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1 Introduction

Lower bounds on the smallest eigenvalue of a sample covariance matrix (or a Gram
matrix) play a crucial role in the least squares problems in high-dimensional statistics
(see, for example, [5]). These problems motivate the present work.

For a random vector Xp in Rp, consider a random p× n matrix Xpn with independent
columns {Xpk}nk=1 distributed as Xp and the Gram matrix

XpnX
>
pn =

n∑
k=1

XpkX
>
pk.

If Xp is centred, then n−1XpnX
>
pn is the sample covariance matrix corresponding to the

random sample {Xpk}nk=1. For simplicity, we will further assume that Xp is isotropic,
i.e. EXpX

>
p = Ip for a p× p identity matrix Ip, and consider only those p which are not

greater than n (otherwise XpnX
>
pn would be degenerate).

In this paper we derive sharp lower bounds for λp(n−1XpnX
>
pn), where λp(A) is the

smallest eigenvalue of a p × p matrix A. We try to impose as few restrictions on the
components of Xp as possible. In proofs we use the same strategy as in [6].

2 Main results

Put cp(a) = inf Emin{(Xp, v)2, a}, Cp(a) = supE(Xp, v)2 min{(Xp, v)2, a},

Lp(α) = supE|(Xp, v)|2+α and Kp = inf E|(Xp, v)|
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Lower bounds on the smallest eigenvalue

for given a, α > 0, where all suprema and infima are taken over v ∈ Rp with ‖v‖ = 1, and
‖v‖ = (

∑p
i=1 v

2
i )1/2 is the Euclidean norm of v = (v1, . . . , vp). Denote also by Mp(α) the

infimum over all M > 0 such that

P(|(Xp, v)| > t) 6
M

t2+α
for all t > 0 and v ∈ Rp, ‖v‖ = 1.

Our main lower bounds are as follows.

Theorem 2.1. If Xp is an isotropic random vector in Rp and p/n 6 y for some y ∈ (0, 1),
then, for all a > 0,

λp(n
−1XpnX

>
pn) > cp(a)− Cp(a)

a
− 5ay +

√
Cp(2a)Z
√
n

for a centred random variable Z = Z(p, n, a) with P(Z < −t) 6 e−t
2/2, t > 0.

Theorem 2.2. Let Xp be an isotropic random vector in Rp, p/n 6 y for some y ∈ (0, 1).
If Lp(2) <∞, then

λp(n
−1XpnX

>
pn) > 1− 4C

√
y +

CZ√
n

for C =
√
Lp(2) and some Z = Z(p, n) with EZ = 0 and P(Z < −t) 6 e−t

2/2, t > 0.
Moreover, there are universal constants C0, C1, C2 > 0 such that

λp(n
−1XpnX

>
pn) > C0K

2
p +

C1Z√
n

whenever y 6 C2K
2
p and Z = Z(p, n) as above.

Useful bounds for cp(a) and Cp(a) in terms of Lp(α) and Mp(α) are given in the
following proposition.

Proposition 2.3. Let Xp be an isotropic random vector in Rp. Then, for all a, α > 0,

cp(a) > 1− Lp(α)

aα/2
and cp(a) > 1− 2α−1Mp(α)

aα/2
.

In addition, for all α ∈ (0, 2] and each a > 0, Cp(a) is bounded from above by

a1−α/2Lp(α) and (1 + 2/α)Mp(α)a1−α/2 +

{
2Mp(α)a1−α/2/(1− α/2), α ∈ (0, 2),

2Mp(2) log max{a, 1}+ 1, α = 2.

3 Applications

We now describe different corollaries of Theorem 2.1 and Theorem 2.2. The next
corollary extends Theorem 1.3 in [4] and Theorem 3.1 in [5] (for Ai = XpiX

>
pi).

Corollary 3.1. Let Xp be an isotropic random vector in Rp, p/n 6 y for some y ∈ (0, 1)

and Lp(α) <∞ for some α ∈ (0, 2]. Then, with probability at least 1− e−p,

λp(n
−1XpnX

>
pn) > 1− Cαyα/(2+α),

where

Cα =

{
9(Lp(α))2/(2+α), α ∈ (0, 2),

(4 +
√

2)
√
Lp(2), α = 2.

