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1 Introduction

The frog model is a certain model of interacting random walks on a graph. Imagine
a graph G = (V,E) with a distinguished vertex x0 ∈ V , called the origin. At time 0,
there is exactly one active frog at x0 and on each vertex x ∈ V \ {x0} there is a number
ηx ∈ Z+ := Z ∩ [0,∞) of sleeping frogs. The frog at x0 now starts a nearest-neighbour
random walk on the graph G. If it hits a vertex x with ηx > 0 sleeping frogs, they all
become active at once and start performing nearest-neighbour random walks, indepen-
dently of each other and of the original frog. More generally, each time an active frogs
hits a vertex x ∈ V with ηx > 0 sleeping frogs, they all become active at once and start
nearest-neighbour random walks, independently of each other and of all other frogs. In
this description, the transition function of the underlying random walk is supposed to
be the same for all frogs. The frog model is called recurrent, if the probability that the
origin x0 is visited infinitely often equals 1, otherwise the model is called transient. The
frog model with V = Zd, E the set of nearest-neighbour edges on Zd, x0 := 0, ηx = 1 for
each x ∈ Zd \ {0} and the underlying random walk being simple random walk (SRW) on
Zd was studied by Telcs and Wormald [6]. They showed in particular that the frog model
is recurrent for each dimension d. This result was refined by Popov [4], who considered
frogs in a random environment. More precisely, he considered the situation, where there
is, for each x ∈ Zd \ {0}, originally one sleeping frog at x with probability p(x) and no
frog with probability 1− p(x), independently of all other vertices, and found the exact
rate of decay for the function p(x) to distinguish transience from recurrence. Another
modification of the model is to consider the frog model with death, allowing activated
particles to disappear after a random, e.g. geometric, lifetime. Such a model, also
with a random initial configuration of sleeping frogs, was analyzed by [1] who proved
phase transition results for both survival and recurrence of the particle system using
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Recurrence for the frog model with drift on Zd

a slightly different definition of recurrence. Note that the frog model on Zd (without
death and) with SRW is trivially recurrent for d = 1, 2, due to Pólya’s theorem. Thus, in
[3] Gantert and Schmidt considered the frog model on Z with the underlying random
walk having a drift to the right. They considered both fixed and i.i.d. random initial
configurations (ηx)x∈Z\{0} of sleeping frogs and derived precise criteria to separate
transience from recurrence. In the case of an i.i.d. initial configuration of sleeping frogs
they also proved a 0− 1 law, which says that the probability of infinitely many returns to
0 equals 1, if E[log+(η1)] = ∞, and equals 0, otherwise, independently of the concrete
value of the drift. The purpose of the present note is to prove that the frog model on Zd,
d ≥ 2, with an i.i.d. initial configuration of sleeping frogs is recurrent, whenever the
distribution giving the number of sleeping frogs per site is heavy-tailed enough. The
paper is structured as follows: In Section 2 we give a precise description of the model
we consider and state our main theorem, Theorem 2.1. In Section 3 we give the proof of
Theorem 2.1 and finally, in Section 4 we give proofs of two auxiliary lemmas, which we
need in Section 3 in order to prove Theorem 2.1.

Acknowledgments. We would like to thank Silke Rolles and Nina Gantert for useful
discussion und comments.

2 Setting and main theorem

As mentioned above, we consider recurrence of the frog model on Zd with an i.i.d.
initial configuration and such that the underlying random walk has a drift to the right.
We denote by S the set of all possible initial configurations of sleeping frogs, i.e.

S :=
{
η = (ηx)x∈Zd\{0} ∈ Z

Zd\{0}
+

}
.

Further, we denote by p the transition function of the underlying nearest-neighbour
random walk. Thus, letting E := {±ej : 1 ≤ j ≤ d}, where ej denotes the j-th standard
basis vector in Rd, j = 1, . . . , d, we assume that p : Zd → [0,∞) is a function such that∑

e∈E
p(e) = 1

and p(x) = 0 for all x ∈ Zd \ E . In order to make the random walk irreducible, we will
further assume that 0 < p(e) < 1 holds for all e ∈ E . Additionally, we will abuse notation
to write p(x, y) := p(y−x) also for the corresponding transition matrix. Since we assume
that the underlying random walk has a drift to the right, we suppose that there is an
a ∈ (0, 1) such that

m :=
∑
e∈E

p(e)e = ae1 . (2.1)

Since the transition function p will be kept fixed throughout, we omit it from the notation.
For a fixed η ∈ S we denote by Pη a probability measure on a suitable measurable
space (Ω,F), which describes the evolution of the frog model with initial configuration
η and underlying random walk given by the transition function p as described in the
introduction. We refrain from giving a mathematical construction of the frog model
with respect to η but refer the interested reader to [5]. Now, let µ be a probabil-
ity distribution on (Z+,P(Z+)) and let Pµ be the corresponding product measure on

(Z
Zd\{0}
+ ,P(Z+)⊗Z

d\{0}), i.e. Pµ = µ⊗Z
d\{0}. The corresponding expectation operator

will be denoted by Eµ. Finally, we denote by P the Pµ-mixture of the measures Pη, i.e.

