# Lower bounds on the smallest eigenvalue of a sample covariance matrix* 

Pavel Yaskov ${ }^{\dagger}$


#### Abstract

We provide tight lower bounds on the smallest eigenvalue of a sample covariance matrix of a centred isotropic random vector under weak or no assumptions on its components.


Keywords: Covariance matrices; Gram matrices; Random matrices.
AMS MSC 2010: 60B20.
Submitted to ECP on September 17, 2014, final version accepted on December 2, 2014.

## 1 Introduction

Lower bounds on the smallest eigenvalue of a sample covariance matrix (or a Gram matrix) play a crucial role in the least squares problems in high-dimensional statistics (see, for example, [5]). These problems motivate the present work.

For a random vector $X_{p}$ in $\mathbb{R}^{p}$, consider a random $p \times n$ matrix $\mathbf{X}_{p n}$ with independent columns $\left\{X_{p k}\right\}_{k=1}^{n}$ distributed as $X_{p}$ and the Gram matrix

$$
\mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}=\sum_{k=1}^{n} X_{p k} X_{p k}^{\top}
$$

If $X_{p}$ is centred, then $n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}$ is the sample covariance matrix corresponding to the random sample $\left\{X_{p k}\right\}_{k=1}^{n}$. For simplicity, we will further assume that $X_{p}$ is isotropic, i.e. $\mathbb{E} X_{p} X_{p}^{\top}=I_{p}$ for a $p \times p$ identity matrix $I_{p}$, and consider only those $p$ which are not greater than $n$ (otherwise $\mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}$ would be degenerate).

In this paper we derive sharp lower bounds for $\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)$, where $\lambda_{p}(A)$ is the smallest eigenvalue of a $p \times p$ matrix $A$. We try to impose as few restrictions on the components of $X_{p}$ as possible. In proofs we use the same strategy as in [6].

## 2 Main results

$$
\begin{aligned}
& \text { Put } c_{p}(a)=\inf \mathbb{E} \min \left\{\left(X_{p}, v\right)^{2}, a\right\}, C_{p}(a)=\sup \mathbb{E}\left(X_{p}, v\right)^{2} \min \left\{\left(X_{p}, v\right)^{2}, a\right\} \\
& \qquad L_{p}(\alpha)=\sup \mathbb{E}\left|\left(X_{p}, v\right)\right|^{2+\alpha} \text { and } K_{p}=\inf \mathbb{E}\left|\left(X_{p}, v\right)\right|
\end{aligned}
$$

[^0]for given $a, \alpha>0$, where all suprema and infima are taken over $v \in \mathbb{R}^{p}$ with $\|v\|=1$, and $\|v\|=\left(\sum_{i=1}^{p} v_{i}^{2}\right)^{1 / 2}$ is the Euclidean norm of $v=\left(v_{1}, \ldots, v_{p}\right)$. Denote also by $M_{p}(\alpha)$ the infimum over all $M>0$ such that
$$
\mathbb{P}\left(\left|\left(X_{p}, v\right)\right|>t\right) \leqslant \frac{M}{t^{2+\alpha}} \text { for all } t>0 \text { and } v \in \mathbb{R}^{p},\|v\|=1
$$

Our main lower bounds are as follows.
Theorem 2.1. If $X_{p}$ is an isotropic random vector in $\mathbb{R}^{p}$ and $p / n \leqslant y$ for some $y \in(0,1)$, then, for all $a>0$,

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant c_{p}(a)-\frac{C_{p}(a)}{a}-5 a y+\frac{\sqrt{C_{p}(2 a)} Z}{\sqrt{n}}
$$

for a centred random variable $Z=Z(p, n, a)$ with $\mathbb{P}(Z<-t) \leqslant e^{-t^{2} / 2}, t>0$.
Theorem 2.2. Let $X_{p}$ be an isotropic random vector in $\mathbb{R}^{p}, p / n \leqslant y$ for some $y \in(0,1)$. If $L_{p}(2)<\infty$, then

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-4 C \sqrt{y}+\frac{C Z}{\sqrt{n}}
$$

for $C=\sqrt{L_{p}(2)}$ and some $Z=Z(p, n)$ with $\mathbb{E} Z=0$ and $\mathbb{P}(Z<-t) \leqslant e^{-t^{2} / 2}, t>0$. Moreover, there are universal constants $C_{0}, C_{1}, C_{2}>0$ such that

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant C_{0} K_{p}^{2}+\frac{C_{1} Z}{\sqrt{n}}
$$

whenever $y \leqslant C_{2} K_{p}^{2}$ and $Z=Z(p, n)$ as above.
Useful bounds for $c_{p}(a)$ and $C_{p}(a)$ in terms of $L_{p}(\alpha)$ and $M_{p}(\alpha)$ are given in the following proposition.
Proposition 2.3. Let $X_{p}$ be an isotropic random vector in $\mathbb{R}^{p}$. Then, for all $a, \alpha>0$,

$$
c_{p}(a) \geqslant 1-\frac{L_{p}(\alpha)}{a^{\alpha / 2}} \quad \text { and } \quad c_{p}(a) \geqslant 1-\frac{2 \alpha^{-1} M_{p}(\alpha)}{a^{\alpha / 2}} .
$$

In addition, for all $\alpha \in(0,2]$ and each $a>0, C_{p}(a)$ is bounded from above by

$$
a^{1-\alpha / 2} L_{p}(\alpha) \quad \text { and } \quad(1+2 / \alpha) M_{p}(\alpha) a^{1-\alpha / 2}+ \begin{cases}2 M_{p}(\alpha) a^{1-\alpha / 2} /(1-\alpha / 2), & \alpha \in(0,2) \\ 2 M_{p}(2) \log \max \{a, 1\}+1, & \alpha=2\end{cases}
$$

