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Abstract

In a bounded open region of the d dimensional space we consider a Brownian motion which is
reborn at a fixed interior point as soon as it reaches the boundary. The evolution is invariant
with respect to a density equal, modulo a constant, to the Green function of the Dirichlet
Laplacian centered at the point of return. We calculate the resolvent in closed form, study its
spectral properties and determine explicitly the spectrum in dimension one. Two proofs of
the exponential ergodicity are given, one using the inverse Laplace transform and properties
of analytic semigroups, and the other based on Doeblin’s condition. Both methods admit
generalizations to a wide class of processes.
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1 Introduction

The paper studies a process analyzed in [10]. This type of processes were first introduced
in [8] and also investigated in [15]. Let R be a bounded open region in Rd with a smooth
boundary (to make things precise, of class C2) such that the origin O ∈ R. For x ∈ Rd, let
Wx = (wx(t, ω), {Ft}t≥0) be a Brownian motion on Rd such that P (wx(0, ω) = x) = 1. On the
region R, for any x ∈ R, we define a process {zx(t, ω)}t≥0 with values in R which is identical to
a standard d dimensional Brownian motion until the almost surely finite time τ when it reaches
the boundary, then instantaneously returns to the origin O at τ and repeats the same evolution
indefinitely. This is the multidimensional version of the problem described in [10], which may be
called Brownian motion with rebirth, since after emulating the Brownian motion with absorbing
boundary conditions (in other words, killed at the boundary) it is reborn at the origin. The
state space can be shown to be compact with the topology described in (14) creating a shunt
at the return point. As a consequence, the dynamics has an invariant measure. We identify it
as the Green function G(·, ·) for the Laplacian with pole at ξ = 0, modulo a normalizing factor.
The average time a Brownian motion starting at x spends in the set B ⊂ R before hitting the
boundary is determined ([13], Section 7.4) as

∫
B G(x, y)dy. Our particle will repeat the trip

from the origin to the boundary indefinitely and will stabilize in time, by ergodicity, towards
the measure which gives the mean value over all configurations, at exponential rate.

Theorem 1 provides an explicit formula for the transition probabilities of the process and shows
that the associated semigroup is a strongly continuous compact Feller semigroup on the domain
X where the boundary and the return point are glued together (14). In any dimension, Theorem
2 gives a closed formula of the resolvent and the spectrum of the generator σ = {λi}i≥0 is
described as a subset of singularities appearing in the resolvent formula (23), ordered according
to the real part 0 = λ0 > ℜ(λ1) ≥ ℜ(λ2) ≥ . . .. The exponential ergodicity with the exact
convergence rate ℜ(λ1) is given in Theorem 3.

We note that the compactness of the semigroup is used to validate the sharp rate of convergence
(lower bound) in the exponential ergodicity limit (26). The strongly continuous Feller semigroup
property is crucial for the inversion formula of the resolvent.

The proof is based on the inversion formula for the Laplace transform (Proposition 6) and the
estimates of Propositions 7 and 8, which make essential use of a contour integration over the
boundary of a sector (18) of the complex plane with angle 2φ > π. Whenever the semigroup
is analytic (Theorem 7.7 in [17]), the integral exists and provides an inverse formula giving an
exact exponential rate for the error term.

It is natural that a key part of the proof consists in establishing that the semigroup corresponding
to the rebirth process is analytic, more specifically, proving estimate (24). To begin with, we
need the analytic semigroup results for operators on the space of continuous functions with the
topology of uniform convergence found in [18] - [19]. In our case, they are applied to the Dirichlet
Laplacian on a regular domain R, but more general dynamics can be considered with the same
method.

Another advantage of the method is that once Theorem 1 has been established for delta func-
tions, one can readily generalize to arbitrary redistribution measure µ. The closed formula (23)
captures the renewal mechanism imbedded in the process. The estimates needed for the Laplace
transform inversion formula are not harder to obtain in an Lp norm than in the uniform norm. A
reference in that direction is again [17]. The proofs presented in this paper are easy to modify in
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order to include the Lp case. For example, when the measure µ(dx) has a density in L2(R), then
part of the analysis carried out for establishing (40)-(37) is simplified due to the explicit form of
the resolvent of the Dirichlet Laplacian in the square norm. Recently, more detailed results on
the spectral properties of diffusions with rebirth are worked out, with different methods, in [2].

Section 6 looks at the one dimensional case. We are able to calculate the spectrum of the
generator of the process exactly, and show that the spectral gap is equal to the second eigenvalue
of the Dirichlet Laplacian λ1 = λabs

2 < λabs
1 , by identifying a set of removable singularities in

(23) which includes the point λabs
1 . This corrects the spectral gap estimate from [10], which is

correct in the sense of an upper bound only, as λ1 ≤ λabs
1 .

In Section 7 we give an alternative proof of the exponential ergodicity, based on the Doeblin
condition. For explicit computations as in Section 6, the Doeblin condition is not helpful.
However, the Doeblin condition argument leads to various generalizations, and is very short.

There are two venues for applications of the rebirth process. The first originates in a variant of
the Fleming-Viot branching process introduced in [3] and studied further in [11]- [12]. Assume
that the singular measure µ(dx) giving the distribution of the rebirth location of the Brownian
particle is replaced by a time-dependent deterministic measure µ(t, dx). The tagged particle
process from [12] is an example in the case when µ(t, dx) is the deterministic macroscopic limit
of the empirical measures of a large system of Brownian particles with branching confined to the
region R. In particular, in equilibrium, the updating measure µ(t, dx) is constant in time, being
equal to µ(dx) = Φ1(x)dx, the probability measure with density equal to the first eigenfunction
of the Dirichlet Laplacian (normalized).

The second application is coming from mathematical finance. If {S(t)}t≥0 denotes the asset
process in a model for the derivative markets, then S(t) is typically assumed to follow the path
of a geometric Brownian motion (see [6], also [9]). The double knock-out barrier option has
payoff equal to S(t) as long as it belongs to a region R with the prescription that it falls back
to one (zero rate of return, or a prescribed value) as soon as the barrier or boundary is reached
and then resumes its evolution. In that case, log S(t) is a diffusion with rebirth.

2 Main results

We shall denote by (Ω,F , P ) a probability space supporting the law of the family of d-dimensional
coupled Brownian motions indexed by their starting points x ∈ R. Let A be an open region in
Rd and x ∈ A. In general we shall use the notation

Tx(A) = inf{t > 0 : wx(t, ω) /∈ A} , (1)

the exit time from the region A for the Brownian motion starting at x. Occasionally we shall
suppress either x or the set A if they are unambiguously defined in a particular context. We shall
define inductively the increasing sequence of stopping times {τn}n≥0, together with a family of
adapted nondecreasing point processes {Nx(t, ω)}t≥0 and the process {zx(t, ω)}t≥0, starting at
x ∈ R. Let τ0 = Tx = inf{t : wx(t, ω) /∈ R}, while for t ≤ τ0 we set Nx(t, ω) = 1{∂R}(wx(t, ω))

and zx(t, ω) = wx(t, ω)−
∫ t
0 wx(s, ω)dNx(s, ω). We notice that zx(τ0−, ω) = wx(τ0, ω) ∈ ∂R. By

induction on n ≥ 0,

τn+1 = inf{t > τn : wx(t, ω) −
∫ τn

0
zx(s−, ω)dNx(s, ω) /∈ R} (2)
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which enables us to define, for τn < t ≤ τn+1,

Nx(t, ω) = Nx(τn, ω) + 1{∂R}(zx(t−, ω)) , (3)

as well as

zx(t, ω) = wx(t, ω) −
∫ t

0
zx(s−, ω)dNx(s, ω) . (4)

We notice that zx(t, ω) = 0 for all t = τn. The construction and the summations present in (2)
and (4) are finite due to the following result.

Proposition 1. The sequence of stopping times τ0 < τ1 < . . . < τn < . . . are finite for all n and
limn→∞ τn = ∞, both almost surely. Also, the integer-valued processes Nx(t, ω) defined for t ≥ 0
have the properties (i) they are nondecreasing, piecewise constant, progressively measurable and
right-continuous, and (ii) for any x ∈ R, P (Nx(t, ω) < ∞) = 1.