P (A) =

∫
Z
Zd\{0}
+

Pη(A)Pµ(dη) , A ∈ F . (2.2)
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Thus, the measure P describes the evolution of the frog model with respect to a random
i.i.d. initial configuration η. From (2.2) we can make the following easy but important
observation:
An event A ∈ F holds P -a.s. if and only if it holds Pη-a.s. for Pµ-a.a. η ∈ S.

With this notation at hand, we are ready to state the main result of this note:

Theorem 2.1. If, additionally to the above assumptions, the distribution µ is such that
Eµ
[
log+(ηx)

d+1
2

]
=
∑∞
j=2 log(j)

d+1
2 µ(j) = ∞, then the frog model with drift to the right

and i.i.d. initial configuration η ∼ Pµ is recurrent, i.e.

P
(
0 is visited infinitely often

)
= 1 .

Remark 2.2. (a) If d = 1, Theorem 2.1 reduces to one of the results by Gantert and
Schmidt [3] that the frog model is recurrent, if Eµ[log+(η1)] = +∞.

(b) Thanks to discussion with Serguei Popov we believe that for the frog model on Zd,
d ≥ 2, with an i.i.d. initial configuration of sleeping frogs, in general, the question
of transience and recurrence depends on the concrete value of the drift, unless
the distribution of η is heavy-tailed enough, as in the situation of Theorem 2.1.
Establishing a phase transition result for recurrence and transience for distributions
of η with lighter tails is part of a follow-up project.

3 Proof of Theorem 2.1

First, we need to fix some more notation. Fix an integer α > 1, which is further
specified later on and for n ∈ N = {1, 2, . . .} let

Fn :=
{
x ∈ Zd :

3

2
α2n ≤ x1 < α2n+2 and |xj | ≤ αn for j = 2, . . . , d

}
. (3.1)

Furthermore, for x, y ∈ Zd we denote by f(x, y) the probability that the underlying
random walk ever hits y, if it starts at x. Thus, if we denote this random walk by (Xn)n≥0,
then f(x, y) = P (∃n ≥ 0 : Xn = y|X0 = x). If we choose, according to our assumptions,
ε > 0 such that ε ≤ p(±e) ≤ 1− ε holds for each e ∈ E , then we have the following lower
bound for the probabilities f(x, y):

f(x, y) ≥ εd|y−x| for all x, y ∈ Zd , (3.2)

where we denote by |x| := max1≤j≤d|xj | the maximum norm of a vector
x = (x1, . . . , xd) ∈ Rd. This follows from the fact that one can get from x to y in at most
d|y − x| steps. If y lies to the right of x, then one can do better. More precisely, we have
the following bound.

Lemma 3.1. For each finite constant γ > 0, there exists a constant c1 = c1(γ, p) > 0

such that for all x, y ∈ Zd with y1 > x1 and |yj − xj | ≤ γ
√
y1 − x1, j = 2, . . . , d, we have

f(x, y) ≥ c1

(y1 − x1)
d−1
2

.

A sketch of the proof of Lemma 3.1 is given in Section 4. The following lemma about
the behaviour of maxima of nonnegative i.i.d. random variables is one of the cornerstones
of the proof of Theorem 2.1. Throughout, we denote by |A| the cardinality of the set A.