## 3 Applications

We now describe different corollaries of Theorem 2.1 and Theorem 2.2. The next corollary extends Theorem 1.3 in [4] and Theorem 3.1 in [5] (for $A_{i}=X_{p i} X_{p i}^{\top}$ ).
Corollary 3.1. Let $X_{p}$ be an isotropic random vector in $\mathbb{R}^{p}, p / n \leqslant y$ for some $y \in(0,1)$ and $L_{p}(\alpha)<\infty$ for some $\alpha \in(0,2]$. Then, with probability at least $1-e^{-p}$,

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-C_{\alpha} y^{\alpha /(2+\alpha)}
$$

where

$$
C_{\alpha}= \begin{cases}9\left(L_{p}(\alpha)\right)^{2 /(2+\alpha)}, & \alpha \in(0,2) \\ (4+\sqrt{2}) \sqrt{L_{p}(2)}, & \alpha=2\end{cases}
$$

Remark 3.2. One may further weaken assumptions in Corollary 3.1. Namely, one may assume that $M_{p}(\alpha)<\infty$ for some $\alpha \in(0,2)$. The conclusion of Corollary 3.1 will still hold with some $C_{\alpha}>0$ that depends only on $\alpha$ and $M_{p}(\alpha)$. In the case $\alpha=2$, one would have a lower bound of the form $1-C_{2} \sqrt{y \log (e / y)}$ with $C_{2}>0$ depending only on $M_{p}(2)$.

Theorems 2.1 and 2.2 improve Theorem 2.1 in [6] as the next corollary shows.
Corollary 3.3. Let $X_{p}$ be an isotropic random vector in $\mathbb{R}^{p}$. If $L_{p}(\alpha)<\infty$ for some $\alpha \in(0,2)$ and $p / n \leqslant \varepsilon^{1+2 / \alpha} /\left(10\left(4 L_{p}(\alpha)\right)^{2 / \alpha}\right)$, then

$$
\mathbb{E} \lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-\varepsilon
$$

The same conclusion holds if $L_{p}(2)<\infty$ and $n \geqslant 16 L_{p}(2) \varepsilon^{-2} p$.
Let us formulate the final corollary that improves Theorem 3.1 in [4] for small $K_{p}$.
Corollary 3.4. Let $X_{p}$ be an isotropic random vector in $\mathbb{R}^{p}$. Then there are universal constants $C_{0}^{*}, C_{1}^{*}, C_{2}^{*}>0$ such that, with probability at least $1-\exp \left\{-C_{1}^{*} K_{p}^{4} n\right\}$,

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant C_{0}^{*} K_{p}^{2}
$$

when $p / n \leqslant C_{2}^{*} K_{p}^{2}$.
The range of applicability of Corollary 3.4 is very wide. Namely, there exist some universal constant $K>0$ such that $K_{p} \geqslant K$ for a very large class of isotropic random vectors $X_{p}$. By Corollary 3.4, this means that $\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)$ is separated from zero by an universal constant.

The existence of $K$ follows from results related to Kashin's decomposition theorem. The infinite dimensional version of this theorem is given in Kashin [2] (for a proof, see [3]). It states the following.

There is an universal constant $K>0$ such that $L_{2}(0,1)=H_{1} \oplus H_{2}$ for some linear subspaces of $H_{i} \subset L_{2}(0,1), i=1,2$, such that $\|x\|_{1} \geqslant K\|x\|_{2}$ for all $x \in H_{1} \cup H_{2}$, where $\|x\|_{d}$ is the standard norm in $L_{d}(0,1), d=1,2$.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be an underlying probability space. Assume that $\Omega=(0,1), \mathcal{F}$ is the Borel $\sigma$-algebra and $\mathbb{P}$ is the Lebesgue measure. If all components of $X_{p}=\left(x_{1}, \ldots, x_{p}\right)$ are in $H_{1}$, or all components of $X_{p}$ are in $H_{2}$, then $K_{p} \geqslant K$.

If we consider only discrete random vectors $X_{p}$, we may say more. Namely, Kashin [1] proved that, for any $\delta>0$ and all $N \in \mathbb{N}, \mathbb{R}^{N}$ contains a linear subspace $H$ with $\operatorname{dim} H \geqslant(1-\delta) N$ such that $|e|_{1} \geqslant K|e|_{2}$ for some $K=K(\delta)>0$ not depending on $N$ and all $e=\left(e_{1}, \ldots, e_{N}\right) \in H,{ }^{1}$ where

$$
|e|_{d}=\left(\frac{1}{N} \sum_{i=1}^{N}\left|e_{i}\right|^{d}\right)^{1 / d}, \quad d=1,2
$$

In particular, if $\left\{e^{(k)}\right\}_{k=1}^{p}$ is any orthonormal system in $H$ and $\left\{x^{(i)}\right\}_{i=1}^{N}$ are columns of the $p \times N$ matrix with rows $\left\{\left(e^{(k)}\right)^{\top}\right\}_{k=1}^{p}$, then, for all $v=\left(v_{1}, \ldots, v_{p}\right) \in \mathbb{R}^{p}$ with $\|v\|=\sqrt{\sum_{j=1}^{p} v_{j}^{2}}=1$,

$$
K=K\left(\frac{1}{N} \sum_{i=1}^{N}\left|\left(x^{(i)}, v\right)\right|^{2}\right)^{1 / 2}=K\left|\sum_{k=1}^{p} v_{k} e^{(k)}\right|_{2} \leqslant\left|\sum_{k=1}^{p} v_{k} e^{(k)}\right|_{1}=\frac{1}{N} \sum_{i=1}^{N}\left|\left(x^{(i)}, v\right)\right| .
$$

If $X_{p}$ is such that $\mathbb{P}\left(X_{p}=x^{(i)}\right)=1 / N, 1 \leqslant i \leqslant N$, then $K_{p} \geqslant K=K(\delta)$.