Proof. It is easy to see that τn , n ≥ 0 are i.i.d. with finite moments, and the conclusion follows
from the law of large numbers (more details are given in [10]). Since the processes Nx(t, ω) ≥ 0
are clearly integer valued, non-decreasing and right-continuous by construction (3), they auto-
matically preserve the same value until the next boundary hit. Progressive measurability is a
consequence of the fact that the first exit times {τn} are stopping times.

Let f ∈ C(R) and pabs(t, x, y) denote the absorbing Brownian kernel generating the semigroup
{Sabs

t }t≥0

Sabs
t f(x) =

∫

R
f(y)pabs(t, x, y)dy = E[f(wx(t, ω)) , t < Tx(R)] . (5)

The operator ∆ with Dirichlet boundary conditions on ∂R has a countable spectrum {λabs
i }i≥1

0 > λabs
1 > λabs

2 ≥ . . . (6)

with corresponding eigenfunctions {Φn(x)} and

pabs(t, x, y) =

∞∑

n=1

exp
(λabs

n t

2

)
Φn(x)Φn(y) . (7)

The functions {Φn(x)} are smooth and form an orthonormal basis of L2(R) (reference [13], or
[7], (6.5)). The resolvent of the absorbing Brownian motion applied to f ∈ C(R) will be denoted
by

Rabs
α f(x) =

∫ ∞

0

∫

R
e−αtpabs(t, x, y)f(y)dydt . (8)

In the following, the Laplace transform of the first exit time Tx(R) from the domain R of a
Brownian motion starting at x will be denoted by

ĥx(α) = Ex[e−αTx(R)] =

∫ ∞

0
e−αthx(t)dt . (9)

where hx(t) is the density function of Tx(R). The Laplace transform (9) exists on the complex
plane for all α with ℜ(α) > λabs

1 and can be extended (page 211, [20]) via analytic continuation
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to the resolvent set of the Dirichlet Laplacian. Also ĥx(α) can be re-written directly in terms of
the resolvent Rabs

α as shown in equations (34)-(35).

The law of the process {zx(t, ω)}t≥0, adapted to {Ft}t≥0 will be denoted by Qx and the family of
processes {Qx}x∈R will be denoted simply by {Q}. The construction described by equations (2)
through (4) can be made deterministically for any x ∈ R and each path wx(·) ∈ C([0,∞), Rd)
resulting in a mapping preserving the progressive measurability

Φ(wx(·)) = wx(·) −
∫ ·

0
wx(s, ω)dNx(s, ω) . (10)

With this notation Φ : C([0,∞), Rd) → D([0,∞),R) and Qx = Wx◦Φ−1 is the law of the process
{zx(t, ω)}t≥0 with values in the region R, a measure on the Skorohod space D([0,∞),R).

Let m ∈ Z+, α = (α1, α2, . . . , αd) ∈ Zd
+ be a d dimensional multi-index vector and we write

|α| =
∑d

i=1 αi. If A ⊆ Rd and f : A → R, we use the standard notation

∂(α)f(x) =
∂|α|f

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

(x)

if the derivative exists. Naturally Cm(A) is the set of functions for which all derivatives
with multi-indices α such that |α| ≤ m exist and are continuous. We recall that the pro-
cess {zx(t, ω)}t≥0 is adapted to the filtration {Ft}t≥0 corresponding to the underlying standard
d-dimensional Brownian motion.

Proposition 2. If f ∈ C2(R) ∩ C(R), then

f(zx(t, ω)) − f(x) −
∫ t

0

1

2
∆f(zx(s, ω))ds −

∫ t

0
(f(0) − f(zx(s−, ω))dNx(s, ω) (11)

is a Ft - martingale with respect to Qx.

Proof. The proof is identical to the d = 1 case from [10].

Let
D =

{
f ∈ C2(R) : ∀ |α| ≤ 2 , ∀ b ∈ ∂R , ∃ limx→b ∂(α)f(x) ∈ R

}

D0 =
{

f ∈ D : ∀ b ∈ ∂R , limx→b f(x) = f(0)
}

.
(12)

Corollary 1. If f ∈ D0 then

f(zx(t, ω)) − f(x) −
∫ t

0

1

2
∆f(zx(s, ω))ds (13)

is a Ft - martingale with respect to Qx.

The next result allows us to regard {zx(t, ω)}t≥0 as a process with continuous paths on the
compact state space X obtained by identifying the boundary ∂R and the origin O.
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Below B(x, r) ⊂ Rd is an open ball centered at x ∈ Rd of radius r > 0. Let X = R with the
topology T generated by the neighborhood basis

Vx,r =
{

B(x, r) : B(x, r) ⊂ R \ {0}
}

if x 6= 0 , r > 0

V0,r =
{

B(0, r) ∪
(
∪b∈∂R (B(b, r) ∩R)

)}
if x = 0 , r ∈ (0, 1

2d(x, ∂R)) .
(14)

We define the class of functions of class C2 up to the boundary {0} of X \ {0}

D(X) = {f ∈ C2(X \ {0}) : ∃ lim
x→y

∂(α)f(x) ∈ R , ∀ |α| ≤ 2 , ∀ y ∈ {0} ∪ ∂R} (15)

with the notational convention that the one-sided limit limx→y g(x) is defined as limx→y g(x)
in the topology inherited from Rd by the set B(0, r) ⊆ R, r > 0, in the case of y = 0 and
R∩ B(y, r), if y ∈ ∂R.

The inclusion mapping I : D(X) → D is defined as D(X) ∋ f −→ I(f) ∈ D, where I(f)(x) =
f(i(x)) and i(x) = x is the identification mapping from R to X.

Under the inclusion mapping I : D(X) → D we define the domain

D0(X) =
{

f ∈ D(X) : ∀b ∈ ∂R lim
x→0

f(x) = lim
x→b

f(x)
}

. (16)

Corollary 2. Let Q̂x = Qx ◦ i−1 be the measure induced on C([0,∞), X) by i : R → X. Then,

Q̂x solves the martingale problem for the Markov pregenerator

L = (
1

2
∆X ,D0(X)) (17)

with the convention that ∆Xf = ∆I(f) for any f ∈ D0(X).

Remark 1. The space (X, T ) is compact and homeomorphic to a sphere in Rd+1 with the North
and South poles identified. The boundary conditions from below introduce a shunt at the origin
which is responsible for the intrinsic asymmetry of the evolution. The domain is composed of
functions which are C2 up to the boundary {0}, yet the one-sided limits on the South pole
neighborhood are equal, ensuring C2 regularity on the lower sheet of the domain, while the
one-sided limits on the North pole (that is, the boundary inherited from ∂R) are non necessarily
equal, with the exception of the multi-index |α| = 0 which ensures continuity.

Remark 2. We note that the domain D0 of the original process on R is not dense in C(R).

Proof. The argument does not change with d > 1 and is presented in [10]. We refer to [14] for the
definition of a Markov pregenerator. The properties of f ∈ D0(X) ensure that D0(X) = C(X).
In addition, we have to show that if x is a maximum point for f , then ∆f(x) ≤ 0. If x 6= 0,
this is a consequence of Taylor’s formula around x. At x = 0 we can still apply the standard
argument which shows that ∇f(0) = 0 because it only depends on the ball B(0, r), which is a
subset of a neighborhood of the origin in (X, T ) as well, and then necessarily ∆Xf(0) ≤ 0. The
rest is immediate from Proposition 2.
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In the following we shall use the notation ‖f‖C(R) for the supremum norm of the bounded

function f and we assume that the domain R has boundary ∂R ∈ C2. We also recall that the
Laplace transform of the first boundary hit (9) is analytic on the resolvent set of the Dirichlet
Laplacian (6) due to the analyticity of the resolvent [20].

Given ζ ∈ R and φ ∈ (π
2 , π), we denote by

Uζ(φ) =
{

α ∈ C : | arg(α − ζ)| < φ
}

, L(ζ) = ∂Uζ(φ) (18)

the sector of angle 2φ with vertex at ζ and its boundary contour. For R > 0, we denote by
Uζ(R, φ) the truncated sector

Uζ(R, φ) =
{

α : |arg(α − ζ)| < φ , |α − ζ| > R
}

. (19)

In the following, the angle φ will be omitted whenever not necessary.

