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Abstract

We continue the line of research of random walks with a barrier initiated by Iksanov
and Möhle (2008). Assuming that the tail of the step of the underlying random walk
has a power-like behavior at infinity with the exponent −α, α ∈ (0, 1), we prove that
Vn the number of zero increments before absorption in the random walk with the
barrier n, properly centered and normalized, converges weakly to the standard normal
law. Our result complements the weak law of large numbers for Vn proved in Iksanov
and Negadailov (2008).
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1 Introduction

Let (ξk)k∈N be independent copies of a random variable ξ with distribution pk =

P{ξ = k}, k ∈ N. A random walk with the barrier n ∈ N is a sequence (R
(n)
k )k∈N0

(where
N0 := N ∪ {0}) defined by

R
(n)
0 := 0 and R

(n)
k := R

(n)
k−1 + ξk1{R(n)

k−1+ξk<n}
, k ∈ N.

Plainly, (R
(n)
k )k∈N0 is a non-decreasing Markov chain which cannot reach the state n. In

what follows we always assume that p1 > 0 which implies that the random walk with the
barrier n will eventually get absorbed in the state n− 1.

The equalities

Mn := #{k ∈ N : R
(n)
k−1 6= R

(n)
k } =

∞∑
l=0

1{R(n)
l +ξl+1<n}

;

Tn := inf{k ∈ N0 : R
(n)
k = n− 1} =

∑
l≥0

1{R(n)
l <n−1};

Vn := Tn −Mn = #{i ≤ Tn : R
(n)
i−1 = R

(n)
i } =

Tn−1∑
l=0

1{R(n)
l +ξl+1≥n}
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Weak convergence of number of zero increments in random walk with barrier

define the number of jumps, the absorption time and the number of zero increments
before the absorption in the random walk with the barrier n, respectively.

There is a large number of real life situations in which the random walk with barrier
appears naturally. Imagine, for instance, a transport company that offers tours to the
national park. The company uses buses with n seats. Various groups of people book
seats. If the size of a group is less than remaining number of vacant seats, the request is
satisfied, otherwise it is turned down. The quantities of interest are the total number of
groups Tn+1, the number of accepted groups Mn+1 and the number of rejections Vn+1.

In [9] (see also [8] for a particular case) it was shown that, if the law of ξ belongs to
the domain of attraction of a stable law, Mn, properly normalized and centered, weakly
converges. Furthermore, the set of limiting laws is comprised of stable laws and the
laws of exponential subordinators. In [13] it was checked that the same group of results
holds on replacing Mn by Tn. Finally, in [10] it was proved that: (a) if Eξ <∞ then Vn
weakly converges (without normalization); (b) if the law of ξ belongs to the domain of
attraction of an α-stable law with α ∈ (0, 1] (for α = 1 it is additionally assumed that
Eξ =∞), equivalently if

P{ξ ≥ n} ∼ n−α`(n), n→∞, (1.1)

for some ` slowly varying at infinity, then Vn/EVn
P→ 1 as n→∞.

To complete the picture, we treat weak convergence of Vn. Since Vn = Tn −Mn and
Tn and Mn are of the same order, the analysis of Vn calls for more delicate argument
than that for Mn and/or Tn. As a consequence, the approach exploited in [9, 10] does
not help in the present situation. Moreover, regular variation (1.1) alone does not seem
to be sufficient for weak convergence of Vn, properly normalized and centered, and one
has to impose a more restrictive "second-order" condition

P{ξ ≥ n} = cn−α +O(n−(α+ε)), n→∞, (1.2)

for some c > 0, α ∈ (0, 1) and ε > 0.
In what follows we reserve notation η for a random variable with the beta (1− α, α)

law, α ∈ (0, 1), i.e.,

P{η ∈ dx} =
sinπα

π
x−α(1− x)α−11(0,1)(x)dx. (1.3)

Further, we shall use
µα := E| log η| = ψ(1)− ψ(1− α)

and
σ2
α := Var (log η) = ψ′(1− α)− ψ′(1),

where ψ(x) = Γ′(x)/Γ(x) is the logarithmic derivative of the gamma function. Also, we
put

S0 = 0, Sn = ξ1 + . . .+ ξn, n ∈ N,
and denote by un :=

∑∞
k=0P{Sk = n} the corresponding renewal sequence.

