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1 Introduction

Let (B(t))t≥0 be a standard one-dimensional Brownian motion with B(0) = 0. For x ∈ R let Bbr,x :=
(Bbr,x(u))0≤u≤1 be the Brownian bridge starting at 0 and ending at x. Let Bme := (Bme(u))0≤u≤1 be a
standard Brownian meander, and let Bme,r be the standard meander conditioned to end at level r ≥ 0.
Informally, these processes are defined as

Bbr,x d
= (B |B(1) = x)

Bme d
= (B |B(t) > 0 for all 0 < t < 1)

Bme,r d
= (B |B(t) > 0 for all 0 < t < 1, B(1) = r)

where
d
= denotes equality in distribution, and (B |A) denotes (B(u), 0 ≤ u ≤ 1) conditioned on A. In

particular
Bbr := Bbr,0 is the standard Brownian bridge;
Bex := Bme,0 is the standard Brownian excursion.

These definitions of conditioned Brownian motions have been made rigorous in many ways: for instance by
the method of Doob h-transforms [69, 28], by weak limits of suitably scaled and conditioned lattice walks
[52, 45, 75], and by weak limits as ε ↓ 0 of the distribution of B given Aε for suitable events Aε with
probabilities tending to 0 as ε ↓ 0, as in [17], for instance

(B |B(0, 1) > −ε)
d
→ Bme as ε ↓ 0 (1)

where X(s, t) denotes the infimum of a process X over the interval [s, t], and
d
→ denotes convergence in

distribution on the path space C[0, 1] equipped with the uniform topology. For T > 0 let GT := sup{s :
s ≤ T, B(s) = 0} be the last zero of B before time T and DT := inf{s : s ≥ T, B(s) = 0} be first zero of
B after time T . It is well known [43, 21, 68] that for each fixed T > 0, there are the following identities in
distribution derived by Brownian scaling:(

B(uT )
√
T

)
u≥0

d
= B;

(
B(uGT )
√
GT

)
0≤u≤1

d
= Bbr (2)

(
|B(GT + u(T −GT ))|

√
T −GT

)
0≤u≤1

d
= Bme;

(
|B(GT + u(DT −GT ))|

√
DT −GT

)
0≤u≤1

d
= Bex. (3)

Since the distribution of these rescaled processes does not depend on the choice of T , each rescaled process
is independent of T if T is a random variable independent of B. It is also known that these processes can be
constructed by various other operations on the paths of B, and transformed from one to another by further
operations. See [12] for a review of results of this kind. One well known construction of Bbr,x from B is

Bbr,x(u) := B(u)− uB(1) + ux (0 ≤ u ≤ 1). (4)

Then Bme,r can be constructed from three independent standard Brownian bridges Bbr
i , i = 1, 2, 3 as

Bme,r(u) :=
√

(ru+Bbr
1 (u))2 + (Bbr

2 (u))2 + (Bbr
3 (u))2 (0 ≤ u ≤ 1). (5)

So Bme,r is identified with the three-dimensional Bessel bridge from 0 to r, and the standard meander is
recovered as Bme := Bme,ρ, where ρ is independent of the three bridges Bbr

i , with the Rayleigh density

P (ρ ∈ dx)/dx = xe−
1
2x

2

for x > 0. Then by construction

Bme(1) = ρ =
√

2Γ1 (6)
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where Γ1 is a standard exponential variable. The above descriptions of Bme,r and Bme are read from [78, 41].
See also [21, 12, 15, 68] for further background.

This paper characterizes each member X of the Brownian quartet {B,Bbr, Bme, Bex} in a very different way,
in terms of the distribution of values obtained by sampling X at independent random times with uniform
distribution on (0, 1). The characterization of Bex given here in Theorem 1 is equivalent, via the bijection
between plane trees with edge lengths and random walk paths exploited in [56, 57, 48, 46], of Aldous’s broken
line construction of the random tree derived from Bex by sampling at independent uniform times [7, Corollary
22], [49]. See [4] for details of this equivalence, and related results. This central result in Aldous’s theory of
the Brownian continuum random tree [5, 6, 7] has recently been applied in [8] to construction of the standard
additive coalescent process. See also [10, p. 167] for another application of random sampling of values of
a Brownian excursion. Results regarding to the lengths of excursions of B and Bbr found by sampling at
independent uniform times were obtained in [61], and related in [8] to random partitions associated with the
additive coalescent. But these results do not provide a full description of the laws of B and Bbr in terms of
sampling at independent uniform times, as provided here in Theorem 1.