Remark 3.2. One may further weaken assumptions in Corollary 3.1. Namely, one may
assume that Mp(α) < ∞ for some α ∈ (0, 2). The conclusion of Corollary 3.1 will still
hold with some Cα > 0 that depends only on α and Mp(α). In the case α = 2, one would
have a lower bound of the form 1− C2

√
y log(e/y) with C2 > 0 depending only on Mp(2).
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Theorems 2.1 and 2.2 improve Theorem 2.1 in [6] as the next corollary shows.

Corollary 3.3. Let Xp be an isotropic random vector in Rp. If Lp(α) < ∞ for some
α ∈ (0, 2) and p/n 6 ε1+2/α/(10(4Lp(α))2/α), then

Eλp(n
−1XpnX

>
pn) > 1− ε.

The same conclusion holds if Lp(2) <∞ and n > 16Lp(2)ε−2p.

Let us formulate the final corollary that improves Theorem 3.1 in [4] for small Kp.

Corollary 3.4. Let Xp be an isotropic random vector in Rp. Then there are universal
constants C∗0 , C

∗
1 , C

∗
2 > 0 such that, with probability at least 1− exp{−C∗1K4

pn},

λp(n
−1XpnX

>
pn) > C∗0K

2
p

when p/n 6 C∗2K
2
p .

The range of applicability of Corollary 3.4 is very wide. Namely, there exist some
universal constant K > 0 such that Kp > K for a very large class of isotropic random
vectors Xp. By Corollary 3.4, this means that λp(n−1XpnX

>
pn) is separated from zero by

an universal constant.
The existence of K follows from results related to Kashin’s decomposition theorem.

The infinite dimensional version of this theorem is given in Kashin [2] (for a proof, see
[3]). It states the following.

There is an universal constant K > 0 such that L2(0, 1) = H1 ⊕H2 for some
linear subspaces of Hi ⊂ L2(0, 1), i = 1, 2, such that ‖x‖1 > K‖x‖2 for all
x ∈ H1 ∪H2, where ‖x‖d is the standard norm in Ld(0, 1), d = 1, 2.

Let (Ω,F ,P) be an underlying probability space. Assume that Ω = (0, 1), F is the Borel
σ-algebra and P is the Lebesgue measure. If all components of Xp = (x1, . . . , xp) are in
H1, or all components of Xp are in H2, then Kp > K.

If we consider only discrete random vectors Xp, we may say more. Namely, Kashin
[1] proved that, for any δ > 0 and all N ∈ N, RN contains a linear subspace H with
dimH > (1− δ)N such that |e|1 > K|e|2 for some K = K(δ) > 0 not depending on N and
all e = (e1, . . . , eN ) ∈ H,1 where

|e|d =
( 1

N

N∑
i=1

|ei|d
)1/d

, d = 1, 2.

In particular, if {e(k)}pk=1 is any orthonormal system in H and {x(i)}Ni=1 are columns
of the p × N matrix with rows {(e(k))>}pk=1, then, for all v = (v1, . . . , vp) ∈ Rp with

‖v‖ =
√∑p

j=1 v
2
j = 1,

K = K
( 1

N

N∑
i=1

|(x(i), v)|2
)1/2

= K
∣∣∣ p∑
k=1

vke
(k)
∣∣∣
2
6
∣∣∣ p∑
k=1

vke
(k)
∣∣∣
1

=
1

N

N∑
i=1

|(x(i), v)|.

If Xp is such that P(Xp = x(i)) = 1/N, 1 6 i 6 N , then Kp > K = K(δ).

4 Proofs.

In proofs of Theorem 2.1 and Theorem 2.2, we follow the strategy of Srivastava and
Vershynin [6]. The key step is the following lemma.

1In fact, the Haar measure of such orthogonal matrices C that H = CH1 satisfies this property is greater
than 1− 2−N for some K = K(δ) > 0, where H1 = {(e1, . . . , eN ) ∈ RN : ei = 0, i > (1− δ)N + 1} (see [1]).
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Lemma 4.1. Let A be a p× p symmetric matrix with A � 0, v ∈ Rp, l > 0, ϕ > 0,

Q(l, v) = v>(A− lIp)−1v and q(l, v) =
v>(A− lIp)−2v
tr(A− lIp)−2

, (4.1)

hereinafter A � 0 means that A is positive definite. If A− lIp � 0, tr(A− lIp)−1 6 ϕ and

∆ =
q(l, v)

1 + 3ϕq(l, v) +Q(l, v)
,

then A− (l + ∆)Ip � 0 and tr(A+ vv> − (l + ∆)Ip)
−1 6 ϕ.