The main result of this paper is given next.

Theorem 1.1. Suppose (1.2). If α ∈ (0, 1/2] assume additionally that

un ∼
sin(πα)

cπ
nα−1, n→∞. (1.4)

Then
Vn − µ−1α log n√
σ2
αµ
−3
α log n

d→ N (0, 1), n→∞,

where N (0, 1) is a random variable with the standard normal law. Moreover, there is
convergence of the first absolute moments.
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Weak convergence of number of zero increments in random walk with barrier

Remark 1.2. It is well-known (see Theorem 1 in [5]) that if (1.1) holds with α ∈ (1/2, 1)

then

un ∼
sin(πα)

`(n)π
nα−1, n→∞, (1.5)

i.e., (1.2) implies (1.4). On the other hand, if α ∈ (0, 1/2], then (1.5) does not follow from
(1.1) without further assumptions on pn. It is known that (1.1) does entail (1.5) if one of
the following conditions holds true

• pn+1pn−1 > p2n for n = 2, 3, . . . (see Theorem 1 in [2]);

• pn is eventually non-increasing (see Corollary 3-A in [14]);

• pn ∼ α`(n)n−α−1 as n→∞ (see Theorem 1.1. in [12]).

Our approach is based on the analysis of a random recursive equation for (Vn). It
is shown that the sequence (Vn) can be approximated by a suitable renewal counting
process, and the error of such an approximation is estimated in terms of an appropriate
probability distance. A similar method has already been used in [7] to derive a weak
convergence result for the number of collisions in the beta coalescents.

The rest of the paper is organized as follows. In Section 2 we define a renewal process
that we use for approximation and point out random recursive equations for related
quantities. The proofs are presented in Section 3. An auxiliary lemma is formulated and
proved in Appendix.

2 Renewal process and recursion with random indices

Given the random walk (Sk)k≥0, define the first passage process

Nn := inf{k ∈ N0 : Sk ≥ n}, n ∈ N,

and the undershoot Yn := n− SNn−1. It was shown1 in [10] that the sequence (Vn)n∈N
satisfies the following recursion with random index

V1 = 0, Vn
d
= 1{Yn>1} + V ′Yn , n ≥ 2, (2.1)

where V ′k
d
= Vk for all k ∈ N and (V ′k)k∈N and Yn are independent.

The recursion (2.1) can be slightly simplified by setting Xn := Vn + 1{n>1}, then

X1 = 0, Xn
d
= 1 +X ′Yn , n ≥ 2, (2.2)

where likewise X ′k
d
= Xk for all k ∈ N and (X ′k)k∈N and Yn are independent. Clearly, the

asymptotic behavior of Xn is the same as of Vn.
It is a classical observation due to Dynkin [3] that under the assumption (1.1) with

α ∈ (0, 1) we have

Yn/n
d→ η, n→∞, (2.3)

where η has density (1.3).
Let (ηk)k∈N be iid copies of η. Define a random walk

S̃0 = 0; S̃k = | log η1|+ . . .+ | log ηk|, k ∈ N;

the corresponding renewal counting process

νt := #{k ∈ N : S̃k ≤ t} =

∞∑
k=1

1{S̃k≤t}, t ∈ R,

1Note that in [10] the definition of Tn is slightly different from our which results in different recursion for
(Vn).
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and set Wt := νlog t + 1{t>1} for t > 0. Since νt = 0 a.s. for t ≤ 0 we have Wt = 0 for
t ∈ (0, 1], while for t > 1 the strong Markov property implies

Wt
d
= 1 +W ′tη, (2.4)

where Wt
d
= W ′t for every t > 0 and (W ′t )t≥0 and η are independent.

Comparing recursions (2.2) and (2.4) and in view of (2.3) we may expect that the
weak asymptotic behavior of Xn is the same as of Wn. We will show, assuming (1.2), that
this heuristic can be made rigorous and leads to the desired result on the asymptotic of
Vn.

3 Proofs

We start with a refinement of (2.3) by estimating the speed of convergence of Yn/n
to η in terms of so-called minimal L1-distance. Let us recall its definition. Let D1 be
the set of probability laws on R with finite first absolute moment. The L1-minimal (or
Wasserstein) distance on D1 is defined by

d1(X,Y ) = inf E|X̂ − Ŷ |, (3.1)

where the infimum is taken over all couplings (X̂, Ŷ ) such that X
d
= X̂ and Y

d
= Ŷ .