Lemma 3.2. Let r > 0 be a finite constant, J be a countably infinite index set and let
(Yj)j∈J be a sequence of nonnegative i.i.d. random variables such that E[log+(Yj)

r] =∞.
Furthermore, let (Li)i∈N be a sequence of pairwise disjoint subsets of J such that
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li := |Li| ≥ c2βc3i holds for each i ∈ N, where c2, c3 > 0 and β > 1 are constants (Here, β
needs not necessarily be an integer). For i ∈ N define

Mi := max
j∈Li

Yj . (3.3)

Then, for each finite constant c > 0 it holds that

P
(
Mi ≥ exp

(
cβ

c3i
r

)
for infinitely many i ∈ N

)
= 1 . (3.4)

The proof of Lemma 3.2 is given in Section 4.
Now we can proceed to the proof of Theorem 2.1, which uses a technique from [4].
Choose the positive integer α such that

α ≥ max
(

3,
1

c1

)
, (3.5)

where c1 is the constant from Lemma 3.1. Further, we define

Vn := {x ∈ Zd : |x| ≤ α2n}, n ∈ N . (3.6)

Let us repeat the following important observation from [4]: For recurrence of the frog
model, everything that matters is the trajectories of the activated frogs. The actual
moment that a certain frog gets activated is unimportant. Thus, if we know that a certain
frog starting from vertex x ∈ Zd will sooner or later be at vertex y, we will say that the
frogs at vertex y are activated by a frog from x, even if it is not the first frog to visit
vertex y. We will call a vertex x ∈ Zd active if at least one active frog ever visits x.
Fix k ∈ N with k ≥ 2 and define the event

Ak :=
{

at a certain moment and at some vertex xk ∈ Vk \ Vk−1 at least

α(d+1)(k−1) frogs get activated by the initial frog starting from the origin
}
.

In the following, we will implicitly be conditioning on the event Ak. Note that the event
Ak only depends on the randomness coming from the path of the initial frog and from
the values of the ηx, where x ∈ Vk. Define

B0 := {xk} D0 := ∅ . (3.7)

We will try to construct inductively sets Di ⊆ Fk+i−1, i ∈ N, such that with

Bi = Fk+i−1 \Di

the following hold: We have

|Di| = α(d+1)(i+k−1) and |Bi| ≥ α(d+1)(i+k−1) (3.8)

and all the sites in Di are visited by frogs starting from Bi−1, i ∈ N. Furthermore,
denoting for each i ∈ N and y ∈ Fk+i−1 by ζy the indicator of the following event

{at least one active frog starting from Bi−1 eventually visits y},

we require that ∑
y∈Bi

ζyηy ≥ α(d+1)(i+k−1) (3.9)

holds for each i ∈ N. Note that by the definition of the sets Fn in (3.1) we have

|Fn| = α2n
(
α2 − 3

2

)(
2αn + 1

)d−1
(3.10)
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and hence, since α2 ≥ 4, we get

|Fn| ≥
5

2
2d−1αn(d+1) (3.11)

and
|Fn| ≤ 3d−1α2αn(d+1) ≤ αd+1αn(d+1) . (3.12)

Note that by (3.11) for all i ∈ N

|Fk+i−1| − 2α(d+1)(i+k−1) ≥ α(d+1)(i+k−1)
(5

2
2d−1 − 2

)
> 0 .

Thus, in principle, there are enough vertices in Fk+i−1 to form disjoint sets Bi and Di as
required. The next thing to do is prove that, in fact, with high enough probability enough
vertices in Fk+i−1 are visited by frogs starting from Bi−1 and also that the number of
activated frogs is large enough for (3.9) to occur. Suppose that for 0 ≤ j ≤ i the sets Bj
and Dj have already been succesfully constructed. We will soon be more precise about
what this exactly means. For i ∈ Z+ we define events Gi,1, Gi,2 and Gi as follows: Let

Gi,1 := G
(k)
i,1 :=

 ∑
y∈Fk+i

ζy ≥ 2α(d+1)(i+k)

 . (3.13)

If Gi,1 happens than we can construct the set Di+1 by choosing exactly α(d+1)(i+k)

vertices from Fk+i that are visited by frogs starting from Bi according to (3.13) and let
Bi+1 := Fk+i \Di+1. Then, we define

Gi,2 := G
(k)
i,2 :=

 ∑
y∈Bi+1

ζyηy ≥ α(d+1)(i+k)

 and Gi := G
(k)
i := Gi,1 ∩Gi,2 . (3.14)

We will call the ith inductive step succesful if Gi happens (given that
Ak, G0, . . . , Gi−1 happen). As just explained, in this case it is possible to form subsets
Bi+1, Di+1 of Fk+i with all the desired properties. In what follows we will implicitly be
conditioning on the event Ak ∩G0 ∩ . . . ∩Gi−1 but will suppress this from the formulas
for ease of notation. Also, for the computations which follow the following remark from
[4] will be crucial: Suppose that there are disjoint subsets A,B ⊆ Zd and we know that
for each x ∈ A there is a frog starting from a vertex y ∈ B which activates the frogs at
vertex x. Then, all the frogs starting from A are independent, since we only allow for
interaction when an active frog is waking up a sleeping frog.
Note that for all i ∈ Z+ and all x ∈ Fk+i−1, y ∈ Fk+i we have