The proof of Lemma 4.1 is given in Appendix.
The strategy itself consists in the following. Let A0 be a p× p zero matrix and

Ak =

k∑
j=1

XpjX
>
pj , 1 6 k 6 n.

Consider some ϕ > 0 and take l0 = −p/ϕ that satisfies tr(A0 − l0Ip)−1 = ϕ.
Put lk = lk−1 + ∆k for 1 6 k 6 n, where

∆k =
qk(lk−1, Xpk)

1 + 3ϕqk(lk−1, Xpk) +Qk(lk−1, Xpk)
,

Qk(lk−1, Xpk) and qk(lk−1, Xpk) are defined as Q(l, v) and q(l, v) in (4.1) with A = Ak−1
and v = Xpk. Applying Lemma 4.1 iteratively, we infer that tr(Ak − lkIp)−1 6 ϕ and
Ak − lkIp � 0 for all 1 6 k 6 n. Therefore,

λp(XpnX
>
pn) = λp(An) > ln = l0 + ∆1 + . . .+ ∆n.

Let Ek = E( · |Xp1, . . . , Xpk), 1 6 k 6 n, and E0 = E. We have

λp(n
−1XpnX

>
pn) > − p

nϕ
+

1

n

n∑
k=1

Ek−1∆k +
Y√
n
, (4.2)

where Y = n−1/2
∑n
k=1(∆k − Ek−1∆k).

To apply estimate (4.2), we need to choose ϕ and obtain good lower bounds for
Ek−1∆k as well as upper bounds for P(Y < −t), t < 0. The next lemmata which proofs
are given in Appendix provide such bounds.

Lemma 4.2. Let U and V be non-negative random variables. Then, for all a > 0,

E
U

1 + V
>

|Emin{U, a}|2

Emin{U, a}+ EV min{U, a}
.

In addition, if EU = 1, then EU/(1 + V ) > 1/(1 + EUV ). Moreover,

E
U

1 + V
>
|E
√
U |2

1 + EV
.

Lemma 4.3. Let Xp be an isotropic random vector in Rp, A,B � 0 be a p× p symmetric
matrices with tr(A) = 1 and tr(B) 6 1 that are simultaneously diagonalisable. If

∆ =
X>p AXp

1 + b−1(X>p AXp +X>p BXp/3)
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for some b > 0, then, for any a > 0,

E∆ > cp(a)− 5Cp(a)

3b
and E∆2 6 Cp(b).

In addition, if Lp(2) <∞, then E∆ > 1− 4Lp(2)b−1/3 and E∆2 6 Lp(2). Moreover,

E∆ >
K2
p

1 + 4(3b)−1
.

Lemma 4.4. Let (Dk)nk=1 be a sequence of non-negative random variables adapted to a
filtration (Fk)nk=1 such that E(D2

k|Fk−1) 6 1 a.s. for k = 1, . . . , n, where F0 is the trivial
σ-algebra. If

Z =
1√
n

n∑
k=1

(Dk − E(Dk|Fk−1)),

then P(Z < −t) 6 exp{−t2/2} for all t > 0.

Proof of Theorem 2.1. Take in Lemma 4.3 Xp = Xpk,

A =
(Ak−1 − lk−1Ip)−2

tr(Ak−1 − lk−1Ip)−2
, B = (Ak−1 − lk−1Ip)−1/ϕ, a =

1

5ϕ
, b =

5a

3
=

1

3ϕ
. (4.3)

Clearly A and B commute hence they are simultaneously diagonalizable. Additionally,
we have tr(A) = 1 and tr(B) = tr(Ak−1 − lk−1Ip)−1/ϕ 6 1. Using Lemma 4.3, we arrive
at the lower bounds

Ek−1∆k > cp(a)− Cp(a)

a
, 1 6 k 6 n,

hereinafter all inequalities with conditional mathematical expectations hold almost surely.
By (4.2), the latter implies that

λp(n
−1XpnX

>
pn) > cp(a)− Cp(a)

a
− 5ap

n
+

√
Cp(2a)Z
√
n

,

where

Z =
1√

Cp(2a)n

n∑
k=1

(∆k − Ek−1∆k).

