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1 Introduction

1.1 Overview

A planar map is a proper embedding, without edge crossings, of a connected graph in the
2-dimensional sphere S2. Loops and multiple edges are allowed. A map comes with more
structure than the original graph, which is given by its faces, i.e. the connected components of
the complement of the embedding in S2. If m is a planar map, we write Fm for the set of its
faces, and Vm for the set of its vertices. The degree deg(f) of a face f ∈ Fm equals the number
of edges incident to it, where an edge whose removal disconnects the graph must be counted
twice (as it appears twice in a cyclic exploration of its incident face). A rooted planar map is a
pair (m, ~e) where m is a planar map and ~e is a distinguished oriented edge. The origin o of ~e
is called the root vertex. For technical reasons, we also consider the vertex map † made of one
vertex bounding a face of degree 0, as a rooted planar map.

Two rooted maps are identified if there exists an orientation-preserving homeomorphism of
S2 that sends the first map onto the second, in a way that respects the root edges. With this
identification, the setMr of rooted maps is countable, so we can enumerate certain distinguished
subfamilies and sample them at random. Random maps are used in physics, in the field of 2-
dimensional quantum gravity, as discretized versions of an ill-defined random surface [2]. On
a mathematical level, this requires a detailed understanding of geometric properties of maps.
One possible approach is to consider maps as metric spaces by endowing the set of their vertices
with the usual graph distance: if a and a′ are two vertices of a map m, d(a, a′) is the minimal
number of edges on a path from a to a′.

The laws on maps that we want to consider are Boltzmann laws parameterized by a sequence
q = (qi, i ≥ 1) of nonnegative weights such that qi > 0 for at least one i ≥ 3. For any planar
map m, we define Wq(m) by Wq(†) = 1 and

Wq(m) =
∏
f∈Fm

qdeg(f) .

Our basic assumption is that q is be admissible, that is

Zq =
∑

m∈Mr

#VmWq(m) <∞.

In this case, we let
Z

(r)
q =

∑
m∈Mr

Wq(m) <∞ ,

and define the Boltzmann probability distribution Brq on the set Mr by

Brq({m}) =
Wq(m)

Z
(r)
q

.

Our main goal is to obtain asymptotic results for certain geometric functionals of Brq-distributed
maps conditioned to have a large number of vertices. The typical quantities of interest will be
the radius Rm of the map m, defined as the maximal distance between o and another vertex of
m, that is

Rm = max{d(o, a) : a ∈ Vm} ,
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and the profile of m, which is the measure λm on {0, 1, 2, . . .} defined by

λm({k}) = #{a ∈ Vm : d(o, a) = k}, k ≥ 0.

Note that Rm is the supremum of the support of λm. It is also convenient to introduce the
rescaled profile. If m has n vertices, this is the probability measure on R+ defined by

λ
(n)
m (A) =

λm(n1/4A)
n

for any Borel subset A of R+. Theorem 1.2 below provides the limits in distribution for n−1/4Rm

and λ(n)
m under the measure Brq conditioned on {Vm = n} as n→∞, for a wide class of weights

q. The limiting distributions are given in terms of the so-called one-dimensional Brownian snake
driven by a normalized excursion. For instance, the limiting distribution of the renormalized
radius is a multiple of the range of the Brownian snake. The latter is a continuous limit of
models of spatial trees which was introduced by Le Gall, and is also related to the so-called ISE
of Aldous.

Such results were obtained earlier by Chassaing & Schaeffer in the pioneering work [4] in the
special case of quadrangulations, corresponding to the case q4 = 1 and qi = 0 for i 6= 4, and by
Weill [19] in the case of bipartite maps where qi = 0 for odd i. Similar results are proved in
Marckert & Miermont [14] for bipartite maps and in Miermont [17] for the general case, but in
quite different settings. Indeed [14] and [17] deal with maps that are both rooted and pointed
(see definitions below), and consider distances from the distinguished point rather that from the
root vertex.

Similarly as in [4; 14; 19; 17], bijections between labeled trees and maps serve as a major tool
in our approach, and explain the role played by the Brownian snake in the limit. In the case of
quadrangulations, these bijections were studied by Cori & Vauquelin [5] and then by Schaeffer
[18]. They have been recently extended to general planar maps by Bouttier, Di Francesco &
Guitter [3]. More precisely, Bouttier, Di Francesco & Guitter show that planar maps are in
one-to-one correspondence with well-labeled mobiles, where a well-labeled mobile is a four-type
spatial tree whose vertices are assigned positive labels satisfying certain compatibility conditions
(see section 2.3 for a precise definition). This bijection has the nice feature that labels in the
mobile correspond to distances from the root in the map. Then the above mentioned asymptotics
for random maps reduce to a limit theorem for well-labeled mobiles, which is stated as Theorem
3.3 below. This statement can be viewed as an invariance principle for multitype spatial Galton-
Watson trees obtained by Miermont [16, Theorem 4], but in a conditioned version where spatial
labels are all positive (working with both rooted and pointed maps was the combinatorial trick
allowing [17] to lift the positivity condition). The basic methods we rely on are derived from Le
Gall’s work [9] and are quite close to that of [19]. However, there are some notable differences
which make the study more intricate. One of the key differences lies in a change in a re-rooting
lemma for discrete trees, which is considerably more delicate in the present setting where multiple
types are allowed (see Section 3.1). The present paper will focus essentially on these differences,
while the parts which can be derived mutatis mutandis from [9; 19] will be omitted.
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1.2 Setting

1.2.1 Assumptions on q

Since Boltzmann distributions on bipartite maps have been the object of [17], we will assume
from now on that q2κ+1 > 0 for some κ ≥ 1.

We first need to define some auxiliary material. A rooted pointed planar map is a triple (m, τ, ~e)
where (m, ~e) is a rooted planar map and τ is a distinguished vertex. We let Mr,p be the set of
rooted, pointed planar maps, and allow † among its elements. In what follows, we will focus on
the subset M+

r,p of Mr,p defined by :

M+
r,p = {(m, τ, ~e ) ∈Mr,p : d(τ,~e+) = d(τ,~e−) + 1} ∪ {†} ,

where ~e−, ~e+ are the origin and target of the oriented edge ~e. Note that the quantity Zq defined
above also equals

Zq =
∑

(m,τ,~e)∈Mr,p

Wq(m) ,

because the choice of any vertex in a rooted map yields a distinct element of Mr,p. Set also

Z+
q =

∑
(m,τ,~e)∈M+

r,p

Wq(m).

If q is admissible, then this quantity is finite as well, we define the Boltzmann distribution B+
q

on the set M+
r,p by

B+
q ({m}) =

Wq(m)
Z+

q
.

The family of weights q that we consider is the same as in [17], and we recall it briefly here. For
k, k′ ≥ 0 we set N•(k, k′) =

(
2k+k′+1
k+1

)
and N♦(k, k′) =

(
2k+k′

k

)
. For every weight sequence we

define

f•q(x, y) =
∑
k,k′≥0

xkyk
′
N•(k, k′)

(
k + k′

k

)
q2+2k+k′ , x, y ≥ 0

f♦q (x, y) =
∑
k,k′≥0

xkyk
′
N♦(k, k′)

(
k + k′

k

)
q1+2k+k′ , x, y ≥ 0.

From Proposition 1 in [17], a sequence q is admissible if and only if the system

z+ − 1
z+

= f•q(z+, z♦)

z♦ = f♦q (z+, z♦),

has a solution (z+, z♦) ∈ (0,+∞)2 for which the matrix Mq(z+, z♦) defined by

Mq(z+, z♦) =

 0 0 z+ − 1
z+

z♦
∂xf

♦
q (z+, z♦) ∂yf

♦
q (z+, z♦) 0

(z+)2

z+−1
∂xf

•
q(z+, z♦) z+z♦

z+−1
∂yf

•
q(z+, z♦) 0


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has a spectral radius % ≤ 1. Furthermore this solution is unique and

z+ = Z+
q ,

z♦ = Z♦q ,

where (Z♦q )2 = Zq−2Z+
q +1. An admissible weight sequence q is said to be critical if the matrix

Mq(Z+
q , Z

♦
q ) has a spectral radius % = 1. An admissible weight sequence q is said to be regular

critical if q is critical and if f•q(Z+
q + ε, Z♦q + ε) <∞ for some ε > 0.

1.2.2 The Brownian snake and the conditioned Brownian snake

Let x ∈ R. The Brownian snake with initial point x is a pair (b, rx), where b = (b(s), 0 ≤ s ≤ 1)
is a normalized Brownian excursion and rx = (rx(s), 0 ≤ s ≤ 1) is a real-valued process such
that, conditionally given b, rx is Gaussian with mean and covariance given by

• E[rx(s)] = x for every s ∈ [0, 1],

• Cov(rx(s), rx(s′)) = inf
s≤t≤s′

b(t) for every 0 ≤ s ≤ s′ ≤ 1.