For ease of reference we summarize the properties of d1 to be used in this work in
the following proposition.

Proposition 3.1. Let X,Y be random variables with finite first absolute moments. The
distance d1 has the following properties:

(Int) d1(X,Y ) has an integral representation:

d1(X,Y ) :=

∫
R

|P{X ≤ x} − P{Y ≤ x}|dx.

(Rep) d1(X,Y ) has a dual representation:

d1(X,Y ) = sup
f∈F
|Ef(X)− Ef(Y )|.

where F := {f : |f(x)− f(y)| ≤ |x− y|},
(Lin) d1(cX + a, cY + a) = |c|d(X,Y ) for a, c ∈ R.

(Conv) For X,Xn ∈ D1 convergence d1(Xn, X)→ 0, n→∞, is equivalent to Xn
d→ X and

E|Xn| → E|X|, n→∞.

We refer the reader to Chapter 1 in [15] for an introduction to the theory of probability
metrics, in particular for the proofs of the aforementioned properties of d1.

In view of (Conv) characterization of d1 the next lemma is indeed a refinement of
(2.3).

Proposition 3.2. Under the assumptions of Theorem 1.1 there exists δ > 0 such that

d1

(
log

Yn
n
, log η

)
= d1

(
log Yn, log(nη)

)
= O(n−δ), n→∞.

Proof. The first equality follows from (Lin) property of d1. Using (Rep) we have

d1

(
log Yn, log(nη)

)
= sup
f∈F

∣∣∣Ef(log Yn)− Ef(log(nη))
∣∣∣. (3.2)
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From the distributional identity

Y1 = 1, Yn
d
= n1{ξ≥n} + Y ′n−ξ1{ξ<n}, n ≥ 2,

where Y ′k
d
= Yk for all k ∈ N and (Y ′k)k∈N is independent from ξ, we infer

Ef(log Yn) = P{ξ ≥ n}f(log n) +

n−1∑
j=1

pjEf(log Yn−j), n ≥ 2.

Substituting this into (3.2) and using the triangle inequality gives

d1

(
log Yn, log(nη)

)
≤ sup
f∈F

∣∣∣P{ξ ≥ n}f(log n) +

n−1∑
j=1

pjEf(log(n− j)η)− Ef(log(nη))
∣∣∣

+

n−1∑
j=1

pj sup
f∈F

∣∣∣Ef(log Yn−j)− Ef(log(n− j)η)
∣∣∣

= sup
f∈F

∣∣∣P{ξ ≥ n}f(log n) +

n−1∑
j=1

pjEf(log(n− j)η)− Ef(log(nη))
∣∣∣

+

n−1∑
j=1

pjd1

(
log Yn−j , log(n− j)η

)
.

Let ξ̃ be independent of η̃ and ξ̃
d
= ξ, η̃

d
= η. The first term can be written as

sup
f∈F

∣∣∣P{ξ ≥ n}f(log n) +

n−1∑
j=1

pjEf(log(n− j)η)− Ef(log(nη))
∣∣∣

= d1

(
log(n1{ξ̃≥n} + (n− ξ̃)η̃1{ξ̃<n}), log(nη̃)

)
= d1

(
(log(1− ξ̃n−1)η̃)1{ξ̃<n}, log η̃

)
,

where we have utilized (Lin) property of d1 in the second equality.
For every x ≥ 1,

P{ξ ≥ x} = P{ξ ≥ dxe} = c(dxe)−α +O((dxe)−(α+ε)) = cx−α +O(x−((α+ε)∧1)),

hence, by Lemma 4.1 with β = 1 and x = n, there exist K > 0 and δ ∈ (0, 1−α) such that

d1

(
log Yn, log(nη)

)
≤ Kn−(α+δ) +

n−1∑
j=1

pjd1

(
log Yn−j , log(n− j)η

)
.

Using 1-arithmetic variant of Theorem 1 in [1] (the cited result is also valid for α ∈ (0, 1/2]

in view of assumption (1.4)), we obtain

d1

(
log Yn, log(nη)

)
= O(n−δ), n→∞.