Note that (∆k −Ek−1∆k)nk=1 is a martingale difference sequence with respect to the nat-
ural filtration of (Xpk)nk=1. Obviously, EZ = 0. By Lemma 4.3, Ek−1∆2

k 6 Cp(b) 6 Cp(2a).
Therefore, Lemma 4.4 with Dk = ∆k/

√
Cp(2a) yields that P(Z < −t) 6 exp{−t2/2},

t > 0. Thus we have proven Theorem 2.1.

Proof of Theorem 2.2. The proof follows the same line as the proof of Theorem 2.1.
Assume first that C2 = Lp(2) < ∞ and p/n 6 y for some y > 0. Define X>p AXp and

X>p BXp in the same way as in (4.3). Then, by Lemma 4.3 (with ϕ = 1/(3b)),

Ek−1∆k > 1− 4C2ϕ, 1 6 k 6 n.

Taking ϕ =
√
y/(2C) in (4.2), we get p/(nϕ) 6 y/ϕ = 2C

√
y and

λp(n
−1XpnX

>
pn) > 1− 4C

√
y +

CZ√
n
,

where

Z =
1

C
√
n

n∑
k=1

(∆k − Ek−1∆k).
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As in the proof of Theorem 2.1, it follows from Lemma 4.3 that Ek−1∆2
k 6 Lp(2) = C2,

1 6 k 6 n. Therefore, by Lemma 4.4, P(Z < −t) 6 exp{−t2/2}, t > 0.

Finally, consider the case with Kp > 0 ( the case with Kp = 0 is trivial). By Lemma
4.3 with b = (3ϕ)−1 and ϕ = 1/4,

Ek−1∆k >
K2
p

1 + 4ϕ
=
K2
p

2
, 1 6 k 6 n.

Taking p/n 6 y = K2
p/16 in (4.2), we get

λp(n
−1XpnX

>
pn) >

K2
p

4
+

√
Cp(4/3)Z
√
n

for some Z with P(Z < −t) 6 exp{−t2/2}, t > 0 (see the end of the proof of Theorem
2.1). Since Cp(4/3) 6 4/3, the variable

Z0 =

√
Cp(4/3)√

4/3
Z

satisfies P(Z0 < −t) 6 exp{−t2/2}, t > 0. Replacing Z by Z0, we get the result.

Proof of Proposition 2.3. If U is non-negative random variable with EU = 1, then

Emin{U, a} = EU − E(U − a)1(U > a) > 1− EU1(U > a) > 1− EU
1+α/2

aα/2
,

Emin{U, a} = EU −
∫ ∞
a

P(U > t) dt > 1−
∫ ∞
a

M

t1+α/2
dt > 1− 2M

αaα/2
,

EU min{U, a} 6 EU1+α/2a1−α/2,

EU min{U, a} 6aE(U − a)I(U > a) + a2P(U > a) + Emin{U2, a2}

= a

∫ ∞
a

P(U > t) dt+ aP(U > a) +

∫ a2

0

P(U2 > t) dt

6a
∫ ∞
a

M

t1+α/2
dt+Ma1−α/2 +

∫ a2

0

f(t, α) dt

6(1 + 2/α)Ma1−α/2 +

{
2Ma1−α/2/(1− α/2), α ∈ (0, 2),

2M log max{a, 1}+ 1, α = 2,

where M = sup{t1+α/2P(U > t) : t > 0}, f(t, α) = Mt−1/2−α/4 for α ∈ (0, 2) and

f(t, 2) =

{
Mt−1, t > 1,

1, t ∈ [0, 1].

Putting U = (Xp, v)2 for given v ∈ Rp with ‖v‖ = 1 and taking the infimum or the
supremum over such v in the above inequalities, we finish the proof.

Proof of Corollary 3.1. Consider the case α ∈ (0, 2). Set L = Lp(α) and y = p/n. By
Proposition 2.3,

cp(a)− Cp(a)

a
> 1− 2L

aα/2
and Cp(2a) 6 L (2a)1−α/2 6 2La1−α/2.
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By Theorem 2.1,

P(λp(n
−1XpnX

>
pn) < 1− 4La−α/2 − 5ay) 6P

(√
Cp(2a)Z/

√
n < −2La−α/2

)
6P(

√
2La1−α/2Z/

√
n < −2La−α/2)

6 exp{−La−1−α/2n}.

Taking y = La−1−α/2, we get the desired inequality.
Consider the case α = 2. By Theorem 2.2 with y = p/n and C =

√
Lp(2),

P(λp(n
−1XpnX

>
pn) < 1−(4+

√
2)C
√
y) 6 P(CZ/

√
n < −

√
2C
√
y) 6 exp{−yn} = exp{−p}.