1

2
α2(k+i) ≤ (y1 − x1) ≤ α2(k+i+1) . (3.15)

Lemma 3.3. Under the above assumptions and conditionally on the event Ak ∩ G0 ∩
. . . ∩Gi−1, we have for all i ∈ Z+ and all y, z ∈ Fk+i:

E[ζy] ≥ 1− exp(−2) (3.16)

Var(ζy) ≤ 1 (3.17)

Cov(ζy, ζz) ≤ exp
(
−αk+2(i−1)) ≤ exp

(
−iαk−2

)
(3.18)

Proof of Lemma 3.3. By the above remark we have

E[ζy] = P (ζy = 1) = 1− P (ζy = 0) = 1−
∏
x∈Bi

(
1− f(x, y)

)ηx
. (3.19)
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Now, from Lemma 3.1, (3.15) and the fact that (3.9) holds since we are conditioning on
Gi−1, we obtain

∏
x∈Bi

(
1− f(x, y)

)ηx ≤ ∏
x∈Bi

(
1− c1

(y1 − x1)
d−1
2

)ηx

≤
(

1− c1α−
2(k+i+1)(d−1)

2

)α(d+1)(k+i−1)

=
(

1− c1α−(k+i+1)(d−1)
)α(d+1)(k+i−1)

. (3.20)

By the inequality

(1− x)y ≤ exp(−xy) (3.21)

valid for all x ∈ (0, 1) and y > 0, we have

(
1− c1α−(k+i+1)(d−1)

)α(d+1)(k+i−1)

≤ exp

(
−c1

α(d+1)(k+i−1)

α(d−1)(k+i−1)

)
≤ exp

(
−c1α2(k+i−1)) . (3.22)

Now, using k ≥ 2, i ≥ 0 and α ≥ 1/c1 we conclude from (3.19), (3.20) and (3.22) that

E[ζy] ≥ 1− exp(−2) ,

proving (3.16). Since 0 ≤ ζy ≤ 1 (3.17) is trivially true. To prove (3.18), note that

Cov(ζy, ζz) = Cov(1− ζy, 1− ζz) = P (ζy = ζz = 0)− P (ζy = 0)P (ζz = 0)

≤ P (ζy = 0) ≤ exp
(
−c1α2(k+i−1)) (3.23)

from (3.22). Using αk ≥ α ≥ 1/c1 and α2i ≥ i we obtain (3.18).

The next lemma gives an upper bound on the probability that the event Gi,1 does not
happen (conditionally on the event Ak ∩G0 ∩ . . . ∩Gi−1).

Lemma 3.4. There is a finite constant c4 = c4(α, d) > 0, which is independent of k, such
that for all i ∈ N

P (Gci,1) = P

 ∑
y∈Fk+i

ζy < 2α(d+1)(i+k)

 ≤ c4(α−(k+i)(d+1) + exp
(
−iαk−2

))

and

P (Gc0,1) = P

∑
y∈Fk

ζy < 2α(d+1)k

 ≤ c4(α−k(d+1) + exp
(
−αk−2

))
. (3.24)

Proof of Lemma 3.4. By inequalities (3.11) and (3.16) we have

∑
y∈Fk+i

E[ζy] ≥ |Fk+i|(1− exp(−2)) ≥ 5

2
2d−1α(k+i)(d+1)(1− exp(−2)) . (3.25)
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Thus, using the simple inequality P (X ≤ a) ≤ P (X ≤ b) if a < b we obtain

P

 ∑
y∈Fk+i

ζy < 2α(d+1)(i+k)


= P

 ∑
y∈Fk+i

(
ζy − E[ζy]

)
< 2α(d+1)(i+k) −

∑
y∈Fk+i

E[ζy]


≤ P

 ∑
y∈Fk+i

(
ζy − E[ζy]

)
< −α(d+1)(i+k)

(5

2
2d−1(1− exp(−2))− 2

) (3.26)

Now note that we have

5

2
2d−1(1− exp(−2))− 2 ≥ 5

2
(1− exp(−2))− 2 =: c > 0 (3.27)

for all d ≥ 1. Note that c does not depend on k. Hence, by (3.27), Chebyshev’s inequality,
inequalities (3.12), (3.17) and the second inequality in (3.18) we have for each i ≥ 1.