Theorem 1. Let P (t, x, dy) be the transition probability for the process {Qx}x∈R. For any t > 0
the measure P (t, x, dy) is absolutely continuous with respect to the Lebesgue measure on R and,
if Nx(t, ω) is the total number of visits to the boundary up to time t > 0, its probability density
function p(t, x, y) for t > 0 is given by

p(t, x, y) = pabs(t, x, y) +

∫ t

0
pabs(t − s, 0, y)dE[Nx(s, ω)] (20)

where

E[Nx(s, ω)] =
∞∑

n=1

P (Nx(s, ω) ≥ n) =

∫ s

0

∞∑

n=1

(hx ∗ (h0)∗, n−1)(r)dr (21)

with the convention that (h0)∗, k = δ0 for k = 0. Moreover, the semigroup it generates on
f ∈ C(X)

Stf(x) =

∫

R
p(t, x, y)f(y)dy (22)

is a strongly continuous, compact Feller semigroup.

Theorem 2. (i) The generator L of the semigroup St has a pure point spectrum σ included in

the union of the eigenvalues of the Dirichlet Laplacian (6) and the zeros of 1− ĥ0(α), and there
exist φ ∈ (π

2 , π), R > 0 such that the resolvent set ̺ includes the union of (λabs
1 ,∞) \ {0}, the

right half-plane ℜ(α) > 0 and the truncated sector U0(R, φ) from (19).

(ii) The resolvent Rα of the semigroup St is a meromorphic function on the resolvent set of the
Dirichlet Laplacian given by

Rαf(x) = Rabs
α f(x) + Rabs

α f(0)
ĥx(α)

1 − ĥ0(α)
(23)

and there exists M > 0 such that

‖Rαf‖C(R) ≤
M

|α|‖f‖C(R) ∀ α ∈ U0(R, φ) . (24)
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Theorem 3. The resolvent Rα has a simple pole at α = 0 with residue equal to the continuous
operator with kernel

ρ(y) =
G(0, y)∫

R G(0, y)dy
(25)

where G(x, y) is the Green function of the Laplacian with Dirichlet boundary conditions. More-
over, if α∗ is one of the nonzero elements of the spectrum σ with maximal real part, then

sup
α∈σ\{0}

ℜ(α) = ℜ(α∗) < 0

and

lim
t→∞

1

t
log

(
sup

‖f‖C(X)≤1
‖Stf(·) −

∫

R
ρ(z)f(z)dz‖C(X)

)
= ℜ(α∗) . (26)

Corollary 3. The process {Q} is exponentially ergodic.

3 Proof of Theorem 1

The derivation of (20) does not depend on the dimension d ∈ Z+ hence we can refer to the proof
of Theorem 1 in [10] directly. To prove that St is a strongly continuous Feller semigroup, we have
to show that (F1) Stf ∈ C(X) for all f ∈ C(X), and (F2) limt↓0 Stf = f in the norm of uniform
convergence on X. In addition, St is a compact semigroup if the operator St is compact for any
t > 0, which is property (F3) to prove. In the following we shall use R instead of X where there
is no possibility of confusion. Without loss of generality, we shall assume that t ∈ [0, T ], T > 0
arbitrary but fixed.

Denote v(t) =
∑∞

n=1(h
0)∗,n−1(t). Then (20) reads

Stf(x) =

∫

R
pabs(t, x, y)f(y)dy +

∫ t

0

∫

R
pabs(t − s, 0, y)f(y)dy(hx ∗ v)(s)ds (27)

and if we set

U(t) =

∫ t

0
Sabs

t−sf(0)v(s)ds = [Sabs
· f(0) ∗ v(·)](t) , (28)

with Sabs
· defined in (5), we obtain

Stf(x) = Sabs
t f(x) +

∫ t

0
U(t − s)hx(s)ds , (29)

where Sabs
t denotes the semigroup corresponding to pabs.

Proposition 3. For any T > 0, the function U(t) is continuous on [0, T ], bounded by CU,T ||f ||,
with CU,T independent of t ∈ [0, T ] and f ∈ C(X). In addition, it is differentiable for t > 0, and
for any ǫ ∈ (0, T ), there exists C1(ǫ, T ) > 0 such that

sup
s∈[ǫ,T ]

|U ′(s)| ≤ C1(ǫ, T )||f || . (30)
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Proof. We have

U(t) = Sabs
t f(0) + [Sabs

· f(0) ∗
∞∑

n=2

(h0)∗,n−1(·)](t) . (31)

Denote g(t) =
∑∞

n=2(h
0)∗,n−1(t). The first term in U(t) is continuous for t ≥ 0 and bounded by

||f ||. For any t ∈ [0, T ] we have

∫ t

0
g(s)ds = E[N0(t)] < ∞ , E[N0(t)] =

∞∑

k=1

P (N0(t) ≥ k) ,

where N0(t) is the number of boundary hits up to time t from (21), when starting at x = 0. The
second term is bounded by ||f ||E[N0(T )]. The constant CU,T = 1 + E[N0(T )] < ∞ due to the
renewal theorem.

To prove continuity at t0 ∈ [0, T ], we observe that the convolution of a bounded continuous
function with an integrable function is continuous. More precisely, in our context, we write the
second term in (31) ∫ T

0
1[0,t](s)S

abs
t−sf(0)g(s)ds .

For sake of detail, we formally extend continuously Sabs by setting Sabs
s f(0) = f(0) for s ∈

[−T, 0]. We note that the integrand converges to 1[0,t0](s)S
abs
t0−sf(0)g(s) a.e. in s ∈ [0, T ] as

t → t0. At the same time,
|1[0,t](s)S

abs
t−sf(0)g(s)| ≤ ||f ||g(s)

and g is integrable. Dominated convergence implies that the second part of (31) is continuous.

The proof of smoothness for t > 0 is based on the inversion formula given in Proposition 7 for
the Laplace transformation

Û(α) =

∫ ∞

0
e−αtU(t)dt = Rabs

α f(0)(1 − ĥ0(α))−1 .

We can apply relation (35) and the lower bound (43) from Proposition 5 to obtain a bound away

from zero uniform in α on a truncated sector U0(R
′, φ′) for 1− ĥ0(α). Without loss of generality,

the bound from the analytic semigroup properties (40) for pabs stating that |αRabs
α f(0)| ≤

Mabs‖f‖ < ∞ is valid on the same U0(R
′, φ′). Putting the bounds together, we have that

|αÛ(α)| ≤ M2||f || < ∞. We mention that both bounds (37) and (43) are based on independent
proofs regarding the resolvent Rabs of the absorbing Brownian kernel pabs.

The inversion formula from Proposition 6, together with Proposition 7 show that

dn

dtn
U(t) =

1

2πi

∫

L(ζ1)
αneαtÛ(α)dα (32)

where the contour is chosen as in Proposition 7, with ζ1 > 0 and Uζ1(φ
′′). We note that it is

always possible to choose φ′′ ∈ (π
2 , φ′] such that, on the domain to the right hand side of L(ζ1/2),

Û(α) is analytic and there exists M21 < ∞ such that |αÛ(α)| ≤ M21‖f‖. For the differentiation
under the integral we refer the reader to Lemma 2 in [10].
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Let ǫ > 0 be a small number. We want to show (30). Formula (32) with n = 1 gives a bound

|U ′(s)| ≤ M21||f ||
2π

∫

L(ζ1)
|eαs| d|α| ≤ M21||f ||eζ1s

π| cos(φ′′)|s .

The proof is done by setting C1(ǫ, T ) = sups∈[ǫ,T ]
M21eζ1s

π| cos(φ′′)|s .

Proof of (F1). Let t > 0 be fixed. We shall prove a stronger statement, namely equicontinuity
of the family {Stf(x)} for f ∈ C(X) with ||f || ≤ 1, more precisely the limit

lim
x→x0

sup
||f ||≤1

|Stf(x) − Stf(x0)| = 0 . (33)

Without loss of generality, we may further assume that f(0) = 0, since the difference in (33)
remains identical under constant addition. Since f ∈ C(X), this means that the function f
satisfies the Dirichlet boundary condition.

