
2

k−1∑
y=1

∞∑
x=k

K(x, y, γ)
x y

y µ(x, γ)µ(y, γ) + µ(∞, γ)
k−1∑
y=1

K̃(∞, y, γ)µ(y, γ)

=
∞∑

x=k

∑
α 6=γ

κ(x, α, γ)µ(x, α)− µ(x, γ)
∑
β 6=γ

κ(x, γ, β)

+

k−1∑
x=1

k−1∑
y=k−x

K(x, y, γ)
y

µ(x, γ)µ(y, γ) +

k−1∑
x=1

∞∑
y=k

K(x, y, γ)
y

µ(x, γ)µ(y, γ) + µ(∞, γ)
k−1∑
y=1

K̃(∞, y, γ)µ(y, γ)

=
∞∑

x=k

∑
α 6=γ

κ(x, α, γ)µ(x, α)− µ(x, γ)
∑
β 6=γ

κ(x, γ, β)

+ (3.11)

k−1∑
x=1

µ(x, γ)
∞∑

y=k−x

K(x, y, γ)
y

µ(y, γ) + µ(∞, γ)
k−1∑
y=1

K̃(∞, y, γ)µ(y, γ) .

Since

S1(k, γ, µ) :=
∞∑

x=k

∑
α 6=γ

κ(x, α, γ)µ(x, α)− µ(x, γ)
∑
β 6=γ

κ(x, γ, β)


satisfies (cf. (2.10))

|S1(k, γ, µ)| ≤ 2 max
x≥1

∑
α,β∈G

κ(x, α, β) <∞ ,

the dominated convergence theorem implies

lim
k→∞

∫ t

0
S1(k, γ, ν(s)) ds =

∫ t

0
lim

k→∞
S1(k, γ, ν(s)) ds = 0 . (3.12)

Since

S2(k, γ, µ) := µ(∞, γ)
k−1∑
y=1

K̃(∞, y, γ)µ(y, γ)
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is non-decreasing in k and

S(k, γ, µ) :=
k−1∑
x=1

µ(x, γ)
∞∑

y=k−x

K(x, y, γ)
y

µ(y, γ) (3.13)

is non-negative, it follows from (3.10)–(3.12) that

∃ lim
k→∞

∫ t

0
S2(k, γ, ν(s)) ds = (3.14)∫ t

0
ν(s,∞, γ)

∞∑
y=1

K̃(∞, y, γ) ν(s, y, γ) ds <∞ .

Finally, it follows from (3.10)–(3.12) and (3.14) that

∃ lim
k→∞

∫ t

0
S(k, γ, ν(s)) ds <∞ . (3.15)

Thus, one obtains from (3.8), (3.9) and (3.11)–(3.15) the gel equations

ν(t,∞, γ) = ν(0,∞, γ) +
∫ t

0
ν(s,∞, γ)

∞∑
y=1

K̃(∞, y, γ) ν(s, y, γ) ds+

lim
k→∞

∫ t

0

k−1∑
x=1

ν(s, x, γ)
∞∑

y=k−x

K(x, y, γ)
y

ν(s, y, γ)

 ds ,
∀ t ≥ 0 , γ ∈ G . (3.16)

Remark 3.2. The case ν(0,∞, γ) > 0 (for some γ ∈ G) is covered by Theorem 2.1.

3.2 Properties of the gel solution

Taking into account (3.14) and (3.15), one concludes from (3.16) that

ν(t,∞, γ) = ν(u,∞, γ) +
∫ t

u
ν(s,∞, γ)

∞∑
y=1

K̃(∞, y, γ) ν(s, y, γ) ds+

lim
k→∞

∫ t

u
S(k, γ, ν(s)) ds , ∀ 0 ≤ u ≤ t . (3.17)

According to (3.17), the growth of the gel may originate from two different sources. In the case
K̃ = 0 (cf. (3.3)), the gel is “passive” and grows due to the “gel production term”

lim
k→∞

∫ t

u
S(k, γ, ν(s)) ds = (3.18)

lim
k→∞

∫ t

u

k−1∑
x=1

ν(s, x, γ)
∞∑

y=k−x

K(x, y, γ)
y

ν(s, y, γ)

 ds ,
903



which depends only on the sol solution. In the case K̃ > 0 , the gel “actively” collects mass from
the sol solution, according to the term∫ t

u
ν(s,∞, γ)

∞∑
y=1

K̃(∞, y, γ) ν(s, y, γ) ds .

It turns out that the gel production term (3.18) vanishes in the active gel case (under some
additional assumptions).

3.2.1 Estimates of the gel production term

Here we study the behavior of the term (3.18). The proofs of the lemmas will be given in
Section 4.

First we find sufficient conditions assuring a vanishing gel production term.

Lemma 3.3. Let 0 ≤ u < t and γ ∈ G . Assume the kernel satisfies

K(x, y, γ) ≤ C xy , ∀x, y = 1, 2, . . . ,

for some C > 0 . If

∞∑
y=1

y ν(u, y, γ) < ∞ ,

then

lim
k→∞

S(k, γ, ν(u)) = 0 . (3.19)

Moreover, if the sol solution satisfies

∫ t

u

 ∞∑
y=1

y ν(s, y, γ)

 ds < ∞ , (3.20)

then

lim
k→∞

∫ t

u
S(k, γ, ν(s)) ds = 0 . (3.21)

Lemma 3.4. Let 0 ≤ u < t and γ ∈ G . Assume the kernel satisfies

K(x, y, γ) ≤ C [x ya + xa y] , ∀x, y = 1, 2, . . . ,

for some C > 0 and a ∈ [0, 1] . If

∞∑
y=1

ya ν(u, y, γ) <∞ and lim
y→∞

y ν(u, y, γ) = 0 ,
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then (3.19) holds. Moreover, if the sol solution satisfies

∫ t

u

 ∞∑
y=1

ya ν(s, y, γ)

 ds < ∞ (3.22)

and

lim
y→∞

[
y sup

s∈[u,t]
ν(s, y, γ)

]
= 0 , (3.23)

then (3.21) holds.

Lemma 3.5. Let 0 ≤ u < t and γ ∈ G . Assume the kernel satisfies

K(x, y, γ) ≤ C [xa yb + xb ya] , ∀x, y = 1, 2, . . . ,

for some C > 0 and a, b ∈ [0, 1] .

(i) Assume

ν(u, y, γ) ≤ C̃ yβ , ∀ y = 1, 2, . . . ,

for some C̃ > 0 and β < −1 . Then

sup
k
S(k, γ, ν(u)) <∞ if β ≤ −a+ b+ 1

2

and

lim
k→∞

S(k, γ, ν(u)) = 0 if β < −a+ b+ 1
2

.

(ii) Assume the sol solution satisfies

ν(s, y, γ) ≤ C̃(s) yβ , ∀ s ∈ [u, t] , y = 1, 2, . . . ,

for some β < −1 , where ∫ t

u
C̃(s)2 ds <∞ .

Then ∫ t

u
sup

k
S(k, γ, ν(s)) ds <∞ if β ≤ −a+ b+ 1

2

and ∫ t

u
lim sup

k→∞
S(k, γ, ν(s)) ds = 0 if β < −a+ b+ 1

2
. (3.24)
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Remark 3.6. Note that (3.24) implies (3.21). If a = b = 1 and β < −2 , then Lemma 3.5
follows from Lemma 3.3. If a = 1 and β < −1− b , then Lemma 3.5 follows from Lemma 3.4.

Finally, we provide conditions assuring a non-vanishing gel production term.

Lemma 3.7. Let 0 ≤ u < t and γ ∈ G . Assume the kernel satisfies

K(x, y, γ) ≥ C [xa yb + xb ya] , ∀x, y = 1, 2, . . . ,

for some C > 0 and a, b ∈ [0, 1] : a+ b > 1 .