P (Gci,1) ≤ c−2α−2(d+1)(i+k)

 ∑
y∈Fk+i

Var(ζy) +
∑

y,z∈Fk+i:
y 6=z

Cov(ζy, ζz)


≤ c−2α−2(d+1)(i+k)

(
αdα(k+i)(d+1) + α2dα2(k+i)(d+1) exp

(
−iαk−2

))
≤ c4

(
α−(k+i)(d+1) + exp

(
−iαk−2

))
, (3.28)

where c4 = c−2α2d is also independent of k. For i = 0 we obtain the desired upper bound
(3.24) by using the first inequality in (3.18) instead of the second one.

Next, we aim at bounding below the conditional probability of Gi,2 given that Gi,1
happens. Note that if Gi,1 happens, the set Bi+1 is well-defined and also we have

P (Gi,2|Gi,1) ≥ P
( ai∑
j=1

Yj ≥ ai
)
, (3.29)

where Y1, Y2, . . . are i.i.d. with the same distribution µ as the ηx and we write ai :=

α(d+1)(k+i), i ∈ N, for short. This follows directly from independence and (3.8). Since
the Yj are nonnegative and have infinite mean, we know from Cramér’s theorem (see
Theorem 2.2.3 and the following Remark (c)in [2]) that with the notation Sn :=

∑n
j=1 Yj ,

n ∈ N, we have
P (Sn ≤ n) ≤ 2 exp

(
−nb

)
, n ∈ N , (3.30)

where b = I(1) > 0 is the value at 1 of the Legendre-Fenchel transform I(x) of the
cumulant generating function of Y1. That I(1) > 0 also follows from the fact that Y1 is
nonnegative and has infinite mean. From (3.29) and (3.30) we conclude that for each
i ≥ 0

P (Gi,2|Gi,1) ≥ P (Sai ≥ ai) ≥ 1− P (Sai ≤ ai) ≥ 1− 2 exp
(
−bai)

)
, (3.31)

where we let b := I(1) > 0. Now, using

P (Gci ) = 1− P (Gi) = 1− P (Gi,2|Gi,1)P (Gi,1) = 1− P (Gi,2|Gi,1)
(
1− P (Gci,1)

)
≤ 1− P (Gi,2|Gi,1) + P (Gci,1)

and ai ≥ iαk, from Lemma 3.4 and (3.31) we immediately infer the following lemma.
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Lemma 3.5. With the constant c4 = c4(α, d) from Lemma 3.4 we have

P (Gci ) ≤ c4
(
α−(k+i)(d+1) + exp

(
−iαk−2

))
+ 2 exp

(
−ibαk

)
, i ∈ N , (3.32)

and
P (Gc0) ≤ c4

(
α−k(d+1) + exp

(
−αk−2

))
+ 2 exp

(
−bαk

)
. (3.33)

Now, for x ≥ 0, define the function

g(x) := c4

(
α−x(d+1)

1− α−(d+1)
+

exp
(
−αx−2

)
1− exp

(
−αx−2

) + exp
(
−αx−2

))
(3.34)

+ 2

(
exp
(
−bαx

)
+

exp
(
−bαx

)
1− exp

(
−bαx

)) (3.35)

and note that
lim
x→∞

g(x) = 0 . (3.36)

From Lemma 3.4 and the multiplication rule for conditional probabilites, we obtain that
under our initial assumption that the event Ak happens we have

P
( ∞⋂
i=0

Gi

)
= lim
m→∞

P
( m⋂
i=0

Gi

)
= lim
m→∞

m∏
i=0

(
1− P

(
Gci |G0 ∩ . . . ∩Gi−1

))
≥ lim
m→∞

(
1−

m∑
i=0

P
(
Gci |G0 ∩ . . . ∩Gi−1

))
= 1−

∞∑
i=0

P
(
Gci |G0 ∩ . . . ∩Gi−1

)
≥ 1− g(k) , (3.37)

where we have used the simple inequality

m∏
i=0

(1− pi) ≥ 1−
m∑
i=0

pi

valid for numbers p0, . . . , pm ∈ [0, 1].

Proposition 3.6. Fix k ∈ N. Assume for the frog model that the i.i.d. random variables
ηx, x ∈ Zd \ {0} satisfy Eµ[log+(ηx)

d+1
2 ] = ∞. Then, if the event Ak happens and, thus,

B0 can be constructed as in (3.7), we have

P
(

0 is visited infinitely often
∣∣ ∞⋂
i=0

Gi

)
= 1 .