The proof is complete.

3.1 Proof of Theorem 1.1

It is enough to prove Theorem 1.1 for Vn replaced by Xn. In view of (Conv) property
of d1, in order to prove Theorem 1.1 we need to check

d1

(Xn − µ−1a log n√
σ2
aµ
−3
a log n

,N (0, 1)
)
→ 0, n→∞.
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Using the triangle inequality yields for n ≥ 2,

d1

(Xn − µ−1a log n√
σ2
aµ
−3
a log n

,N (0, 1)
)
≤ d1

(Xn − µ−1a log n√
σ2
aµ
−3
a log n

,
Wn − µ−1a log n√

σ2
aµ
−3
a log n

)

+d1

(Wn − µ−1a log n√
σ2
aµ
−3
a log n

,N (0, 1)
)

= d1

(Xn − µ−1a log n√
σ2
aµ
−3
a log n

,
Wn − µ−1a log n√

σ2
aµ
−3
a log n

)

+d1

(νlogn + 1− µ−1a log n√
σ2
aµ
−3
a log n

,N (0, 1)
)

The second term converges to zero in view of the CLT for the renewal process with
finite variance (see Chapter XI.5 in [4]) as well as the convergence of first absolute
moments (see Proposition A.1 in [11]). From (Lin) property of d1 we see that it is enough
to prove

d1(Xn,Wn) = O(1), n→∞. (3.3)

Using the recursions for Xn and Wn we have, in view of (Lin) property of d1,

tn := d1(Xn,Wn) = d1(X ′Yn ,W
′
nη) ≤ d1(W ′nη,W

′
Yn)

+ d1(W ′Yn , X
′
Yn) ≤ d1(W ′nη,W

′
Yn) + E|ŴYn − X̂Yn |

=: cn +

n∑
k=2

P{Yn = k}E|X̂k − Ŵk|,

for arbitrary pairs {(X̂k, Ŵk) : 2 ≤ k ≤ n} independent of Yn such that X̂k
d
= Xk,

Ŵk
d
= Wk. Passing to infimum over all such pairs in both sides of inequality leads to

tn ≤ cn +

n∑
k=2

P{Yn = k}tk. (3.4)

In order to estimate cn we proceed as follows. Let (Ŷn, η̂) be a coupling of Yn and η such
that d1(log Yn, log(nη)) = E| log Ŷn− log(nη̂)|. Let (ν̂t)t∈R be a copy of (νt)t∈R independent
of (Ŷn, η̂). We have

cn = d1(W ′Yn ,W
′
nη) = d1(ν̂log Ŷn + 1{Ŷn>1}, ν̂log(nη̂) + 1{nη̂>1})

≤ E|ν̂log Ŷn + 1{Ŷn>1} − ν̂log(nη̂) − 1{nη̂>1}|
≤ E|ν̂log Ŷn − ν̂log(nη̂)|+ P{Yn = 1}+ P{nη ≤ 1}

where the penultimate inequality follows from the definition of d1, since (Ŷn, η̂, (ν̂(t))) is
a particular coupling. There exists ρ > 0 such that the last two summands are O(n−ρ).
To bound the first term, we apply the distributional subadditivity of (νt):

νx+y − νx
d
≤ νy, x, y ∈ R,

which yields
cn ≤ Eν̂| log Ŷn−log(nη̂)| +O(n−ρ). (3.5)

Note that for every x ≥ 0,

P{S̃1 ≤ x} ≤ Eνx =

∞∑
k=1

P{S̃k ≤ x} ≤
∞∑
k=1

(P{S̃1 ≤ x})k =
P{S̃1 ≤ x}
P{S̃1 > x}

,
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hence, by the standard sandwich argument,

lim
x↓0

Eνx
xα

=
sinπα

πα
.

On the other hand, from the elementary renewal theorem we have

lim
x→∞

Eνx
x

=
1

ES̃1

,

therefore there exist constants c1, c2 > 0 such that for all x ≥ 0,

Eνx ≤ c1xα + c2x. (3.6)

Using (3.6) and (3.5) we obtain

cn ≤ c1E| log Ŷn − log(nη̂)|α + c2E| log Ŷn − log(nη̂)|+O(n−ρ)

≤ c1d
α
1 (log Yn, log(nη)) + c2d1(log Yn, log(nη)) +O(n−ρ).