Step 1. First, we prove continuity at x0 6= 0. The first term of (29) is the solution to the heat
equation with Dirichlet b.c. for the half-Laplacian which is continuous in (t, x), t ≥ 0, x ∈ R.
Since the kernel pabs(t, x, y), t > 0 is continuous in x and y on R up to the boundary, the
semigroup Sabs

t is compact, which implies that limx→x0 sup||f ||≤1 |Sabs
t f(x) − Sabs

t f(x0)| = 0 by

the equicontinuity of the family {Sabs
t f(x)} for ||f || ≤ 1, f ∈ C(X) with f(0) = 0.

For the second term, we split the difference
∫ t
0 U(t−s)(hx(s)−hx0(s))ds in two parts, an integral

on [0, ǫ] and another on [ǫ, t], for an arbitrary but sufficiently small fixed ǫ.

In the second integral on [ǫ, t], hx(s) is continuous in (s, x) ∈ [ǫ, T ] × B(x0, r1) for a sufficiently
small r1, and hence uniformly continuous. Since |U(t)| ≤ CU,T ||f || for all t ≤ T , we have shown

limx→x0 sup||f ||≤1 |
∫ t
ǫ U(t − s)(hx(s) − hx0(s))ds| = 0.

The integral on [0, ǫ] is bounded above by CU,T ||f ||[Px(τ0 ≤ ǫ) + Px0(τ0 ≤ ǫ)]. As x → x0 and
then ǫ → 0 it also vanishes, proving uniform continuity at x0 on {f ∈ C(X) : ||f || ≤ 1}.
Step 2. We prove continuity at x0 = 0. If x → x0 from a ball centered at x0, the proof is
identical to the case x0 6= 0. Let x → ∂R. The first term in (27) approaches zero. Formally,
hx(t) → δ0(t) in the sense of distributions, so limx→∂R Stf(x) = U(t).

On the other hand, Stf(0) = Sabs
t f(0) + [Sabs

· f(0) ∗ v(·)](t) − Sabs
t f(0) = U(t) due to the fact

that the summation in v(·) starts at n = 2 when x = 0. To conclude the argument, we have to
prove rigorously that hx(t) → δ0(t) and that the convergence is uniform in f . We know from
Proposition 3 that U is bounded for t ≥ 0 and has continuous derivative for t > 0. Choose
arbitrary but fixed ǫ ∈ (0, t). Then

∫ t
0 hx(s)U(t− s)ds−U(t) = A + B −U(t) with A and B the

integrals on [0, t − ǫ] and [t − ǫ, t], respectively.

A − U(t) =

∫ t−ǫ

0
hx(s)U(t − s)ds − U(t)

= Px(τ0 ≤ s)U(t − s)
∣∣∣
t−ǫ

0
+

∫ t−ǫ

0
Px(τ0 ≤ s)U ′(t − s)ds − U(t)

= (Px(τ0 ≤ t − ǫ) − 1)U(ǫ) + U(ǫ)
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+

∫ t−ǫ

0
(Px(τ0 ≤ s) − 1)U ′(t − s)ds − (U(ǫ) − U(t)) − U(t)

such that

|A − U(t)| ≤ Px(τ0 > t − ǫ)|U(ǫ)| +
∫ t−ǫ

0
Px(τ0 > s)|U ′(t − s)|ds

showing that

sup
||f ||≤1

|A − U(t)| ≤ CU,T Px(τ0 > t − ǫ) + C1(ǫ, T )

∫ t−ǫ

0
Px(τ0 > s)ds .

The last limit converges to zero as x → ∂R due to the regularity of the domain R and by
dominated convergence in the case of the time integral.

Finally B ≤ CU,T ||f ||Px(t − ǫ < τ0 ≤ t) that vanishes as x approaches the boundary. This
concludes the proof.

Proof of (F2). Without loss of generality we can assume f(0) = f(x)|x∈∂R = 0 and we prove
continuity at t = 0. We write |Stf(x) − f(x)| ≤ A1 + A2 + A3 with A1 = Ex[f(z(t)) , t <
τ0] − f(x), A2 = Ex[f(z(t)) , τ0 ≤ t < τ1], A3 = Ex[f(z(t)) , τ0 < τ1 ≤ t]. By construction,
A1 = Sabs

t f(x)−f(x) converges in the sup norm to zero as t → 0 due to the strong continuity of
Sabs and f being zero on the boundary. Again by construction and the strong Markov property
we see that A3 ≤ ||f ||P0(τ0 ≤ t) uniformly in x, which approaches zero as t → 0. There are two
cases for A2, if x ∈ Rδ = {x ∈ R : d(x, ∂R) ≥ δ}, and x ∈ R \ Rδ. The first case is bounded
above by ||f || supx∈Rδ

Px(τ0 ≤ t), with limit zero as t → 0. Finally we have the second case
bounded above by sups∈[0,t] E0[f(w(s))]. Here we replaced the process z(t) by the Brownian
motion w(t) after using the strong Markov property. Given a small ǫ, this is bounded by

sup
s∈[0,t]

E0[f(w(s))] ≤ ||f ||P0( sup
s∈[0,t]

|w(s)| ≥ ǫ) + sup
x∈B(0,ǫ)

|f(x)| .

The martingale inequality shows that the first term vanishes as t → 0. The second term is
independent of x and vanishes as ǫ → 0 since f(0) = 0. This concludes the proof that St is a
strongly continuous Feller semigroup on C(X).

Proof of (F3). Since ||St|| ≤ 1 and the space X is compact, we shall apply the Arzelà-Ascoli
theorem to prove that the family of functions {Stf} with ||f || ≤ 1 is equicontinuous. The
statement (33) shown in (F1) is equivalent to equicontinuity, proving that the semigroup is
compact.

4 Proof of Theorem 2

By definition, the Laplace transform of a function g(t) is equal to ĝ(α) =
∫ ∞
0 e−αtg(t)dt whenever

the integral converges. From equation (5) P (Tx > t) =
∫
R pabs(t, x, y)dy we see that

ĥx(α) = E
[
e−αTx

]
= −

∫ ∞

0
e−αtdP (Tx > t) = −

∫

R

∫ ∞

0
e−αtdpabs(t, x, y)dy . (34)
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For ℜ(α) > 0, we derive

ĥx(α) = −
(∫

R
e−αtpabs(t, x, y)dy

) ∣∣∣
∞

0
− αRabs

α 1(x) = 1 − αRabs
α 1(x) (35)

where 1(x) is the constant function equal to 1 and Rabs
α is the resolvent of the half Laplacian with

Dirichlet boundary conditions (the infinitesimal generator of the absorbing Brownian motion)

from (8). If ℜ(α) > 0 and arbitrary x ∈ R we immediately have |ĥx(α)| < 1.

We shall use the results on analytic semigroups generated by strongly elliptic operators under
Dirichlet boundary condition from [18] and [19]. More precisely, Theorem 1 in [18], adapted to
the simpler case of the Dirichlet half-Laplacian, shows that there exist R0 > 0, φ0 ∈ (π

2 , π) and
Mabs > 0, such that, for all u ∈ C2(R) ∩ C(R) vanishing on the boundary ∂R, we have the
bound

‖u‖C(R) ≤
Mabs

|α| ‖(1
2
∆ − α)u‖C(R) for all α ∈ U0(R0, φ0) . (36)

Proposition 4. For any radius R′ ∈ [R0,∞) and any angle φ′ ∈ (π
2 , φ0] we have

sup
α∈U0(R′,φ′)

sup
x∈R

∣∣∣1 − αRabs
α 1(x)

∣∣∣ < ∞ . (37)

Proof. For α, β in the resolvent set ̺ (a subset of the resolvent set of the Dirichlet half-Laplacian)
the resolvent identity reads

Rabs
α − Rabs

β = (β − α)Rabs
α (Rabs

β ) . (38)

Let β ∈ ̺ with ℜ(β) > 0. For such β the semigroup Sabs
t defined in (5) and its resolvent Rabs

β

can be applied to any f ∈ C(R). The function Rabs
β f(x) belongs to C2(R)∩C(R) and vanishes

at the boundary. Moreover, it satisfies the inversion formula (βI − 1
2∆)Rabs

β f(x) = f(x). Thus,

consistently with (38), Rabs
α can be applied to all f ∈ C(R) for arbitrary α ∈ ̺

Rabs
α f(x) = [I + (β − α)Rabs

α ](Rabs
β f(x)) . (39)

Notice that Rabs
α is applied to a continuous vanishing on the boundary. Relation (39) also implies

that (αI − 1
2∆)Rabs

α f(x) = f(x).