Proof of Proposition 3.6. First note that, if k ≥ 1 is fixed, the sets Di, i ∈ N, satisfy
Di ⊆ Fk+i−1 and, hence, we have Di ∩ Vk = ∅ and also Di ∩

⋃
j∈Z+

Bj = ∅ for each
i ∈ N. The event Ak does not depend on the values of the random variables ηx for x /∈ Vk.
Furthermore, the event

⋂
j∈Z+

Gj only depends on the ηx such that x ∈ Ak ∪
⋃
j∈Z+

Bj .
Thus, after conditioning on Ak and on

⋂
j∈Z+

Gj , by independence, we still have the i.i.d.
property for the ηx, where x ∈

⋃
i∈Z+

Di. This will allow us to apply Lemma 3.2 below.
Note that for each fixed configuration ηx, x ∈

⋃
i∈Z+

Di, by (3.2) we have

∞∑
i=1

∑
x∈Di

ηxf(x, 0) ≥
∞∑
i=1

∑
x∈Di

ηxε
d|x| ≥

∞∑
i=1

εdα
2k+2i ∑

x∈Di

ηx

≥
∞∑
i=1

δα
2i

Mi , (3.38)
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Recurrence for the frog model with drift on Zd

where δ := εdα
2k ∈ (0, 1) and Mi := maxx∈Di

ηx, i ∈ N. For i ∈ N let
li := |Di| = α(k−1)(d+1)αi(d+1). Then, by using Lemma 3.2 with Li := Di, c := − log δ,
c2 = α(k−1)(d+1), c3 = d+ 1, r = d+1

2 and β = α we obtain that Pµ-a.s.

Mi ≥ exp
(
cα2i

)
for infinitely many i ∈ N . (3.39)

Hence, Pµ-a.s., there is a strictly increasing sequence (im)m∈N of positive integers such
that for all m ∈ N

Mim ≥ exp
(
cα2im

)
. (3.40)

Thus, from (3.38) and (3.40) we have Pµ-a.s.

∞∑
i=1

∑
x∈Di

ηxf(x, 0) ≥
∞∑
m=1

δα
2im

Mim ≥
∞∑
m=1

δα
2im

exp
(
cα2im

)
=

∞∑
m=1

1 =∞ . (3.41)

By construction, for each i ∈ N, the frogs in Di get activated by frogs starting from Bi−1.
Hence, by the remark before Lemma 3.3, all frogs in

⋃∞
i=1Di are independent. Hence,

from (3.41) and the second Borel-Cantelli lemma we conclude that Pµ-a.s.

Pη

(
0 is visited infinitely often

∣∣ ∞⋂
i=0

Gi

)
= 1 .

Thus, also

P
(

0 is visited infinitely often
∣∣ ∞⋂
i=0

Gi

)
= 1 ,

as claimed.

Now, note that from (3.37) and Proposition 3.6 we have

P
(

0 is visited infinitely often
)
≥ P

(
0 is visited infinitely often

∣∣ ∞⋂
i=0

Gi

)
P
( ∞⋂
i=0

Gi

)
≥ 1− g(k) . (3.42)

Since limk→∞ g(k) = 0 by (3.42) the proof of Theorem 2.1 will be completed, if we can
show that P -a.s. the event Ak happens for arbitrarily large k ∈ N. This is guaranteed by
the following lemma.

Lemma 3.7. We have

P

(
lim sup
k→∞

Ak

)
= 1 .

Proof of Lemma 3.7. Denote by π the path of the initial frog starting from the origin.
By the properties of the underlying random walk, clearly, π contains infinitely many
different vertices. We are going to use Lemma 3.2 with J = π, Yx = ηx, x ∈ π, and
r = (d+ 1)/2. The pairwise disjoint sets Li, i ∈ N, are constructed inductively as follows:
Let L1 contain the first α2 − 1 pairwise different vertices in π \ {0}. Clearly, L1 ⊆ V1. If
Li−1 for i ≥ 2 has already been constructed, let Li contain exactly the next α2i − α2i−2

vertices in π, which are not contained in Vi−1. Then, Li ⊆ Vi \ Vi−1. Note that the sets Li
satisfy li := |Li| ≥ c2α2i, where c2 = 1− α−2. Hence, from Lemma 3.2 (with c3 = 2, c = 1,
β = α and r = (d+ 1)/2) we conclude that Pµ-a.s.