We know from [7] that rx admits a continuous modification. From now on we consider only this
modification. In the terminology of [7] rx is the terminal point process of the one-dimensional
Brownian snake driven by the normalized Brownian excursion b and with initial point x.

Write P for the probability measure under which the collection (b, rx)x∈R is defined. As men-
tioned in [19], for every x > 0, we have

P
(

inf
s∈[0,1]

rx(s) ≥ 0
)
> 0 .

We may then define for every x > 0 a pair (bx, rx) which is distributed as the pair (b, rx) under
the conditioning that infs∈[0,1] rx(s) ≥ 0.

We equip C([0, 1],R)2 with the norm ‖(f, g)‖ = ‖f‖u∨‖g‖u where ‖f‖u stands for the supremum
norm of f . The following theorem is a consequence of Theorem 1.1 in Le Gall & Weill [13].

Theorem 1.1. There exists a pair (b0
, r0) such that (bx, rx) converges in distribution as x ↓ 0

towards (b0
, r0).

The pair (b0
, r0) is the so-called conditioned Brownian snake with initial point 0. Theorem 1.2

in [13] provides a useful construction of the conditioned object (b0
, r0) from the unconditioned

one (b, r0). This construction also appears in Marckert & Mokkadem [15], though its outcome
was not interpreted as the object appearing in Theorem 1.1. First recall that there is a.s. a
unique s∗ in (0, 1) such that

r0(s∗) = inf
s∈[0,1]

r0(s)

(see Lemma 16 in [15] or Proposition 2.5 in [13]). For every s ∈ [0,∞), write {s} for the
fractional part of s. According to Theorem 1.2 in [13], the conditioned snake (b0

, r0) may be
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constructed explicitly as follows : for every s ∈ [0, 1],

b
0(s) = b(s∗) + b({s∗ + s})− 2 inf

s∧{s∗+s}≤t≤s∨{s∗+s}
b(t),

r0(s) = r0({s∗ + s})− r0(s∗).

1.3 Statement of the main result

Recall from section 1.2.2 that (b, r0) denotes the Brownian snake with initial point 0.

Theorem 1.2. Let q be a regular critical weight sequence. There exists a scaling constant Cq

such that the following results hold.

(i) The law of n−1/4Rm under Brq(· | #Vm = n) converges as n→∞ to the law of the random
variable

Cq

(
sup

0≤s≤1
r0(s)− inf

0≤s≤1
r0(s)

)
.

(ii) The law of the random probability measure λ
(n)
m under Brq(· | #Vm = n) converges as

n→∞ to the law of the random probability measure I defined by

〈I, g〉 =
∫ 1

0
g

(
Cq

(
r0(t)− inf

0≤s≤1
r0(s)

))
dt.

(iii) The law of the rescaled distance n−1/4 d(o, a) where a is a vertex chosen uniformly at
random among all vertices of m, under Brq(· | #Vm = n) converges as n → ∞ to the law
of the random variable

Cq sup
0≤s≤1

r0(s).

Theorem 1.2 is analogous to Theorem 2.5 in [19] in the setting of non-bipartite maps. Beware
that in Theorem 1.2 maps are conditioned on their number of vertices whereas in [19] they are
conditioned on their number of faces. However the results stated in Theorem 2.5 in [19] remain
valid by conditioning on the number of vertices (with different scaling constants). On the other
hand, our arguments to prove Theorem 1.2 do not lead to the statement of these results by
conditioning maps on their number of faces. A notable exception is the case of k-angulations
(q = qδk for some k ≥ 3 and appropriate q > 0), where an application of Euler’s formula shows
that #Fm = (k/2 − 1)#Vm + 2, so that the two conditionings are essentially equivalent and
result in a change in the scale factor Cq.

Recall that the results of Theorem 2.5 in [19] for the special case of quadrangulations were
obtained by Chassaing & Schaeffer [4] (see also Theorem 8.2 in [9]). Last, observe that Theorem
1.2 is obviously related to Theorem 1 in [17]. Note however that [17] deals with rooted pointed
maps instead of rooted maps as we do and studies distances from the distinguished point of the
map rather than from the root vertex.

The rest of the paper is organized as follows. We recall the necessary formalism for multitype
spatial trees in the next section, together with the main properties of the bijection of Bouttier,
Di Francesco & Guitter. Section 3 is devoted to the statement and proof of a key result, which
is an invariance principle for random conditioned multitype spatial trees. Theorem 1.2 is finally
derived in Section 4.
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2 Preliminaries

2.1 Multitype spatial trees

We start with some formalism for discrete trees. Set

U =
⋃
n≥0

Nn,

where by convention N = {1, 2, 3, . . .} and N0 = {∅}. An element of U is a sequence u =
u1 . . . un, and we set |u| = n so that |u| represents the generation of u. In particular |∅| =
0. If u = u1 . . . un and v = v1 . . . vm belong to U , we write uv = u1 . . . unv1 . . . vm for the
concatenation of u and v. In particular ∅u = u∅ = u. If v is of the form v = uj for u ∈ U
and j ∈ N, we say that v is a child of u, or that u is the father of v, and we write u = v̌. More
generally if v is of the form v = uw for u,w ∈ U , we say that v is a descendant of u, or that u
is an ancestor of v. The set U comes with the natural lexicographical order such that u 4 v if
either u is an ancestor of v, or if u = wa and v = wb with a ∈ U∗ and b ∈ U∗ satisfying a1 < b1,
where we have set U∗ = U \ {∅}. We write u ≺ v if u 4 v and u 6= v.

A plane tree t is a finite subset of U such that

• ∅ ∈ t,

• u ∈ t \ {∅} ⇒ ǔ ∈ t,

• for every u ∈ t there exists a number cu(t) ≥ 0 such that uj ∈ t⇔ 1 ≤ j ≤ cu(t).

Let t be a plane tree and let ξ = #t − 1. The search-depth sequence of t is the sequence
u0, u1, . . . , u2ξ of vertices of t which is obtained by induction as follows. First u0 = ∅, and then
for every i ∈ {0, 1, . . . , 2ξ − 1}, ui+1 is either the first child of ui that has not yet appeared in
the sequence u0, u1, . . . , ui, or the father of ui if all children of ui already appear in the sequence
u0, u1, . . . , ui. It is easy to verify that u2ξ = ∅ and that all vertices of t appear in the sequence
u0, u1, . . . , u2ξ (of course some of them appear more than once). We can now define the contour
function of t. For every k ∈ {0, 1, . . . , 2ξ}, we let C(k) = |uk| denote the generation of the vertex
uk. We extend the definition of C to the line interval [0, 2ξ] by interpolating linearly between
successive integers. Clearly t is uniquely determined by its contour function C.

Let K ∈ N and [K] = {1, 2, . . . ,K}. A K-type tree is a pair (t, e) where t is a plane tree and
e : t→ [K] assigns a type to each vertex. If (t, e) is a K-type tree and if i ∈ [K] we set

ti = {u ∈ t : e(u) = i}.

We denote by T (K) the set of all K-type trees and we set

T
(K)
i =

{
(t, e) ∈ T (K) : e(∅) = i

}
.

Set
WK =

⋃
n≥0

[K]n,
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with the convention [K]0 = {∅}. An element of WK is a sequence w = (w1, . . . , wn) and we set
|w| = n. Consider the natural projection p :WK → ZK+ where p(w) = (p1(w), . . . , pK(w)) and

pi(w) = #{j ∈ {1, . . . , |w|} : wj = i}.

Note that p(∅) = (0, . . . , 0) with this definition. Let u ∈ U and let (t, e) ∈ T (K) such that u ∈ t.
We then define wu(t) ∈ WK by

wu(t) = (e(u1), . . . , e(ucu(t))),

and we set zu(t) = p(wu(t)).

A K-type spatial tree is a triple (t, e, `) where (t, e) ∈ T (K) and ` : t→ R. If v is a vertex of t,
we say that `v is the label of v. We denote by T(K) the set of all K-type spatial trees and we set

T(K)
i =

{
(t, e, `) ∈ T(K) : e(∅) = i

}
.

If (t, e, `) ∈ T(K) we define the spatial contour function of (t, e, `) as follows. Recall that
u0, u1, . . . , u2ξ denotes the search-depth sequence of t. First if k ∈ {0, . . . , 2ξ}, we put V (k) =
`uk . We then complete the definition of V by interpolating linearly between successive integers.

2.2 Multitype spatial Galton-Watson trees

Let ζ = (ζ(i), i ∈ [K]) be a family of probability measures on the set WK . We associate with ζ
the family µ = (µ(i), i ∈ [K]) of probability measures on the set ZK+ in such a way that each µ(i)

is the image measure of ζ(i) under the mapping p. We make the basic assumption that

max
i∈[K]

µ(i)

({
z ∈ ZK+ :

K∑
j=1

zj 6= 1

})
> 0,

and we say that ζ (or µ) is non-degenerate. If for every i ∈ [K], w ∈ WK and z = p(w) we have

ζ(i)({w}) =
µ(i)({z})

# (p−1(z))
,

then we say that ζ is the uniform ordering of µ.

