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Abstract: A model is proposed for a decreasing sequence of random
variables (V1, V2, · · ·) with

∑
n Vn = 1, which generalizes the Poisson-Dirichlet

distribution and the distribution of ranked lengths of excursions of a Brow-
nian motion or recurrent Bessel process. Let Vn be the length of the nth
longest component interval of [0, 1]\Z, where Z is an a.s. non-empty random
closed of (0,∞) of Lebesgue measure 0, and Z is self-similar, i.e. cZ has the
same distribution as Z for every c > 0. Then for 0 ≤ a < b ≤ 1 the expected
number of n’s such that Vn ∈ (a, b) equals

∫ b
a v
−1F (dv) where the structural

distribution F is identical to the distribution of 1 − sup(Z ∩ [0, 1]). Then
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F (dv) = f(v)dv where (1 − v)f(v) is a decreasing function of v, and every
such probability distribution F on [0, 1] can arise from this construction.
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1 Introduction

Random discrete distributions have been widely studied, motivated by a
variety of applications including the following:

• prior distributions in Bayesian statistics [12, 1],

• asymptotic distributions in combinatorics and number theory [42, 43,
41],

• models for gene frequencies in population genetics [20, 6, 11]

• models for species diversity in ecology [28, 10],

• the representation of partition structures [21],

• models for storage and search [4, 19, 7]

• analysis of the zero sets of stochastic processes such as Brownian motion
and Brownian bridge [44, 35, 30, 32].

While the last of these applications was the main source of inspiration for
the present study, the results described here admit interesting interpretations
in some of the other applications as well.
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Let (Vn) = (V1, V2, · · ·) be a sequence of random variables such that Vn ≥ 0
and

∑
n Vn = 1 a.s., where n always ranges over {1, 2, · · ·}. Call (Vn) a

random discrete distribution, or rdd. Call a random variable V a size-biased
pick from (Vn), if V = VN for a positive integer valued random variable N
such that

P (N = n |V1, V2, · · ·) = Vn (n = 1, 2, · · ·) (1)

This construction, and its iteration to define a size-biased random permu-
tation of (Vn), play a key role in both theory and applications of random
discrete distributions [14, 8, 33]. Denote by F the distribution on (0, 1] of
a size-biased pick V from (Vn). Following Engen [10], call F the structural
distribution of (Vn). It is well known that many probabilities and expecta-
tions related to (Vn) can be expressed in terms of this one distribution F .
For example, (1) implies that for any positive measurable function g

E

[∑
n

g(Vn)

]
= E

[
g(V )

V

]
=
∫ 1

0

g(v)

v
F (dv) (2)

Taking g(v) = 1(a < v < b) gives an expression in terms of F for the mean
number of n’s such that a < Vn < b. This shows in particular that if (Vn) is
ranked, i.e. if V1 ≥ V2 ≥ · · · a.s., then the distribution of V1 restricted to the
interval (1/2, 1] can be recovered from F :

P (V1 ∈ dv) = v−1F (dv) (1/2 < v ≤ 1) (3)

As noted in [33], the structural distribution F also appears in formulae re-
lated to Kingman’s partition structure induced by (Vn), which is a natural
construction of interest in several of the applications listed above.

Call a distribution F on (0, 1] a structural distribution if F is the structural
distribution of some rdd. Pitman [33] posed the problem of characterizing
the set of all structural distributions, and gave a simple necessary condition
for a distribution F to be structural, namely that for every 0 < a ≤ 1 (or,
equivalently, for every 0 < a ≤ 1/2),∫ a

0
(1− x)F (dx) ≥

∫ 1

1−a
(1− x)F (dx) (4)

This paper introduces a class of models for a rdd with the feature that
the structural distribution can be identified explicitly. Analysis of these
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rdd’s shows that the following condition is sufficient for F to be a structural
distribution. We note however that this condition is far from necessary, even
assuming F has a density (See Example 19).

Condition 1 F admits a density f(u) = F (du)/du such that

(1− u)f(u) is a decreasing function of u for 0 < u < 1. (5)

From a mathematical point of view, it is natural to represent a rdd by
the lengths of a random collection of disjoint open sub-intervals of [0, 1]. The
complement of such a random collection of intervals is then a random closed
subset of [0, 1], as defined more formally in Section 2.

Definition 2 Let Z be a random closed subset of (0,∞) with Lebesgue(Z) =
0 a.s.. Say (Vn) is derived from Z, if Vn is the length of the nth longest
component interval of [ 0, 1]\Z.

The assumption that Lebesgue(Z) = 0 ensures that
∑
n Vn = 1 a.s.. So

(Vn) derived from Z is a ranked rdd. Think of each point of Z as the location
of a cut in the line. Then (Vn) is defined by the ranked lengths of the intervals
that remain after cutting [ 0, 1] at the points of Z. One natural construction
of such a Z, corresponding to an arbitrary prescribed distribution for (Vn),
is obtained from the exchangeable interval partition considered by Berbee [3]
and Kallenberg [17]. Here we consider constructions with a different sort of
symmetry:

Definition 3 self-sim0 set. Call Z self-similar if

Z
d
= cZ for all c > 0, (6)

where cZ = {cz, z ∈ Z}, and
d
= denotes equality in distribution. (See Sec-

tion 2 for the formal definition of the distribution of Z). Call Z a self-sim0

set if Z is an a.s. non-empty self-similar random closed subset of RI + with
Lebesgue(Z) = 0 a.s..