Setting u(x) = Rabs
α f(x) in (36) for f ∈ C(R), we obtain that the main estimate for analytic

semigroups (from [17; 20])

‖Rabs
α f‖C(R) ≤

Mabs

|α| ‖f‖C(R) for all α ∈ U0(R0, φ0) (40)

is valid for any f ∈ C(R), in particular the constant f(x) = 1(x). Based on this observation,
the uniform bound (37) is satisfied.

The resolvent identity (38) applied to the constant function 1 for α, β ∈ ̺ (we switched α and
β) is

Rabs
β 1 − Rabs

α 1 = (α − β)Rabs
β (Rabs

α 1)
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and implies
(
I −

(
1 − β

α

)
αRabs

α

)(
βRabs

β 1 − 1
)

= αRabs
α 1 − 1 . (41)

Let β = |α|. Since we have ‖αRabs
α ‖ ≤ Mabs in the operator norm from C(R) to C(R), then for

all α in the truncated sector U0(R0, φ0) from (40),

‖
(
I −

(
1 − β

α

)
αRabs

α

)
‖ ≤

(
1 + 2Mabs

)
= M1 .

Therefore,

‖αRabs
α 1 − 1‖C(R) = ‖

(
I −

(
1 − β

α

)
αRabs

α

)(
βRabs

β 1 − 1
)
‖C(R) ≤ M1 ‖βRabs

β 1 − 1‖C(R) , (42)

showing that we can bound the left hand side of (42), depending on arbitrary α in the truncated
cone by the right hand side, which depends on β with ℜ(β) > 0, an identity needed in the next
proposition.

Proposition 5. There exist a radius R′ ∈ [R0,∞), an angle φ′ ∈ (π
2 , φ0] such that

inf
α∈U0(R′,φ′)

∣∣∣αRabs
α 1(0)

∣∣∣ > 0 . (43)

Proof. Assume that (43) is false for any U0(R
′, φ(R′)) where R′ > R0 and φ(R′) ∈ (π

2 , φ0] is of the
form φ(R′) = π

2 +arcsin( 1
R′ ). Let Rn → ∞. Then, there exists a subsequence {nk}k≥1 such that

{αnk
} ∈ U0(Rnk

, φ(Rnk
)) violates the lower bound (43). The domain U0(R

′, φ(R′)) is closed
under complex conjugation and the complex norm from (43) is invariant under conjugation.
This shows that we can assume, without loss of generality, that ℑ(αnk

) > 0. For simplicity we
subindex the subsequence by n as well.

We write αn = rn exp
(
i(π

2 + ǫn)
)
. Naturally rn ≥ Rn → ∞ and also ǫn < arcsin( 1

Rn
). On

the other hand, we can select a subsequence such that lim inf ǫn = 0. Otherwise there exists
ǫ > 0 such that ǫn ≤ −ǫ for large enough n. This, together with the inequality |αnRabs

αn
1(0)| ≥

1 − |ĥ0(αn)| derived from (35) and

lim
n→∞

|ĥ0(αn)| ≤ lim
n→∞

E[e−rn cos ( π
2
−ǫ)T0 ] = 0

would imply a contradiction with the assumption on {αn}. We have shown that ǫn → 0.

Equation (41) can be re-written in the form

β

α

(
βRabs

β 1(x) − 1
)

+
(
1 − β

α

)(
I − αRabs

α

)(
βRabs

β 1(x) − 1
)

= αRabs
α 1(x) − 1 . (44)

Choose
βn = rn exp

(
i(

π

2
− δn)

)

with δn = arcsin( 1√
rn

). Then the second term from (44) applied to x = 0 with α = αn and

β = βn, ∣∣∣
(
1 − β

α

)(
I − αRabs

α

)(
βRabs

β 1(0) − 1
)∣∣∣
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has the upper bound

∣∣∣1 − β

α

∣∣∣‖I − αRabs
α ‖‖βRabs

β 1(·) − 1‖C(R) ≤
∣∣∣1 − β

α

∣∣∣(1 + Mabs)M1

where we used (40) for the operator norm and (42) for the uniform norm. This term vanishes

as n → ∞ since
∣∣∣1 − βn

αn

∣∣∣ ≤ 2
∣∣∣ sin( δn+ǫn

2 )
∣∣∣.

The first term in (44) at x = 0 satisfies the bound

∣∣∣βn

αn

(
βnRabs

βn
1(0) − 1

)∣∣∣ ≤
∣∣∣βnRabs

βn
1(0) − 1

∣∣∣ ≤

≤ E
[
e−ℜ(βn)T0

]
= E

[
e−(rn sin δn)T0

]
= E

[
e−

√
rnT0

]
→ 0 .

These estimates show that as n → ∞, the left hand side of (44) with α = αn , β = βn vanishes
meanwhile the right hand side approaches −1 by the assumption made on the sequence {αn},
which is a contradiction. This concludes the proof of (43).

We now resume the proof of Theorem 2. With (20) and (21) in mind, for ℜ(α) > 0, we obtain
∫

R
p̂(α, x, y)f(y)dy =

∫

R
p̂abs(α, x, y)f(y)dy +

+

∫

R
p̂abs(α, 0, y)f(y)dy

̂( ∞∑

n=1

(hx ∗ (h0)∗ , n−1)
)
(α)

=

∫

R
p̂abs(α, x, y)f(y)dy +

∫

R
p̂abs(α, 0, y)f(y)dy

( ∞∑

n=1

ĥx(α)(ĥ0(α))n−1
)

which proves (23) on {α : ℜ(α) > 0} in the form

Rαf(x) = Rabs
α f(x) + Rabs

α f(0)
1 − αRabs

α 1(x)

αRabs
α 1(0)

. (45)

For any f ∈ D0(X) the resolvent Rabs
α f(x) is analytic on C \ {λabs

n : n ≥ 1} ([20], page
211, applied to the generator of a semigroup), which implies that (45) can be extended as a
meromorphic function outside the spectrum (6) of the Dirichlet Laplacian.

We want to extend the estimate (40) to the resolvent (45) to obtain (24). There are two parts in
the right hand side of the equation (45) multiplied by α. For the first part αRabs

α f(x), (40) grants
that there exist R0 > 0 and φ0 ∈ (π

2 , π) such that αRabs
α f(x) stays bounded by Mabs‖f‖C(R) for

α ∈ U0(R0, φ0). For the second part, we need to show that there exist a radius R′ > 0, an angle
φ′ ∈ (π

2 , π) and a constant M̃ > 0 such that

sup
α∈U0(R′,φ′)

sup
x∈R

∣∣∣αRabs
α f(0)

1 − αRabs
α 1(x)

αRabs
α 1(0)

∣∣∣ ≤ M̃‖f‖C(R) . (46)

Since |αRabs
α f(0)| can be bounded by Mabs‖f‖ using (40), the goal is achieved based on relation

(37) from Proposition 4 and the lower bound (43) from Proposition 5. Without of loss of
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generality we can choose R′ ∈ [R0,∞) and an angle φ′ ∈ (π
2 , φ0] so as to satisfy both Propositions

4 and 5. Now by letting R = R′ , φ = φ′, we have proved (24).

On the real axis, the function ĥ0(α) is the Laplace transform of the first hitting time to the
boundary, equal to 1 at α = 0 and non-increasing on (λabs

1 ,∞). The function is analytic wherever

Rabs
α is analytic, hence 1 − ĥ0(α) has no other zeros on a neighborhood of (λabs

1 ,∞).