For every i, j ∈ [K], let
mij =

∑
z∈ZK+

zjµ
(i)({z}),

be the mean number of type-j children of a type-i individual, and let Mµ = (mij)1≤i,j≤K . The
matrix Mµ is said to be irreducible if for every i, j ∈ [K] there exists n ∈ N such that m(n)

ij > 0

where we have written m
(n)
ij for the ij-entry of Mn

µ. We say that ζ (or µ) is irreducible if Mµ

is. Under this assumption the Perron-Frobenius theorem ensures that Mµ has a real, positive
eigenvalue % with maximal modulus. The distribution ζ (or µ) is called sub-critical if % < 1 and
critical if % = 1.

86



Assume that ζ is non-degenerate, irreducible and (sub-)critical. We denote by P (i)
ζ the law of a

K-type Galton-Watson tree with offspring distribution ζ and with ancestor of type i, meaning
that for every (t, e) ∈ T (K)

i ,

P
(i)
ζ ({(t, e)}) =

∏
u∈t

ζ(e(u)) (wu(t)) ,

The fact that this formula defines a probability measure on T
(K)
i is justified in [16].

Let us now recall from [16] how one can couple K-type trees with a spatial displacement in
order to turn them into random elements of T(K). To this end, consider a family ν = (νi,w, i ∈
[K],w ∈ WK) where νi,w is a probability measure on R|w|. If (t, e) ∈ T (K) and x ∈ R, we denote
by Rν,x((t, e),d`) the probability measure on Rt which is characterized as follows. For every
i ∈ [K] and u ∈ t such that e(u) = i, consider Yu = (Yu1, . . . , Yu|w|) (where we have written
wu(t) = w) a random variable distributed according to νi,w, in such a way that (Yu, u ∈ t) is
a collection of independent random variables. We set L∅ = x and for every v ∈ t \ {∅},

Lv =
∑

u∈ ]]∅,v]]

Yu,

where ]]∅, v]] is the set of all ancestors of v distinct from the root ∅. The probability measure
Rν,x((t, e),d`) is then defined as the law of (Lv, v ∈ t). We finally define for every x ∈ R a
probability measure P(i)

ζ,ν,x on the set T(K)
i by setting,

P(i)
ζ,ν,x(dt de d`) = P

(i)
ζ (dt,de)Rν,x((t, e),d`).

2.3 The Bouttier-Di Francesco-Guitter bijection

We start with a definition. We consider the set TM ⊂ T
(4)
1 of 4-type trees in which, for every

(t, e) ∈ TM and u ∈ t,

1. if e(u) = 1 then zu(t) = (0, 0, k, 0) for some k ≥ 0,

2. if e(u) = 2 then zu(t) = (0, 0, 0, 1),

3. if e(u) ∈ {3, 4} then zu(t) = (k, k′, 0, 0) for some k, k′ ≥ 0.

Let now TM ⊂ T(4)
1 be the set of 4-type spatial trees (t, e, `) such that (t, e) ∈ TM and in which,

for every (t, e, `) ∈ TM and u ∈ t,

4. `u ∈ Z,

5. if e(u) ∈ {1, 2} then `u = `ui for every i ∈ {1, . . . , cu(t)},

6. if e(u) ∈ {3, 4} and cu(t) = k then by setting u0 = u(k+ 1) = ǔ and xi = `ui − `u(i−1) for
1 ≤ i ≤ k + 1, we have

(a) if e(u(i− 1)) = 1 then xi ∈ {−1, 0, 1, 2, . . .},
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(b) if e(u(i− 1)) = 2 then xi ∈ {0, 1, 2, . . .}.

We will be interested in the set TM = {(t, e, `) ∈ TM : `∅ = 1 and `v ≥ 1 for all v ∈ t1}. Notice
that condition 6. implies that if (t, e, `) ∈ TM then `v ≥ 0 for all v ∈ t.

We will now describe the Bouttier-Di Francesco-Guitter bijection from the set TM onto Mr.
This bijection can be found in [3] in the more general setting of Eulerian maps.

Let (t, e, `) ∈ TM . Recall that ξ = #t − 1. Let u0, u1, . . . , u2ξ be the search-depth sequence of
t. It is immediate to see that e(uk) ∈ {1, 2} if k is even and that e(uk) ∈ {3, 4} if k is odd.
We define the sequence v0, v1, . . . , vξ by setting vk = u2k for every k ∈ {0, 1, . . . , ξ}. Notice that
v0 = vξ = ∅.

Suppose that the tree t is drawn in the plane and add an extra vertex ∂, not on t. We associate
with (t, e, `) a planar map whose set of vertices is

t1 ∪ {∂},

and whose edges are obtained by the following device : for every k ∈ {0, 1, . . . , ξ − 1},

• if e(vk) = 1 and `vk = 1, or if e(vk) = 2 and `vk = 0, draw an edge between vk and ∂ ;

• if e(vk) = 1 and `vk ≥ 2, or if e(vk) = 2 and `vk ≥ 1, draw an edge between vk and the
first vertex in the sequence vk+1, . . . , vξ with type 1 and label `vk − 1{e(vk)=1}.

Notice that condition 6. in the definition of the set TM entails that `vk+1
≥ `vk − 1{e(vk)=1}

for every k ∈ {0, 1, . . . , ξ − 1}, and recall that min{`vj : j ∈ {k + 1, . . . , ξ} and e(vj) = 1} = 1.
The preceding properties ensure that whenever e(vk) = 1 and `(vk) ≥ 2 or e(vk) = 2 and
`(vk) ≥ 1 there is at least one type-1 vertex among {vk+1, . . . , vξ} with label `vk − 1{e(vk)=1}.
The construction can be made in such a way that edges do not intersect. Notice that condition
2. in the definition of the set TM entails that a type-2 vertex is connected by the preceding
construction to exactly two type-1 vertices with the same label, so that we can erase all type-2
vertices. The resulting planar graph is a planar map. We view this map as a rooted planar map
by declaring that the distinguished edge is the one corresponding to k = 0, pointing from ∂, in
the preceding construction.

It follows from [3] that the preceding construction yields a bijection Ψr between TM and Mr.
Furthermore it is not difficult to see that Ψr satisfies the following two properties : let (t, e, `) ∈
TM and let m = Ψr((t, e, `)),

(i) the set Fm is in one-to-one correspondence with the set t3 ∪ t4, more precisely, with every
v ∈ t3 (resp. v ∈ t4) such that zu(t) = (k, k′, 0, 0) is associated a unique face of m whose
degree is equal to 2k + k′ + 2 (resp. 2k + k′ + 1),

(ii) for every l ≥ 1, the set {a ∈ Vm : d(∂, a) = l} is in one-to-one correspondence with the set
{v ∈ t1 : `v = l}.
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2.4 Boltzmann laws on multitype spatial trees

Let q be a regular critical weight sequence. We associate with q four probability measures on
Z4

+ defined by :

µ
(1)
q ({(0, 0, k, 0)}) =

1
Z+

q

(
1− 1

Z+
q

)k
, k ≥ 0,

µ
(2)
q ({(0, 0, 0, 1)}) = 1,

µ
(3)
q ({(k, k′, 0, 0)}) =

(Z+
q )k(Z♦q )k

′
N•(k, k′)

(
k+k′

k

)
q2+2k+k′

f•q(Z+
q , Z

♦
q )

, k, k′ ≥ 0,

µ
(4)
q ({(k, k′, 0, 0)}) =

(Z+
q )k(Z♦q )k

′
N♦(k, k′)

(
k+k′

k

)
q1+2k+k′

f♦q (Z+
q , Z

♦
q )

, k, k′ ≥ 0.

We set µq =
(
µ

(1)
q , µ

(2)
q , µ

(3)
q , µ

(4)
q

)
and Mµq

= (mij)1≤i,j≤4. The matrix Mµq
is given by

Mµq
=


0 0 Z+

q − 1 0
0 0 0 1

(Z+
q )2

Z+
q −1

∂xf
•
q(Z+

q , Z
♦
q ) Z+

q Z
♦
q

Z+
q −1

∂yf
•
q(Z+

q , Z
♦
q ) 0 0

Z+
q

Z♦q
∂xf

♦
q (Z+

q , Z
♦
q ) ∂yf

♦
q (Z+

q , Z
♦
q ) 0 0

 .

We see that Mµq
is irreducible and has a spectral radius % = 1. Thus µq is critical. Let us

denote by a = (a1, a2, a3, a4) the right eigenvector of Mµq
with eigenvalue 1 chosen so that

a1 + a2 + a3 + a4 = 1.
Let ζq be the uniform ordering of µq. Note that if w ∈ W4 satisfies wj ∈ {1, 2} for every
j ∈ {1, . . . , |w|}, then, by setting k = p1(w) and k′ = p2(w), we have

ζ
(3)
q ({w}) =

(Z+
q )k(Z♦q )k

′
N•(k, k′)q2+2k+k′

f•q(Z+
q , Z

♦
q )

,

ζ
(4)
q ({w}) =

(Z+
q )k(Z♦q )k

′
N♦(k, k′)q1+2k+k′

f♦q (Z+
q , Z

♦
q )

.