By Lemma 3.2 we conclude cn = O(n−ρ
′
) for some ρ′ > 0 as n→∞.

It remains to apply Lemma A.1 from [6] with φn ≡ 1 to (3.4) to conclude that

tn = O
( n∑
k=1

k−ρ
′

k

)
= O(1), n→∞.

The proof of Theorem 1.1 is complete.

4 Appendix

The next lemma is the main ingredient in the proof of Proposition 3.2.

Lemma 4.1. Assume that θ is a random variable on [1,+∞) such that for some c > 0,
α ∈ (0, 1) and ε > 0

1− Fθ(x) := P{θ ≥ x} = cx−α +O(x−(α+ε)), x→∞. (4.1)

Let η be a random variable with density (1.3) independent of θ. Then for every β > 0

there exists δ > 0 such that

d1

(
log((1− θx−1)η)1{θ<x−β}, log η

)
= O(x−(α+δ)), x→∞. (4.2)

Proof. Denote the left-hand side of (4.2) by sθ(x, β). In view of relations

sθ(x, β) = sc−1/αθ(c
−1/αx, c−1/αβ), x ≥ 1,

and

P{c−1/αθ ≥ x} = x−α +O(x−(α+ε)), x→∞,

it is enough to prove the result for c = 1. Fix β for the rest of the proof. Using
representation (Int) from Proposition 3.1 we have

sθ(x, β) =

∫ 0

−∞
|P{log(1{θ≥x−β} + (1− θx−1)η1{θ<x−β}) ≤ z} − P{log η ≤ z}|dz

=

∫ 1

0

|P{1{θ≥x−β} + (1− θx−1)η1{θ<x−β} ≤ z} − P{η ≤ z}|z−1dz.
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Integrating by parts the first probability in the integrand, we obtain for z ∈ [0, 1) and
x > 1 + β,

P{1{θ≥x−β} + (1− θx−1)η1{θ<x−β} ≤ z}

= −
∫
[1,x−β)

P{(1− yx−1)η ≤ z}d(1− Fθ(y))

= −P{η ≤ β−1xz}
(

1− Fθ((x− β)−)
)

+ P{η ≤ zx(x− 1)−1}

+

∫
[1,x−β)

(1− Fθ(y))dyP{(1− yx−1)η ≤ z}.

Let θα be a random variable independent of η and with distribution

1− Fθα(x) := P{θα ≥ x} = x−α, x ≥ 1.

By the same reasoning as above,

P{1{θα≥x−β} + (1− θαx−1)η1{θα<x−β} ≤ z}

= −
∫
[1,x−β)

P{(1− yx−1)η ≤ z}d(1− Fθα(y))

= −P{η ≤ β−1xz}
(

1− Fθα((x− β))
)

+ P{η ≤ zx(x− 1)−1}

+

∫
[1,x−β)

(1− Fθα(y))dyP{(1− yx−1)η ≤ z}.

Subtracting the corresponding equations and using (4.1) we have for z ∈ [0, 1) and
x > 1 + β,∣∣∣P{1{θ≥x−β} + (1− θx−1)η1{θ<x−β} ≤ z} − P{1{θα≥x−β} + (1− θαx−1)η1{θα<x−β} ≤ z}

∣∣∣
≤ K

(
P{η ≤ β−1xz}(x− β)−(α+ε) +

∫
[1,x−β)

y−(α+ε)dyP{(1− yx−1)η ≤ z}
)
,

for some K > 0 which does not depend on x and z. Therefore,

sθ(x, β)

≤
∫ 1

0

|P{1{θα≥x−β} + (1− θαx−1)η1{θα<x−β} ≤ z} − P{η ≤ z}|z
−1dz

+K

∫ 1

0

z−1P{η ≤ β−1xz}(x− β)−(α+ε)dz

+K

∫ 1

0

z−1
∫
[1,x−β)

y−(α+ε)dyP{(1− yx−1)η ≤ z}dz =: I1(x) + I2(x) + I3(x).