(i) Assume

ν(u, y, γ) ≥ C̃ yβ , ∀ y = 1, 2, . . . ,

for some C̃ > 0 and β < −1 . Then

lim inf
k→∞

S(k, γ, ν(u)) > 0 if β = −a+ b+ 1
2

,

and

lim
k→∞

S(k, γ, ν(u)) = ∞ if − a+ b+ 1
2

< β < −1 .

(ii) Assume the sol solution satisfies

ν(s, y, γ) ≥ C̃(s) yβ , ∀ s ∈ [u, t] , y = 1, 2, . . . , (3.25)

for some β < −1 , where ∫ t

u
C̃(s)2 ds > 0 . (3.26)

Then ∫ t

u
lim inf
k→∞

S(k, γ, ν(s)) ds > 0 if β = −a+ b+ 1
2

, (3.27)

and ∫ t

u
lim inf
k→∞

S(k, γ, ν(s)) ds = ∞ if − a+ b+ 1
2

< β < −1 . (3.28)

Remark 3.8. Since∫ t

0
lim inf
k→∞

S(k, γ, ν(s)) ds ≤ lim inf
k→∞

∫ t

0
S(k, γ, ν(s)) ds , (3.29)

according to Fatou’s lemma, (3.27) and (3.28) imply

lim
k→∞

∫ t

u
S(k, γ, ν(s)) ds > 0

and

lim
k→∞

∫ t

u
S(k, γ, ν(s)) ds = ∞ , (3.30)

respectively. Note that (3.30) contradicts (3.15) so that (3.25), (3.26) can not be fulfilled if

− a+ b+ 1
2

< β < −1 .
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3.2.2 Active gel case

Here we provide sufficient conditions assuring that the gel solution satisfies the equation

ν(t,∞, γ) = ν(τ(γ),∞, γ)+ (3.31)∫ t

τ(γ)
ν(s,∞, γ)

∞∑
y=1

K̃(∞, y, γ) ν(s, y, γ) ds , ∀ t ≥ τ(γ) ,

where

τ(γ) := inf{t > 0 : ν(t,∞, γ) > 0} , γ ∈ G . (3.32)

Note that ν(t,∞, γ) is non-decreasing in t , according to (3.17). Moreover, the gel solution
satisfies

ν(s,∞, γ) = 0 , ∀ s < τ(γ) , ν(s,∞, γ) > 0 , ∀ s > τ(γ) . (3.33)

Theorem 3.9. Let γ ∈ G . Assume the kernel satisfies

K(x, y, γ) ≤ C xy , ∀x, y = 1, 2, . . . ,

and (cf. (3.3))

K̃(∞, y, γ) ≥ C̃ y , ∀ y = 1, 2, . . . , (3.34)

for some C, C̃ > 0 . Then the gel solution satisfies (3.31).

Theorem 3.10. Let γ ∈ G . Assume the kernel satisfies

K(x, y, γ) ≤ C [x ya + xa y] , ∀x, y = 1, 2, . . . ,

and

K̃(∞, y, γ) ≥ C̃ ya , ∀ y = 1, 2, . . . , (3.35)

for some C, C̃ > 0 and a ∈ [0, 1] . If the sol solution is such that

lim
y→∞

[
y sup

s∈[u,t]
ν(s, y, γ)

]
= 0 , ∀ t > u ≥ 0 : ν(u+,∞, γ) > 0 , (3.36)

then the gel solution satisfies (3.31).

The proof of the theorems is based on the following lemma.

Lemma 3.11. If

ν(u+,∞, γ) > 0 , for some u ≥ 0 , (3.37)

implies

lim
k→∞

∫ t

u
S(k, γ, ν(s)) ds = 0 , ∀ t > u , (3.38)

then the gel solution satisfies (3.31).
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Proof. It follows from (3.17) that

ν(t,∞, γ) = ν(τ(γ),∞, γ) +
∫ t

τ(γ)
ν(s,∞, γ)

∞∑
y=1

K̃(∞, y, γ) ν(s, y, γ) ds+

lim
k→∞

∫ t

τ(γ)
S(k, γ, ν(s)) ds , ∀ t ≥ τ(γ) . (3.39)

If ν(τ(γ)+,∞, γ) > 0 , then (3.31) follows from (3.39) and (3.38). It follows from (3.39) that

ν(τ(γ)+,∞, γ) = ν(τ(γ),∞, γ) + lim
δ→0

lim
k→∞

∫ τ(γ)+δ

τ(γ)
S(k, γ, ν(s)) ds . (3.40)

If ν(τ(γ)+,∞, γ) = 0 , then (3.39) and (3.40) imply

ν(t,∞, γ) =
∫ t

τ(γ)
ν(s,∞, γ)

∞∑
y=1

K̃(∞, y, γ) ν(s, y, γ) ds+

lim
δ→0

lim
k→∞

∫ t

τ(γ)+δ
S(k, γ, ν(s)) ds , ∀ t > τ(γ) ,

so that (3.31) follows from (3.33) and (3.38). �

Proof of Theorem 3.9. The theorem follows from Lemma 3.11. Indeed, (3.37) implies

∫ t

u

 ∞∑
y=1

K̃(∞, y, γ) ν(s, y, γ)

 ds <∞ , ∀ t > u , (3.41)

according to (3.14). It follows from (3.41) and (3.34) that

∫ t

u

 ∞∑
y=1

y ν(s, y, γ)

 ds <∞ , ∀ t > u .

Thus, (3.38) is a consequence of Lemma 3.3. �

Proof of Theorem 3.10. The theorem follows from Lemma 3.11. Indeed, (3.37) implies

∫ t

u

 ∞∑
y=1

ya ν(s, y, γ)

 ds < ∞ , ∀ t > u ,

according to (3.14) and (3.35). Thus, (3.38) is a consequence of (3.36) and Lemma 3.4. �

3.2.3 Continuity

It follows from (3.1) that the functions ν(t, x, γ) are continuous in t , for any finite x and γ ∈ G .
Here we provide sufficient conditions for the continuity of ν(t,∞, γ) .
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Lemma 3.12. If the sol solution is such that∫ t

0
lim sup

k
S(k, γ, ν(s)) ds < ∞ , ∀ t ≥ 0 ,

then ν(t,∞, γ) is continuous in t .

Note that ∫ t

0
lim inf
k→∞

S(k, γ, ν(s)) ds < ∞ , ∀ t ≥ 0 ,

according to (3.29) and (3.15).

Lemma 3.12 is an immediate consequence of the following slightly more general result.

Lemma 3.13. If∫ t

t−ε
lim sup

k
S(k, γ, ν(s)) ds < ∞ , for t > 0 and some ε ∈ (0, t) ,

then ν(t−,∞, γ) = ν(t,∞, γ) . If∫ t+ε

t
lim sup

k
S(k, γ, ν(s)) ds < ∞ , for some ε > 0 ,

then ν(t,∞, γ) = ν(t+,∞, γ) .

Proof. It follows from (3.17) that

ν(t,∞, γ) = ν(t−,∞, γ) + lim
δ→0

lim
k→∞

∫ t

t−δ
S(k, γ, ν(s)) ds , ∀ t > 0 ,

and

ν(t+,∞, γ) = ν(t,∞, γ) + lim
δ→0

lim
k→∞

∫ t+δ

t
S(k, γ, ν(s)) ds , ∀ t ≥ 0 .