The rest of this paper is organized as follows. Section 2 introduces some notation for use throughout the
paper, and presents the main results. Except where otherwise indicated, the proofs of these results can be
found in Section 3. Following sections contain various further developments, as indicated briefly in Section
2.

2 Summary of Results

For n = 0, 1, 2, . . . let
0 = Un,0 < Un,1 < · · · < Un,n < Un,n+1 = 1 (7)

be defined by Un,i := Si/Sn+1, 1 ≤ i ≤ n + 1 for Sn := X1 + · · ·+ Xn the sum of n independent standard
exponential variables. It is well known that the Un,i, 1 ≤ i ≤ n are distributed like the order statistics of n
independent uniform (0, 1) variables [71], and that

the random vector (Un,i, 1 ≤ i ≤ n) is independent of Sn+1. (8)

Let X be a process independent of these Un,i, let µn,i be a time in [Un,i−1, Un,i] when X attains its infimum
on that interval, so X(µn,i) = X(Un,i−1, Un,i) is that infimum, and define a R2n+2-valued random vector

X(n) := (X(µn,i), X(Un,i); 1 ≤ i ≤ n+ 1). (9)

Let (Ti, 1 ≤ i ≤ n + 1) be an independent copy of (Si, 1 ≤ i ≤ n + 1), let Vn,i := Ti/Tn+1, and let Γr for
r > 0 be independent of the Si and Ti with the gamma(r) density

P (Γr ∈ dt)/dt = Γ(r)−1tr−1e−t (t > 0) (10)

which makes

P (
√

2Γr ∈ dx)/dx = Γ(r)−1(1
2)r−1x2r−1e−

1
2x

2

(x > 0). (11)

Theorem 1 For each n = 0, 1, 2, . . . the law of the random vector X(n) is characterized by the following

identities in distribution for each of the four processes X = B,Bbr, Bme and Bex:
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(i) (Brownian sampling)

B(n)
d
=
√

2Γn+3/2

(
Si−1 − Ti

Sn+1 + Tn+1
,

Si − Ti
Sn+1 + Tn+1

; 1 ≤ i ≤ n+ 1

)
(12)

(ii) (Meander sampling)

Bme
(n)

d
=
√

2Γn+1

(
Si−1 − Ti−1

Sn+1 + Tn
,
Si − Ti−1

Sn+1 + Tn
; 1 ≤ i ≤ n + 1

∣∣∣∣ n⋂
i=1

(Si > Ti)

)
(13)

(iii) (Bridge sampling)

Bbr
(n)

d
=
√

2Γn+1
1
2 (Un,i−1 − Vn,i, Un,i − Vn,i; 1 ≤ i ≤ n+ 1) (14)

(iv) (Excursion sampling)

Bex
(n+1)

d
=
√

2Γn+1
1
2

(
Un,i−1 − Vn,i−1, Un,i − Vn,i−1; 1 ≤ i ≤ n+ 2

∣∣∣∣∣
n⋂
i=1

(Un,i > Vn,i)

)
(15)

where Un,n+2 := 1.

The right sides of (12) and (13) could also be rewritten in terms of uniform order statistics (U2n+2,i, 1,≤
i ≤ 2n + 2) and (U2n+1,i, 1,≤ i ≤ 2n + 1). So in all four cases the random vector on the right side of
the sampling identity is the product of a random scalar

√
2Γr for some r, whose significance is spelled out

in Corollary 3, and an independent random vector with uniform distribution on some polytope in R2n+2.
Ignoring components of X(n) which are obviously equal to zero, the four random vectors X(n) considered in
the theorem have joint densities which are explicitly determined by these sampling identities.