Since Rabs
α f is analytic in the union of U0 with the right half-plane ℜ(α) > λabs

1 , the denominator

1 − ĥ0(α) = αRabs
α 1(0) from (45) has only isolated zeros. We conclude that all singularities of

the resolvent Rα contained in the resolvent set of the Dirichlet Laplacian are poles coinciding
with the zeros of the denominator.

5 Proof of Theorem 3

We can compute the residue at α = 0. Multiplying (23) by α, we get

αRαf(x) = αRabs
α f(x) +

αRabs
α f(0)

αRabs
α 1(0)

(1 − αRabs
α 1(x))

Since Rabs
α f is analytic in a neighborhood of α = 0, it is enough to figure out the limit of

αRαf(x) as α → 0 along the positive real axis. By dominated convergence, or directly from the
continuity of the resolvent Rabs

α at α = 0, we see that limα→0+ αRabs
α f(x) = 0, and that

lim
α→0+

αRabs
α f(0)

αRabs
α 1(0)

=

∫
R G(0, y) f(y) dy∫

R G(0, y) dy
=

∫

R
ρ(y) f(y) dy

where ρ(y) = G(0, y)(
∫
R G(0, y) dy)−1.

All singularities, with the exception of zero, have negative real part since St is a Feller semigroup.

Notice that the singularities must be among the zeros of the denominator αRabs
α 1(0) = 1−ĥ0(α).

Suppose α = ik with k ∈ R is a zero to 1 − ĥ0(α). We need to show that the Fourier transform
of a probability density function f(t) can never attain the value one except at k = 0. The
transform is

∫ ∞
0 e−iktf(t)dt = 1 and this implies that

∫ ∞
0 (1−cos(kt))f(t)dt = 0, a contradiction

unless k = 0.

We recall from the proof of (46) that there exists R > 0 and φ ∈ (π
2 , π) such that U0(R, φ)

belongs to the resolvent set and the bound (24) is satisfied. There are finitely many elements
of the spectrum in |α| ≤ R. After ordering the elements of the spectrum (except the origin)
according to their real values, let α∗ be a representative of the values with largest real part and
α∗∗ be a representative of those with second largest real part, that is 0 > ℜ(α∗) > ℜ(α∗∗). Pick
α0 > 0.

For all sufficiently small ǫ > 0, there exists an angle φ∗ ∈ (π
2 , φ) such that the following conditions

are satisfied.

1) The domain Uα0
2

(φ∗) is included in the resolvent set,

2) All elements of the spectrum with real part less than or equal to ℜ(α∗∗) are in the complement
of Uℜ(α∗∗)+ ǫ

2
(φ∗)
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3) All elements of the spectrum with real part greater than or equal to ℜ(α∗) are in Uℜ(α∗∗)+ǫ(φ
∗)\

U α0
2

(φ∗)

For a given f ∈ C(R) and x ∈ R, Proposition 6 provides an inversion formula for the resolvent
α → Rαf(x). For α0 > 0 (plays the role of ζ0 in the proposition) and t > 0,

Stf(x) =
1

2πi
P.V.

∫ α0+i∞

α0−i∞
eαtRαf(x)dα . (47)

From the bound that characterizes the analytic semigroup (24) we see that Proposition 7 can
be applied to α → Rαf(x) with ζ1 = α0/2 (or any positive number less than α0).

Apply Proposition 8 below to α → Rαf(x) with ζ ′2 = ℜ(α∗∗) + ǫ
2 , ζ2 = ℜ(α∗∗) + ǫ < ℜ(α∗),

ζ1 = α0/2, and ζ ′1 = α0. Then, by construction of the contour L(ζ2) = ∂Uζ2(φ
∗), the simple pole

β0 = 0 and the poles βj , 1 ≤ j ≤ l with ℜ(βj) = ℜ(α∗) and multiplicities mj are situated in
the corresponding domain Uζ2 \ U ζ1 of Proposition 8. At this point, we set δ in the proposition
equal to ǫ/4. Let

G∗(t, f)(x) =
l∑

j=1

eβjt
(
Cj1 +

Cj2

1!
t + . . . +

Cjmj

(mj − 1)!
tmj−1

)
= eℜ(α∗)tP (t, f)(x) , t ≥ T

with coefficients

Cjkf(x) =
1

2πi

∫

∂B(βj ,ρ)
(α − βj)

k−1Rαf(x) dα , (48)

1 ≤ k ≤ mj and ρ > 0 sufficiently small so that βj is the only singularity in the ball B(βj , ρ).
Then Cjk are bounded linear operators applied to f at the point x, and the operator norm
||P (t, ·)|| is of polynomial order.

Denote A1 = Stf(x), A2 = Res(0; eαtRαf(x)), A3 = G∗(t, f)(x) and the improved error bound

given after (53) A4 = CM ǫ
4
e(ℜ(α∗∗)+ 3ǫ

4
)t with the particular choice of ζ = ζ ′2 + δ with the current

values ζ ′2 = ℜ(α∗∗) + ǫ
2 and δ = ǫ/4. We notice that for g(α) = Rαf(x) there exists M ′

ǫ > 0
independent of f and x such that M ǫ

4
from A4 satisfies M ǫ

4
≤ M ′

ǫ||f ||. Since ||A1−A2|− |A3|| ≤
|A1 − A2 − A3| ≤ A4 we have, for all f with ||f || ≤ 1, the double inequality

|A3| − CM ′
ǫe

(ℜ(α∗∗)+ 3ǫ
4

)t ≤ |A1 − A2| ≤ |A3| + CM ′
ǫe

(ℜ(α∗∗)+ 3ǫ
4

)t . (49)

Taking the supremum over x ∈ R and f with ||f || ≤ 1, the upper and lower bounds for (49)
become

eℜ(α∗)t||P (t, ·)|| ± CM ′
ǫe

(ℜ(α∗∗)+ 3ǫ
4

)t .

Upper bound. The norms ||P (t, ·)|| are of polynomial order, as mentioned before.

Lower bound. The lower bound is nontrivial. It is sufficient to find a function φ(x) with
||φ||C(R) = 1 such that ||P (t, φ)||C(R) is bounded away from zero uniformly in t. Since the

semigroup St (22) is a strongly continuous and compact Feller semigroup, it follows from The-
orem 3.3 in [17] that the corresponding resolvent Rα (for ℜ(α) > 0) is compact, and as a
consequence the infinitesimal generator L has a pure point spectrum. Let βj , 1 ≤ j ≤ l be one
of the eigenvalues with ℜ(βj) = ℜ(α∗) and let φ be a corresponding eigenfunction normalized to
have norm one. Since Rαφ = (α−βj)

−1φ, all Cj′kφ are zero except for j′ = j and k = 1, when it
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is exactly φ, making P (t, φ)(x) = eiℑ(βj)tφ(x) which gives a lower bound ||φ|| = 1 uniform over
t.

After taking the logarithm, dividing by t and passing to the limit as t → ∞, we have proven
(26).

Finally, we give the statement of the classical inversion theorems for the Laplace transform
(Proposition 3, Chapter 4 in [5]).

Proposition 6. Let G(t) be a continuous function defined for t > 0 such that there exists an
ζ0 ∈ R with the property that ∫ ∞

0
e−ζ0t|G(t)|dt < ∞ .

Then, the Laplace transform g(α) is analytic in the half-plane Re(α) > ζ0 and the following
inversion formula is valid

G(t) =
1

2πi
P.V.

∫ ζ+i∞

ζ−i∞
eαtg(α)dα (50)

where ζ ≥ ζ0 is arbitrary.

For a given angle φ ∈ (π
2 , π), we recall the definition of the sector Uζ = Uζ(φ) from (18). Let

L(ζ) be the contour ℜ(α) = ζ + R cos φ and ℑ(α) = ±R sinφ for all R ≥ 0.

Proposition 7. Let ζ1 < ζ0 be real numbers and g(α) be an analytic function in an open set
including the domain U ζ1 \ {α ∈ C : ℜ(α) > ζ0} such that there exist R0 > 0 and φ ∈ (π

2 , π)
and Mg > 0 such that |αg(α)| ≤ Mg for all α ∈ Uζ1(R0, φ). Suppose that the integral (50) is
finite, then for t > 0, (50) is equal to

1

2πi

∫

L(ζ1)
eαtg(α)dα (51)

in the sense of principal value along L(ζ1).