Let us now define a collection ν = (νi,w, i ∈ {1, 2, 3, 4},w ∈ W4) as follows.

• For i ∈ {1, 2} the measure νi,w is the Dirac mass at 0 ∈ R|w|.

• Let w ∈ W4 be such that p(w) = (k, k′, 0, 0). Then ν3,w is the distribution of the random
vector (X1, X1 +X2, . . . , X1 +X2 + . . .+Xk+k′), where (Xj +1{wj−1=1}, 1 ≤ j ≤ k+k′+1)
(with w0 = 1) is uniformly distributed on the set

Ak,k′ =
{

(n1, . . . , nk+k′) ∈ Zk+k′+1
+ : n1 + . . .+ nk+k′+1 = k + 1

}
.

• Let w ∈ W4 be such that p(w) = (k, k′, 0, 0). Then ν4,w is the distribution of the random
vector (X1, X1 +X2, . . . , X1 +X2 + . . .+Xk+k′), where (Xj +1{wj−1=1}, 1 ≤ j ≤ k+k′+1)
(with w0 = 2) is uniformly distributed on the set

Bk,k′ =
{

(n1, . . . , nk+k′) ∈ Zk+k′+1
+ : n1 + . . .+ nk+k′+1 = k

}
.

89



• If i ∈ {3, 4} and if w ∈ W4 does not satisfy p3(w) = p4(w) = 0 then νi,w is arbitrarily
defined.

Note that #Ak,k′ = N•(k, k′) and #Bk,k′ = N♦(k, k′).

Let us now introduce some notation. We have P (i)
µq

(#t1 = n) > 0 for every n ≥ 1 and i ∈ {1, 2}.
Then we may define, for every n ≥ 1, i ∈ {1, 2} and x ∈ R,

P
(i),n
µq

(dt de) = P
(i)
µq

(
dt de | #t1 = n

)
,

P(i),n
µq,ν,x(dt de d`) = P(i)

µq,ν,x

(
dt de d` | #t1 = n

)
.

Furthermore, we set for every (t, `, e) ∈ T(4),

` = min
{
`v : v ∈ t1 \ {∅}

}
,

with the convention min ∅ =∞. Finally we define for every n ≥ 1, i ∈ {1, 2} and x ≥ 0,

P(i)
µq,ν,x

(dt de d`) = P(i)
µq,ν,x(dt de d` | ` > 0),

P(i),n
µq,ν,x

(dt de d`) = P(i)
µq,ν,x

(
dt de d` | #t1 = n

)
.

The following proposition can be proved from Proposition 3 of [17] in the same way as Corollary
2.3 of [19].

Proposition 2.1. The probability measure Brq(· | #Vm = n) is the image of P(1),n
µq,ν,1

under the
mapping Ψr.

3 A conditional limit theorem for multitype spatial trees

Let q be a regular critical weight sequence. Recall from section 2.4 the definition of the offspring
distribution µq associated with q and the definition of the spatial displacement distributions ν.
To simplify notation we set µ = µq.

In view of applying a result of [16], we have to take into account the fact that the spatial
displacements ν are not centered distributions, and to this end we will need a shuffled version
of the spatial displacement distributions ν. Let i ∈ [K] and w ∈ W. Set n = |w|. We set
←−w = (wn, . . . , w1) and we denote by ←−ν i,w the image of the measure νi,w under the mapping
Sn : (x1, . . . , xn) 7→ (xn, . . . , x1). Last we set

←→ν i,w(dy) =
νi,w(dy) +←−ν i,←−w (dy)

2
.

We write ←−ν = (←−ν i,w, i ∈ [K],w ∈ W) and ←→ν = (←→ν i,w, i ∈ [K],w ∈ W).

If (t, e, `) is a multitype spatial tree, we denote by C its contour function and by V its spatial
contour function. Recall that C([0, 1],R)2 is equipped with the norm ‖(f, g)‖ = ‖f‖u ∨ ‖g‖u.
The following result is a special case of Theorem 4 in [16].
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Theorem 3.1. Let q be a regular critical weight sequence. There exists two scaling constants
Aq > 0 and Bq > 0 such that for i ∈ {1, 2}, the law under P(i),n

µ,←→ν ,0 of((
Aq

C(2(#t− 1)s)
n1/2

)
0≤s≤1

,

(
Bq

V (2(#t− 1)s)
n1/4

)
0≤s≤1

)

converges as n→∞ to the law of (b, r0). The convergence holds in the sense of weak convergence
of probability measures on C([0, 1],R)2.

Note that Theorem 4 in [16] deals with the so-called height process instead of the contour
process. However, we can deduce Theorem 3.1 from [16] by classical arguments (see e.g. [8]).
Moreover, the careful reader will notice that the spatial displacements ←→ν depicted above are
not all centered, and thus may compromise the application of [16, Theorem 4]. However, it is
explained in [17, Sect. 3.3] how a simple modification of these laws can turn them into centered
distributions, by appropriate translations. More precisely, one can couple the spatial trees
associated with ←→ν and its centered version so that the labels of vertices differ by at most 1/2
in absolute value, which of course does not change the limiting behavior of the label function
rescaled by n−1/4.

In this section, we will prove a conditional version of Theorem 3.1. Before stating this result,
we establish a corollary of Theorem 3.1. To this end we set

Qµ(dt de) = P
(1)
µ (dt de | c∅(t) = 1),

Qµ,←→ν (dt de d`) = P(1)

µ,←→ν ,0(dt de d` | c∅(t) = 1).

Notice that this conditioning makes sense since µ(1)({(0, 0, 1, 0)}) > 0. We may also define for
every n ≥ 1,

Qnµ(dt de) = Qµ
(
dt de | #t1 = n

)
,

Qn
µ,←→ν (dt de d`) = Qµ,←→ν

(
dt de d` | #t1 = n

)
.

The following corollary can be proved from Theorem 3.1 in the same way as Corollary 2.2 in
[19].

Corollary 3.2. Let q be a regular critical weight sequence. The law under Qn
µ,←→ν of((

Aq
C(2(#t− 1)s)

n1/2

)
0≤s≤1

,

(
Bq

V (2(#t− 1)s)
n1/4

)
0≤s≤1

)

converges as n→∞ to the law of (b, r0). The convergence holds in the sense of weak convergence
of probability measures on C([0, 1],R)2.

Recall from section 1.2.2 that (b0
, r0) denotes the conditioned Brownian snake with initial point

0.
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Theorem 3.3. Let q be a regular critical weight sequence. For every x ≥ 0, the law under
P(1),n

µq,←→ν ,x of ((
Aq

C(2(#t− 1)s)
n1/2

)
0≤s≤1

,

(
Bq

V (2(#t− 1)s)
n1/4

)
0≤s≤1

)
converges as n→∞ to the law of (b0

, r0). The convergence holds in the sense of weak conver-
gence of probability measures on C([0, 1],R)2.

In the same way as in the proof of Theorem 3.3 in [19], we will follow the lines of the proof of
Theorem 2.2 in [9] to prove Theorem 3.3.

3.1 Rerooting spatial trees

If (t, e) ∈ TM , we write ∂t = {u ∈ t : cu(t) = 0} for the set of all leaves of t, and we write
∂1t = ∂t∩t1 for the set of leaves of t which are of type 1. Let w0 ∈ t. Recall that U∗ = U \{∅}.
We set

t(w0) = t \ {w0u ∈ t : u ∈ U∗} ,
and we write e(w0) for the restriction of the function e to the truncated tree t(w0).

Let v0 = u1 . . . u2p ∈ U∗ and (t, e) ∈ TM such that v0 ∈ t1. We define k = k(v0, t) and l = l(v0, t)
in the following way. Write ξ = #t − 1 and u0, u1, . . . , u2ξ for the search-depth sequence of t.
Then we set

k = min{i ∈ {0, 1, . . . , 2ξ} : ui = v0},
l = max{i ∈ {0, 1, . . . , 2ξ} : ui = v0},

which means that k is the time of the first visit of v0 in the evolution of the contour of t and
that l is the time of the last visit of v0. Note that l ≥ k and that l = k if and only if v0 ∈ ∂t.
For every s ∈ [0, 2ξ − (l − k)], we set

Ĉ(v0)(s) = C(k) + C([[k − s]])− 2 inf
u∈[k∧[[k−s]],k∨[[k−s]]]

C(u),

where C is the contour function of t and [[k−s]] stands for the unique element of [0, 2ξ) such that
[[k− s]]− (k− s) = 0 or 2ξ. Then there exists a unique plane tree t̂(v0) whose contour function is
Ĉ(v0). Informally, t̂(v0) is obtained from t by removing all vertices that are descendants of v0, by
re-rooting the resulting tree at v0, and finally by reversing the planar orientation. Furthermore
we see that v̂0 = 1u2p . . . u2 belongs to t̂(v0). In fact, v̂0 is the vertex of t̂(v0) corresponding to
the root of the initial tree. At last notice that c∅( t̂(v0)) = 1.