Mi = max
x∈Li

ηx ≥ exp
(
α

4i
d+1
)

infinitely often. (3.43)
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Recurrence for the frog model with drift on Zd

In particular, Pµ-a.s. for each k0 ∈ N there exists a k ≥ k0 such that

Mk ≥ α(k−1)(d+1) ,

implying that P -a.s. the event Ak happens for arbitrarily large values of k.

4 Proofs of auxiliary lemmas

This section is devoted to the proofs of Lemmas 3.2 and 3.1. In order to prove Lemma
3.2 we need some facts about the behaviour of the maxima of nonnegative i.i.d. random
variables, some of which rely on the following simple lemma on real sequences:

Lemma 4.1. Let u : [0,∞) → [0,∞) be an increasing and invertible function and let
(yn)n∈N be a sequence of numbers in the interval [a,∞). For n ∈ N let mn := max1≤j≤n yj .
Then, the following two conditions are equivalent:

(i) mn ≥ u−1(n) for infinitely many n ∈ N

(ii) yn ≥ u−1(n) for infinitely many n ∈ N

Proof of Lemma 4.1. Of course, (ii) trivially implies (i). So let us prove the converse. Let

n0 := inf{n ∈ N : mn ≥ u−1(n)} .

By (i) n0 is finite and mn0 = yn0 . Hence, there is an n ∈ N such that yn ≥ u−1(n). It thus
suffices to show that for each n1 ∈ N with yn1 ≥ u−1(n1) there is a further n2 > n1 such
that yn2 ≥ u−1(n2). Since u−1 is unbounded, there is a k ∈ N such that u−1(k) > yn1 . By
(i) there is an n > k such that

mn ≥ u−1(n) > u−1(k) > yn1
,

since u−1 is also increasing. Now, choose n2 ∈ {k + 1, . . . , n} minimal such that mn2
≥

u−1(n). Then, mn2−1 < u−1(n) and

u−1(n2) ≤ u−1(n) ≤ mn2
= max(mn1−1, yn2

) = yn2
,

since mn1−1 < u−1(n).

For a sequence (Yj)j∈N of nonnegative random variables and n ∈ N we define

M ′n := max
1≤j≤n

Yj . (4.1)

Lemma 4.2. Let (Yi)i∈N be an i.i.d. sequence of nonnegative random variables and let
u : [0,∞)→ [0,∞) be an increasing and invertible function.

(a) If E[u(Y1)] <∞, then P (M ′n < u−1(n) eventually ) = 1.

(b) If E[u(Y1)] =∞, then P (M ′n ≥ u−1(n) infinitely often ) = 1.

Proof. We first prove (a). Since the Yn are identically distributed and also u−1 is increas-
ing, we have

∞∑
n=1

P (Yn ≥ u−1(n)) =

∞∑
n=1

P (Y1 ≥ u−1(n)) ≤
∫ ∞
0

P (Y1 ≥ u−1(x))dx

=

∫ ∞
0

P (u(Y1) ≥ x)dx = E[u(Y1)] <∞ .
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From the first Borel-Cantelli lemma we conclude that P (Yn ≥ u−1(n) infinitely often ) = 0

and from Lemma 4.1 we obtain P (M ′n ≥ u−1(n) infinitely often ) = 0, which is equivalent
to the assertion.
Now, we turn to the proof of (b). By assumption we have

∞∑
n=0

P (Yn ≥ u−1(n)) =

∞∑
n=0

P (Y1 ≥ u−1(n)) ≥
∫ ∞
0

P (Y1 ≥ u−1(x))dx

= E[u(Y1)] =∞ .

By independence, the second Borel-Cantelli lemma implies that

P (M ′n ≥ u−1(n) infinitely often ) ≥ P (Yn ≥ u−1(n) infinitely often ) = 1 .

Corollary 4.3. Let (Yi)i∈N be an i.i.d. sequence of nonnegative random variables and
let r > 0.

(a) If E[log+(Y1)r] <∞, then for all constants c, L > 0

P
(

max
1≤i≤bLnrc

Yi < exp
(
cL1/rn

)
eventually

)
= 1 .

(b) If E[log+(Y1)r] =∞, then for every constant c > 0

P
(
M ′n ≥ exp

(
cn1/r

)
infinitely often

)
= 1 .

(c) If E[log+(Y1)r] = ∞, then for every constant c > 0 and every non-decreasing se-
quence (si)i∈N of positive integers such that limi→∞ si =∞ and infi≥2

si−1

si
> 0

P
(
M ′si ≥ exp

(
csi

1/r
)

for infinitely many i
)

= 1 .