Since

lim
k→∞

∫ t

u
S(k, γ, ν(s)) ds ≤

∫ t

u
lim sup

k→∞
S(k, γ, ν(s)) ds ∀ 0 ≤ u ≤ t ,

the assertions follow. �

3.3 Spatially homogeneous case

Let |G| denote the size of the grid. In the case |G| = 1 , when all particles are located at the
same site, the sol equations (3.7) are sufficient to describe the evolution of ν , since

ν(t,∞) = 1−
∞∑

k=1

ν(t, k) . (3.42)

In the case |G| > 1 (with κ > 0), equations for ν(t,∞, γ) , γ ∈ G , are necessary, since there is
mass exchange between different sites. However, even in the spatially homogeneous case the gel
equation (3.16) provides additional insight into the gelation phenomenon.
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3.3.1 Modified coagulation equations

Here we derive some versions of the limiting equation (2.14) that have been previously studied
in the literature.

Weak equations

Equation (2.14) holds, in particular, for ϕ ∈ Cc(Z) . It takes the form (cf. (2.7)–(2.9), (3.42))

〈ϕ,X(t)〉 = 〈ϕ, ν0〉+
1
2

∫ t

0

∫
Z

∫
Z

K(x, y)
x y

× (3.43)[
(x+ y)ϕ(x+ y)− xϕ(x)− y ϕ(y)

]
X(s, dx)X(s, dy) ds

−
∫ t

0

(∫
Z
ϕ(x)

[
lim

y→∞

K(x, y)
y

]
X(s, dx)

)
[1−X(s,Z)] ds .

Introducing the notations xC(t, dx) = X(t, dx) and ψ(x) = xϕ(x) , one obtains from (3.43)

〈ψ,C(t)〉 = 〈ψ,C0〉+ (3.44)
1
2

∫ t

0

∫
Z

∫
Z
K(x, y)

[
ψ(x+ y)− ψ(x)− ψ(y)

]
C(s, dx)C(s, dy) ds

−
∫ t

0

(∫
Z
ψ(x)

[
lim

y→∞

K(x, y)
y

]
C(s, dx)

)[
1−

∫
Z
xC(s, dx)

]
ds ,

which is a discrete version of the “modified Smoluchowski equation” in [13, Eq. (2.5)].

If the kernel has the form K(x, y) = f(x) y , for sufficiently large y , where f(x) = M x , for
some M > 0 and sufficiently large x , then (3.44) takes the form

〈ψ,C(t)〉 = 〈ψ,C0〉+
1
2

∫ t

0

∫
Z

∫
Z
K(x, y)

[
ψ(x+ y)− ψ(x)− ψ(y)

]
C(s, dx)C(s, dy) ds

−
∫ t

0

(∫
Z
ψ(x) f(x)C(s, dx)

)[
1−

∫
Z
xC(s, dx)

]
ds ,

which is a discrete version of the “modification of Smoluchowski’s equation” in [23, Eq. (2.6)].
A uniqueness result for that equation is established in [23, Th. 2.3].

Strong equations

Equations (3.7) take the form (cf. (3.42))

∂

∂t
ν(t, k) =

k

2

k−1∑
x=1

K(x, k − x)
x (k − x)

ν(t, x) ν(t, k − x)− (3.45)

ν(t, k)
∞∑

x=1

K(x, k)
x

ν(t, x)− ν(t, k) K̃(∞, k)

[
1−

∞∑
x=1

ν(t, x)

]

910



and, with the notations ν(t, k) = k c(t, k) ,

∂

∂t
c(t, k) =

1
2

k−1∑
x=1

K(x, k − x) c(t, x) c(t, k − x)− (3.46)

c(t, k)
∞∑

x=1

K(x, k) c(t, x)− c(t, k) K̃(∞, k)

[
1−

∞∑
x=1

x c(t, x)

]
.

If the kernel has the form

K(x, y) = x ya + xa y ,

then the negative terms on the right-hand side of (3.46) are (in the case a ∈ [0, 1))

c(t, k) ka
∞∑

x=1

x c(t, x)+ (3.47)

c(t, k) k
∞∑

x=1

xa c(t, x) + c(t, k) ka

[
1−

∞∑
x=1

x c(t, x)

]

and (in the case a = 1)

2 c(t, k) k
∞∑

x=1

x c(t, x) + 2 c(t, k) k

[
1−

∞∑
x=1

x c(t, x)

]
. (3.48)

According to (3.47), (3.48), one obtains from (3.46) (in the case a ∈ [0, 1))

∂

∂t
c(t, k) = (3.49)

1
2

k−1∑
x=1

K(x, k − x) c(t, x) c(t, k − x)− c(t, k) k
∞∑

x=1

xa c(t, x)− c(t, k) ka

and (in the case a = 1)

∂

∂t
c(t, k) =

1
2

k−1∑
x=1

K(x, k − x) c(t, x) c(t, k − x)− 2 c(t, k) k . (3.50)

Equations (3.49) and (3.50) are discrete versions of the “modified coagulation equation” in [7,
Eq. (1.10)].

3.3.2 Multiplicative kernel

Here we illustrate some of the results in the special case (1.8), which has been extensively studied
in the literature.
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Properties of the solution

The sol equations (3.7) take the form (cf. (3.45))

∂

∂t
ν(t, k) =

k

2

k−1∑
x=1

ν(t, x) ν(t, k − x)− k ν(t, k) . (3.51)

The unique solution of (3.51), with monodisperse initial conditions, is

ν(t, k) =
kk−1

k!
tk−1 e−k t , t ≥ 0 . (3.52)

Using Stirling’s formula

√
2π kk+ 1

2 e−k+ 1
12k+1 < k! <

√
2π kk+ 1

2 e−k+ 1
12k (3.53)

one obtains

1
√

2π t e
1

12k

k−
3
2 e−k (t−1−log t) < (3.54)

ν(t, k) <
1

√
2π t e

1
12k+1

k−
3
2 e−k (t−1−log t) .

Note that the function f(t) = t− 1− log t satisfies f ′(t) = 1− 1
t and

f(t) > 0 , ∀ t 6= 1 , f(1) = 0 .

In particular, it follows that the moments

mε(t) :=
∞∑

y=1

yε ν(t, y) , ε ≥ 0 , (3.55)

remain finite for t ≥ 0 , if ε < 1
2 , while having a singularity at t = 1 , if ε ≥ 1

2 . Furthermore, it
is known that (cf., e.g., [6, p.274], [29, p.922], [25, p.377])

1 = exp(t ν(t,∞)) (1− ν(t,∞)) , (3.56)

lim
t↘1

d

dt
ν(t,∞) = 2 , (3.57)

m1(t) =
1− ν(t,∞)

1− t+ t ν(t,∞)
(3.58)

and

m1(t) ∼ 1
|1− t|

as t→ 1 . (3.59)
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Gel equation

Note that ∫ t

u

 ∞∑
y=1

y ν(s, y)

 ds = ∞ if 1 ∈ [u, t] ,

according to (3.59). Thus, (3.20) does not hold and Lemma 3.3 can not be used. However,
ν(s, k) has the order k−

3
2 for s = 1 and lower order for s 6= 1 , according to (3.54). Thus,

Lemma 3.5 implies

sup
k
S(k, ν(1)) <∞ , lim

k→∞
S(k, ν(s)) = 0 ∀ s 6= 1 ,

where (cf. (3.13))

S(k, µ) =
k−1∑
x=1

µ(x)
∞∑

y=k−x

K(x, y)
y

µ(y) . (3.60)

Moreover, since (cf. (3.52))

ν ′(t, k) =
kk−1

k!
tk−2 e−k t [(k − 1)− k t] ,

one obtains

ν(t, k) ≤ νmax(k) = ν((k − 1)/k, k) =
(k − 1)k−1

k!
e−(k−1) , ∀ t ≥ 0 ,

and, using (3.53)

1
√

2π e
1

12(k−1) k
√
k − 1

< νmax(k) <
1

√
2π e

1
12(k−1)+1 k

√
k − 1

.

Thus,

ν(t, k) ≤ 2 k−
3
2 , ∀ k = 1, 2, . . . , t ≥ 0 ,

and it follows from Lemma 3.5 that∫ t

0
sup

k
S(k, ν(s)) ds <∞ , ∀ t ≥ 0 . (3.61)

Finally, Lemma 3.7 implies

lim inf
k→∞

S(k, ν(1)) > 0 .