That Condition 1 is sufficient for F to be a structural distribution is
implied by the following theorem:
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Theorem 4 A distribution F on (0, 1] is the structural distribution of (Vn)
derived from some self-sim0 set if and only if F satisfies Condition 1.

This result is derived in Section 4 using the characterization of the struc-
tural distribution of a self-sim0 set provided by Theorem 7 below. Our
formulation of this theorem was guided by the following two examples of
self-sim0 sets which have been extensively studied. Both examples involve
the beta (a, b) distribution on (0, 1), which is defined for a > 0, b > 0 by the
probability density proportional to ua−1(1− u)b−1, 0 < u < 1.

For a random closed subset Z of RI , define

Dt = inf{Z ∩ (t,∞)} (7)

Gt = sup{Z ∩ (−∞, t]} (8)

At = t−Gt (9)

Following terminology from renewal theory, when Z is a random discrete
set of renewal times, we call (At) the age process derived from Z. If (Vn) is
derived from Z, and A1 > 0, then A1 is one of the lengths in the sequence
(Vn), say A1 = VN , where N is the rank of A1 in (Vn). That is, N = n if A1

is the nth longest component interval of [ 0, 1]\Z.

Example 5 poisson-dirichlet(θ). Suppose Z is the set of points of a
Poisson process on (0,∞) with intensity measure θx−1dx for some θ > 0.
Then the points of Z ∩ (0, 1] can be ranked in decreasing order, say

Z ∩ (0, 1] = {Z1 > Z2 > · · ·} (10)

It is known that Zn may be represented as

Zn = (1−X1) · · · (1−Xn) (n ≥ 1) (11)

where X1 = A1 and the Xi are i.i.d. beta(1, θ) variables [16]. In terms of the
Xi the sequence (Vn) is obtained by ranking the terms Ṽ n defined by

Ṽ 1 = X1; Ṽ n = (1−X1) · · · (1−Xn−1)Xn (n = 2, 3, · · ·) (12)

The distribution of (Vn) derived from this Z is known as the Poisson-Dirichlet
distribution with parameter θ [19, 16]. It is known that (Ṽ n) is a size-biased
permutation of (Vn) [27, 28, 8, 33]. In particular, Ṽ 1 = A1 is a size-biased pick
from (Vn), so the structural distribution of (Vn) is identical to the beta(1, θ)
distribution of A1.
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Example 6 stable(α). Let Z be the closure of the set of zeros of a self-
similar strong-Markov process B, such as a Brownian motion or a recurrent
Bessel process, started at B0 = 0. It is well known that Z is then the closure
of the range of a stable subordinator of index α for some 0 < α < 1. For
example, α = 1/2 for Brownian motion, and α = (2 − δ)/2 for a Bessel
process of dimension δ. The distribution of (Vn) in this case is an analog of
the Poisson-Dirichlet distribution that has been studied by several authors
[44, 29, 35]. It is well known that this Z is a.s. perfect, i.e. Z contains
no isolated points. Consequently, Z is uncountable, and its points cannot
be simply ranked as in the previous example. Still, it was shown in [35]
that A1 is a size-biased pick from (Vn), as in the previous example. So the
structural distribution of (Vn) is again identical to the distribution of A1, in
this case beta (1− α, α), also known as generalized arcsine [9]. It was shown
further in [30] that in this example a size-biased random permutation (Ṽ n) of
(Vn), constructed with extra randomization, admits the representation (12)
for independent beta (1− α, nα) random variables Xn.

Theorem 7 Let (Vn) be the sequence of ranked lengths of component in-
tervals of [ 0, 1]\Z, for Z a self-sim0 set. Let A1 := 1 − sup{Z ∩ [ 0, 1]}.
Then A1 = VN where (N, VN ) has the same joint distribution as if N were a
size-biased pick from (Vn). Consequently:

the structural distribution of (Vn) equals the distribution of A1, (13)

and the distribution of N , the rank of A1 in (Vn), is given by

P (N = n) = E(Vn) (n ∈ N) (14)

Theorem 7 is proved in Section 2. Note the subtle phrasing of the conclusion
of Theorem 7. It is not claimed, nor is it true for every self-sim0 set Z,
that A1 is a size-biased pick from (Vn), as was observed in Examples 5 and
6. Spelled out in detail, the conclusion of Theorem 7 is that the rank N of
A1 in (Vn) has the following property, call it the weak sampling property:

(weak sampling): for all positive measurable f
E[ f(Vn)1(N = n)] = E[ f(Vn)Vn] for all n ∈ N (15)

Equivalently, by definition of conditional probabilities,

(weak sampling): P (N = n |Vn) = Vn for all n ∈ N. (16)
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Compare with the strong sampling property which was observed in Examples
5 and 6:

(strong sampling): P (N = n |V1, V2, · · ·) = Vn for all n ∈ N (17)

To paraphrase Theorem 7,

every self-sim0 set has the weak sampling property. (18)

Example 20 in Section 5 shows that

not every self-sim0 set has the strong sampling property. (19)

Proposition 23 can be used to generate a large class of self-sim0 sets with
the strong sampling property. But we do not know a nice sufficient condition
for a self-sim0 set to have this property.