To illustrate some implications of the sampling identities, for n = 1 the Brownian sampling identity (12)
reads as follows: for U with uniform distribution on (0, 1) independent of B, the joint law of the minimum
of B on [0, U ], B(U), the minimum of B on [U, 1], and B(1) is determined by

(B(0, U), B(U), B(U, 1), B(1))
d
=

√
2Γ5/2

S2 + T2
(−T1, S1 − T1, , S1− T2, S2 − T2) . (16)

The Brownian sampling identity (12) represents the standard Gaussian variable B(1) in a different way for
each n = 0, 1, 2, . . .:

B(1)
d
=
√

2Γn+3/2
Sn+1 − Tn+1

Sn+1 + Tn+1
(17)

as can be checked by a moment computation. To present the case n = 1 of the bridge sampling identity (14)
with lighter notation, let U and V be two independent uniform(0, 1) variables, with U independent of Bbr.
Then the joint law of the minimum of Bbr before time U , the value of Bbr at time U , and the minimum of
Bbr after time U is specified by

(Bbr(0, U), Bbr(U), Bbr(U, 1))
d
= 1

2

√
2Γ2(−V, U − V, U − 1). (18)
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In particular, |Bbr(U)|
d
= 1

2

√
2Γ2|U − V |. It is easily checked that this agrees the observation of Aldous-

Pitman [2] that |Bbr(U)|
d
= 1

2

√
2Γ1U , corresponding to the formula [71, p. 400]

P (Bbr(U) ∈ dx)/dx =
∫ ∞

2|x|
e−

1
2 y

2

dy (x ∈ R). (19)

See also [62] for various related identities. Corollary 16 in Section 8 gives a sampling identity for Bbr,x which
reduces for x = 0 to part (iii) of the previous theorem. There are some interesting unexplained coincidences
between features of this description of Bbr,x and results of Aldous-Pitman [3] in a model for random trees
with edge lengths related to the Brownian continuum random tree.

For any process X with left continuous paths and X(0) = 0, define a random element X̂(n) of C[0, 1], call it
the nth zig-zag approximation to X , by linear interpolation between the values at evenly spaced gridpoints
determined by components of X(n). That is to say, X̂(n)(0) := 0 and for 1 ≤ i ≤ n + 1

X̂(n)

(
i− 1/2

n + 1

)
:= X(µn,i); X̂(n)

(
i

n+ 1

)
:= X(Un,i) (20)

where the Un,i := Si/Sn+1 are constructed independent of X , as above. By the law of large numbers, as
n→∞ and i→∞ with i/n→ p ∈ [0, 1], there is convergence in probability of Un,i to p. It follows that X̂(n)

has an a.s. limit X̂ in the uniform topology of C[0, 1] as n→∞ iff X has continuous paths a.s., in which case
X̂ = X a.s.. The same remark applies to X̃(n) instead of X̂(n), where X̃(n) is the less jagged approximation
to X with the same values X(Un,i) at i/(n + 1) for 0 ≤ i ≤ n + 1, and with linear interpolation between
these values, so X̃(n) is constructed from the X(Un,i) without consideration of the minimal values X(µn,i).
Therefore, Theorem 1 implies:

Corollary 2 If a process X := (X(u), 0 ≤ u ≤ 1) with X(0) = 0 and left continuous paths is such that for
each n = 1, 2, . . . the law of (X(Un,i); 1 ≤ i ≤ n+1) is as specified in one of the cases of the previous theorem
by ignoring the X(µn,i), then X has continuous paths a.s. and X is a Brownian motion, meander, bridge,
excursion, as the case may be.

Let ||X(n)|| denote the total variation of the nth zig-zag approximation to X , that is

||X(n)|| :=
n+1∑
i=1

(X(Un,i−1)−X(µn,i)) +
n+1∑
i=1

(X(Un,i)−X(µn,i)) (21)

where all 2n + 2 terms are non-negative by definition of the µn,i. The following immediate consequence of
Theorem 1 interprets the various factors

√
2Γr in terms of these total variations of zig-zag aproximations.

Corollary 14 in Section 6 gives corresponding descriptions of the law of

||X̃(n)|| :=
n+1∑
i=1

|X(Un,i)−X(Un,i−1)| (22)

for X = B and X = Bbr. These are a little more complicated, but still surprisingly explicit.