According to (3.61) and Lemma 3.12, the gel solution ν(t,∞) is continuous. Moreover, the gel
production term vanishes, since

lim
k→∞

∫ t

0
S(k, ν(s)) ds =

∫ t

0
lim

k→∞
S(k, ν(s)) ds = 0 .
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The gel equation (3.16) takes the form

ν(t,∞) = ν(0,∞) +
∫ t

0
ν(s,∞)m1(s) ds , ∀ t ≥ 0 . (3.62)

Note that (3.56) and (3.58) imply

d

dt
ν(t,∞) =

ν(t,∞) (1− ν(t,∞))
1− t+ t ν(t,∞)

= ν(t,∞)m1(t) ,

which is consistent with equation (3.62). Moreover, one obtains

lim
t↘1

ν(t,∞)m1(t) = 2 ,

according to (3.57) and (3.59).

3.3.3 Active and passive gel

Here we consider kernels of the form

K(x, y) =
1
2

[
xa yb + xb ya

]
, 1 ≥ a ≥ b ≥ 0 , a+ b > 1 , (3.63)

which have been frequently studied in the literature. We assume that the initial condition is
such that τ > 0 (cf. (3.32)). Using the results concerning the gel equation and, in particular,
the gel production term, we discuss (on a heuristic level) the behavior of the sol solution.

Let the sol solution be such that (cf. (3.60))

sup
t≥0

sup
k
S(k, ν(t)) <∞ (3.64)

and

∃ lim
k→∞

S(k, ν(t)) , ∀ t ≥ 0 .

The gel equation (3.16) implies (except for t = τ)

d

dt
ν(t,∞) = ν(t,∞)

∞∑
y=1

K̃(∞, y) ν(t, y) + lim
k→∞

S(k, ν(t)) . (3.65)

Note that (cf. (3.3))

K̃(∞, y) =


y , if 1 = a = b ,

1
2 y

b , if 1 = a > b ,
0 , if 1 > a ≥ b .

(3.66)

According to Lemma 3.5, condition (3.64) is satisfied if

ν(t, k) ≤ C kβ , ∀ k = 1, 2, . . . , t ≥ 0 , (3.67)
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for some C > 0 and

β = −a+ b+ 1
2

. (3.68)

Correspondingly, moments (3.55) of the order

ε <
a+ b− 1

2

remain finite. We refer to [33, p.594], [16, p.553] and [28, p.792] concerning the“critical”exponent
(3.68).

For t < τ , equation (3.65) implies (cf. (3.32), (3.33))

lim
k→∞

S(k, ν(t)) = 0 . (3.69)

Thus, the solution should decay faster than algebraically with exponent (3.68).

At t = τ , one might expect that the solution reaches algebraic growth with exponent (3.68).
Correspondingly, moments (3.55) of the order

ε ≥ a+ b− 1
2

become infinite.

For t > τ , the behavior is completely different in the cases of active and passive gel.

Active gel case

In the active gel case (a = 1), the first term in (3.65) takes control at t = τ (cf. (3.31)). Moments
mb(t) (cf. (3.55)) become finite and, as a consequence, (3.69) holds. Thus, the behavior of the
solution is the same as before τ . In fact, if the solution satisfies the growth condition (3.67),
then the finiteness of mb(t) implies β < −b− 1 , which is stronger than β < − b

2 − 1 (cf. (3.68)).
The gel equation (3.65) takes the form

d

dt
ν(t,∞) = ν(t,∞)

∞∑
y=1

K̃(∞, y) ν(t, y) . (3.70)

For the kernel (3.63) with a = 1 and b ∈ (0, 1) , one obtains (cf. (3.66), (3.55))

d

dt
ν(t,∞) =

1
2
ν(t,∞)mb(t) .

Passive gel case

In the passive gel case (a < 1), the first term in (3.65) disappears and gelation is controlled by
the second term. The gel equation (3.65) takes the form

d

dt
ν(t,∞) = lim

k→∞
S(k, ν(t)) (3.71)
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so that

lim
k→∞

S(k, ν(t)) > 0 .

Thus, the solution keeps to be of the order (3.68), according to Lemma 3.5 and Lemma 3.7. For
the kernel (3.63) with b = a and a ∈ (0.5, 1) , the critical order is β = −a− 1

2 . Correspondingly,
moments of the order ε < a− 1

2 stay finite, while moments of the order ε ≥ a− 1
2 stay infinite.

In particular, one concludes that ma(t) = ∞ . Note that the moments mε(t) , ε > 0 , grow
monotonically, which can be derived from the weak form of the equation.

3.3.4 Special initial conditions

Here we consider kernels of the form (3.63) and discuss initial conditions leading to τ = 0 (cf.
(3.32)).

Slowly decaying initial distributions

In the case of the multiplicative kernel (1.8) it is known that [23, Th. 2.8]

τ =
1

m1(0)
.

Thus, m1(0) = ∞ is a necessary and sufficient condition for τ = 0 , or, in other words, sufficiently
slow decay of ν(0, x) in x leads to immediate gelation.

In the general case (3.63), it is of interest to consider initial distributions satisfying

ν(0, k) ≥ C kβ , ∀ k = 1, 2, . . . , (3.72)

for some C > 0 and β such that

− a+ b+ 1
2

< β < −1 .

According to Lemma 3.7, condition (3.72) implies

lim
k→∞

S(k, ν(0)) = ∞

so that (3.64) does not hold. In the active gel case (a = 1), the behavior for t > 0 seems to remain
the same as in the case t > τ > 0 , discussed before. In the passive gel case (a < 1), equation
(3.71) would suggest an infinite slope of the gel solution, i.e. ν ′(0+,∞) = ∞ . However, even a
rigorous conclusion about continuity would need further information about the sol solution (cf.
Lemma 3.12).

Initial gel

Consider the case ν(0,∞) > 0 (cf. Remark 3.2). In the active gel case (a = 1), the gel mass starts
growing immediately. Its slope depends on the corresponding moment, according to equation
(3.70). Note that this moment should be integrable in any neighborhood of t = 0 (compare
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this with (3.59)). In the passive gel case (a < 1), the gel mass may remain constant and start
growing later (dependent on the sol component of the initial condition). So, having in mind the
passive gel case, it might be appropriate to define the gelation time as

τ(γ) := inf{t > 0 : ν(t,∞, γ) > ν(0,∞, γ)} ,

instead of (3.32). In the active gel case both definitions are equivalent (except the trivial case
ν(0,∞) = 1).

An interesting aspect of the initial gel case is that even the consideration of non-gelling kernels
makes sense. In the passive gel case (e.g., K(x, y) = 1), the sol and the gel develop independently.
However, in the active gel case the initial gel starts growing immediately. The linear kernel
K(x, y) = x + y is an example of a non-gelling kernel, for which the gel is active. One obtains
K̃(∞, y) = 1 and equation (3.70) takes the form

d

dt
ν(t,∞) = ν(t,∞)[1− ν(t,∞)] .

Note that the sol equations are modified in the initial gel case.

3.4 Comments

Here we give some comments concerning the two spatially inhomogeneous gelation models men-
tioned in the introduction.

3.4.1 The van Dongen model

The sol equations (3.7), with the notations ν(t, k, γ) = k c(t, k, γ) , take the form

∂

∂t
c(t, k, γ) =

∑
α 6=γ

κ(k, α, γ) c(t, k, α)− c(t, k, γ)
∑
β 6=γ

κ(k, γ, β)+

1
2

k−1∑
x=1

K(x, k − x, γ) c(t, x, γ) c(t, k − x, γ)− (3.73)

c(t, k, γ)
∞∑

x=1

K(x, k, γ) c(t, x, γ)− c(t, k, γ) K̃(∞, k, γ) ν(t,∞, γ) ,

which is a spatially discrete version of (1.11), when the multiplicative kernel (1.8) is chosen.
Moreover, equation (3.31) holds, according to Theorem 3.9, and provides a spatially discrete
version of (1.12).