The most important conclusion of Theorem 7 is the identification of the
structural distribution of (Vn) with the distribution of A1. We provide an-
other approach to this result in Section 4. The idea is to exploit the fact that
Z is self-similar iff logZ is stationary, and make use of the generalizations to
stationary random sets [31] of some standard formulae for stationary renewal
processes. An advantage of this approach is that it gives an explicit descrip-
tion of all possible joint distributions of (Gt, Dt) derived from a self-sim0

set, which leads to Theorem 4.

2 Self-Similar Random Sets

Call Z a random closed subset of RI if ω → Z(ω) is a map from a probability
space (Ω,F , P ) to closed subsets of RI , and At is F -measurable for every
t > 0, where we define Dt, Gt and At in terms of Z as below Definition 2.
To emphasize the Z underlying these definitions, we may write e.g. At(Z)
instead of At. Define the distribution of Z to be the distribution of the age
process (At(Z), t ≥ 0) on the usual path space of cadlag paths. We refer to
Azéma [2] for a general treatment of random closed subsets of RI .

A real or vector-valued process (Xt, t ≥ 0) is called β-self-similar where
β ∈ RI if for every c > 0

(Xct, t ≥ 0)
d
= (cβXt, t ≥ 0) (20)
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Such processes were studied by Lamperti [24, 25], who called them semi-
stable. See [40] for a survey of the literature of these processes. A random
closed subset Z of RI is self-similar in the sense (6) iff its age process is 1-self-
similar. A natural example of a self-similar random closed subset of (0,∞)
is provided by the closure of the zero set of a β-self-similar process for any
β.

Assume now that Z is a self-sim0 set as in Definition 3. Let Vn(t) be the
length of the nth longest component interval of [0, t]\Z. Then the sequence
valued process ((Vn(t), n ∈ N), t ≥ 0) is 1-self-similar, and∑

n

Vn(t) = t for all t ≥ 0 a.s. (21)

The random sequence (Vn(t)/t, n ∈ N) then defines a ranked rdd which has
the same distribution for every t > 0.
Proof of Theorem 7. Let Nt denote the rank of At in the sequence of
ranked lengths (Vn(t), n = 1, 2, · · ·) of [0, t]\Z:

Nt = sup{n : At = Vn(t)}, (22)

with the convention sup ∅ = 0, so that

{t : Nt = 0} = {t : At = 0} ⊆ Z (23)

It is a key observation that

Vn(t) =
∫ t

0
ds1(Ns = n) (n ∈ N). (24)

To check (24), start from the identity (21). Fix an m ∈ N and integrate
1(At = Vm(t)) with respect to both sides of (21). Since for each n, dVn(t) is
carried by the set {t : At = Vn(t)}, and this set differs from {t : Nt = n} by at
most the discrete set of times {t such that At = Vk(t) for more than one k},
we obtain (24) with m instead of n.

It is clear that (Nt, t ≥ 0) satisfies the assumptions of the following
Lemma. Theorem 7 follows immediately from the conclusion of the Lemma.
2

Lemma 8 Suppose that a process (Nt, t ≥ 0) with values in N0 := {0, 1, 2, · · ·}
is 0-self-similar, i.e. for every c > 0

(Nct, t ≥ 0)
d
= (Nt, t ≥ 0) (25)
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Let Vn(t) be defined by (24) for all n ∈ N0. Then for every n ∈ N0 and every
t > 0

P [Nt = n | Vn(t)] =
Vn(t)

t
(26)

In particular, if (21) holds, then for every t > 0, (Nt, VNt(t)/t)
d
= (N, VN (1))

where N is a size-biased pick from (Vn(1), n ∈ N)

Proof. Apply the next Lemma to the 0-self-similar process Xt = 1(Nt = n).
2

Lemma 9 Let X̄t = 1
t

∫ t
0 Xsds where (Xs, s ≥ 0) is a jointly measurable

real-valued 0-self-similar process such that E(|X1|) < ∞. Then for every
t > 0

E[Xt | X̄t] = X̄t (27)

Proof. Because (Xt) is 0-self-similar,

(Xt, X̄t)
d
= (X1, X̄1) for all t. (28)

It will be shown that (27) follows from this identity. As a first consequence
of (28), it suffices to prove (27) for t = 1. Let f : RI + → RI + be a C1 function
with f(0) = 0. The chain rule for Lebesgue integrals (see e.g. [39], Chapter
0, Prop. (4.6)) gives for all t ≥ 0

f(tX̄t) =
∫ t

0
f ′(sX̄s)Xsds (29)

Take t = 1 and use (28) to obtain

E[ f(X̄1) ] =
∫ 1

0
E[ f ′(sX̄s)Xs]ds = E

[ ∫ 1

0
f ′(sX̄1)X1ds

]
(30)

Now assume further that f ′(0) = 0, so there is a vanishing contribution from
the event (X̄1 = 0) in the rightmost expectation above. Then we see that for
all C1 functions f with f(0) = f ′(0) = 0

E[ f(X̄1) ] = E
[
f(X̄1)X̄−1

1 X1; X̄1 6= 0
]

(31)
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By standard measure theory, (31) must hold also for every Borel f such that
both expectations in (31) are well-defined and finite. Taking f(x) = x1(x ∈
B) shows that for every Borel subset B of RI that does not contain 0

E[ X̄11(X̄1 ∈ B) ] = E
[
X11(X̄1 ∈ B)

]
(32)

But (32) holds also for B = RI because, using (28) again

E(X̄1) = E

[∫ 1

0
Xsds

]
=
∫ 1

0
E(Xs)ds =

∫ 1

0
E(X1)ds = E(X1) (33)

Subtracting (32) for B = RI − {0} from (33) gives (32) for B = {0}, hence
(32) for all Borel B. This is (27). 2

3 Stationary random closed subsets of RI

Call a random closed subset Z of RI stationary if Z is shift invariant: i.e.