Firstly we calculate I2(x) explicitly as follows:

I2(x) = K(x− β)−(α+ε)
∫ 1

0

P{η ≤ β−1xz}z−1dz

= K(x− β)−(α+ε)
∫ βx−1

0

P{η ≤ β−1xz}z−1dz +K(x− β)−(α+ε)(log x− log β)

= K(x− β)−(α+ε)
∫ 1

0

P{η ≤ z}z−1dz +K(x− β)−(α+ε)(log x− log β)

= K(x− β)−(α+ε)(E| log η|+ log x− log β)) = O(x−(α+ε) log x).
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Pick ε′ ∈ (0, ε] such that α + ε′ < 1. The third summand I3(x) is estimated using the
Fubini’s theorem:

I3(x) ≤ K

∫ 1

0

z−1
∫
[1,x−β)

y−(α+ε
′)dyP{(1− yx−1)η ≤ z}dz

= K

∫ 1

0

z−1
∫
[1,x−β)

y−(α+ε
′)P{(1− η−1z)x ∈ dy}dz

= K

∫ 1

0

z−1E
(

(1− η−1z)x
)−(α+ε′)

1{1≤(1−η−1z)x≤x−β}dz

= Kx−(α+ε
′)E

∫ 1

0

z−1(1− η−1z)−(α+ε
′)1{1≤(1−η−1z)x≤x−β}dz

= Kx−(α+ε
′)E

∫ η(1−x−1)

βηx−1

z−1(1− η−1z)−(α+ε
′)dz

z=ηu
= Kx−(α+ε

′)

∫ 1−x−1

βx−1

u−1(1− u)−(α+ε
′)du = O(x−(α+ε

′) log x).

It remains to bound the first integral. To this end, note that for every z ∈ [0, 1) and
x ≥ 1 + β,

{1{θα≥x−β} + (1− θαx−1)η1{θα<x−β} ≤ z} = {(1− η−1z)x ≤ θα < x− β},

and therefore

P{1{θα≥x−β} + (1− θαx−1)η1{θα<x−β} ≤ z}
= P{(1− η−1z)x ≤ θα < x− β}
= P{((1− η−1z)x) ∨ 1 ≤ θα < x− β}
= P{η ≤ β−1xz, ((1− η−1z)x) ∨ 1 ≤ θα < x− β}
= P{η ≤ β−1xz, ((1− η−1z)x) ∨ 1 ≤ θα < x} − P{η ≤ β−1xz}((x− β)−α − x−α).

Putting this into I1(x) yields

I1(x) ≤
∫ 1

0

|P{η ≤ β−1xz, ((1− η−1z)x) ∨ 1 ≤ θα < x} − P{η ≤ z}|z−1dz

+ ((x− β)−α − x−α)

∫ 1

0

z−1P{η ≤ β−1xz}dz.

The second term is O(x−α−1 log x) by the same argument as was used in the estimation
of I2(x). Using simple algebra we obtain that the first term is equal to∫ 1

0

∣∣∣P{z < η ≤ (x− 1)−1xz}

+ x−α
(∫ (β−1xz)∧1

((x−1)−1xz)∧1
((1− y−1z)−α)P{η ∈ dy} − P{η ≤ β−1xz}

)∣∣∣z−1dz =: J(x).

By the triangle inequality,

J(x) ≤
∫ 1

0

z−1P{z < η ≤ (x− 1)−1xz}dz

+ x−α
∫ 1

0

∣∣∣ ∫ (β−1xz)∧1

((x−1)−1xz)∧1
(1− y−1z)−αP{η ∈ dy} − P{η ≤ β−1xz}

∣∣∣z−1dz. (4.3)
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The first summand, again by the Fubini’s theorem, is calculated easily:∫ 1

0

z−1P{z < η ≤ (x− 1)−1xz}dz = E

∫ 1

0

z−11{z<η≤(x−1)−1xz}dz

= E

∫ 1

0

z−11{x−1(x−1)η≤z<η}dz

= E

∫ η

x−1(x−1)η
z−1dz = | log(1− x−1)| = O(x−1).

The inner integral in the second summand in rhs of (4.3) is equal

sinπα

π

∫ (β−1xz)∧1

((x−1)−1xz)∧1
(y − z)−α(1− y)α−1dy,

and upon substitution u := (y − z)(1− z)−1 becomes

sinπα

π

∫ (β−1x−1)z
1−z ∧1

z
(1−z)(x−1)

∧1
u−α(1− u)α−1du = P

{ z

(1− z)(x− 1)
∧ 1 ≤ η ≤ (β−1x− 1)z

1− z
∧ 1
}
.