3.4.2 Formal extensions of Smoluchowski’s coagulation equation

Note that (3.73) is a spatially discrete version of (1.4), when

K̃(∞, k, γ) = 0 . (3.74)
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In this case, equation (3.16) can be formally transformed into

∂

∂t
ν(t,∞, γ) = lim

k→∞

k−1∑
x=1

x c(t, x, γ)
∞∑

y=k−x

K(x, y, γ) c(t, y, γ)

 , (3.75)

which is a spatially discrete version of (1.9), (1.10) (without the gradient term), when the
multiplicative kernel (1.8) is chosen.

However, condition (3.74) is not fulfilled for the kernel (1.8). Before commenting on this point,
we illustrate the situation in the spatially homogeneous case. When skipping the term containing
K̃ , equations (3.73) take the form

∂

∂t
c̄(t, k) =

1
2

k−1∑
x=1

x (k − x) c̄(t, x) c̄(t, k − x)− k c̄(t, k)
∞∑

x=1

x c̄(t, x) . (3.76)

This is Smoluchowski’s coagulation equation (1.5) formally extended to the kernel (1.8). It is
known that the solution of (3.76), with monodisperse initial conditions, satisfies (cf. (3.52))

c̄(t, k) =
1
k
ν(1, k)

1
t
, t ≥ 1 . (3.77)

According to (3.77), growth properties (with respect to k) at t = 1 remain valid for t > 1 . This
behavior of the solution reminds the passive gel case discussed in Section 3.3.3.

Equation (3.76) is “wrong” in the sense that its solution does not approximate the corresponding
Marcus-Lushnikov process. In general, various coagulation kernels are derived from certain
assumptions on the underlying physical system. Smoluchowski derived his equation with the
particular (non-gelling) kernel (1.6) starting from a system of diffusing spherical particles. Thus,
it might be more appropriate to call equation (3.76) a“formal”Smoluchowski equation. Rigorous
results concerning the transition from stochastic particle systems to the solution (3.77) would
need some truncation of the kernel dependent on the number of monomers in the system (cf. [1,
Conjecture 3.6]). Due to this truncation, the gel would not interact with the sol, thus becoming
“passive”. This explains why the solution of the formal extension of Smoluchowski’s coagulation
equation to the multiplicative kernel behaves like a solution in the passive gel case.

Turning to the model (1.9), (1.10), the form of the gel production term can be explained now by
analogy with the passive gel case. However, in the spatially inhomogeneous situation the spatial
behavior of the gel has to be described, in addition to its growth properties. Simply adding a
diffusion term seems to be another formal extension of Smoluchowski’s coagulation equation.
It is not clear if this model is of any practical relevance, since the gel would be expected to
behave randomly, even if a truncation of the kernel was used. The asymptotic behavior of the
gel is determined by the assumptions on the diffusion coefficients. For non-vanishing D(k) , a
stochastic limit was predicted in [27]. We also refer to the corresponding discussion in [25].
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4 Proofs

4.1 Proof of Theorem 2.1

Properties of the processes

Note that (cf. (2.1), (1.3))

P
(
XN ∈ D([0,∞),P(Z ′))

)
= 1 .

Consider the generator (cf. (2.2)-(2.4))

ANΦ(µ) =
∫

EN

[Φ(ν)− Φ(µ)]λN (µ, dν) (4.1)

and test functions of the form

Φ(µ) = 〈ϕ, µ〉 =
1
N

n∑
i=1

xi ϕ(xi, αi) .

Note that |Φ(µ)| ≤ ‖ϕ‖∞ . The usual starting point for deriving a limiting equation is the
martingale representation

〈ϕ,XN (t)〉 = 〈ϕ,XN (0)〉+
∫ t

0
ANΦ(XN (s)) ds+MN (ϕ, t) . (4.2)

Helpful properties are

E sup
s≤t

|MN (ϕ, s)| ≤ 4 EMN (ϕ, t)2 , (4.3)

EMN (ϕ, t)2 = E
∫ t

0

[
ANΦ2 − 2ΦANΦ

]
(XN (s)) ds , (4.4)

[
ANΦ2 − 2ΦANΦ

]
(µ) =

∫
EN

[〈ϕ, ν〉 − 〈ϕ, µ〉]2 λN (µ, dν) (4.5)

and (for any k ≥ 0)∫
EN

[〈ϕ, ν〉 − 〈ϕ, µ〉]k λN (µ, dν) =

n∑
i=1

∑
β

κ(xi, αi, β)
[
〈ϕ, J1(µ, i, β)〉 − 〈ϕ, µ〉

]k
+

1
2N

∑
1≤i6=j≤n

δαi,αj K(xi, xj , αi)
[
〈ϕ, J2(µ, i, j)〉 − 〈ϕ, µ〉

]k
=

1
Nk

n∑
i=1

∑
β

κ(xi, αi, β)xk
i

[
ϕ(xi, β)− ϕ(xi, αi)

]k
+ (4.6)

1
2Nk+1

∑
1≤i6=j≤n

δαi,αj K(xi, xj , αi)×

[
(xi + xj)ϕ(xi + xj , αi)− xi ϕ(xi, αi)− xj ϕ(xj , αj)

]k
.
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Estimates for the generator

Lemma 4.1. If ϕ has the form (2.15), then∣∣∣(x+ y)ϕ(x+ y, α)− xϕ(x, α)− y ϕ(y, α)
∣∣∣ ≤ 4 ‖ϕ‖ x̄(ϕ) . (4.7)

Proof. If x ≤ x̄(ϕ) and y > x̄(ϕ) , then the left-hand side of (4.7) takes the form |x c0(ϕ, α)−
xϕ(x, α)| . Other cases are treated analogously. �

Lemma 4.2. Assume

κ(x, α, β) ≤ Cκ , ∀α, β ∈ G , x = 1, 2, . . . ,

for some Cκ > 0 , and (2.12). Then

sup
N

sup
µ∈EN

|ANΦ(µ)| <∞ ,

for any ϕ satisfying (2.15).

Proof. One obtains from (4.1), (4.6) (with k = 1) and Lemma 4.1 that

|ANΦ(µ)| ≤ 1
N

n∑
i=1

∑
β

κ(xi, αi, β)xi

∣∣∣ϕ(xi, β)− ϕ(xi, αi)
∣∣∣+

1
2N2

n∑
i,j=1

δαi,αj K(xi, xj , αi)×∣∣∣(xi + xj)ϕ(xi + xj , αi)− xi ϕ(xi, αi)− xj ϕ(xj , αj)
∣∣∣

≤ 2 ‖ϕ‖Cκ |G|+ 2 ‖ϕ‖ x̄(ϕ)CK ,

and the assertion follows. �

Estimates for the martingale term

Lemma 4.3. Assume (2.10) and (2.12). Then

lim
N→∞

E sup
s≤t

|MN (ϕ, s)| = 0 , (4.8)

for any ϕ satisfying (2.15).

Proof. One obtains from (4.3)–(4.5) and (4.6) (with k = 2)

E sup
s≤t

|MN (ϕ, s)| ≤ (4.9)

4 t sup
µ∈EN

1
N2

n∑
i=1

∑
β∈G

κ(xi, αi, β)x2
i

[
ϕ(xi, β)− ϕ(xi, αi)

]2
+

2 t sup
µ∈EN

1
N3

n∑
i,j=1

K(xi, xj , αi)×

[
(xi + xj)ϕ(xi + xj , αi)− xi ϕ(xi, αi)− xj ϕ(xj , αi)

]2
.
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Let ε > 0 and choose x(ε) such that

κ(x, α, β) ≤ ε , ∀x > x(ε) .