Proof. First we pick a simple closed curve in C consisting of piecewise straight line segments
connecting A−, C, A+, B+, D, B− and coming back to A− with counterclockwise orientation
where the coordinates of the points are C = (ζ0, 0) , D = (ζ1, 0) , A± = (ζ0,±R sinφ) and
B± = (ζ1 + R cos φ,±R sinφ). Choose R > 0 large enough so that R0 < R sinφ. By the residue
theorem, we have ∫

A−CA+

eαtg(α)dα =

∫

B−DB+

eαtg(α)dα + ER

and the error term ER is given by

ER = −
∫

A+B+

eαtg(α)dα −
∫

B−A−

eαtg(α)dα .

From R0 < R sin φ, we have the line segments A+B+ and B−A− inside Uζ1(R0, φ). Hence we
reach an upper bound on ER

|ER| ≤ C(t, ζ0, φ)MgR
−1

where C(t, ζ0, φ) is a constant that only depends on t, ζ0 and φ. Letting R to infinity we see
that (51) exists and is equal to (50) in principal value sense.
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We can now give the inversion formula in the case of multiple poles.

Proposition 8. Let ζ ′2 < ζ2 < ζ1 < ζ ′1 and let g(α) be analytic in the domain V = Uζ′2
\U ζ′1

with

the exception of α = βj, 0 ≤ j ≤ l which are poles of order mj ∈ Z+, all contained in Uζ2 \ U ζ1

with the principal part of the Laurent expansion about βj equal to

cj1

(α − βj)
+ . . . +

cjmj

(α − βj)mj
. (52)

Assume that g(α) is bounded outside of a ball of radius R0 > 0 centered at the origin in V . Then
for any given T > 0 the integral (in principal value sense)

G(t) =
1

2πi

∫

L(ζ1)
eαtg(α)dα

is uniformly convergent for t ≥ T , and we have

∣∣∣G(t) −
l∑

j=0

eβjt
(
cj1 +

cj2

1!
t + . . . +

cjmj

(mj − 1)!
tmj−1

)∣∣∣ ≤ Ceζ2t sup
α∈L(ζ2)

|g(α)| , (53)

where C does not depend on g, t and ζ2 for t ≥ T . Moreover, for any sufficiently small δ > 0,
if Mδ is an upper bound of |g(α)| on U ζ′2+δ \ Uζ2, then for any ζ ′2 + δ ≤ ζ ≤ ζ2, the right-hand

side of (53) can be replaced by CMδe
ζt.

Remark. The supremum of g over L(ζ2) (and U ζ′2+δ \ Uζ2) is achieved due to the fact that g is
continuous and bounded far from the origin.

Proof. Consider a contour made of piecewise line segments connecting A−, C, A+, B+, D, B−

and coming back to A− with counterclockwise orientation where the coordinates of these points
are A± = (ζ1 + R cos φ,±R sinφ), B± = (ζ2 + R cos φ,±R sinφ), C = (ζ1, 0) and D = (ζ2, 0).

Choose R > 0 large enough so that the line segments A+B+ and B−A− are outside B(0, R0),
ball of radius R0 centered at 0 and also that ζ1 + R cos φ < 0. For instance, one can choose
R > max{R0 + |ζ1| + |ζ2| , |ζ1|/| cos φ|}. Let cg = sup{|g(α)| : α ∈ V , |α| ≥ R0}.
First we prove the uniform convergence of G(t) on [T,∞) for any given T > 0. Let GR(t) =
1

2πi

∫
A−CA+ eαtg(α) dα. Then for R large enough to satisfy the condition mentioned above,

|G(t) − GR(t)| ≤ cg

π

∫ ∞

R
e(ζ1+r cos φ)tdr =

cg

πt| cos φ|e
(ζ1+R cos φ)t .

Hence for t ≥ T , we have

|G(t) − GR(t)| ≤ cg

πT | cos φ|e
(ζ1+R cos φ)T

which tends to zero as R goes to infinity. Therefore G(t) converges uniformly on [T,∞).

The residue theorem for the integral around our contour provides

GR(t) −
ℓ∑

j=0

eβjt

mj∑

k=1

cjk

(k − 1)!
tk−1 =

1

2πi

∫

B−DB+

eαtg(α)dα + ER (54)
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where the error term is

ER = − 1

2πi

( ∫

A+B+

eαtg(α)dα +

∫

B−A−

eαtg(α)dα
)

.

It is easy to see that
∫
B−DB+ eαtg(α)dα converges to

∫
Lζ2

eαtg(α)dα as R goes to infinity uni-

formly on [T,∞) via the analogous argument used for GR(t) converging to G(t) uniformly on
[T,∞).

On the other hand, for large enough R as described at the beginning of the proof and for t ≥ T ,

|ER| ≤
cg

πt
e(ζ1+R cos φ)t ≤ cg

πT
e(ζ1+R cos φ)T

which converges to zero uniformly on [T,∞) as R goes to infinity. Sending R to infinity on both
sides of the equation (54), we reach

G(t) −
ℓ∑

j=0

eβjt

mj∑

k=1

cjk

(k − 1)!
tk−1 =

1

2πi

∫

L(ζ2)
eαtg(α)dα .

Further estimate on the integral along L(ζ2) reveals

∣∣∣ 1

2πi

∫

L(ζ2)
eαtg(α)dα

∣∣∣ ≤ 1

πt| cos φ|e
ζ2t sup

α∈L(ζ2)
|g(α)| ≤ Ceζ2t sup

α∈L(ζ2)
|g(α)| (55)

where C = 1
πT | cos φ| for all t ≥ T independent of g, t and ζ2.

Let Mδ = sup{ |g(α)| : α ∈ U ζ′2+δ \Uζ2 }. If we replace the integral over L(ζ2) by that over L(ζ)
where ζ ′2 + δ ≤ ζ ≤ ζ2 and bound |g(α)| by Mδ, then we can improve the error estimate in (55)
to CMδe

ζt with the same constant C appeared in (55).

6 The one dimensional case

In d = 1, let R = (a, b), with a < 0 < b as in [10]. Let λk = kπ/(b − a), k = 1, 2, . . . , and
σabs = {−λ2

k/2 : k = 1, 2, . . .} be the spectrum of the half Laplacian with absorbing boundary
conditions with transition kernel (7)

pabs(t, x, y) =
2

b − a

∞∑

k=1

e−(λ2
k
/2)t sinλk(x − a) sinλk(y − a) , (56)

and resolvent kernel

p̂abs(α, x, y) =
2

b − a

∞∑

k=1

1

α + λ2
k/2

sin λk(x − a) sinλk(y − a) . (57)

The Laplace transform of the first exit time (34) can be written in two forms (see [10])

ĥx(α) =
2π

(b − a)2

∑

k=1, odd

k

α + λ2
k/2

sinλk(x − a) =
cosh

√
2α

(
x − b+a

2

)

cosh
√

2α
(

b−a
2

) (58)
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and the kernel of the resolvent (23) of the process given by the transition kernel (20) is then

p̂(α, x, y) = p̂abs(α, x, y) + p̂abs(α, 0, y)H(α, x) (59)

where

H(α, x) =
ĥx(α)

1 − ĥ0(α)
=

cosh
√

2α
(
x − b+a

2

)

cosh
√

2α
(

b−a
2

)
− cosh

√
2α

(
b+a
2

) . (60)

Set γ = −λ2
1/2 = −π2(

√
2(b − a))−2. Then we write σabs = {γk2 : k ∈ Z+} for the spectrum of

the absorbing Brownian kernel and

σH = {0} ∪ {4(1 + |a|/b)2γk2 , 4(1 + b/|a|)2γk2 : k ∈ Z+}

for the zeros of cosh
√

2α
(

b−a
2

)
−cosh

√
2α

(
b+a
2

)
. In addition, σodd

abs and σeven
abs denote the subsets

of σabs for k odd and k even, respectively. It is easy to see that when b/a /∈ Q, then σH∩σabs = ∅.