Z
d
= Z + c for any c > 0, where

d
= denotes equality in distribution, and

Z + c = {z+ c, z ∈ Z}. That is to say, Z is stationary iff its age process (At)
is a stationary process in the usual strict sense. Then the RI 2-valued process

((At, Dt − t), t ≥ 0) is also stationary. In particular (At, Dt − t) d
= (A0, D0)

for all t ≥ 0.

Definition 10 Call Z a stationary0 set if Z is an a.s. non-empty station-
ary random closed subset of RI with Lebesgue(Z) = 0 a.s..

Clearly, Z is a self-sim0 set iff logZ is a stationary0 set. The following
proposition is the restriction to stationary0 sets of the result stated in
Section VI of [31].

Proposition 11 [31] Let Z be a stationary0 set. Define L = A0 + D0,
so L is the length of the component interval of Zc that contains 0. Then
P (0 < L <∞) = 1 and

(A0, D0) = (LV, L(1− V )) (34)

where V has uniform distribution on (0, 1), and V is independent of L.
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Given a probability distribution F0 on (0,∞), it is easy to construct a
stationary0 set such that L has distribution F0.

Example 12 stationary-lattice(F0). Call Z a stationary random lattice
with spacing distribution F0 if Z = {L(Z−V )} where Z is the set of integers, L
is a random variable with distribution F0, and V is uniform(0, 1) independent
of L.

If F0 is degenerate at c > 0, so L = c is constant, it is obvious that
stationary-lattice(F0) is the only possible distribution of a stationary0

set such that L has distribution F0. But there are many other possible dis-
tributions of Z corresponding to each non-degenerate F0. Among these is
the following:

Example 13 stationary-regen0 (F0). This is the unique distribution of
a stationary0 set Z that is regenerative subset of RI in the sense of [26], and
such that L has distribution F0. See Fristedt [13], who gives the following
construction of Z, and further references. Let

Z = {−A0 − Z1} ∪ {D0 + Z2} (35)

where A0 and D0 are defined by (34) in terms of L with distribution F0 and
an independent uniform V , and, independent of these variables, Z1 and Z2

are two independent copies of the closed range of a pure jump subordinator
with Lévy measure Λ(dx) = cx−1F0(dx), for an arbitrary constant c > 0. It
is easily seen that this yields the same distribution as various other construc-
tions of Z that can be found in the literature. It is immediate from the above
construction that this Z is reversible: Z

d
= −Z. If Λ has total mass 1, then

the stationary-regen0 set Z defined by (35) is just the stationary point
process derived as in renewal theory from i.i.d. spacings with distribution Λ.
Then F0(dx) = µ−1xΛ(dx) where µ is the mean of Λ. If Λ(0,∞) =∞, then
Z is a.s. uncountable.

Another method of constructing a stationary-regen0 (F0) is to let Z
be the closure of the zero set of a suitable stationary strong-Markov process
X. One can always take X to be the stationary version of the age process
derived from the subordinator with Lévy measure Λ described above. This is
the method of Horowitz [15]. But zero sets of other Markov processesX may

12



be considered. For example, the zero set Z of a stationary diffusion process
X on the line, for which 0 is recurrent, gives a stationary-regen0 set with
Λ(0,∞) = ∞. See Knight [22] and Kotani-Watanabe [23] regarding which
Lévy measures Λ can be obtained by this construction from a diffusion.

Example 14 Suppose W = logZ where Z is the stable (α) regenerative
self-sim0 set. If we represent Z as the zero set of (B(t), t ≥ 0) for a
Brownian motion B (in case α = 1/2) or Bessel process B of dimension
δ = 2 − 2α, then W is the zero set of the process (Xs, s ≥ 0) defined by
Xs = e−s/2B(es). It is well known that for B a Brownian motion, X is a
one-dimensional Ornstein-Uhlenbeck process. See Section 6 of [35] regarding
the Bessel case.

4 The joint law of (G1, D1) for a self-sim0 set

We start this section by presenting an alternative derivation of the key iden-
tity (13) that is part of the conclusion of Theorem 7.
Another proof of (13). Let Z be a self-sim0 set. Let Vn := Vn(1),
the length of the nth longest component interval of [0, 1]\Z. Let U be
uniform(0, 1) independent of Z. A size-biased pick from (Vn) is provided
by the length of the component interval covering U , that is (DU ∧ 1) −GU .
So an equivalent of (13) is

(DU ∧ 1)−GU
d
= 1−G1 (36)

which, by scaling, amounts to

((U D1) ∧ 1)− UG1
d
= 1−G1 (37)

Ignoring null sets, the event (DU ≥ 1) is identical to (U > G1). On this
event GU = G1, so the left side of (36) reduces to 1 − G1, and (36) can be
rewritten as

(DU −GU )1(DU < 1)
d
= (1−G1)1(U ≤ G1) (38)

That is to say

P (DU −GU ∈ dx;DU < 1) = (1− x)P (1−G1 ∈ dx) (0 < x < 1) (39)
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or equivalently, by scaling,

P (U(D1−G1) ∈ dx;UD1 < 1) = (1−x)P (1−G1 ∈ dx) (0 < x < 1) (40)

Consider now the random subset logZ of RI . Since Z is a self-sim0 set,
logZ is a stationary0 set. Since z → log z is increasing with log 1 = 0,

logD1 = D0(logZ) = LV (41)

logG1 = G0(logZ) = −L(1− V ) (42)

where D0(logZ) = inf{logZ ∩ (0,∞)}, G0(logZ) = sup{logZ ∩ (−∞, 0]}.