Corollary 3 For each n = 0, 1, 2, . . . the following identities in distribution hold:

||B(n)||
d
=
√

2Γn+3/2
d
=
√

Σ2n+3
i=1 B2

i (1) (23)
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where the B2
i (1) are squares of independent standard Gaussian variables, and

||Bme
(n)||

d
= ||Bbr

(n)||
d
= ||Bex

(n+1)||
d
=
√

2Γn+1
d
=
√

Σ2n+2
i=1 B2

i (1). (24)

For n = 0, formula (23) is identity of one-dimensional distributions implied by the result of [58] that

(B(t)− 2B(0, t))t≥0
d
= (R3(t))t≥0 (25)

where Rδ(t) :=
√∑δ

i=1 B
2
i (t) for δ = 1, 2, . . . is the δ-dimensional Bessel process derived from δ independent

copies Bi of B. By (23) for n = 1 and Brownian scaling, for U a uniform(0, 1) variable independent of B the
process

(B(t) + 2B(Ut)− 2B(0, Ut)− 2B(Ut, t))t≥0 (26)

has the same 1-dimensional distributions as (R5(t))t≥0. But by consideration of their quadratic variations,
these processes do not have the same finite-dimensional distributions.

For n = 0 formula (24) reduces to the following well known chain of identities in distribution, which extends
(6):

Bme(1)
d
= − 2Bbr(0, 1)

d
= 2Bex(U)

d
=
√

2Γ1 (27)

where U is uniform (0, 1) independent of Bex. The identity −2Bbr(0, 1)
d
=
√

2Γ1 is just a presentation of
Lévy’s formula [51, (20)]

P (−Bbr(0, 1) > a) = e−2a2
(a ≥ 0).

The identity Bex(U)
d
=
√

2Γ1 in (27) is also due to Lévy[51, (67)]. This coincidence between the distributions
of −Bbr(0, 1) and Bex(U) is explained by the following corollary of the bridge and excursion sampling
identities:

Corollary 4 (Vervaat [75], Biane [13] ) Let µ(ω) be first time a path ω attains its minumum on [0, 1], let
Θu(ω) for 0 ≤ u ≤ 1 be the cyclic increment shift

(Θu(ω))(t) := ω(u+ t(mod1))− ω(t), 0 ≤ t ≤ 1,

and set Θ∗(ω) := Θµ(ω)(ω). Then there is the identity of laws on [0, 1]× C[0, 1]

(µ(Bbr),Θ∗(B
br))

d
= (U,Bex) (28)

for U uniform(0, 1) independent of Bex.

In particular, (28) gives

−Bbr(0, 1) = Θ∗(B
br)(1− µ(Bbr))

d
= Bex(1− U)

d
= Bex(U)

in agreement with (27). The identity ||Bbr
(n)||

d
= ||Bex

(n+1)|| in (24) is also quite easily derived from (28). In

fact, the bridge and excursion sampling identities (14) and (15) are so closely related to Vervaat’s identity
(28) that any one of these three identities is easily derived from the other two. The uniform variable U which
appears in passing from bridge to excursion via (28) explains why the excursion sampling identity is most
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simply compared to its bridge counterpart with a sample size of n for the bridge and n+ 1 for the excursion,
as presented in Theorem 1.

As shown by Bertoin [11, Corollary 4] the increments of Bme can be made from those of Bbr by retaining the
increments of Bbr on [µ(Bbr), 1] and reversing and changing the sign of the increments of Bbr on [0, µ(Bbr)].
Bertoin’s transformation is related to the bridge and meander sampling identities in much the same way as
Vervaat’s transformation is to the bridge and excursion sampling identities. In particular, Bertoin’s trans-

formation allows the identity ||Bme
(n)||

d
= ||Bbr

(n)|| in (24) to be checked quite easily. According to the bijection

between walk paths and plane trees with edge-lengths exploited in [56, 57, 48, 46], the tree constructed by
sampling Bex at the times Un,i has total length of all edges equal to 1

2 ||B
ex
(n)||. So in the chain of identities

(24), the link ||Bex
(n+1)||

d
=
√

2Γn+1 amounts to the result of Aldous [7, Corollary 22] that the tree derived

from sampling Bex at n independent uniform times has total length distributed like 1
2

√
2Γn.