Then (4.9) and Lemma 4.1 imply

E sup
s≤t

|MN (ϕ, s)| ≤

16 t ‖ϕ‖2 |G|

[
Cκ

x(ε)
N

+ ε
1
N2

n∑
i=1

x2
i

]
+ 32 t ‖ϕ‖2 x̄(ϕ)2CK

1
N
.

Since
∑n

i=1 xi = N , one obtains

lim sup
N→∞

E sup
s≤t

|MN (ϕ, s)| ≤ 16 t ‖ϕ‖2 |G| ε

and (4.8) follows. �

Relative compactness

Lemma 4.4. The set

{dk,γ , ψk,γ : γ ∈ G , k = 1, 2, . . .} (4.10)

of functions (3.4), (3.5) is convergence determining (with respect to weak convergence in P(Z ′)).

Proof. According to [9, Lemma 3.4.3], it is sufficient to show that the set (4.10) is separating.
From 〈dk,β, µ〉 = 〈dk,β, ν〉 one obtains µ(k, β) = ν(k, β) , and 〈ψk,β, µ〉 = 〈ψk,β, ν〉 for all k =
1, 2, . . . implies µ(∞, β) = ν(∞, β) . �

To prove relative compactness of the sequence (XN ) we apply [9, Theorem 3.7.6] with E = P(Z ′)
and the metric (cf. Lemma 4.4)

r(µ, ν) =
∞∑

k=1

min(1, |〈ϕk, µ〉 − 〈ϕk, ν〉|)
2k

, (4.11)

where (ϕk) denote the reordered elements of the set (4.10). The compact containment condition
is trivial, since the space P(Z ′) is compact. The remaining condition to be checked is

∀ T, ε > 0 ∃ δ > 0 : sup
N

P
(
w(XN , δ, T ) ≥ ε

)
≤ ε (4.12)

where the modulus of continuity

w(µ, δ, T ) = inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

r(µ(s), µ(t)) (4.13)

is defined for δ, T > 0 and µ ∈ D([0,∞), E) . Here {ti} ranges over all partitions of the form
0 = t0 < t1 < · · · < tn−1 < T ≤ tn with min1≤i≤n(ti − ti−1) > δ and n ≥ 1 .
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Lemma 4.5. Assume (2.10), (2.12) and let ϕ be of the form (2.15). Then, for any T, ε > 0 ,
there exist ∆t,N0 > 0 such that

sup
N≥N0

P

(
sup

|s−t|≤∆t, t≤T

∣∣〈ϕ,XN (s)〉 − 〈ϕ,XN (t)〉
∣∣ ≥ ε

)
≤ ε . (4.14)

Proof. One obtains from (4.2)

|〈ϕ,XN (t)〉 − 〈ϕ,XN (s)〉| ≤ |MN (ϕ, t)−MN (ϕ, s)|+ |t− s| c , (4.15)

where c := supN supµ∈EN |ANΦ(µ)| < ∞ , according to Lemma 4.2. Let 0 < ∆t < ε
2 c ∧ 1 . It

follows from (4.15) that

P

(
sup

|s−t|≤∆t, t≤T

∣∣〈ϕ,XN (s)〉 − 〈ϕ,XN (t)〉
∣∣ ≥ ε

)
≤

P

(
ε

2
+ sup
|s−t|≤∆t, t≤T

∣∣MN (ϕ, s)−MN (ϕ, t)
∣∣ ≥ ε

)

≤ P

(
sup

t≤T+1

∣∣MN (ϕ, t)
∣∣ ≥ ε

4

)
≤ 4
ε

E sup
t≤T+1

∣∣MN (ϕ, t)
∣∣ . (4.16)

By Lemma 4.3, the mean value at the right-hand side of (4.16) becomes smaller than ε2/4 for
sufficiently large N so that (4.14) is satisfied. �

Lemma 4.6. Assume (2.10) and (2.12). Then, for any T, ε > 0 , there exist ∆t,N0 > 0 such
that

sup
N≥N0

P

(
sup

|s−t|≤∆t, t≤T
r(XN (s), XN (t)) ≥ ε

)
≤ ε . (4.17)

Proof. Fix T, ε > 0 and choose L = L(ε) ≥ 0 such that
∑∞

k=L+1
1
2k ≤ ε

2 . One obtains (cf.
(4.11))

P

(
sup

|s−t|≤∆t, t≤T
r(XN (s), XN (t)) ≥ ε

)
≤ (4.18)

P

(
sup

|s−t|≤∆t, t≤T

L∑
k=1

∣∣〈ϕk, X
N (s)〉 − 〈ϕk, X

N (t)〉
∣∣ ≥ ε

2

)

≤
L∑

k=1

P

(
sup

|s−t|≤∆t, t≤T

∣∣〈ϕk, X
N (s)〉 − 〈ϕk, X

N (t)〉
∣∣ ≥ ε

2L

)
.

According to Lemma 4.5, there are ∆t,N0 > 0 such that (4.14) holds for all ϕ = ϕk with
k = 1, . . . , L (cf. Remark 3.1). Thus, inequality (4.17) follows from (4.18). �

For any T, ε > 0 and N there exists δN > 0 such that

P
(
w(XN , δN , T ) ≥ ε

)
≤ ε ,
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according to [9, Lemma 3.6.2(a)]. Note that w decreases with δ . Thus, condition (4.12) follows
from

∀ T, ε > 0 ∃ δ,N0 > 0 : sup
N≥N0

P
(
w(XN , δ, T ) ≥ ε

)
≤ ε (4.19)

by choosing 0 < δ < min{δ1, . . . , δN0−1} . Note that (cf. (4.13))

w(µ, δ, T ) ≤ sup
|s−t|≤∆t, s≤T

r(µ(s), µ(t)) , 0 < δ < ∆t . (4.20)

Thus, condition (4.19) is a consequence of (4.20) and Lemma 4.6.

Characterization of weak limits

Using (4.2), (4.1) and (4.6) (with k = 1), one obtains (cf. (2.7))

〈ϕ,XN (t)〉 = (4.21)

〈ϕ,XN (0)〉+
∫ t

0
G(ϕ,XN (s)) ds+MN (ϕ, t) +RN (ϕ, t) ,

where

RN (ϕ, t) =
∫ t

0

[
ANΦ(XN (s))− G(ϕ,XN (s))

]
ds . (4.22)

Lemma 4.7. If ϕ satisfies (2.15), then

lim
N→∞

E sup
s≤t

|RN (ϕ, s)| = 0 . (4.23)

Proof. It follows from (4.1), (4.6) (with k = 1) that

ANΦ(µ)− G(ϕ, µ) = − 1
N2

n∑
i=1

xiK(xi, xi, αi)
[
ϕ(2xi, αi)− ϕ(xi, αi)

]
and ∣∣∣ANΦ(µ)− G(ϕ, µ)

∣∣∣ ≤ 2 ‖ϕ‖ sup
x≤x̄(ϕ), α∈G

K(x, x, α)
1
N2

n∑
i=1

xi .

Thus, one obtains

lim
N→∞

sup
µ∈EN

∣∣∣ANΦ(µ)− G(ϕ, µ)
∣∣∣ = 0

and (4.23) follows from (4.22). �

Lemma 4.8. Assume (2.10), (2.11) and let ϕ be of the form (2.15). Then the mapping

Mϕ : D([0,∞),P(Z ′)) → D([0,∞),R)

defined as (cf. (2.14))

Mϕ(µ)(t) = 〈ϕ, µ(t)〉 − 〈ϕ, µ(0)〉 −
∫ t

0
G(ϕ, µ(s)) ds , t ≥ 0 , (4.24)

is continuous.
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Proof. This is a consequence of the continuity of G(ϕ, µ) with respect to µ (cf. Remark 2.3).
�

Lemma 4.9. Assume (2.10), (2.12) and let ϕ be of the form (2.15). Then any limiting point
X of the sequence XN satisfies

P(Mϕ(X) = 0) = 1 .