We now define the function ê(v0). To this end, for u ∈ [[∅, v0]] \ {v0}, let j(u, v0) ∈ {1, . . . , cu(t)}
be such that uj(u, v0) ∈ [[∅, v0]]. Then set

[[∅, v0]]32 =
{
u ∈ [[∅, v0]] ∩ t3 : e(uj(u, v0)) = 2

}
[[∅, v0]]41 =

{
u ∈ [[∅, v0]] ∩ t4 : e(uj(u, v0)) = 1

}
.

For every u ∈ t̂(v0), we denote by u the vertex which corresponds to u in the tree t. We then
set ê(v0)(u) = e(u), except in the following cases :{

if u ∈ [[∅, v0]]23 then ê(v0)(u) = 4,
if u ∈ [[∅, v0]]41 then ê(v0)(u) = 3.

(1)
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Since v0 ∈ t1 we have #[[∅, v0]]32 = #[[∅, v0]]41. Indeed, if 1 = e0, e1, . . . , e2p = 1 is the sequence of
types of elements of [[∅, v0]] listed according to their generations, then this list is a concatenation
of patterns of the form 13241, where by 24 we mean an arbitrary (possibly empty) repetition of
the pattern 24. If at least one 24 occurs then the second and antepenultimate element of the
pattern 13241 correspond respectively to exactly one element of [[∅, v0]]32 and [[∅, v0]]41, while no
term of a pattern 131 corresponds to such elements.

Notice that if ( t̂(v0), ê(v0)) = (T , e), then (t(v0), e(v0)) = ( T̂ (bv0), ê(bv0)). Moreover, if u ∈ T \
{∅, v̂0} then we have cu(T ) = cu(T̂ (bv0)). Recall that if w = (w1, . . . , wn) we write ←−w =
(wn, . . . , w1). To be more accurate, it holds that wu(T ) = ←−wu(T̂ (bv0)) except in the following
cases : 

if u ∈ [[∅, v0]] \ ([[∅, v0]]32 ∩ [[∅, v0]]41) then wu(T ) =←−wj(u,v0),e(u)
u (T̂ (bv0)),

if u ∈ [[∅, v0]]32 then wu(T ) =←−wj(u,v0),1
u (T̂ (bv0)),

if u ∈ [[∅, v0]]41 then wu(T ) =←−wj(u,v0),2
u (T̂ (bv0)),

(2)

where for w ∈ W, n = |w|, and 1 ≤ j ≤ n, we set{
wj,1 = (wj+1, . . . , wn, 1, w1, . . . , wj−1),
wj,2 = (wj+1, . . . , wn, 2, w1, . . . , wj−1).

In particular, if u ∈ [[∅, v0]]32 (resp. [[∅, v0]]41) with p(wu(T̂ (bv0))) = (k, k′, 0, 0) then
p(wu(T )) = (k + 1, k′ − 1, 0, 0) (resp. (k − 1, k′ + 1, 0, 0)), while p(wu(T̂ (bv0))) = p(wu(T ))
otherwise.

Recall the definition of the probability measure Qµ.

Lemma 3.4. Let v0 ∈ U∗ be of the form v0 = 1u2 . . . u2p for some p ∈ N. Assume that

Qµ
(
v0 ∈ t1

)
> 0.

Then the law of the re-rooted multitype tree ( t̂(v0), ê(v0)) under Qµ(· | v0 ∈ t1) coincides with the
law of the multitype tree (t(bv0), e(bv0)) under Qµ(· | v̂0 ∈ t1).

Proof : Let (T , e) ∈ TM such that v̂0 ∈ ∂1T . We have

Qµ

(
( t̂(v0), ê(v0)) = (T , e)

)
= Qµ

(
(t(v0), e(v0)) = (T̂ (bv0), ê(bv0))

)
.

And
Qµ

(
(t(v0), e(v0)) = (T̂ (bv0), ê(bv0))

)
=

∏
u∈bT (bv0)\{∅,v0}

ζ(be(bv0)(u))(wu(T̂ (bv0))),

Qµ

(
(t(bv0), e(bv0)) = (T , e)

)
=

∏
u∈T \{∅,bv0}

ζ(e(u))(wu(T )).

By the above discussion around (2), the terms corresponding to u, u in these two products are
all equal, except for those corresponding to vertices u ∈ [[∅, v0]]23 ∪ [[∅, v0]]14.
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∈ [[∅, v0]]41

∈ [[∅, v0]]32

v0

∅

v̂0

∅

Figure 1: The branch leading from ∅ to v0, and the corresponding branch in the tree t̂(v0): the
branch is put upside-down and the vertices of [[∅, v0]]32 and [[∅, v0]]41 interchange their roles.

Let k ≥ 0 and k′ ≥ 1. We have N♦(k + 1, k′ − 1) = N•(k, k′) which implies that

µ(4)(k + 1, k′ − 1, 0, 0)(
k+k′

k+1

) =
(Z+

q )k+1(Z♦q )k
′−1N♦(k + 1, k′ − 1)q1+2(k+1)+k′−1

f♦q (Z+
q , Z

♦
q )

=
Z+

q f
•
q(Z+

q , Z
♦
q )

Z♦q f
♦
q (Z+

q , Z
♦
q )

µ(3)(k, k′, 0, 0)(
k+k′

k

)
=

Z+
q − 1

(Z♦q )2

µ(3)(k, k′, 0, 0)(
k+k′

k

) .

Likewise let k ≥ 1 and k′ ≥ 0. We have N•(k − 1, k′ + 1) = N♦(k, k′) which implies that

µ(3)(k − 1, k′ + 1, 0, 0)(
k+k′

k−1

) =
(Z+

q )k−1(Z♦q )k
′+1N•(k − 1, k′ + 1)q2+2(k−1)+k′+1

f•q(Z+
q , Z

♦
q )

=
Z♦q f

♦
q (Z+

q , Z
♦
q )

Z+
q f•q(Z+

q , Z
♦
q )

µ(4)(k, k′, 0, 0)(
k+k′

k

)
=

(Z♦q )2

Z+
q − 1

µ(4)(k, k′, 0, 0)(
k+k′

k

) .

Using the relation between p(wu(T̂ (bv0))) and p(wu(T )) discussed above for elements of [[∅, v0]]32∪
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[[∅, v0]]41, we obtain

Qµ

(
(t(v0), e(v0)) = (T̂ (bv0), ê(bv0))

)
=

(
Z+

q − 1

(Z♦q )2

)#[[∅,v0]]32−#[[∅,v0]]41

Qµ

(
(t(bv0), e(bv0)) = (T , e)

)
= Qµ

(
(t(bv0), e(bv0)) = (T , e)

)
,

implying that
Qµ

(
( t̂(v0), ê(v0)) = (T , e)

)
= Qµ

(
(t(bv0), e(bv0)) = (T , e)

)
. (3)

To conclude the proof we use (3) to get that

Qµ(v0 ∈ t) =
∑

{(T ,e)∈TM :v0∈∂1T }

Qµ
(

(t(v0), e(v0)) = (T , e)
)

=
∑

{(T ,e)∈TM :v0∈∂1T }

Qµ
(

(t̂(v0), ê(v0)) = (T̂ (v0), ê(v0))
)

=
∑

{(T ,e)∈TM :v0∈∂1T }

Qµ
(

(t(bv0), e(bv0)) = (T̂ (v0), ê(v0))
)

=
∑

{(T ′,e′)∈TM :bv0∈∂1T ′}
Qµ
(

(t(bv0), e(bv0)) = (T ′, e′)
)

= Qµ(v̂0 ∈ t).

�

If (t, e, `) ∈ TM and v0 ∈ t1, the re-rooted multitype spatial tree (t̂(v0), ê(v0), ̂̀(v0)
) is defined as

follows. If u ∈ t̂(v0), recall that u denotes the vertex which corresponds to u in the tree t and
that ǔ denotes its father (in the tree t̂(v0)).

• If ê(v0)(u) ∈ {1, 2} then ̂̀(v0)

u = `u − `v0 .

• If ê(v0)(u) ∈ {3, 4} then ̂̀(v0)

u = `
(v0)
ǔ .

Let n = cu(t̂(v0)). Observe that when u /∈ [[∅, v0]], then the spatial displacements between u and
its offspring is left unchanged by the re-rooting, meaning that(̂̀(v0)

ui − ̂̀(v0)

u , 1 ≤ i ≤ n
)

=
(
`

(bv0)
ui − `

(bv0)
u , 1 ≤ i ≤ n

)
.