## 4 Proofs.

In proofs of Theorem 2.1 and Theorem 2.2, we follow the strategy of Srivastava and Vershynin [6]. The key step is the following lemma.

[^1]Lemma 4.1. Let $A$ be a $p \times p$ symmetric matrix with $A \succ 0, v \in \mathbb{R}^{p}, l \geqslant 0, \varphi>0$,

$$
\begin{equation*}
Q(l, v)=v^{\top}\left(A-l I_{p}\right)^{-1} v \quad \text { and } \quad q(l, v)=\frac{v^{\top}\left(A-l I_{p}\right)^{-2} v}{\operatorname{tr}\left(A-l I_{p}\right)^{-2}} \tag{4.1}
\end{equation*}
$$

hereinafter $A \succ 0$ means that $A$ is positive definite. If $A-l I_{p} \succ 0, \operatorname{tr}\left(A-l I_{p}\right)^{-1} \leqslant \varphi$ and

$$
\Delta=\frac{q(l, v)}{1+3 \varphi q(l, v)+Q(l, v)}
$$

then $A-(l+\Delta) I_{p} \succ 0$ and $\operatorname{tr}\left(A+v v^{\top}-(l+\Delta) I_{p}\right)^{-1} \leqslant \varphi$.
The proof of Lemma 4.1 is given in Appendix.
The strategy itself consists in the following. Let $A_{0}$ be a $p \times p$ zero matrix and

$$
A_{k}=\sum_{j=1}^{k} X_{p j} X_{p j}^{\top}, \quad 1 \leqslant k \leqslant n
$$

Consider some $\varphi>0$ and take $l_{0}=-p / \varphi$ that satisfies $\operatorname{tr}\left(A_{0}-l_{0} I_{p}\right)^{-1}=\varphi$.
Put $l_{k}=l_{k-1}+\Delta_{k}$ for $1 \leqslant k \leqslant n$, where

$$
\Delta_{k}=\frac{q_{k}\left(l_{k-1}, X_{p k}\right)}{1+3 \varphi q_{k}\left(l_{k-1}, X_{p k}\right)+Q_{k}\left(l_{k-1}, X_{p k}\right)},
$$

$Q_{k}\left(l_{k-1}, X_{p k}\right)$ and $q_{k}\left(l_{k-1}, X_{p k}\right)$ are defined as $Q(l, v)$ and $q(l, v)$ in (4.1) with $A=A_{k-1}$ and $v=X_{p k}$. Applying Lemma 4.1 iteratively, we infer that $\operatorname{tr}\left(A_{k}-l_{k} I_{p}\right)^{-1} \leqslant \varphi$ and $A_{k}-l_{k} I_{p} \succ 0$ for all $1 \leqslant k \leqslant n$. Therefore,

$$
\lambda_{p}\left(\mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)=\lambda_{p}\left(A_{n}\right) \geqslant l_{n}=l_{0}+\Delta_{1}+\ldots+\Delta_{n}
$$

Let $\mathbb{E}_{k}=\mathbb{E}\left(\cdot \mid X_{p 1}, \ldots, X_{p k}\right), 1 \leqslant k \leqslant n$, and $\mathbb{E}_{0}=\mathbb{E}$. We have

$$
\begin{equation*}
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant-\frac{p}{n \varphi}+\frac{1}{n} \sum_{k=1}^{n} \mathbb{E}_{k-1} \Delta_{k}+\frac{Y}{\sqrt{n}} \tag{4.2}
\end{equation*}
$$

where $Y=n^{-1 / 2} \sum_{k=1}^{n}\left(\Delta_{k}-\mathbb{E}_{k-1} \Delta_{k}\right)$.
To apply estimate (4.2), we need to choose $\varphi$ and obtain good lower bounds for $\mathbb{E}_{k-1} \Delta_{k}$ as well as upper bounds for $\mathbb{P}(Y<-t), t<0$. The next lemmata which proofs are given in Appendix provide such bounds.
Lemma 4.2. Let $U$ and $V$ be non-negative random variables. Then, for all $a>0$,

$$
\mathbb{E} \frac{U}{1+V} \geqslant \frac{|\mathbb{E} \min \{U, a\}|^{2}}{\mathbb{E} \min \{U, a\}+\mathbb{E} V \min \{U, a\}}
$$

In addition, if $\mathbb{E} U=1$, then $\mathbb{E} U /(1+V) \geqslant 1 /(1+\mathbb{E} U V)$. Moreover,

$$
\mathbb{E} \frac{U}{1+V} \geqslant \frac{|\mathbb{E} \sqrt{U}|^{2}}{1+\mathbb{E} V}
$$

Lemma 4.3. Let $X_{p}$ be an isotropic random vector in $\mathbb{R}^{p}, A, B \succ 0$ be a $p \times p$ symmetric matrices with $\operatorname{tr}(A)=1$ and $\operatorname{tr}(B) \leqslant 1$ that are simultaneously diagonalisable. If

$$
\Delta=\frac{X_{p}^{\top} A X_{p}}{1+b^{-1}\left(X_{p}^{\top} A X_{p}+X_{p}^{\top} B X_{p} / 3\right)}
$$

for some $b>0$, then, for any $a>0$,

$$
\mathbb{E} \Delta \geqslant c_{p}(a)-\frac{5 C_{p}(a)}{3 b} \text { and } \mathbb{E} \Delta^{2} \leqslant C_{p}(b)
$$