Proof. Fix t > 0 and ϕ . Since (cf. (4.24), (4.21))

sup
s≤t

|Mϕ(XN , s)| ≤ sup
s≤t

|MN (ϕ, s)|+ sup
s≤t

|RN (ϕ, s)| ,

it follows from Lemma 4.3 and Lemma 4.7 that

lim
N→∞

P
(

sup
s≤t

|Mϕ(XN , s)| ≥ ε

)
= 0 , ∀ ε > 0 ,

and

sup
s≤t

|Mϕ(XN , s)| ⇒ 0 as N →∞ . (4.25)

Suppose

XNl ⇒ X (4.26)

for some subsequence. Then Lemma 4.8 implies Mϕ(XNl) ⇒Mϕ(X) and

d(Mϕ(XNl), 0) ⇒ d(Mϕ(X), 0) ,

where d denotes the Skorokhod metric. On the other hand, (4.25) implies

d(Mϕ(XN ), 0) ⇒ 0 and d(Mϕ(X), 0) = 0 a.s.

so that the assertion follows. �

As a consequence of Lemma 4.9, one obtains

P (Mϕk
(X) = 0 , ∀ k) = 1 .

Assumption (2.13) and (4.26) imply X(0) = ν0 almost surely, so that equation (2.14) is fulfilled
for all functions (ϕk) . Finally, any function of the form (2.15) can be approximated by linear
combinations (with rational coefficients) of functions (ϕk) in such a way that the corresponding
values of G converge.

Continuity

Note that

sup
t≤T

r(XN (t), XN (t−)) ≤ sup
|s−t|≤∆t, t≤T

r(XN (s), XN (t)) , ∀ ∆t > 0 .
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Thus, Lemma 4.6 implies

sup
N≥N0

P

(
sup
t≤T

r(XN (t), XN (t−)) ≥ ε

)
≤ ε ,

so that

sup
t≤T

r(XN (t), XN (t−)) ⇒ 0 , ∀T > 0 ,

as N →∞ . An application of [9, Theorem 3.10.2(a)] gives

P(X ∈ C([0,∞),P(Z ′))) = 1 ,

for every weak limit X of the sequence (XN ) .

This completes the proof of Theorem 2.1.

4.2 Proof of Lemma 3.3

Lemma 4.10. If

K(x, y) ≤ C xy , ∀x, y = 1, 2, . . . , for some C > 0 , (4.27)

then

k−1∑
x=1

µ(x)
∞∑

y=k−x

K(x, y)
y

µ(y) ≤ 2C

( ∞∑
x=1

xµ(x)

) ∞∑
x=min(k−k′,k′+1)

xµ(x) ,

for any 1 ≤ k′ ≤ k − 1 .

Proof. One obtains

1
C

k−1∑
x=1

µ(x)
∞∑

y=k−x

K(x, y)
y

µ(y) ≤

k′∑
x=1

xµ(x)
∞∑

y=k−x

µ(y) +
k−1∑

x=k′+1

xµ(x)
∞∑

y=k−x

µ(y)

≤
∞∑

x=1

xµ(x)
∞∑

y=k−k′

µ(y) +
∞∑

x=k′+1

xµ(x)
∞∑

y=1

µ(y)

≤

( ∞∑
x=1

xµ(x)

) ∞∑
y=k−k′

y µ(y) +
∞∑

x=k′+1

xµ(x)


so that the assertion follows. �

925



Corollary 4.11. If (4.27) and

∞∑
y=1

y µ(y) <∞ ,

then

lim
k→∞

k−1∑
x=1

µ(x)
∞∑

y=k−x

K(x, y)
y

µ(y) = 0 .

Proof. Choose k′ := [k/2] (closest integer). Since

lim
k→∞

∞∑
x=min(k−k′,k′+1)

xµ(x) = 0 ,

the assertion follows from Lemma 4.10. �

Since

S(k, γ, ν(s)) =
k−1∑
x=1

ν(s, x, γ)
∞∑

y=k−x

K(x, y, γ)
y

ν(s, y, γ) ≤ C

∞∑
x=1

x ν(s, x, γ) ,

assumption (3.20) and the dominated convergence theorem imply

lim
k→∞

∫ t

u
S(k, γ, ν(s)) ds =

∫ t

u
lim

k→∞
S(k, γ, ν(s)) ds . (4.28)

On the other hand, (3.20) implies
∑∞

y=1 y ν(s, y, γ) < ∞ , for almost all s ∈ [u, t] . Thus, the
assertion follows from (4.28) and Corollary 4.11.

4.3 Proof of Lemma 3.4

Lemma 4.12. If

K(x, y) ≤ C [x ya + xa y] , ∀x, y = 1, 2, . . . , (4.29)
for some a ∈ [0, 1] , C > 0 ,

then

1
C

k−1∑
x=1

µ(x)
∞∑

y=k−x

K(x, y)
y

µ(y) ≤ (4.30)

∞∑
y=1

ya µ(y)

 sup
x≥k−k′

xµ(x) +
∞∑

y=k−k′

µ(y)

+

∞∑
y=k′+1

ya µ(y)

2 sup
x
xµ(x) +

∞∑
y=1

µ(y)

 ,
for any 1 ≤ k′ ≤ k − 1 .
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Proof. One obtains

1
C

k−1∑
x=1

µ(x)
∞∑

y=k−x

K(x, y)
y

µ(y) ≤

k−1∑
x=1

xµ(x)
∞∑

y=k−x

ya−1 µ(y) +
k−1∑
x=1

xaµ(x)
∞∑

y=k−x

µ(y)

=
k−1∑
x=1

xµ(x)
k−1∑

y=k−x

ya−1 µ(y) +
k−1∑
x=1

xµ(x)
∞∑

y=k

ya−1 µ(y) +

k′∑
x=1

xaµ(x)
∞∑

y=k−x

µ(y) +
k−1∑

x=k′+1

xaµ(x)
∞∑

y=k−x

µ(y)

≤
k−1∑
x=1

xµ(x)
k−1∑

y=k−x

ya−1 µ(y) +
1
k

k−1∑
x=1

xµ(x)
∞∑

y=k

ya µ(y) +

k′∑
x=1

xaµ(x)
∞∑

y=k−k′

µ(y) +
k−1∑

x=k′+1

xaµ(x)
∞∑

y=1

µ(y)

and
k−1∑
x=1

xµ(x)
k−1∑

y=k−x

ya−1 µ(y) =
k−1∑
y=1

ya µ(y)
1
y

k−1∑
x=k−y

xµ(x)

=
k′∑

y=1

ya µ(y)
1
y

k−1∑
x=k−y

xµ(x) +
k−1∑

y=k′+1

ya µ(y)
1
y

k−1∑
x=k−y

xµ(x)

≤
k′∑

y=1

ya µ(y)

[
sup

x≥k−k′
xµ(x)

]
+

k−1∑
y=k′+1

ya µ(y)
[
sup

x
xµ(x)

]
so that

1
C

k−1∑
x=1

µ(x)
∞∑

y=k−x

K(x, y)
y

µ(y) ≤
∞∑

y=1

ya µ(y)

[
sup

x≥k−k′
xµ(x)

]
+

∞∑
y=k′+1

ya µ(y)
[
sup

x
xµ(x)

]
+

∞∑
y=k

ya µ(y)
[
sup

x
xµ(x)

]
+

∞∑
x=1

xaµ(x)
∞∑

y=k−k′

µ(y) +
∞∑

x=k′+1

xaµ(x)
∞∑

y=1

µ(y)

and (4.30) follows. �

Corollary 4.13. If (4.29),

∞∑
y=1

ya µ(y) <∞ (4.31)
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and

lim
k→∞

k µ(k) = 0 , (4.32)

then

lim
k→∞

k−1∑
x=1

µ(x)
∞∑

y=k−x

K(x, y)
y

µ(y) = 0 . (4.33)

Proof. Choose k′ := [k/2] . Since

lim
k→∞

∞∑
y=k′

ya µ(y) = 0 and lim
k→∞

sup
x≥k−k′

xµ(x) = 0 ,

the assertion follows from Lemma 4.12. �

Remark 4.14. If K(x, y) ≥ C1 x y
a , then

k−1∑
x=1

xµ(x)
k−1∑

y=k−x

ya−1 µ(y) ≥ C1 (k − 1)µ(k − 1)µ(1) ,

so that condition (4.32) is necessary for (4.33). Condition (4.31) with a = 1 is sufficient for
(4.32) (cf. Corollary 4.11).