Otherwise, if u ∈ [[∅, v0]], set j = j(u, v0), and define the mapping

φn,j : (x1, . . . , xn) 7→ (xj−1 − xj , . . . , x1 − xj ,−xj , xn − xj , . . . , xj+1 − xj) .

Then observe that the spatial displacements are affected in the following way:(̂̀(v0)

ui − ̂̀(v0)

u , 1 ≤ i ≤ n
)

= φn,j

((
`

(bv0)
ui − `

(bv0)
u , 1 ≤ i ≤ n

))
. (4)
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If (t, e, `) ∈ TM and w0 ∈ t, we also consider the multitype spatial tree (t(w0), e(w0), `(w0)) where
`(w0) is the restriction of ` to the tree t(w0).

Recall the definition of the probability measure Qµ,←→ν .

Lemma 3.5. Let v0 ∈ U∗ be of the form v0 = 1u2 . . . u2p for some p ∈ N. Assume that

Qµ
(
v0 ∈ t1

)
> 0.

Then the law of the re-rooted multitype spatial tree ( t̂(v0), ê(v0), ̂̀(v0)
) under the measure Qµ,←→ν (· |

v0 ∈ t1) coincides with the law of the multitype spatial tree (t(bv0), e(bv0), `(bv0)) under the measure
Qµ,←→ν (· | v̂0 ∈ t1).

This lemma is a simple consequence of Lemma 3.4 and our observations around (4) on the spatial
displacements ←→ν , combined with the discussion of how the set of children of various vertices
are affected by re-rooting, see (1) and (2).

Lemma 3.6. Let w ∈ W such that p3(w) = p4(w) = 0. Set n = |w| and let j ∈ {1, . . . , n}.

(i) The image of the measure ←→ν 3,w under the mapping φn,j is

(a) the measure ←→ν 3,wj,1 if wj = 1,

(b) the measure ←→ν 4,wj,2 if wj = 2.

(ii) The image of the measure ←→ν 4,w under the mapping φn,j is

(a) the measure ←→ν 3,wj,1 if wj = 1,

(b) the measure ←→ν 4,wj,2 if wj = 2.

Proof : We first suppose that wj = 1. Set k = p1(w), k′ = p2(w) and w0 = 1. Define
φ̃n,j = Sn ◦ φn,j , where as before Sn stands for the mapping (x1, . . . , xn) 7→ (xn, . . . , x1). We
consider a uniform vector (Xl + 1{wl−1=1}, 1 ≤ l ≤ n + 1) on the set Ak,k′ and we set X(j) =
(Xj+1, . . . , Xn+1, X1, . . . , Xj). Since w0 = wj = 1, the vector(

X
(j)
l + 1{wj,1l−1=1}, 1 ≤ l ≤ n+ 1

)
is uniformly distributed on the set Ak,k′ and the measure ν3,wj,1 is the law of the vector(

X
(j)
1 , X

(j)
1 +X

(j)
2 , . . . , X

(j)
1 + . . .+X(j)

n

)
.

Furthermore we notice that X1 +X2 + . . .+Xn+1 = 0. This implies that(
X

(j)
1 , X

(j)
1 +X

(j)
2 , . . . , X

(j)
1 + . . .+X(j)

n

)
= φ̃n,j(X1, X1 +X2, . . . , X1 + . . .+Xn),

which means that the measure ν3,wj,1 is the image of ν3,w under the mapping φ̃n,j . Since
φ̃n,j ◦ Sn = Sn ◦ φn,n−j+1, we obtain together with what precedes that the measure ←−ν 3,←−wn−j+1,1

is the image of ←−ν 3,←−w under the mapping φ̃n,j . Thus ←→ν 3,wj,1 is the image of ←→ν 3,w under the
mapping φ̃n,j . Hence, it is the image of the same measure under φn,j , being invariant under the
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action of Sn. Thus we get the first part of the lemma. The other assertions can be proved in
the same way. �

If (t, e, `) ∈ TM , we set
` = min

{
`v : v ∈ t1 \ {∅}

}
,

∆1 =
{
v ∈ t1 : `v = min

{
`w : w ∈ t1

}}
.

We also denote by vm the first element of ∆1 in the lexicographical order.

The following two Lemmas can be proved from Lemma 3.5 in the same way as Lemma 3.3 and
Lemma 3.4 in [9].

Lemma 3.7. For any nonnegative measurable functional F on TM ,

Qµ,←→ν
(
F
(
t̂(vm), ê(vm), ̂̀(vm)

)
1{#∆1=1,vm∈∂1t}

)
= Qµ,←→ν

(
F (t, e, `)(#∂1t)1{`>0}

)
.

Lemma 3.8. For any nonnegative measurable functional F on TM ,

Qµ,←→ν

 ∑
v0∈∆1∩∂1t

F
(
t̂(v0), ê(v0), ̂̀(v0)

) = Qµ,←→ν
(
F (t, e, `)(#∂1t)1{`≥0}

)
.

3.2 Estimates for the probability of staying on the positive side

In this section we will derive upper and lower bounds for the probability Pn
µ,←→ν ,x(` > 0) as

n→∞. We first state a lemma which is a direct consequence of Lemma 6 in [16].

Lemma 3.9. There exist two constants c0 > 0 and c1 > 0 such that

n3/2Pµ
(
#t1 = n

)
−→
n→∞

c0,

n3/2Qµ
(
#t1 = n

)
−→
n→∞

c1.

We now establish a preliminary estimate concerning the number of leaves of type 1 in a tree
with n vertices of type 1. Write 0 for the origin of R4.

Lemma 3.10. There exists a constant β > 0 such that for all n sufficiently large,

Pµ

(
|#∂1t− µ(1)({0})n| > n3/4,#t1 = n

)
≤ e−nβ .

Proof : Let (t, e) ∈ TM . Recall that ξ = #t − 1. Let v(0) = ∅ ≺ v(1) ≺ . . . ≺ v(ξ) be
the vertices of t listed in lexicographical order. For every n ∈ {0, 1, . . . , ξ}, we define Rn =
(Rn(k))k≥1 as follows. For every k ∈ {1, . . . , |v(n)|}, we write v(n, k) for the ancestor of v(n) at
generation k and we let

v1(n, k) ≺ . . . ≺ vm(n, k)

be the younger brothers of v(n, k) listed in lexicographical order. Here younger brothers are
those brothers which have not yet been visited at time n in search-depth sequence. Then we set

Rn(k) = (e(v1(n, k)), . . . , e(vm(n, k)))
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if m ≥ 1 and Rn(k) = ∅ if m = 0. For every k > |v(n)|, we set Rn(k) = ∅. By abuse of notations
we assimilate Rn with (Rn(1), . . . , Rn(|v(n)|)) and let Rn = ∅ if |v(n)| = 0. Standard arguments
(see e.g. [11] for similar results) show that (Rn, e(v(n)), |v(n)|)0≤n≤ξ has the same distribution
as (R′n, e

′
n, h
′
n)0≤n≤T ′−1, where (R′n, e

′
n, h
′
n)n≥0 is a Markov chain starting at (∅, 1, 0), whose

transition probabilities are specified as follows :

• ((r1, . . . , rh), i, h)→ ((r1, . . . , rh, r+
h+1), rh+1(1), h+ 1) with probability ζ(i)({rh+1}) where

r+
h+1 = (rh+1(2), . . . , rh+1(|rh+1|)), for rh+1 ∈ W4 \ {∅}, i ∈ {1, 2, 3, 4}, r1, . . . , rh ∈ W4

and h ≥ 0,

• ((r1, . . . , rh), i, h)→ ((r1, . . . , rk−1, r+
k ), rk(1), k) with probability ζ(i)({∅}), whenever h ≥

1 and {m ≥ 1 : rm 6= ∅} 6= ∅, and where k = sup{m ≥ 1 : rm 6= ∅}, for i ∈ {1, 2, 3, 4},
r1, . . . , rh ∈ W4,

• ((∅, . . . ,∅), i, h)→ (∅, 1, 0) with probability ζ(i)({∅}) for i ∈ {1, 2, 3, 4} and h ≥ 0,

and finally
T ′ = inf

{
n ≥ 1 : h′n = 0

}
.

Write P′ for the probability measure under which (R′n, e
′
n, h
′
n)n≥0 is defined. We define a sequence

of stopping times (τ ′j)j≥0 by τ ′0 = 0 and τ ′j+1 = inf{n > τ ′j : e′n = 1} for every j ≥ 0. At last we
set for every j ≥ 0,

X ′j = 1

{
hτ ′j+1 ≤ hτ ′j

}
.

Thus we have,

Pµ

(
|#∂1t− µ(1)({0})n| > n3/4,#t1 = n

)
= P′

∣∣∣ n−1∑
j=0

X ′j − µ(1)({0})n
∣∣∣ > n3/4, τ ′n−1 < T ′ ≤ τ ′n


≤ P′

∣∣∣ n−1∑
j=0

X ′j − µ(1)({0})n
∣∣∣ > n3/4

 .