In addition, if $L_{p}(2)<\infty$, then $\mathbb{E} \Delta \geqslant 1-4 L_{p}(2) b^{-1} / 3$ and $\mathbb{E} \Delta^{2} \leqslant L_{p}(2)$. Moreover,

$$
\mathbb{E} \Delta \geqslant \frac{K_{p}^{2}}{1+4(3 b)^{-1}}
$$

Lemma 4.4. Let $\left(D_{k}\right)_{k=1}^{n}$ be a sequence of non-negative random variables adapted to a filtration $\left(\mathcal{F}_{k}\right)_{k=1}^{n}$ such that $\mathbb{E}\left(D_{k}^{2} \mid \mathcal{F}_{k-1}\right) \leqslant 1$ a.s. for $k=1, \ldots, n$, where $\mathcal{F}_{0}$ is the trivial $\sigma$-algebra. If

$$
Z=\frac{1}{\sqrt{n}} \sum_{k=1}^{n}\left(D_{k}-\mathbb{E}\left(D_{k} \mid \mathcal{F}_{k-1}\right)\right)
$$

then $\mathbb{P}(Z<-t) \leqslant \exp \left\{-t^{2} / 2\right\}$ for all $t>0$.
Proof of Theorem 2.1. Take in Lemma $4.3 X_{p}=X_{p k}$,

$$
\begin{equation*}
A=\frac{\left(A_{k-1}-l_{k-1} I_{p}\right)^{-2}}{\operatorname{tr}\left(A_{k-1}-l_{k-1} I_{p}\right)^{-2}}, \quad B=\left(A_{k-1}-l_{k-1} I_{p}\right)^{-1} / \varphi, \quad a=\frac{1}{5 \varphi}, \quad b=\frac{5 a}{3}=\frac{1}{3 \varphi} . \tag{4.3}
\end{equation*}
$$

Clearly $A$ and $B$ commute hence they are simultaneously diagonalizable. Additionally, we have $\operatorname{tr}(A)=1$ and $\operatorname{tr}(B)=\operatorname{tr}\left(A_{k-1}-l_{k-1} I_{p}\right)^{-1} / \varphi \leqslant 1$. Using Lemma 4.3, we arrive at the lower bounds

$$
\mathbb{E}_{k-1} \Delta_{k} \geqslant c_{p}(a)-\frac{C_{p}(a)}{a}, \quad 1 \leqslant k \leqslant n
$$

hereinafter all inequalities with conditional mathematical expectations hold almost surely. By (4.2), the latter implies that

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant c_{p}(a)-\frac{C_{p}(a)}{a}-\frac{5 a p}{n}+\frac{\sqrt{C_{p}(2 a)} Z}{\sqrt{n}}
$$

where

$$
Z=\frac{1}{\sqrt{C_{p}(2 a) n}} \sum_{k=1}^{n}\left(\Delta_{k}-\mathbb{E}_{k-1} \Delta_{k}\right)
$$

Note that $\left(\Delta_{k}-\mathbb{E}_{k-1} \Delta_{k}\right)_{k=1}^{n}$ is a martingale difference sequence with respect to the natural filtration of $\left(X_{p k}\right)_{k=1}^{n}$. Obviously, $\mathbb{E} Z=0$. By Lemma 4.3, $\mathbb{E}_{k-1} \Delta_{k}^{2} \leqslant C_{p}(b) \leqslant C_{p}(2 a)$. Therefore, Lemma 4.4 with $D_{k}=\Delta_{k} / \sqrt{C_{p}(2 a)}$ yields that $\mathbb{P}(Z<-t) \leqslant \exp \left\{-t^{2} / 2\right\}$, $t>0$. Thus we have proven Theorem 2.1.

Proof of Theorem 2.2. The proof follows the same line as the proof of Theorem 2.1.
Assume first that $C^{2}=L_{p}(2)<\infty$ and $p / n \leqslant y$ for some $y>0$. Define $X_{p}^{\top} A X_{p}$ and $X_{p}^{\top} B X_{p}$ in the same way as in (4.3). Then, by Lemma 4.3 (with $\varphi=1 /(3 b)$ ),

$$
\mathbb{E}_{k-1} \Delta_{k} \geqslant 1-4 C^{2} \varphi, \quad 1 \leqslant k \leqslant n
$$

Taking $\varphi=\sqrt{y} /(2 C)$ in (4.2), we get $p /(n \varphi) \leqslant y / \varphi=2 C \sqrt{y}$ and

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-4 C \sqrt{y}+\frac{C Z}{\sqrt{n}}
$$

where

$$
Z=\frac{1}{C \sqrt{n}} \sum_{k=1}^{n}\left(\Delta_{k}-\mathbb{E}_{k-1} \Delta_{k}\right)
$$

As in the proof of Theorem 2.1, it follows from Lemma 4.3 that $\mathbb{E}_{k-1} \Delta_{k}^{2} \leqslant L_{p}(2)=C^{2}$, $1 \leqslant k \leqslant n$. Therefore, by Lemma 4.4, $\mathbb{P}(Z<-t) \leqslant \exp \left\{-t^{2} / 2\right\}, t>0$.