Since for z ∈ [0, 1) and x > 1 + β,

0 ≤ z

(1− z)(x− 1)
∧ 1 ≤ (β−1x− 1)z

1− z
∧ 1 ≤ (β−1xz) ∧ 1,

the integral in the second summand in (4.3) is∫ 1

0

z−1P
{
η ≤ z

(1− z)(x− 1)
∧ 1
}

dz +

∫ 1

0

z−1P
{ (β−1x− 1)z

1− z
∧ 1 ≤ η ≤ (β−1xz) ∧ 1

}
dz.

We will check that the second summand above is O(x−1) as follows:∫ 1

0

z−1P
{ (β−1x− 1)z

1− z
∧ 1 ≤ η ≤ (β−1xz) ∧ 1

}
dz

= E

∫ 1

0

z−11{ηβx−1≤z≤η(β−1x−1+η)−1}dz

= E
(

log(β−1x)− log(β−1x− 1 + η)
)

= O(x−1).

The first term can be treated analogously, hence J(x) = O(x−1). Combining all the
estimates we get sθ(x, β) = O(x−α+δ) for sufficiently small δ > 0. The proof is complete.

References

[1] Kevin K. Anderson and Krishna B. Athreya, A renewal theorem in the infinite mean case, Ann.
Probab. 15 (1987), no. 1, 388–393. MR-877611

[2] N. G. de Bruijn and P. Erdös, On a recursion formula and on some Tauberian theorems, J.
Research Nat. Bur. Standards 50 (1953), 161–164. MR-0054745

[3] E. B. Dynkin, Some limit theorems for sums of independent random variables with infinite
mathematical expectations, Select. Transl. Math. Statist. and Probability, Vol. 1, Inst. Math.
Statist. and Amer. Math. Soc., Providence, R.I., 1961, pp. 171–189. MR-0116376

[4] William Feller, An introduction to probability theory and its applications. Vol. II., Second
edition, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR-0270403

ECP 19 (2014), paper 74.
Page 10/11

ecp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=877611
http://www.ams.org/mathscinet-getitem?mr=0054745
http://www.ams.org/mathscinet-getitem?mr=0116376
http://www.ams.org/mathscinet-getitem?mr=0270403
http://dx.doi.org/10.1214/ECP.v19-3641
http://ecp.ejpecp.org/


Weak convergence of number of zero increments in random walk with barrier

[5] Adriano Garsia and John Lamperti, A discrete renewal theorem with infinite mean, Comment.
Math. Helv. 37 (1962/1963), 221–234. MR-0148121

[6] Alexander Gnedin, Alexander Iksanov, and Alexander Marynych, On Λ-coalescents with dust
component, J. Appl. Probab. 48 (2011), no. 4, 1133–1151. MR-2896672

[7] Alexander Gnedin, Alexander Iksanov, Alexander Marynych, and Martin Möhle, On asymp-
totics of the beta coalescents, Adv. in Appl. Probab. 46 (2014), no. 2, 496–515. MR-3215543

[8] Bénédicte Haas and Grégory Miermont, Self-similar scaling limits of non-increasing Markov
chains, Bernoulli 17 (2011), no. 4, 1217–1247. MR-2854770

[9] Alex Iksanov and Martin Möhle, On the number of jumps of random walks with a barrier, Adv.
in Appl. Probab. 40 (2008), no. 1, 206–228. MR-2411821

[10] Alex Iksanov and Pavlo Negadajlov, On the number of zero increments of random walks with
a barrier, Fifth Colloquium on Mathematics and Computer Science, Discrete Math. Theor.
Comput. Sci. Proc., AI, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008, pp. 243–250.
MR-2508791

[11] Alexander Iksanov, Alexander Marynych, and Matthias Meiners, Limit theorems for renewal
shot noise processes with eventually decreasing response functions, Stochastic Process. Appl.
124 (2014), no. 6, 2132–2170. MR-3188351

[12] S. V. Nagaev, Renewal theorems in the case of attraction to the stable law with characteristic
exponent smaller than unity, Ann. Math. Inform. 39 (2012), 173–191. MR-2959887
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