Thanks to the strong Markov property, under the probability measure P′(· | e′0 = 1), the
random variables X ′j are independent and distributed according to the Bernoulli distribution
with parameter ζ(1)({∅}) = µ(1)({0}). So we get the result using a standard moderate
deviations inequality and Lemma 3.9. �

We will now state a lemma which plays a crucial role in the proof of the main result of this
section. To this end, recall the definition of vm and the definition of the probability measure
Qn
µ,←→ν .

Lemma 3.11. There exists a constant c > 0 such that for all n sufficiently large,

Qn
µ,←→ν (vm ∈ ∂1t) ≥ c.
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Figure 2: The events F (left) and Γ for k = 2 (right)

Proof : We first treat the case where q2k+1 = 0 for every k ≥ 2 which implies that q3 > 0.
Consider the event

E =
{

z∅(t) = (0, 0, 1, 0), z1(t) = (0, 1, 0, 0), z11(t) = (0, 0, 0, 1), z111(t) = (0, 2, 0, 0),

z1111(t) = z1112(t) = (0, 0, 0, 1), z11111(t) = z11121(t) = (1, 0, 0, 0),

z111111(t) = z111211(t) = (0, 0, 1, 0)
}
.

Let u ∈ U and let (t, e, `) ∈ TM such that u ∈ t. We set t[u] = {v ∈ U : uv ∈ t} and
for every v ∈ t[u] we set e[u](v) = e(uv) and `[u](v) = `(uv) − `(u). On the event E we can
define (t1, e1, `1) = (t[u1], e[u1], `[u1]) and (t2, e2, `2) = (t[u2], e[u2], `[u2]), where we have written
u1 = 111111 and u2 = 111211. Let F be the event defined by

F = E ∩
{
`1 = `11 = `111 = `1111 = `1112 = `11111 = `11121 = `111111 = 0, `111211 = 1

}
.

We observe that Qµ,←→ν (F ) > 0 and that under Qµ,←→ν (· | F ), the spatial trees (t1, e1, `1) and
(t2, e2, `2) are independent and distributed according to Qµ,←→ν . Furthermore{

#t1 = n, vm ∈ ∂1t
}
⊃ F ∩ {vm,1 ∈ ∂1t1} ∩ {`2 ≥ 0} ∩

{
#t1

1 + #t1
2 = n− 1

}
,

where vm,1 is the first vertex of t1
1 \ {∅} that achieves the minimum of `1. So we obtain that

Qµ,←→ν
(
#t1 = n, vm ∈ ∂1t

)
(5)

≥ Qµ,←→ν (F )
n−2∑
j=1

Qµ,←→ν
(
#t1 = j, vm ∈ ∂1t

)
Qµ,←→ν

(
#t1 = n− 1− j, ` ≥ 0

)
.
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Let us now turn to the second case for which there exists k ≥ 2 such that q2k+1 > 0. Let
K = 2k − 1. On the event

Λ =
{

z∅(t) = (0, 0, 1, 0), z1(t) = (0,K, 0, 0), z11(t) = . . . = z1K(t) = (0, 0, 0, 1),

z111(t) = . . . = z1K1(t) = (k, 0, 0, 0), z1111(t) = z1112(t) = (0, 0, 1, 0)
}

we can define ((t[uij ], e[uij ], `[uij ]))1≤i≤K,1≤j≤k where we have written uij = 1i1j. Let Γ be the
event

Λ ∩ {`1 = 0} ∩
⋂

1≤i≤K
{`1i = `1i1 = 0} ∩ {`1111 = 0} ∩

⋂
2≤i≤k

{`111i = 1} ∩
⋂

2≤i≤K,1≤j≤k
{`uij = 1}.

We observe that Qµ,←→ν (Γ) > 0. Furthermore, under the probability measure Qµ,←→ν (· |
Γ), the spatial trees ((t[uij ], e[uij ], `[uij ]))1≤i≤K,1≤j≤k are independent, (t[u11], e[u11], `[u11]) and
(t[u12], e[u12], `[u12]) are distributed according to Qµ,←→ν , and ((t[uij ], e[uij ], `[uij ]))1≤i≤K,1≤j≤k are
distributed according to Pµ,←→ν ,0. Last{

#t1 = n, vm ∈ ∂1t
}
⊃ Γ ∩

{
vu11
m ∈ ∂1t[u11]

}
∩
{
`[u12] ≥ 0

}
∩
{

#t[u11],1 + #t[u12],1 = n+ 1− kK
}
∩

⋂
2≤i≤K,1≤j≤k

{
t[uij ] = {∅}

}
.

So we obtain that

Qµ,←→ν
(
#t1 = n, vm ∈ ∂1t

)
(6)

≥ C
n−kK∑
j=2

Qµ,←→ν
(
#t1 = j, vm ∈ ∂1t

)
Qµ,←→ν

(
#t1 = n+ 1− kK − j, ` ≥ 0

)
where we have written C = µ(1)({0})k(K−1)Qµ,←→ν (Γ).

We can now conclude the proof of Lemma 3.11 in both cases from respectively (5) and (6) by
following the lines of the proof of Lemma 4.3 in [9]. �

We can now state the main result of this section.

Proposition 3.12. Let M > 0. There exist four constants γ1 > 0, γ2 > 0, γ̃1 > 0 and γ̃2 > 0
such that for all n sufficiently large and for every x ∈ [0,M ],

γ̃1

n
≤ Qn

µ,←→ν ( ` > 0) ≤ γ̃2

n
,

γ1

n
≤ Pn

µ,←→ν ,x( ` > 0) ≤ γ2

n
.

Proof : We prove exactly in the same way as in [9] the existence of γ̃2 and the existence of a
constant γ3 > 0 such that for all n sufficiently large, we have

Qn
µ,←→ν (` ≥ 0) ≥ γ3

n
.
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Let us now fix M > 0. Let k ≥ 1 be such that q2k+1 > 0. We choose an integer p such
that pk ≥ M . First note that ←→ν 3,w({0}) = 1/(2k − 1) if w = (0, 2k − 1, 0, 0) and that
←→ν 4,w({k, k − 1, . . . , 1}) = 1/(2#Ak,0) if w = (k, 0, 0, 0). For every l ∈ N, we define 1l ∈ U by
1l = 11 . . . 1, |1l| = l. By arguing on the event

E′ =
{

z∅(t) = . . . = z14p(t) = (0, 0, 1, 0), z1(t) = . . . = z14p−3(t) = (0, 2k − 1, 0, 0),

z11(t) = . . . = z1(2k−1)(t) = . . . = z14p−31(t) = . . . = z14p−3(2k−1) = (0, 0, 0, 1),

z111(t) = . . . = z1(2k−1)1(t) = . . . = z14p−311(t) = . . . = z14p−3(2k−1)1 = (k, 0, 0, 0)
}

∩
p−1⋂
i=0

{z14i+32(t) = . . . = z14i+3k = 0} ∩
p−1⋂
i=0

2k−1⋂
j=2

k⋂
l=1

{z14i+1j1l = 0},

we show that

Qµ,←→ν
(
` > 0,#t1 = n

)
≥ C(µ,ν, k)p

µ(1)({(0, 0, 1, 0)})
Pµ,←→ν ,pk

(
` > 0,#t1 = n− pk(2k − 1)

)
,

where C(µ,ν, k) is equal to

µ(1)({(0, 0, 1, 0)})µ(3)({(0, 2k − 1, 0, 0)})(µ(4)({(k, 0, 0, 0)}))2k−1µ(1)({0}))k(2k−1)−1

(2k − 1)(2#Ak,0)2k−1
.

This implies thanks to Lemma 3.9 that for all n sufficiently large,

Pnµ,←→ν ,pk (` > 0) ≤ 2µ(1)({(0, 0, 1, 0)})γ̃2

C(µ,ν, k)n
,

which ensures the existence of γ2.

Last by arguing on the event

F =
{

z∅(t) = z14 = (0, 0, 1, 0), z1(t) = (0, 2k − 1, 0, 0),

z11(t) = . . . = z1(2k−1)(t) = (0, 0, 0, 1), z111(t) = . . . = z1(2k−1)1(t) = (k, 0, 0, 0)
}

∩
k⋂
j=2

{z13j(t) = 0} ∩
2k−1⋂
i=2

k⋂
j=1

{z1i1j(t) = 0},

we show that

Pµ,←→ν ,0
(
` > 0,#t1 = n

)
≥ C(µ,ν, k)µ(1)({(0, 0, 1, 0)})Qµ,←→ν

(
` ≥ 0,#t1 = n− k(2k − 1)

)
,

which ensures the existence of γ1. We get the existence of γ̃1 by the same arguments. �
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3.3 Proof of Theorem 3.3

To prove Theorem 3.3 from what precedes, we can adapt section 7 of [9] in exactly the same
way as in the proof of Theorem 3.3 in [19]. A key result in the proof of Theorems 2.2 in [9]
and 3.3 in [19] is a spatial Markov property for spatial Galton-Watson trees. Let a > 0 and
(t, e, `) ∈ TM . As in section 5 of [9] let v1, . . . , vM denote the exit vertices from (−∞, a) listed
in lexicographical order, and let (ta, ea, `a) correspond to the multitype spatial tree (t, e, `)
which has been truncated at the first exit from (−∞, a). Let v ∈ t. Recall from section 3.2 the
definition of the multitype spatial tree (t[v], e[v], `[v]). We set `[v]

u = `
[v]
u + `v for every u ∈ t[v].