Finally, consider the case with $K_{p}>0$ ( the case with $K_{p}=0$ is trivial). By Lemma 4.3 with $b=(3 \varphi)^{-1}$ and $\varphi=1 / 4$,

$$
\mathbb{E}_{k-1} \Delta_{k} \geqslant \frac{K_{p}^{2}}{1+4 \varphi}=\frac{K_{p}^{2}}{2}, \quad 1 \leqslant k \leqslant n
$$

Taking $p / n \leqslant y=K_{p}^{2} / 16$ in (4.2), we get

$$
\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant \frac{K_{p}^{2}}{4}+\frac{\sqrt{C_{p}(4 / 3)} Z}{\sqrt{n}}
$$

for some $Z$ with $\mathbb{P}(Z<-t) \leqslant \exp \left\{-t^{2} / 2\right\}, t>0$ (see the end of the proof of Theorem 2.1). Since $C_{p}(4 / 3) \leqslant 4 / 3$, the variable

$$
Z_{0}=\frac{\sqrt{C_{p}(4 / 3)}}{\sqrt{4 / 3}} Z
$$

satisfies $\mathbb{P}\left(Z_{0}<-t\right) \leqslant \exp \left\{-t^{2} / 2\right\}, t>0$. Replacing $Z$ by $Z_{0}$, we get the result.
Proof of Proposition 2.3. If $U$ is non-negative random variable with $\mathbb{E} U=1$, then

$$
\begin{aligned}
& \mathbb{E} \min \{U, a\}=\mathbb{E} U-\mathbb{E}(U-a) \mathbb{1}(U>a) \geqslant 1-\mathbb{E} U \mathbb{1}(U>a) \geqslant 1-\frac{\mathbb{E} U^{1+\alpha / 2}}{a^{\alpha / 2}}, \\
& \begin{array}{c}
\mathbb{E} \min \{U, a\}=\mathbb{E} U-\int_{a}^{\infty} \mathbb{P}(U>t) d t \geqslant 1-\int_{a}^{\infty} \frac{M}{t^{1+\alpha / 2}} d t \geqslant 1-\frac{2 M}{\alpha a^{\alpha / 2}} \\
\mathbb{E} U \min \{U, a\} \leqslant \mathbb{E} U^{1+\alpha / 2} a^{1-\alpha / 2}
\end{array} \\
& \begin{aligned}
& \mathbb{E} U \min \{U, a\} \leqslant a \mathbb{E}(U-a) I(U>a)+a^{2} \mathbb{P}(U>a)+\mathbb{E} \min \left\{U^{2}, a^{2}\right\} \\
&=a \int_{a}^{\infty} \mathbb{P}(U>t) d t+a \mathbb{P}(U>a)+\int_{0}^{a^{2}} \mathbb{P}\left(U^{2}>t\right) d t \\
& \leqslant a \int_{a}^{\infty} \frac{M}{t^{1+\alpha / 2}} d t+M a^{1-\alpha / 2}+\int_{0}^{a^{2}} f(t, \alpha) d t \\
& \leqslant(1+2 / \alpha) M a^{1-\alpha / 2}+ \begin{cases}2 M a^{1-\alpha / 2} /(1-\alpha / 2), \quad \alpha \in(0,2) \\
2 M \log \max \{a, 1\}+1, \quad \alpha=2\end{cases}
\end{aligned} .\left\{\begin{array}{l}
2
\end{array}\right.
\end{aligned}
$$

where $M=\sup \left\{t^{1+\alpha / 2} \mathbb{P}(U>t): t>0\right\}, f(t, \alpha)=M t^{-1 / 2-\alpha / 4}$ for $\alpha \in(0,2)$ and

$$
f(t, 2)= \begin{cases}M t^{-1}, & t>1 \\ 1, & t \in[0,1]\end{cases}
$$

Putting $U=\left(X_{p}, v\right)^{2}$ for given $v \in \mathbb{R}^{p}$ with $\|v\|=1$ and taking the infimum or the supremum over such $v$ in the above inequalities, we finish the proof.

Proof of Corollary 3.1. Consider the case $\alpha \in(0,2)$. Set $L=L_{p}(\alpha)$ and $y=p / n$. By Proposition 2.3,

$$
c_{p}(a)-\frac{C_{p}(a)}{a} \geqslant 1-\frac{2 L}{a^{\alpha / 2}} \quad \text { and } \quad C_{p}(2 a) \leqslant L(2 a)^{1-\alpha / 2} \leqslant 2 L a^{1-\alpha / 2}
$$

By Theorem 2.1,

$$
\begin{aligned}
\mathbb{P}\left(\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)<1-4 L a^{-\alpha / 2}-5 a y\right) & \leqslant \mathbb{P}\left(\sqrt{C_{p}(2 a)} Z / \sqrt{n}<-2 L a^{-\alpha / 2}\right) \\
& \leqslant \mathbb{P}\left(\sqrt{2 L a^{1-\alpha / 2}} Z / \sqrt{n}<-2 L a^{-\alpha / 2}\right) \\
& \leqslant \exp \left\{-L a^{-1-\alpha / 2} n\right\}
\end{aligned}
$$

Taking $y=L a^{-1-\alpha / 2}$, we get the desired inequality.
Consider the case $\alpha=2$. By Theorem 2.2 with $y=p / n$ and $C=\sqrt{L_{p}(2)}$,
$\mathbb{P}\left(\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)<1-(4+\sqrt{2}) C \sqrt{y}\right) \leqslant \mathbb{P}(C Z / \sqrt{n}<-\sqrt{2} C \sqrt{y}) \leqslant \exp \{-y n\}=\exp \{-p\}$.