Since, according to Lemma 4.12,

S(k, γ, ν(s)) =
k−1∑
x=1

ν(s, x, γ)
∞∑

y=k−x

K(x, y, γ)
y

ν(s, y, γ) ≤

C(γ)
∞∑

x=1

xa(γ) ν(s, x, γ)
[
3
(

sup
x
x ν(s, x, γ)

)
+ 2
]
,

assumptions (3.22), (3.23) and the dominated convergence theorem imply

lim
k→∞

∫ t

u
S(k, γ, ν(s)) ds =

∫ t

u
lim

k→∞
S(k, γ, ν(s)) ds . (4.34)

On the other hand, (3.22) and (3.23) imply

∞∑
y=1

ya(γ) ν(s, y, γ) <∞ and lim
k→∞

k ν(s, k, γ) = 0 ,

for almost all s ∈ [u, t] . Thus, the assertion follows from (4.34) and Corollary 4.13.
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4.4 Proof of Lemmas 3.5 and 3.7

Lemma 4.15. The quantities

Ak = Ak(a, b, β) =
k−1∑
x=1

xβ+a
∞∑

y=k−x

yβ+b−1 , k ≥ 2 , (4.35)

where

a, b ∈ [0,−β) , β < −1 , (4.36)

satisfy

Ak ≥ − 1
β + b

xβ+a
k (k − xk)β+b (k − 1) , ∀ k ≥ 2 , (4.37)

and

Ak ≤ β + b− 1
β + b

{
(k − xk)β+b

[
1 +

1
β + a+ 1

(
xβ+a+1

k − 1
)]

+

xβ+a
k

[
1 +

1
β + b+ 1

(
(k − xk)β+b+1 − 1

)]}
,

∀ k ≥ 2 : 1 < xk < k − 1 , (4.38)

where

xk =
(β + a) k

2β + a+ b
. (4.39)

If β + a + 1 = 0 or β + b + 1 = 0 , then the undefined terms in (4.38) are to be replaced
according to limy→0(xy − 1)/y = log x .

Proof. Note that
∞∑

y=k−x

yβ+b−1 ≥
∫ ∞

k−x
yβ+b−1 dy = − 1

β + b
(k − x)β+b

and
∞∑

y=k−x

yβ+b−1 ≤ (k − x)β+b−1 +
∫ ∞

k−x
yβ+b−1 dy =

(k − x)β+b−1 − 1
β + b

(k − x)β+b ≤ β + b− 1
β + b

(k − x)β+b .

Thus, one obtains

Ak ≥ − 1
β + b

k−1∑
x=1

xβ+a (k − x)β+b (4.40)
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and

Ak ≤ β + b− 1
β + b

k−1∑
x=1

xβ+a (k − x)β+b . (4.41)

The function f(x) = xβ+a (k − x)β+b satisfies

f ′(x) = xβ+a−1 (k − x)β+b−1 [(β + a) (k − x)− x (β + b)]

and takes its minimum at x = xk (cf. (4.39)). One obtains

k−1∑
x=1

xβ+a (k − x)β+b ≥ xβ+a
k (k − xk)β+b (k − 1)

so that (4.40) implies (4.37).

The function xβ+a is decreasing and the function (k − x)β+b is increasing on (0, k) . Thus, one
obtains

k−1∑
x=1

xβ+a (k − x)β+b =∑
1≤x≤xk

xβ+a (k − x)β+b +
∑

xk<x≤k−1

xβ+a (k − x)β+b

≤ (k − xk)β+b
∑

1≤x≤xk

xβ+a + xβ+a
k

∑
xk<x≤k−1

(k − x)β+b . (4.42)

Note that (if β + a 6= −1)∑
1≤x≤xk

xβ+a ≤ 1 +
∫ xk

1
xβ+a dx = 1 +

1
β + a+ 1

(
xβ+a+1

k − 1
)

(4.43)

and (if β + a = −1) ∑
1≤x≤xk

xβ+a ≤ 1 + log xk . (4.44)

In analogy, one obtains (if β + b 6= −1)∑
xk<x≤k−1

(k − x)β+b = (4.45)

∑
1≤x<k−xk

xβ+b ≤ 1 +
1

β + b+ 1

(
(k − xk)β+b+1 − 1

)
and (if β + b = −1) ∑

xk<x≤k−1

(k − x)β+b ≤ 1 + log(k − xk) . (4.46)

Finally, (4.38) follows from (4.41) and (4.42)-(4.46). �
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Remark 4.16. Note that 1 < xk < k − 1 (cf. (4.38)) is fulfilled for sufficiently large k , since
(β + a)/(2β + a+ b) ∈ (0, 1) , according to (4.36).

Remark 4.17. If a = b = 1 and β = −3/2 , then xk = k/2 (cf. (4.39)) and Lemma 4.15
implies

4 (k − 1)
k

≤ Ak ≤ 6
[
2− (k/2)−1/2

]
.

Corollary 4.18. The expressions (4.35) satisfy

lim
k→∞

Ak(a, b, β) = 0 , if β < −a+ b+ 1
2

,

lim inf
k→∞

Ak(a, b, β) > 0 and lim sup
k→∞

Ak(a, b, β) <∞ , (4.47)

if β = −a+ b+ 1
2

,

and

lim
k→∞

Ak(a, b, β) = ∞ , if β > −a+ b+ 1
2

.

Remark 4.19. The lower and upper bound in (4.47) can be specified in terms of a, b, β .

One obtains (cf. (4.35))

S(k, γ, ν(s)) =
k−1∑
x=1

ν(s, x, γ)
∞∑

y=k−x

K(x, y, γ)
y

ν(s, y, γ)

≤ C C̃(s)2 [Ak(a, b, β) +Ak(b, a, β)] (4.48)

and

S(k, γ, ν(s)) ≥ C C̃(s)2 [Ak(a, b, β) +Ak(b, a, β)] . (4.49)

Now (4.48) implies

sup
k≥l

S(k, γ, ν(s)) ≤ C C̃(s)2 sup
k≥l

[Ak(a, b, β) +Ak(b, a, β)]

so that

lim
l→∞

∫ t

u
sup
k≥l

S(k, γ, ν(s)) ds = 0 if β < −a+ b+ 1
2

,

according to Corollary 4.18, and Lemma 3.5 follows. On the other hand, (4.49) implies

inf
k≥l

S(k, γ, ν(s)) ≥ C C̃(s)2 inf
k≥l

[Ak(a, b, β) +Ak(b, a, β)]

so that

lim
l→∞

∫ t

u
inf
k≥l

S(k, γ, ν(s)) ds > 0 if β = −a+ b+ 1
2

and

lim
l→∞

∫ t

u
inf
k≥l

S(k, γ, ν(s)) ds = ∞ if β > −a+ b+ 1
2

,

according to Corollary 4.18, and Lemma 3.7 follows.
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