Proof of Corollary 3.3. Set L = Lp(α) for given α ∈ (0, 2). By Proposition 2.3,

cp(a)− Cp(a)

a
> 1− 2L

aα/2
.

Therefore, taking in Theorem 2.1

a = (4L/ε)2/α and p/n 6 y =
ε1+2/α

10(4L)2/α
,

we derive the first bound

Eλp(n
−1XpnX

>
pn) > 1− 2L

aα/2
− 5ay > 1− ε.

Similarly, taking y = ε2/(16C2) for C =
√
Lp(2) in Theorem 2.2, we get that

Eλp(n
−1XpnX

>
pn) > 1− 4C

√
y > 1− ε.

Proof of Corollary 3.4. Let C0, C1, C2 > 0 be such that the second bound in Theorem 2.2
holds. Then, for p/n 6 C2K

2
p ,

P(λp(n
−1XpnX

>
pn) < C0K

2
p/2) 6 P(C1Z/

√
n < −C0K

2
p/2) 6 exp{−C2

0K
4
pn/(8C

2
1 )}.

Putting C∗0 = C0/2, C
∗
1 = C2

0/(8C
2
1 ) and C∗2 = C2, we finish the proof.

5 Appendix

Proof of Lemma 4.1. By Lemma 2.2 in Srivastava and Vershynin [6], if A− (l + ∆)Ip � 0

and q(l + ∆, v)/[1 +Q(l + ∆, v)] > ∆, then

tr(A+ vv> − (l + ∆)Ip)
−1 6 tr(A− lIp)−1.

In addition, by Lemma 2.4 in Srivastava and Vershynin [6], if A− lIp � 0, ∆ < 1/ϕ and
tr(A− lIp)−1 6 ϕ, then A− (l + ∆)Ip � 0 and

q(l + ∆, v)

1 +Q(l + ∆, v)
>

q(l, v)(1− ϕ∆)2

1 +Q(l, v)(1− ϕ∆)−1
.

Therefore, we only need to show that

q(l, v)(1− ϕ∆)2

1 +Q(l, v)(1− ϕ∆)−1
> ∆ =

q(l, v)

1 + 3ϕq(l, v) +Q(l, v)
,
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since ∆ 6 1/(3ϕ) by construction.
By Bernoulli’s inequality, (1− x)3 > 1− 3x whenever x ∈ [0, 1]. Hence,

q(l, v)(1− ϕ∆)2

1 +Q(l, v)(1− ϕ∆)−1
=

q(l, v)(1− ϕ∆)3

1− ϕ∆ +Q(l, v)
>
q(l, v)(1− ϕ∆)3

1 +Q(l, v)
>
q(l, v)(1− 3ϕ∆)

1 +Q(l, v)
= ∆,

where the last equality holds by the definition of ∆.

Proof of Lemma 4.2. We have

E
U

1 + V
> E

min{U, a}
1 + V

for all a > 0. By the Cauchy-Schwartz inequality,

E
min{U, a}

1 + V
E(1 + V ) min{U, a} >

∣∣∣E√min{U, a}√
1 + V

√
(1 + V ) min{U, a}

∣∣∣2 = |Emin{U, a}|2.

This gives the first inequality. Tending a to infinity, we get the second inequality.
The last inequality also follows from the Cauchy-Schwartz inequality. Namely,

E
U

1 + V
E(1 + V ) >

∣∣∣E √
U√

1 + V

√
1 + V

∣∣∣2 = |E
√
U |2.

Proof of Lemma 4.3. Let {v1, . . . , vp} be an orthonormal basis of Rp such that

A =

p∑
i=1

aiviv
>
i and B =

p∑
i=1

biviv
>
i ,

where a1, . . . , ap, b1, . . . , bp > 0 are eigenvalues of A and B. Since trA =
∑p
i=1 ai = 1,

X>p AXp =
∑p
i=1 ai(Xp, vi)

2 and the function f(x) = x/(1 + c(x+ d)) is concave on R+ for
any c, d > 0, we have (for ∆ defined in Lemma 4.3)

∆ >
p∑
i=1

ai∆i for ∆i =
(Xp, vi)

2

1 + b−1((Xp, vi)2 +X>p BXp/3)
.