L := log(D1/G1) = D0(logZ)−G0(logZ) > 0 a.s. (43)

and V is uniform on (0, 1), and independent of L and U . Thus the identity
(37) reduces to the following: for such L, V and U ,

[(UeLV ) ∧ 1]− UeL(V−1) d
= 1− eL(V−1) (44)

As noted in Section 3, L can have an arbitrary distribution F0 on (0,∞). By
conditioning on L, (44) holds no matter what the distribution of L iff (44)
holds for L an arbitrary positive constant, say L = logC. Now (44) reduces
to this:

for any constant C > 1, and independent uniform (0, 1) variables U and V ,

[(UCV ) ∧ 1]− UCV−1 d
= 1− CV−1 (45)

Put W = 1 − V , so U and W are i.i.d. uniform (0, 1) too. By the same
reduction made earlier in (40), it is enough to check that for 0 < x < 1,

P [(C − 1)UC−W ∈ dx;UC−W < C−1] = (1− x)P (1− C−W ∈ dx) (46)

Since 1−C−W < 1−C−1, the distribution on the right side of (46) vanishes
for x > 1 − C−1. So it does on the left, since the condition UC−W < C−1

makes
(C − 1)UC−W < (C − 1)C−1 = 1− C−1

as well. So it is enough to compute the densities of both sides in (46) relative
to dx for 0 < x ≤ 1 − C−1, and show they are equal. On the one hand,
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conditioning on W shows that the density on the left side of (46) is constant
over this range and equal to E[CW/(C − 1)]. On the other hand, the change
of variables

x = 1−C−w;
dw

dx
=

1

(1− x) logC

shows that the density on the right side of (46) is constant and equal to
1/ logC. An easy integration confirms that the two constants are equal. 2
Proof of Theorem 4. Consider the distribution of A1 for a self-sim0 set.
By application of Proposition 11 as in the preceding argument,

A1 = 1−G1 = 1− exp(−Y ) (47)

where Y := LW for a uniform(0, 1) variable W independent of L, and, from
the discussion below Proposition 11, the random variable L := log(D1/G1)
can have an arbitrary distribution F0 on (0,∞). The distribution of Y is
given by the density

P (Y ∈ dy) = h(y)dy (y > 0) (48)

where
h(y) :=

∫
(y,∞)

x−1F0(dx). (49)

¿From (47) and (48), the change of variables

a = 1− e−y, y = − log(1− a), dy = da/(1− a) (50)

shows that

f(a) :=
h(− log(1− a))

1− a (0 < a < 1) (51)

serves as a probability density for A1. Formula (48) sets up a 1-1 corre-
spondence between probability distributions F0 on (0,∞), and probability
densities h on (0,∞) satisfying

y → h(y) is decreasing and right continuous for 0 < y <∞ (52)

Formula (51) in turn sets up a 1-1 correspondence between such probability
densities h on (0,∞) and probability densities f on (0, 1) satisfying

a→ (1− a)f(a) is decreasing and right continuous for 0 < a < 1 (53)

The conclusion of Theorem 4 is now clear. 2
As a complement to Theorem 4, the following corollary summarizes the

collection of distributional identities implicit in the above argument:
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Corollary 15 The distribution of D1/G1 derived from a self-sim0 set can
be any distribution on (1,∞). Let F0 denote the corresponding distribution
of L := log(D1/G1), which can be any distribution on (0,∞). Then

(i) The joint distribution of (G1, D1) is determined by F0 via the formula

(G1, D1) = (e−LW , e−L(1−W )) (54)

where W:= −(logG1)/L has uniform (0, 1) distribution, independent of
L with distribution F0;

(ii) the random variables − logG1 and logD1 are identically distributed
with a decreasing density h(y) on (0,∞)

(iii) the random variables G1 and 1/D1 are identically distributed, with den-
sity g(u) on (0, 1) such that ug(u) is an increasing function of u;

(iv) the random variables 1/G1 and D1 are identically distributed, with den-
sity k(x) on (1,∞) such that xk(x) is a decreasing function of x;

(v) the right-continous version of the density h is related to F0 by (49);
each of the densities h,g and k is arbitrary subject to the constraints
stated above, and each of these densities can be recovered from any of
the others via the formulae

g(u) = u−2k(u−1) = u−1h(− log u) (0 < u < 1) (55)

h(y) = e−yg(e−y) = eyk(ey) (0 < y <∞) (56)

k(x) = x−2g(x−1) = x−1h(log x) (1 < x <∞); (57)