Proof of Corollary 3.3. Set $L=L_{p}(\alpha)$ for given $\alpha \in(0,2)$. By Proposition 2.3,

$$
c_{p}(a)-\frac{C_{p}(a)}{a} \geqslant 1-\frac{2 L}{a^{\alpha / 2}} .
$$

Therefore, taking in Theorem 2.1

$$
a=(4 L / \varepsilon)^{2 / \alpha} \quad \text { and } \quad p / n \leqslant y=\frac{\varepsilon^{1+2 / \alpha}}{10(4 L)^{2 / \alpha}}
$$

we derive the first bound

$$
\mathbb{E} \lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-\frac{2 L}{a^{\alpha / 2}}-5 a y \geqslant 1-\varepsilon
$$

Similarly, taking $y=\varepsilon^{2} /\left(16 C^{2}\right)$ for $C=\sqrt{L_{p}(2)}$ in Theorem 2.2, we get that

$$
\mathbb{E} \lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right) \geqslant 1-4 C \sqrt{y} \geqslant 1-\varepsilon
$$

Proof of Corollary 3.4. Let $C_{0}, C_{1}, C_{2}>0$ be such that the second bound in Theorem 2.2 holds. Then, for $p / n \leqslant C_{2} K_{p}^{2}$,

$$
\mathbb{P}\left(\lambda_{p}\left(n^{-1} \mathbf{X}_{p n} \mathbf{X}_{p n}^{\top}\right)<C_{0} K_{p}^{2} / 2\right) \leqslant \mathbb{P}\left(C_{1} Z / \sqrt{n}<-C_{0} K_{p}^{2} / 2\right) \leqslant \exp \left\{-C_{0}^{2} K_{p}^{4} n /\left(8 C_{1}^{2}\right)\right\}
$$

Putting $C_{0}^{*}=C_{0} / 2, C_{1}^{*}=C_{0}^{2} /\left(8 C_{1}^{2}\right)$ and $C_{2}^{*}=C_{2}$, we finish the proof.

## 5 Appendix

Proof of Lemma 4.1. By Lemma 2.2 in Srivastava and Vershynin [6], if $A-(l+\Delta) I_{p} \succ 0$ and $q(l+\Delta, v) /[1+Q(l+\Delta, v)] \geqslant \Delta$, then

$$
\operatorname{tr}\left(A+v v^{\top}-(l+\Delta) I_{p}\right)^{-1} \leqslant \operatorname{tr}\left(A-l I_{p}\right)^{-1}
$$

In addition, by Lemma 2.4 in Srivastava and Vershynin [6], if $A-l I_{p} \succ 0, \Delta<1 / \varphi$ and $\operatorname{tr}\left(A-l I_{p}\right)^{-1} \leqslant \varphi$, then $A-(l+\Delta) I_{p} \succ 0$ and

$$
\frac{q(l+\Delta, v)}{1+Q(l+\Delta, v)} \geqslant \frac{q(l, v)(1-\varphi \Delta)^{2}}{1+Q(l, v)(1-\varphi \Delta)^{-1}}
$$

Therefore, we only need to show that

$$
\frac{q(l, v)(1-\varphi \Delta)^{2}}{1+Q(l, v)(1-\varphi \Delta)^{-1}} \geqslant \Delta=\frac{q(l, v)}{1+3 \varphi q(l, v)+Q(l, v)}
$$

since $\Delta \leqslant 1 /(3 \varphi)$ by construction.
By Bernoulli's inequality, $(1-x)^{3} \geqslant 1-3 x$ whenever $x \in[0,1]$. Hence,

$$
\frac{q(l, v)(1-\varphi \Delta)^{2}}{1+Q(l, v)(1-\varphi \Delta)^{-1}}=\frac{q(l, v)(1-\varphi \Delta)^{3}}{1-\varphi \Delta+Q(l, v)} \geqslant \frac{q(l, v)(1-\varphi \Delta)^{3}}{1+Q(l, v)} \geqslant \frac{q(l, v)(1-3 \varphi \Delta)}{1+Q(l, v)}=\Delta
$$

where the last equality holds by the definition of $\Delta$.
Proof of Lemma 4.2. We have

$$
\mathbb{E} \frac{U}{1+V} \geqslant \mathbb{E} \frac{\min \{U, a\}}{1+V}
$$

for all $a>0$. By the Cauchy-Schwartz inequality,
$\mathbb{E} \frac{\min \{U, a\}}{1+V} \mathbb{E}(1+V) \min \{U, a\} \geqslant\left|\mathbb{E} \frac{\sqrt{\min \{U, a\}}}{\sqrt{1+V}} \sqrt{(1+V) \min \{U, a\}}\right|^{2}=|\mathbb{E} \min \{U, a\}|^{2}$.
This gives the first inequality. Tending $a$ to infinity, we get the second inequality.
The last inequality also follows from the Cauchy-Schwartz inequality. Namely,

$$
\mathbb{E} \frac{U}{1+V} \mathbb{E}(1+V) \geqslant\left|\mathbb{E} \frac{\sqrt{U}}{\sqrt{1+V}} \sqrt{1+V}\right|^{2}=|\mathbb{E} \sqrt{U}|^{2}
$$

Proof of Lemma 4.3. Let $\left\{v_{1}, \ldots, v_{p}\right\}$ be an orthonormal basis of $\mathbb{R}^{p}$ such that

$$
A=\sum_{i=1}^{p} a_{i} v_{i} v_{i}^{\top} \quad \text { and } \quad B=\sum_{i=1}^{p} b_{i} v_{i} v_{i}^{\top},
$$

where $a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{p}>0$ are eigenvalues of $A$ and $B$. Since $\operatorname{tr} A=\sum_{i=1}^{p} a_{i}=1$, $X_{p}^{\top} A X_{p}=\sum_{i=1}^{p} a_{i}\left(X_{p}, v_{i}\right)^{2}$ and the function $f(x)=x /(1+c(x+d))$ is concave on $\mathbb{R}_{+}$for any $c, d \geqslant 0$, we have (for $\Delta$ defined in Lemma 4.3)

$$
\Delta \geqslant \sum_{i=1}^{p} a_{i} \Delta_{i} \quad \text { for } \quad \Delta_{i}=\frac{\left(X_{p}, v_{i}\right)^{2}}{1+b^{-1}\left(\left(X_{p}, v_{i}\right)^{2}+X_{p}^{\top} B X_{p} / 3\right)}
$$