Proof. (a) follows from Lemma 4.2 (a) by choosing u(x) = (log+(x)/c)r and noting that
M ′n < exp

(
cn1/r

)
eventually implies max1≤i≤bLnrc Yi < exp

(
cL1/rn

)
eventually. Similarly,

(b) follows from Lemma 4.2 (b). To prove (c) choose a set G with P (G) = 1 according to
(b) such that for all ω ∈ G there exists a strictly increasing sequence (nk)k∈N (depending
on ω) with

M ′nk
(ω) ≥ exp

(
c̃n

1/r
k

)
for all k ∈ N ,

where c̃ := c(infi≥2 si−1/si)
−1/r <∞ by the assumptions on the sequence (si)i∈N. Then,

for each ω ∈ G and for infinitely many values of i ∈ N there is a k = ki such that
si−1 < nk ≤ si. The claim now follows from the chain of inequalities

M ′si(ω) ≥Mnk
(ω) ≥ exp

(
c̃n

1/r
k

)
≥ exp

(
s
1/r
i c̃

(si−1
si

)1/r) ≥ exp
(
cs

1/r
i

)
.

Proof of Lemma 3.2. For i ∈ N define

M?
i := max

j∈
⋃

k≤i Li

Yj = max
k≤i

Mk . (4.2)

Note that by disjointness of the sets Li we have for the cardinality of
⋃
k≤i Li:∣∣∣⋃

k≤i

Li

∣∣∣ =

i∑
k=1

lk ≥
i∑

k=1

c2β
c3k = c2β

c3
βc3i − 1

βc3 − 1
≥ dc̃βc3ie =: si , (4.3)
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where c̃ > 0 is a constant depending only on c2, c3 and β. Hence, for each i ∈ N, M?
i is

stochastically larger than M ′si from Corollary 4.3 (c) and the integer sequence (si)i∈N
satisfies the above assumptions. In particular, we have

P
(
M?
i ≥ exp

(
c′si

1/r
)

for infinitely many i
)

= 1 (4.4)

for each finite constant c′ > 0. This immediately implies that

P
(
M?
i ≥ exp

(
cβ

c3i
r

)
for infinitely many i

)
= 1 (4.5)

for each finite constant c > 0. Now using

M?
i = max

1≤k≤i
Mk

the claim follows from Lemma 4.1 applied to the function u(x) = r log log x−log c
c3 log β .

Sketch of the proof of Lemma 3.1. First note that the probability f(x, y) is also the
probability that the continuous time random walk (CTRW)

(Xt)t>0 =
(
X

(1)
t , . . . , X

(d)
t

)
t>0

corresponding to p ever visits y if it is starting at x. The benefit of working in continuous
time here is that for CTRW the coordinates are independent, which is not true for
discrete time random walks. Because of (2.1), letting τ := inf{t > 0 : X

(1)
t = y1}, we

know that Px(τ <∞) = 1. Furthermore,

f(x, y) = Px
(
∃ t > 0 : Xt = y

)
≥ Px

(
Xτ = y)

=

∫ ∞
0

Px
(
Xτ = y

∣∣ τ = t
)
Px
(
τ ∈ dt

)
=

∫ ∞
0

Px
(
(X

(2)
t , . . . , X

(d)
t ) = (y2, . . . , yd)

)
Px
(
τ ∈ dt

)
≥
∫ γ2(y1−x1)

γ1(y1−x1)

Px
(
(X

(2)
t , . . . , X

(d)
t ) = (y2, . . . , yd)

)
Px
(
τ ∈ dt

)
, (4.6)

where 0 < γ1 < γ2 < ∞ are chosen such that Px
(
γ1(y1 − x1) ≤ τ ≤ γ2(y1 − x1)

)
≥ 1/2.

Now, since |(y2 − x2, . . . , yd − xd)| ≤ γ
√
y1 − x1, by the local CLT for continuous time

random walks there is a universal constant c > 0 such that

Px
(
(X

(2)
t , . . . , X

(d)
t ) = (y2, . . . , yd)

)
≥ c

t
d−1
2

(4.7)

for all t ≥ γ1(y1 − x1). Thus, from (4.6) and (4.7) we get

f(x, y) ≥ c

(γ2(y1 − x1))
d−1
2

∫ γ2(y1−x1)

γ1(y1−x1)

Px
(
τ ∈ dt

)
≥ c

2(γ2(y1 − x1))
d−1
2

,

yielding the claim with c1 := 1
2cγ
− d−1

2
2 .
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