Remark 16 Inversion. The identity in distribution D1
d
= 1/G1 for any

self-sim0 set, implied by (ii) above, can be seen immediately by scaling,
using the relation (Gt < u) = (t < Du). In case Z is the stable(α) self-sim0

set, as in Example 6, the joint distribution of (G1, D1) is well known [9]. In
particular, the distribution of G1 is beta (α, 1−α). The identity in distribu-

tion D1
d
= 1/G1 can be strengthened to (Gt, t ≥ 0)

d
= (1/D1/t, t ≥ 0) in this

case, and more generally whenever Z is invertible, that is Z
d
= 1/Z where

1/Z = {1/z, z ∈ Z}. This amounts to reversibility of logZ, which holds
whenever logZ is regenerative [26], and also if logZ is a stationary random
lattice. However, as shown by an example in [31], not all stationary0 sets
are reversible, so not all self-sim0 sets are invertible.
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Remark 17 Distribution of D1−G1. For the stable (α) set Z, the distribu-
tion of the length D1−G1 of the complementary interval covering 1 is found
by integration from the joint law of (G1, D1) to be

P (D1 −G1 ∈ dx)/dx = [Γ(α)Γ(1− α)]−1x−α−1(1− x)α+ (x > 0) (58)

where the last factor equals (1−x)α for 0 < x < 1 and 1 for x ≥ 1. It can also
be shown that this distribution of D1 −G1 is the distribution of Z1−α,α/Zα,1
for independent Z1−α,α and Zα,1, where Za,b has beta(a, b) distribution.

The distribution of D1−G1 is also easily described for the set of points Z
of a Poisson point process with intensity θx−1dx as considered in Example 5.
In that case D1−G1 is the sum of independent variables D1− 1 and 1−G1,

where 1−G1 has beta(1, θ) distribution, and D1
d
= 1/G1. So the density of

D1 −G1 can be expressed as a convolution.
For a general self-sim0 set, it is clear from (54) that the joint law of

(G1, D1) has a density relative to Lebesgue measure in the plane iff F0 is
absolutely continuous. Still, it can be seen as follows that D1 − G1 always
has a density, no matter what F0. Use (54) to write

D1 −G1 = e−LU (eL − 1) (59)

Conditioning on L gives

P (D1 −G1 ∈ dy|L = `) =
1(1− e−` < y < e` − 1)dy

y`
(60)

Integrating out with respect to F0(d`) gives a general if unwieldy formula
for the density of D1 − G1. We do not know whether F0 can be recovered
from the density of D1−G1, or if there is any nice description of all possible
densities for D1 −G1 as Z ranges over all self-sim0 sets.

Example 18 The zero set of a perturbed Brownian motion. The above for-
mulae can be applied to the self-sim0 set Z defined by the zero set of the
perturbed Brownian motion (|Bt| − µLt, t ≥ 0) studied in [5]. Here B is a
standard Brownian motion, (Lt, t ≥ 0) is its local time process at zero, and
µ > 0 is a parameter. The law of G1, found explicitly in [5] turns out to be
fairly complicated. Still, without further calculation, the above results show
how this law determines the structural distribution of (Vn) derived from this
Z, the law of D1, and joint law of (G1, D1). It seems intuitively clear that
this Z is not invertible, but we do not see a proof.
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5 Examples

Example 19 A (Vn) with Vn > 0 for all n such that the structural distribu-
tion has a density f not satisfying Condition 1. Let V1 have a density with
support [q, 1] for some 1/2 < q < 1. Let Vn+1 = (1− V1)Wn for n ≥ 1 where
(Wn) is any rdd with Wn > 0 for all n, whose structural distribution has a
density that does not vanish on (0, 1). Then (Vn) is a rdd whose structural
distribution F has a density f that is strictly positive on (0, 1− q) and (q, 1),
but which vanishes on (1− q, q). Obviously this f does not satisfy Condition
1.

Example 20 A self-sim0 set Z that does not have the strong sampling
property. For every possible structural density f for (Vn) derived from a
self-sim0 set, as described in Theorem 4, there is a self-sim0 set that
generates a (Vn) with the given structural density f , and which does not have
the strong sampling property (17). Such a self-sim0 set Z is obtained as Z =
exp(W ) where W is the stationary-lattice(F0) for F0 the distribution in
(49) derived from f as in (53). Let L be the length of the component interval
of W c that contains 0. So L has distribution F0. And Z := {exp(L(Z−V ))}
where V is uniform (0, 1) independent of L, and Z is the set of integers.
Consequently,

Z ∩ (0, 1] = {Z1 > Z2 > · · ·} a.s. (61)

where Zn = e−L(n−1+V ) for n = 1, 2, · · ·, and the spacings Ṽ n := Zn−1 − Zn,
where Z0 := 1, are given by

Ṽ 1 = 1− e−LV ; Ṽ n = e−L(n−2+V ) − e−L(n−1+V ) (n ≥ 2)

The sequence (Vn) is obtained by ranking (Ṽ n). The expression for Ṽ n shows
that Ṽ 2, Ṽ 3, · · · is a geometric progression with common ratio e−L. Let N be
the rank of Ṽ 1 in (Vn), so Ṽ 1 = VN . Clearly Vn = Ṽ n for all n > N , so

P

(
Vn+1

Vn
= e−L for all sufficiently large n

)
= 1

and N can be recovered from (Vn) as

N = max
{
n :

Vn+1

Vn
6= e−L

}
= max

{
n :

Vn+1

Vn
6= Vn+2

Vn+1

}
(62)
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Thus both L and N are measurable functions of (Vn). In particular, N is not
a size-biased pick from (Vn) in the sense of (17).