Proposition 9. The spectrum σ of the Brownian motion with return is σeven
abs ∪ σH . As a

consequence, the largest nonzero point of the spectrum is −λ2
2/2 = 4γ.

Proof. Part 1. We prove that if β ∈ σH , then p̂abs(α, 0, y) is analytic and nonzero at α =
β. For β ∈ σH \ σabs, we only have to show that p̂abs(β, 0, y) 6= 0, which is evident since
p̂abs(β, 0, y), as an element in L2[a, b], has nonzero Fourier coefficients. If β ∈ σH ∩ σabs, then
there exists a positive integer k such that β = −k2γ = −λ2

k/2, λk = kπ/(b − a) and from (60),

cos λk(
b−a
2 )(1−cos λka)+sinλk(

b−a
2 ) sin λka = 0. For k odd, (−1)

k−1
2 sinλka = 0 and for k even

(−1)
k
2 (1 − cos λka) = 0. In all cases sin λka = 0. By taking the limit as α goes to β in (57)

with x = 0, we see that β is a removable singularity of p̂abs(·, 0, y) and that the limit is not zero,
which proves the claim.

Part 2. Since σ ⊆ σabs ∪ σH , we divide the proof in three steps.

(i) σH \ σabs ⊆ σ. Let p = 1, 2, . . . be the multiplicity of the pole denoted by β of H(α, x) such
that β /∈ σabs. Then

lim
α→β

{
(α − β)pp̂abs(α, x, y) + p̂abs(α, 0, y) [(α − β)pH(α, x)]

}
= p̂abs(β, 0, y)H̄(β, x) (61)

where limα→β(α − β)pH(α, x) = H̄(β, x) 6= 0. Since p̂abs(β, 0, y) 6= 0, β is a pole.

(ii) σabs ∩ σH ⊆ σ. Let β = −λ2
k/2 ∈ σabs ∩ σH . We know that β is not a pole of p̂abs(α, 0, y). If

p > 1, since pabs has only simple poles, the limit (61) is of the same type as in case (i). When
p = 1, the limit (61) is

2(b − a)−1 sin λk(x − a) sin λk(y − a) + p̂abs(−λ2
k/2, 0, y)H̄(−λ2

k/2, x)

where the last factor is nonzero. As a function of y in L2[a, b] the limit is not identically zero,
so β is a pole.

(iii) σabs \ σH ⊆ σ. Let β = −λ2
k/2 ∈ σabs \ σH . The limit (61) with p = 1, based on (57), gives

2(b − a)−1 sinλk(y − a)
[
sinλk(x − a) − sinλka H(−λ2

k/2, x)
]
. (62)
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In this case, we have

H(−λ2
k/2, x) = lim

α→β
H(α, x) =

cos λk(x − a) cos λk(
b−a
2 ) + sinλk(x − a) sinλk(

b−a
2 )

cos λk(
b−a
2 )(1 − cos λka) + sin λk(

b−a
2 ) sinλka

. (63)

The bracket in (62) is equal to (sin λka
2 )−1 cos λk(x − a

2 ) 6= 0 for k even and vanishes for k odd,
which implies that σeven

abs ⊂ σ and σodd
abs ∩ σ = ∅.

Part 3. We notice that sup{β ∈ σH \ {0} } < 4γ, the second eigenvalue of pabs, and 4γ
corresponds to k = 2, the first even value in the spectrum.

7 Exponential ergodicity via Doeblin’s condition

Let µ(dx) be a probability measure concentrated on R. We shall consider a generalization
of the process zx(t, ω) from Proposition 2, that upon reaching the boundary ∂R jumps to an
interior random point x0 ∈ R chosen with probability distribution µ(dx0). The original process,
Brownian motion with rebirth, corresponds to µ(dx0) = δ0(dx0). In this case, equations (20),
(21), (23) are satisfied by replacing pabs(t, 0, y) with pabs(t, µ, y) = 〈pabs(t, ·, y), µ〉, and h0(t)
with hµ = 〈h(·), µ〉, where the angle brackets denote the integration over R. In the following,
we shall give a proof of the exponential ergodicity based on Doeblin’s theorem. The Lebesgue
measure will be denoted by λ(dx).

Proposition 10. There exists a set A ⊆ R with λ(A) > 0, a time T > 0 and a constant c > 0
such that for all x ∈ R we have

p(2T, x, y) ≥ c ∀x ∈ R ,∀y ∈ A , (64)

where p(t, x, y), t ≥ 0 is the probability density of the transition kernel of the process
{zx(t, ω)}t≥0.

Proof. For sufficiently small δ > 0, let Rδ = {x ∈ R | d(x, ∂R) > δ}. Since µ is a probability
measure concentrated on R, there exists a δ > 0 such that µ(Rδ) > 0. Let A be a compact subset
of R (e.g. a closed ball centered at a given point of R). Due to the regularity of the domain,
it is possible to choose a sufficiently large T > 0 such that infx∈R\Rδ

P (Tx(R) ≤ T ) ≥ 1/2.
Moreover, the density pabs(t, x0, y) is continuous in all arguments for t > 0. Then there exists
c1 > 0 such that pabs(t, x0, y) ≥ c1 for all T ≤ t ≤ 2T , x0 ∈ Rδ and y ∈ A. From (20), the
density p(t, x, y) ≥ pabs(t, x, y), and so

p(t, µ, y) ≥
∫

R
pabs(t, x0, y)µ(dx0) ≥

∫

Rδ

pabs(t, x0, y)µ(dx0) ≥ c1µ(Rδ) = cµ > 0 , (65)

for all T ≤ t ≤ 2T and y ∈ A.

Case 1. Suppose x ∈ Rδ. Take t = 2T . From (20), for x ∈ Rδ and y ∈ A, we have

p(t, x, y) ≥ pabs(t, x, y) ≥ c1 > 0 .
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Case 2. Suppose x ∈ R \Rδ. From (23), or directly from (20) we have

p(t, x, y) = pabs(t, x, y) +

∫ t

0
p(t − s, µ, y)hx(s) ds . (66)

Let x ∈ R \Rδ. Then, using (66) and then (65), we see that for all y ∈ A,

p(2T, x, y) ≥
∫ T

0
p(2T − s, µ, y)hx(s) ds ≥ cµ

2
.

We conclude the proof by choosing c = min{c1, cµ/2}.

We state the Doeblin condition, that ensures uniform exponential ergodicity. For the statement
in discrete time, the reader is referred to [16] or [1], and Theorem 5.3 in [4] settles the case
of continuous time processes. The Doeblin condition is much stronger than what is needed in
Theorem 5.3, and its assumptions are trivially satisfied.

Theorem 4. Let X be a locally compact metric space and Zt, t ≥ 0 be a continuous time
Markov process with state space X. Assume there exists a time T0 > 0, a probability measure
ν(dx) on X and a positive constant c < 1 such that for all x ∈ X and all B ∈ B(X) we have
Px(ZT0 ∈ B) ≥ cν(B). Then, the process has an invariant measure η(dx) and there exist positive
constants C and r < 1 such that

|||Px(Zt ∈ ·) − η(·)||| ≤ Crt , (67)

where ||| · ||| denotes the total variation norm on the space of measures.

Theorem 5. Under the same regularity conditions on R as in Theorem 1, the Brownian mo-
tion with rebirth at a random point with measure µ is uniformly exponentially ergodic, and the
invariant probability measure has density given by 〈G(·, y), µ〉, modulo a normalizing constant.

Proof. Let B be a Borel subset of R and let λ(·|A) be the probability measure defined by
λ(B|A) = λ(B ∩ A)/λ(A) with the set A from Proposition 10. Then, for any x ∈ R,

p(2T, x, B) ≥ p(2T, x, B ∩ A) ≥ c λ(B ∩ A) = c λ(A)λ(B|A) .

Setting c0 = min{c λ(A), 1}, we have proven that Doeblin’s condition from Theorem 4 is satisfied
for the Markov process p(t, x, y) with T0 = 2T , ν(·) = λ(·|A) and c = c0. To conclude the proof,
the invariant measure exists and is unique from Doeblin’s condition and is easily identified in
the same way as in the proof of Theorem 1.

Acknowledgements. We want to thank the referees for their careful reading and very con-
structive comments.
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