Fix j ∈ {1, . . . , p} and b > 0. By Lemma 4.2,

E∆j >
|Emin{(Xp, vj)

2, a}|2

Emin{(Xp, vj)2, a}+ b−1C
and E∆j >

(E|(Xp, vj)|)2

1 + b−1(1 + trB/3)
>

K2
p

1 + 4/(3b)
,

where C = E((Xp, vj)
2 +X>p BXp/3) min{(Xp, vj)

2, a}. By the second inequality,

E∆ >
p∑
i=1

ai
K2
p

1 + 4/(3b)
=

K2
p

1 + 4/(3b)
.

We have x2/(x+ c) > x− c for all x, c > 0. This yields that

|Emin{(Xp, vj)
2, a}|2

Emin{(Xp, vj)2, a}+ b−1C
> Emin{(Xp, vj)

2, a} − b−1C.

We need to bound C from above. Obviously, E(Xp, vj)
2 min{(Xp, vj)

2, a} 6 Cp(a). In
addition, since xmin{y, a} 6 xmin{x, a}+ ymin{y, a} for all x, y, a > 0, we have

E(X>p BXp) min{(Xp, vj)
2, a} =

p∑
i=1

biE(Xp, vi)
2 min{(Xp, vj)

2, a} 6 2trB ·Cp(a) 6 2Cp(a).
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Hence, C 6 5Cp(a)/3. Combining all estimates together yields

E∆ > cp(a)− 5Cp(a)

3b
.

Let us now prove that E∆2 6 Cp(b). We have

∆2 6
(X>p AXp)

2

(1 + b−1X>p AXp)2
6

(X>p AXp)
2

1 + b−1X>p AXp
.

Consider the function f(x) = x2/(1 + b−1x), x > 0. Its derivative

f ′(x) =
2x

1 + b−1x
− b−1x2

(1 + b−1x)2
=

2x+ b−1x2

(1 + b−1x)2
= b

2bx+ x2

(b+ x)2
= b
(

1− b2

(b+ x)2

)
is increasing on R+. This means that f = f(x) is convex and

E
(X>p AXp)

2

1 + a−1X>p AXp
6

p∑
i=1

aiE
(Xp, vi)

4

1 + b−1(Xp, vi)2
6

p∑
i=1

aiE(Xp, vi)
2 min{(Xp, vi)

2, b}.

The latter gives the desired inequality E∆2 6 trA · Cp(b) = Cp(b).

Now consider the case with Lp(2) <∞. By Lemma 4.2,

E∆ > 1/[1 + b−1(E(X>p AXp)
2 + E(X>p AXp)(X

>
p BXp)/3)].

Since the function f(x) = x2 is convex on R, X>p AXp =
∑n
i=1 ai(Xp, vi)

2 and trA = 1, we
get that

E(X>p AXp)
2 6

n∑
i=1

aiE(Xp, vi)
4 6 Lp(2).

Similarly,

E(X>p BXp)
2 6 (trB)2E

(X>p BXp

trB

)2
6 Lp(2),

where we have used that trB 6 1. Applying the Cauchy-Schwartz inequality yields that

E(X>p AXp)(X
>
p BXp) 6

√
E(X>p AXp)2E(X>p BXp)2 6 Lp(2).

To finish the proof, we only need to note that

1/[1 + b−1(E(X>p AXp)
2 + E(X>p AXp)(X

>
p BXp)/3)] >

1

1 + 4Lp(2)b−1/3
> 1− 4Lp(2)

3b
.

Proof of Lemma 4.4. Since e−x 6 1− x+ x2/2 for all x > 0, we have

E(e−λDk |Fk−1) 61− λE(Dk|Fk−1) +
λ2E(D2

k|Fk−1)

2

61− λE(Dk|Fk−1) +
λ2

2

6 exp{−λE(Dk|Fk−1) + λ2/2}

for any λ > 0. Therefore, E(e−λ(Dk−E(Dk|Fk−1))|Fk−1) 6 exp{λ2/2} and

P
( n∑
k=1

(Dk − E(Dk|Fk−1)) < −t
√
n
)
6e−λt

√
nE exp

{
− λ

n∑
k=1

(Dk − E(Dk|Fk−1))
}

6 exp{nλ2/2− λt
√
n},

where the last bound could be obtained iteratively by the law of iterated mathematical
expectations. Putting λ = t/

√
n, we derive that P(Z < −t) 6 exp{−t2/2}, t > 0.
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