Example 21 [10, 30, 38] poisson-dirichlet(α, θ). This distribution for a
ranked rdd with two parameters, abbreviated pd(α, θ), and defined for

0 ≤ α < 1 and θ > −α (63)

generalizes the one parameter poisson-dirichlet(θ) distribution of Exam-
ple 5, which is the special case pd(0, θ). It was shown in [30] that the pd(α, 0)
distribution of (Vn) is that derived from the stable(α) set Z, as in Example
6, while pd(α, α) is the distribution of (Vn) derived from this stable (α) set
Z by conditioning on 0 ∈ Z, an operation made precise in [44], [18]. A se-
quence (Vn) with pd(α, θ)distribution can be constructed by ranking (Ṽ n)
defined by the residual allocation model (12) for independent Xn such that
Xn has beta (1−α, θ+nα) distribution. Moreover (Ṽ n) is then the size-biased
permutation of (Vn) [10, 30, 33], and consequently

the structural distribution of pd(α, θ)is beta(1− α, θ + α) (64)

As shown by Examples 5 and 6, for α = 0 or θ = 0 the following statement
is true:

the pd(α, θ)distribution is generated by the unique self-sim0 set
Z such that logZ is a stationary-regen0 set and the distri-
bution of A1(Z) is the beta(1−α, θ+α) distribution required by
(64) and (13).

But we do not know if this holds for any other choices of (α, θ). It is easily
checked that for (α, θ) in the range (63) this beta distribution on (0, 1) sat-
isfies the necessary Condition 1 for existence of a self-sim0 set generating a
(Vn) with this structural distribution. In Corollary 26 we show how to derive
pd(α, θ)from a self-sim0 set for 0 < α < 1 and θ > 0, but we do not know
whether this is possible for 0 < α < 1 and −α < θ ≤ 0.

6 Operations

There are some natural operations related to both random discrete distribu-
tions and self-similar random sets, which allow examples to be combined in
some interesting ways.
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Define the ranked product of two rdd’s (Un) and (Vn) defined on the same
probability space to be the rdd (Wn) obtained by ranking the collection of
products {UmVn,m ∈ N, n ∈ N}. As noted in [33], if Ũ1 is a size-biased
pick from (Un) and Ṽ1 is a size-biased pick from (Un), and (Ũ1, U1, U2, · · ·)
and (Ṽ1, V1, V2, · · ·) are independent, then W̃1 := Ũ1Ṽ1 is a size-biased pick
from the ranked product (Wn) of (Un) and (Vn). So the set of structural
distributions on (0, 1] is closed under the multiplicative analog of convolution.
In particular, if f and g are two structural densities then so is h defined by

h(u) :=
∫ 1

0
y−1f(u/y)g(y)dy (0 < u < 1) (65)

Let P • Q denote the distribution of the ranked product of a rdd (P ),
i.e. a rdd with distribution P , and an independent rdd (Q). Let str(P)
denote the structural distribution on (0, 1] of a rdd (P ), and let ∗ denote
the multiplicative convolution operation on distributions on (0, 1]. Then the
above remarks may be summarized as follows: str(P•Q) = str(P)∗str(Q).
Note that the operation • on distributions of rdd’s is commutative: P •Q =
Q • P . Note also that with mild non-degeneracy assumptions on P and Q,

if (Wn) is a rdd (P •Q) then with probability 1 there are

distinct positive integers (k, `,m, n) with Wk/W` = Wm/Wn.
(66)

So, for example, P •Q could not be pd(α, θ)for any (α, θ) .
A more interesting operation on laws of rdd’s is the composition opera-

tion ⊗ defined as follows. Given two laws P and Q for a rdd, let (Un) be a
rdd (P ), and, independent of (Un), let (Vmn, n = 1, 2, · · · , ), m = 1, 2 · · · be
a sequence of i.i.d. copies of a rdd (Q). Let P ⊗ Q be the law of the rdd

obtained by ranking the collection of products {UmVmn,m ∈ N, n ∈ N}. It
is easily seen that the operation ⊗, like •, has the property str(P ⊗Q) =
str(P) ∗ str(Q). However, except in trivial cases, P ⊗Q 6= P •Q. This is
clear because mild conditions on P and Q ensure that the probability consid-
ered in (66) becomes 0 for P ⊗Q instead of P •Q. Indeed, the composition
operation ⊗ is not even commutative. This is easily seen as follows. Take one
of the laws, say P , to be the degenerate distribution that assigns probability
1 to the sequence (1/2, 1/2, 0, · · ·), and let Q be the law of any (Vn) such that
Vn has a continuous distribution for each n and V1 > V2 > · · · a.s.. Then
(Wn) governed by P ⊗Q has W1 > W2 > · · · a.s. whereas (Wn) governed by
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Q ⊗ P has W1 = W2 > W3 = W4 > · · · a.s. Typically then, P • Q,P ⊗ Q
and Q ⊗ P will be three distinct laws for a rdd with the same structural
distribution str(P) ∗ str(Q).

A nice illustration of the composition operation is provided by the fol-
lowing result of [34]:

for α > 0 and θ > 0, pd(0, θ)⊗pd(α, 0) = pd(α, θ) (67)

If, as in the above examples, both P and Q can be derived from a self-sim0

set, it is natural to ask whether P •Q and P ⊗Q can be so derived. This is
achieved for ⊗ by the following construction.