Fix $j \in\{1, \ldots, p\}$ and $b>0$. By Lemma 4.2,

$$
\mathbb{E} \Delta_{j} \geqslant \frac{\left|\mathbb{E} \min \left\{\left(X_{p}, v_{j}\right)^{2}, a\right\}\right|^{2}}{\mathbb{E} \min \left\{\left(X_{p}, v_{j}\right)^{2}, a\right\}+b^{-1} C} \quad \text { and } \quad \mathbb{E} \Delta_{j} \geqslant \frac{\left(\mathbb{E}\left|\left(X_{p}, v_{j}\right)\right|\right)^{2}}{1+b^{-1}(1+\operatorname{tr} B / 3)} \geqslant \frac{K_{p}^{2}}{1+4 /(3 b)}
$$

where $C=\mathbb{E}\left(\left(X_{p}, v_{j}\right)^{2}+X_{p}^{\top} B X_{p} / 3\right) \min \left\{\left(X_{p}, v_{j}\right)^{2}, a\right\}$. By the second inequality,

$$
\mathbb{E} \Delta \geqslant \sum_{i=1}^{p} a_{i} \frac{K_{p}^{2}}{1+4 /(3 b)}=\frac{K_{p}^{2}}{1+4 /(3 b)}
$$

We have $x^{2} /(x+c) \geqslant x-c$ for all $x, c \geqslant 0$. This yields that

$$
\frac{\left|\mathbb{E} \min \left\{\left(X_{p}, v_{j}\right)^{2}, a\right\}\right|^{2}}{\mathbb{E} \min \left\{\left(X_{p}, v_{j}\right)^{2}, a\right\}+b^{-1} C} \geqslant \mathbb{E} \min \left\{\left(X_{p}, v_{j}\right)^{2}, a\right\}-b^{-1} C .
$$

We need to bound $C$ from above. Obviously, $\mathbb{E}\left(X_{p}, v_{j}\right)^{2} \min \left\{\left(X_{p}, v_{j}\right)^{2}, a\right\} \leqslant C_{p}(a)$. In addition, since $x \min \{y, a\} \leqslant x \min \{x, a\}+y \min \{y, a\}$ for all $x, y, a \geqslant 0$, we have
$\mathbb{E}\left(X_{p}^{\top} B X_{p}\right) \min \left\{\left(X_{p}, v_{j}\right)^{2}, a\right\}=\sum_{i=1}^{p} b_{i} \mathbb{E}\left(X_{p}, v_{i}\right)^{2} \min \left\{\left(X_{p}, v_{j}\right)^{2}, a\right\} \leqslant 2 \operatorname{tr} B \cdot C_{p}(a) \leqslant 2 C_{p}(a)$.

## Lower bounds on the smallest eigenvalue

Hence, $C \leqslant 5 C_{p}(a) / 3$. Combining all estimates together yields

$$
\mathbb{E} \Delta \geqslant c_{p}(a)-\frac{5 C_{p}(a)}{3 b}
$$

Let us now prove that $\mathbb{E} \Delta^{2} \leqslant C_{p}(b)$. We have

$$
\Delta^{2} \leqslant \frac{\left(X_{p}^{\top} A X_{p}\right)^{2}}{\left(1+b^{-1} X_{p}^{\top} A X_{p}\right)^{2}} \leqslant \frac{\left(X_{p}^{\top} A X_{p}\right)^{2}}{1+b^{-1} X_{p}^{\top} A X_{p}}
$$

Consider the function $f(x)=x^{2} /\left(1+b^{-1} x\right), x \geqslant 0$. Its derivative

$$
f^{\prime}(x)=\frac{2 x}{1+b^{-1} x}-\frac{b^{-1} x^{2}}{\left(1+b^{-1} x\right)^{2}}=\frac{2 x+b^{-1} x^{2}}{\left(1+b^{-1} x\right)^{2}}=b \frac{2 b x+x^{2}}{(b+x)^{2}}=b\left(1-\frac{b^{2}}{(b+x)^{2}}\right)
$$

is increasing on $\mathbb{R}_{+}$. This means that $f=f(x)$ is convex and

$$
\mathbb{E} \frac{\left(X_{p}^{\top} A X_{p}\right)^{2}}{1+a^{-1} X_{p}^{\top} A X_{p}} \leqslant \sum_{i=1}^{p} a_{i} \mathbb{E} \frac{\left(X_{p}, v_{i}\right)^{4}}{1+b^{-1}\left(X_{p}, v_{i}\right)^{2}} \leqslant \sum_{i=1}^{p} a_{i} \mathbb{E}\left(X_{p}, v_{i}\right)^{2} \min \left\{\left(X_{p}, v_{i}\right)^{2}, b\right\}
$$

The latter gives the desired inequality $\mathbb{E} \Delta^{2} \leqslant \operatorname{tr} A \cdot C_{p}(b)=C_{p}(b)$.
Now consider the case with $L_{p}(2)<\infty$. By Lemma 4.2,

$$
\mathbb{E} \Delta \geqslant 1 /\left[1+b^{-1}\left(\mathbb{E}\left(X_{p}^{\top} A X_{p}\right)^{2}+\mathbb{E}\left(X_{p}^{\top} A X_{p}\right)\left(X_{p}^{\top} B X_{p}\right) / 3\right)\right]
$$