Lemma 3.13. Let x ∈ [0, a) and p ∈ {1, . . . , n}. Let n1, . . . , np be positive integers such that
n1 + . . .+ np ≤ n. Assume that

P(1),n

µ,←→ν ,x

(
M = p, #t[v1],1 = n1, . . . , #t[vp],1 = np

)
> 0.

Then, under the probability measure P(1),n
µ,ν,x(· | M = p, #t[v1],1 = n1, . . . , #t[vp],1 = np), and

conditionally on (ta, ea, `a), the spatial trees(
t[v1], e[v1], `

[v1]
)
, . . . ,

(
t[vp], e[vp], `

[vp]
)

are independent and distributed respectively according to P(e(v1)),n1

µ,←→ν ,`v1
, . . . ,P(e(vp)),np

µ,←→ν ,`vp
.

Observe that in our context, if v is an exit vertex then e(v) ∈ {1, 2}. This is the reason why
Theorem 3.3 is stated under both probability measures P(1),n

µ,←→ν ,x and P(2),n

µ,←→ν ,x. Thus the statement
of Lemma 7.1 of [9] (and of Lemma 3.18 of [19]) is modified in the following way. Set for every
n ≥ 1 and every s ∈ [0, 1],

C(n)(s) = Aq
C((#t− 1)s)

n1/2
,

V (n)(s) = Bq
V ((#t− 1)s)

n1/4
.

Last define from section 1.2.2, on a suitable probability space (Ω,P), a collection of processes
(bx, rx)x>0.

Lemma 3.14. Let F : C([0, 1],R)2 → R be a Lipschitz function. Let 0 < c′ < c′′. Then for
i ∈ {1, 2},

sup
c′n1/4≤y≤c′′n1/4

∣∣∣∣E(i),n
µ,ν,y

(
F
(
C(n), V (n)

))
−E

(
F

(
b

Bqy/n1/4

, rBqy/n1/4

))∣∣∣∣ −→n→∞ 0.

4 Proof of Theorem 1.2

We finally derive Theorem 1.2 from Theorem 3.3 in the same way as Theorem 2.5 in [19] is
derived from Theorem 3.3. We first state a lemma, which is analogous to Lemma 3.20 in [19]
in our more general setting. To this end we introduce some notation. Recall that if t ∈ TM , we
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set ξ = #t − 1 and we denote by v(0) = ∅ ≺ v(1) ≺ . . . ≺ v(ξ) the list of the vertices of t in
lexicographical order. For n ∈ {0, 1, . . . , ξ}, we set as in [16],

Λt
1(n) = #

(
t1 ∩ {v(0), v(1), . . . , v(n)}

)
.

We extend Λt
1 to the real interval [0, ξ] by setting Λt

1(s) = Λt
1(bsc) for every s ∈ [0, ξ], and we

set for every s ∈ [0, 1]

Λt
1(s) =

Λt
1(ξs)
#t1

.

Recall that u0, u1, . . . , u2ξ denotes the search-depth sequence of t. We also define for k ∈
{0, 1, . . . , 2ξ},

Kt(k) = 1 + # {l ∈ {1, . . . , k} : C(l) = C(l − 1) + 1 and e(ul) = 1} .

Note that Kt(k) is the number of vertices of type 1 in the search-depth sequence up to time
k. As previously, we extend Kt to the real interval [0, 2ξ] by setting Kt(s) = Kt(bsc) for every
s ∈ [0, 2ξ], and we set for every s ∈ [0, 1]

Kt(s) =
Kt(2ξs)

#t1
.

Lemma 4.1. The law under P(1),n

µ,←→ν ,1 of
(

Λt
1(s), 0 ≤ s ≤ 1

)
converges as n → ∞ to the Dirac

mass at the identity mapping of [0, 1]. In other words, for every η > 0,

P(1),n

µ,←→ν ,1

(
sup
s∈[0,1]

∣∣∣Λt
1(s)− s

∣∣∣ > η

)
−→
n→∞

0. (7)

Consequently, the law under P(1),n

µ,←→ν ,1 of
(
Kt(s), 0 ≤ s ≤ 1

)
converges as n → ∞ to the Dirac

mass at the identity mapping of [0, 1]. In other words, for every η > 0,

P(1),n

µ,←→ν ,1

(
sup
s∈[0,1]

∣∣Kt(s)− s
∣∣ > η

)
−→
n→∞

0. (8)

Proof : For t ∈ TM , we let v1(0) = ∅ ≺ v1(1) ≺ . . . ≺ v1(#t1 − 1) be the list of vertices of t of
type 1 in lexicographical order. We define as in [16]

Gt
1(k) = #

{
u ∈ t : u ≺ v1(k)

}
, 0 ≤ k ≤ #t1 − 1,

and we set Gt
1(#t1) = #t. Note that v1(k) does not belong to the set {u ∈ t : u ≺ v1(k)}.

Recall from section 2.4 the definition of the vector a = (a1, a2, a3, a4). From the second assertion
of Proposition 6 in [16], for every s ∈ [0, 1], there exists a constant ε > 0 such that for all n
sufficiently large,

P
(1)
µ

(
|Gt

1(bnsc)− a−1
1 ns| ≥ n3/4

)
≤ e−nε .

Thus we obtain thanks to Lemma 3.9 and Proposition 3.12 that for every s ∈ [0, 1], there exists
a constant ε′ > 0 such that for all n sufficiently large,

P(1),n

µ,←→ν ,1

(
|Gt

1(bnsc)− a−1
1 ns| ≥ n3/4

)
≤ e−nε .
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Let us fix η > 0. We then have for every s ∈ [0, 1],

P(1),n

µ,←→ν ,1
(
|n−1Gt

1(bnsc)− a−1
1 s| ≥ η

)
−→
n→∞

0.

In particular for s = 1 we have

P(1),n

µ,←→ν ,1
(
|n−1#t− a−1

1 | ≥ η
)
−→
n→∞

0,

which implies that for every s ∈ [0, 1],

P(1),n

µ,←→ν ,1
(
|(#t)−1Gt

1(bnsc)− s| ≥ η
)
−→
n→∞

0.

Let us now set kη = d 2
a1η
e and sm = mk−1

η for every m ∈ {0, 1, . . . , kη}. Since the mapping
s ∈ [0, 1] 7→ n−1Gt

1(bnsc) is non-decreasing, we have

P(1),n

µ,←→ν ,1

(
sup
s∈[0,1]

∣∣∣∣Gt
1(bnsc)
#t

− s
∣∣∣∣ ≥ η

)
≤ P(1),n

µ,←→ν ,1

(
sup

0≤m≤kη

∣∣∣∣Gt
1(bnsmc)

#t
− sm

∣∣∣∣ ≥ η

2

)
,

implying that

P(1),n

µ,←→ν ,1

(
sup
s∈[0,1]

∣∣(#t)−1Gt
1(bnsc)− s

∣∣ ≥ η) −→
n→∞

0.

We thus get (8) in the same way as (32) is obtained in [19]. Then we derive (8) from (7) in the
same way as (33) is derived from (32) in [19]. �

We can now complete the proof of Theorem 1.2. Recall that Rm denotes the radius of the map
m. Thanks to Proposition 2.1 we know that the law of Rm under Brq(· | #Vm = n) coincides

with the law of supv∈t1 `v under P(1),n
µ,ν,1. Furthermore we easily see (compare [17, Lemma 1])

that the law of supv∈t1 `v under P(1),n
µ,ν,1 is the law of supv∈t1 `v under P(1),n

µ,←→ν ,1. We thus get the
first assertion of Theorem 1.2.

Let us turn to (ii). By Proposition 2.1 and property (ii) of the Bouttier-Di Francesco-Guitter
bijection stated at the end of Section 2.3, the law of λ(n)

m under Brq(· | #Vm = n) is the law

under P(1),n
µ,ν,1 of the probability measure In defined by

〈In, g〉 =
1

#t1 + 1

g(0) +
∑
v∈t1

g
(
n−1/4`v

) ,

which coincides with the law of In under P(1),n

µ,←→ν ,1. We thus complete the proof of (ii) by following
the lines of the proof of Theorem 2.5 in [19]. Finally, assertion (iii) easily follows from (ii).
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