Construction 22 Let X and Y be two random closed subsets of RI of Lebesgue
measure 0. Let (γn, δn), n ∈ N) be a list of all the component intervals of the
complement of X. Let Y1, Y2, · · · be a sequence of independent copies of Y ,
independent also of X. Let

Z = X ∪
∞⋃
n=1

[{γn + Yn} ∩ (γn, δn)] (68)

Informally, the new set Z contains all the points of X, and, within each
component interval of Xc, the new set also contains points derived from a
copy of Y shifted to start at the left end of the interval. Some basic properties
of this construction are stated in the following Proposition, whose proof is
straightforward and left to the reader:

Proposition 23 Let P and Q denote the distributions of the rdd’s derived
from self-sim0 sets X and Y repectively. Let Z be constructed from X and
Y as in Construction 22. Then Z is a self-sim0 set, the distribution of the
rdd derived from Z is P ⊗ Q, with structural distribution str(P ⊗ Q) =
str(P) ∗ str(Q). Moreover, if both X and Y have the strong sampling
property (17) then so does Z.

A consequence of this proposition, which can also be checked directly, is
the following:

Corollary 24 The set of densities on (0, 1) satisfying Condition 1 is closed
under multiplicative convolution.
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Remark 25 Finite Unions. If Z1, · · · , Zm are m independent self-sim0

sets, it is easily seen that their union Z is also a self-sim0 set. Since
A1(Z) = maxiA1(Zi), Theorem 7 identifies the structural distribution of the
rdd derived from Z as the distribution of maxi Ṽ i where Ṽ i is a size-biased
pick from the rdd derived from Zi. Let fi denote the structural density of
Ṽ i derived from Zi. Then the structural density f derived from Z is

f(v) =
∑
i

fi(v)
∏
j 6=i

∫ 1

v
fj(u)du

So the class of densities satisfying Condition 1 is closed under this operation
too.

Note that if X is discrete, e.g. the Poisson process generating pd(0, θ) as
in Example 21, and Y is perfect, like the stable (α) set generating pd(α, 0),
then laying down shifted copies of Y in the component intervals of X, as
in Construction 22, yields a perfect set Z. But if the roles of X and Y
are switched, laying down shifted copies of X in the component intervals
of Y yields a set that is a.s. neither discrete nor perfect. Certainly, the
distributions of the sets Z so obtained are different, but whether or not the
derived rdd’s have the same distribution is not so obvious.

By combining the identity (67) with the above proposition, we obtain:

Corollary 26 For every α > 0 and θ > 0, there exists an a.s. perfect
self-sim0 set Z with the strong sampling property such that the rdd derived
from Z has pd(α, θ) distribution.

7 Open problems

In the setting of Lemma 8, fix t and write simply N for Nt and V (B) for∑
n∈B Vn(t)/t for a subset B of N. Applying Lemma 9 to Xt = 1(Nt ∈ B)

shows that for every subset B of N, P (N ∈ B|V (B)) = V (B). However,
as in the discussion around (16) and (17), Example 20 shows that it does
not necessarily follow that P (N ∈ B|V (C), C ⊆ N) equals V (B), as it does
in Examples 5 and 6. See [36] for some applications of this property in the
setting of Example 6. It is natural to ask what additional hypothesis is
appropriate for this stronger conclusion to hold in a more general setting,
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but we do not have an answer to this question. In essence, the problem is
the following:

Problem 27 Find a condition that implies the identity (27) for a vector-
valued 0-self-similar process X.

See [37] for a number of reformulations of (27) and further discussion,
including a simple example of an RI 2-valued 0-self-similar process X for which
(27) fails to hold.

We do not know much about rdd’s derived from self-sim0 sets besides
the results presented in this paper. Some obvious questions seem very difficult
to tackle. For instance:

Problem 28 Is it possible to characterize the set of all possible laws of rdd’s
that can be derived from a self-sim0 set Z?

Less abstractly, given some description of the distribution of a self-sim0

set or perhaps another random closed Z, there is the problem of how to
describe the distribution of (Vn) derived from Z. Several papers in the liter-
ature can be viewed as treating instances of this problem for Z’s of various
special forms [16, 29, 38]. Problem 30 describes a self-sim0 set Z for which
this question remains to be answered. For the random closed subset Z of
(0, 1) associated with an exchangeable interval partition of (0, 1) derived from
a rdd as in Berbee [3], Kallenberg [17], it is obvious that the law of Z is
uniquely determined by that of the rdd. But if there exists a self-sim0 set
Z that generates the rdd, uniqueness of the law of Z is not so obvious:

Problem 29 Given that a rdd with a particular distribution can be derived
from some self-sim0 set Z, is the distribution of such a Z unique?

We do not even know if there is uniqueness in law for the two most basic
examples 5 and 6. To conclude, we pose the following:

Problem 30 Suppose Z = expW for W a stationary-regen0 (F0) with∫∞
0 x−1F0(dx) <∞, so W is the set of points in a stationary renewal sequence.

Let Ṽ n be the sequence of spacings between the points of the discrete set
Z, as defined in (10) and (12). For which F0 is it the case, as it is for W a
homogeneous Poisson process, that (Ṽ n) is a size-biased random permutation

23



of the ranked sequence (Vn)? Example 20 shows that there are discrete
self-sim0 sets Z such that (Ṽ n) does not have the same distribution as a
size-biased random permutation of (Vn), despite the identity in distribution
of first terms implied by (13). It would be interesting to know if there were
any other discrete self-sim0 sets besides exp(W ) for homogeneous Poisson
W which had this property. If there were, it would presumably be possible
to explicitly describe the joint law of the size-biased sequence (Ṽ n), and then
derive a sampling formula for the corresponding partition structure, as in
[34].
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