Since the function $f(x)=x^{2}$ is convex on $\mathbb{R}, X_{p}^{\top} A X_{p}=\sum_{i=1}^{n} a_{i}\left(X_{p}, v_{i}\right)^{2}$ and $\operatorname{tr} A=1$, we get that

$$
\mathbb{E}\left(X_{p}^{\top} A X_{p}\right)^{2} \leqslant \sum_{i=1}^{n} a_{i} \mathbb{E}\left(X_{p}, v_{i}\right)^{4} \leqslant L_{p}(2)
$$

Similarly,

$$
\mathbb{E}\left(X_{p}^{\top} B X_{p}\right)^{2} \leqslant(\operatorname{tr} B)^{2} \mathbb{E}\left(\frac{X_{p}^{\top} B X_{p}}{\operatorname{tr} B}\right)^{2} \leqslant L_{p}(2)
$$

where we have used that $\operatorname{tr} B \leqslant 1$. Applying the Cauchy-Schwartz inequality yields that

$$
\mathbb{E}\left(X_{p}^{\top} A X_{p}\right)\left(X_{p}^{\top} B X_{p}\right) \leqslant \sqrt{\mathbb{E}\left(X_{p}^{\top} A X_{p}\right)^{2} \mathbb{E}\left(X_{p}^{\top} B X_{p}\right)^{2}} \leqslant L_{p}(2)
$$

To finish the proof, we only need to note that

$$
1 /\left[1+b^{-1}\left(\mathbb{E}\left(X_{p}^{\top} A X_{p}\right)^{2}+\mathbb{E}\left(X_{p}^{\top} A X_{p}\right)\left(X_{p}^{\top} B X_{p}\right) / 3\right)\right] \geqslant \frac{1}{1+4 L_{p}(2) b^{-1} / 3} \geqslant 1-\frac{4 L_{p}(2)}{3 b}
$$

Proof of Lemma 4.4. Since $e^{-x} \leqslant 1-x+x^{2} / 2$ for all $x \geqslant 0$, we have

$$
\begin{aligned}
\mathbb{E}\left(e^{-\lambda D_{k}} \mid \mathcal{F}_{k-1}\right) & \leqslant 1-\lambda \mathbb{E}\left(D_{k} \mid \mathcal{F}_{k-1}\right)+\frac{\lambda^{2} \mathbb{E}\left(D_{k}^{2} \mid \mathcal{F}_{k-1}\right)}{2} \\
& \leqslant 1-\lambda \mathbb{E}\left(D_{k} \mid \mathcal{F}_{k-1}\right)+\frac{\lambda^{2}}{2} \\
& \leqslant \exp \left\{-\lambda \mathbb{E}\left(D_{k} \mid \mathcal{F}_{k-1}\right)+\lambda^{2} / 2\right\}
\end{aligned}
$$

for any $\lambda>0$. Therefore, $\mathbb{E}\left(e^{-\lambda\left(D_{k}-\mathbb{E}\left(D_{k} \mid \mathcal{F}_{k-1}\right)\right)} \mid \mathcal{F}_{k-1}\right) \leqslant \exp \left\{\lambda^{2} / 2\right\}$ and

$$
\begin{aligned}
\mathbb{P}\left(\sum_{k=1}^{n}\left(D_{k}-\mathbb{E}\left(D_{k} \mid \mathcal{F}_{k-1}\right)\right)<-t \sqrt{n}\right) & \leqslant e^{-\lambda t \sqrt{n}} \mathbb{E} \exp \left\{-\lambda \sum_{k=1}^{n}\left(D_{k}-\mathbb{E}\left(D_{k} \mid \mathcal{F}_{k-1}\right)\right)\right\} \\
& \leqslant \exp \left\{n \lambda^{2} / 2-\lambda t \sqrt{n}\right\}
\end{aligned}
$$

where the last bound could be obtained iteratively by the law of iterated mathematical expectations. Putting $\lambda=t / \sqrt{n}$, we derive that $\mathbb{P}(Z<-t) \leqslant \exp \left\{-t^{2} / 2\right\}, t>0$.

## References

[1] Kašin, B.S.: Section of some finite-dimensional sets and classes of smooth functions. Izv. Akad. Nauk SSSR Ser. Mat., 41, (1977), 334-351. MR-0481792
[2] Kashin, B.S.: On a special orthogonal decomposition of the space $L_{2}(0,1)$. Math. Notes, 95, (2014), 570-572.
[3] Krivine, J.-L.: On a theorem of Kashin. (French) Seminaire d'Analyse Fonctionnelle 1983-1984. Publ. Math. Univ. Paris VII, 20, Univ. Paris VII, Paris, (1984), 21-26. MR-0825300
[4] Koltchinskii, V. and Mendelson, S.: Bounding the smallest singular value of a random matrix without concentration. arXiv:1312.3580.
[5] Oliveira, R.I.: The lower tail of random quadratic forms, with applications to ordinary least squares and restricted eigenvalue properties. arXiv:1312.2903.
[6] Srivastava, N. and Vershynin, R.: Covariance estimation for distributions with $2+\varepsilon$ moments. Ann. Probab., 41, (2013), 3081-3111. MR-3127875

Acknowledgments. We thank B.S. Kashin and the referee for useful suggestions.


[^0]:    *Supported by RNF grant 14-21-00162 from the Russian Scientific Fund.
    ${ }^{\dagger}$ Steklov Mathematical Institute of RAS, Russia. E-mail: yaskov@mi. ras.ru

[^1]:    ${ }^{1}$ In fact, the Haar measure of such orthogonal matrices $C$ that $H=C H_{1}$ satisfies this property is greater than $1-2^{-N}$ for some $K=K(\delta)>0$, where $H_{1}=\left\{\left(e_{1}, \ldots, e_{N}\right) \in \mathbb{R}^{N}: e_{i}=0, i \geqslant(1-\delta) N+1\right\}$ (see [1]).