Comparison of the sampling identities for B and Bme yields also the following corollary, which is discussed
in Section 7. For a random element X of C[0, 1], which first attains its minimum at time µ := µ(X), define
random elements PREµ(X) and POSTµ(X) of C[0, 1] by the formulae

PREµ(X) := (X(µ(1− u))−X(µ))0≤u≤1 (29)

POSTµ(X) := (X(µ+ u(1− µ))−X(µ))0≤u≤1 . (30)

Corollary 5 (Denisov [23]) For the Brownian motion B and µ := µ(B), the the processes µ−1/2PREµ(B)
and (1− µ)−1/2POSTµ(B) are two standard Brownian meanders, independent of each other and of µ, which
has the arcsine distribution on [0, 1].

Theorem 1 is proved in Section 3 by constructing an alternating exponential walk

0,−T1, S1− T1, S1 − T2, S2 − T2, S2 − T3, S3 − T3, . . . (31)

with increments −X1, Y1,−X2, Y2,−X3, Y3, . . . where the Xi and Yi are standard exponential variables, by
sampling the Brownian motion B at the times of points τ1 < τ2 < · · · of an independent homogeneous
Poisson process of rate 1/2, and at the times when B attains its minima between these points, as indicated
in the following lemma. This should be compared with the different embedding of the alternating exponential
walk in Brownian motion of [56, 57, 48], which exposed the structure of critical binary trees embedded in a
Brownian excursion. See [4] for further discussion of this point, and [61] for other applications of sampling
a process at the times of an independent Poisson process.

Lemma 6 Let τi, i = 1, 2, . . . be independent of the Brownian motion B with

(τ1, τ2, . . .)
d
= 2(S1, S2, . . .)

d
= 2(T1, T2, . . .)

and let µi denote the time of the minumum of B on (τi−1, τi), so B(µi) := B(τi−1, τi), where τ0 = 0. Then
the sequence 0, B(µ1), B(τ1), B(µ2), B(τ2), B(µ3), B(τ3), . . . is an alternating exponential random walk; that
is

(B(µi), B(τi); i ≥ 1)
d
= (Si−1 − Ti, Si − Ti; i ≥ 1). (32)

Since τn+1
d
= 2Γn+1, Brownian scaling combines with (32) to give the first identity in the following variation

of Theorem 1. The remaining identities are obtained in the course of the proof of Theorem 1 in Section 3.
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Corollary 7 For each n = 0, 1, 2, . . . and each X ∈ {B,Bbr, Bme, Bex} the distribution of the random vector
X(n) defined by (9) is uniquely characterized as follows in terms of the alternating exponential walk, assuming
in each case that Γr for the appropriate r is independent of X:

(i) (Brownian sampling) √
2Γn+1 B(n)

d
= (Si−1 − Ti, Si − Ti; 1 ≤ i ≤ n+ 1) (33)

(ii) (Meander sampling) With N− := inf{j : Sj − Tj < 0}√
2Γn+1/2B

me
(n)

d
= (Si−1 − Ti−1, Si − Ti−1; 1 ≤ i ≤ n+ 1 |N− > n) (34)

(iii) (Bridge sampling)√
2Γn+1/2B

br
(n)

d
= (Si−1 − Ti, Si − Ti; 1 ≤ i ≤ n + 1 |Sn+1 − Tn+1 = 0) (35)

(iv) (Excursion sampling) Let Bex
(n+1)− be the random vector of length 2n+ 2 defined by dropping the last

two components of Bex
(n+1), which are both equal to 0. Then√

2Γn+1/2 B
ex
(n+1)−

d
= (Si−1 − Ti−1, Si − Ti−1; 1 ≤ i ≤ n+ 1 |N− = n+ 1) (36)

It will be seen in Section 3 that each identity in Theorem 1 is equivalent to its companion in the above
corollary by application of the following lemma:

Lemma 8 (Gamma Cancellation) Fix r > 0, and let Y and Z be two finite-dimensional random vectors
with Z bounded. The identity in distribution

Y
d
=
√

2Γr+1/2Z

holds with Γr+1/2 independent of Z if and only if the identity

√
2ΓrY

d
= Γ2r Z

holds for Γr and Y independent, and Γ2r and Z independent.

By consideration of moments for one-dimensional Y and Z [16, Theorem 30.1], and the Cramér Wold device
[16, §29] in higher dimensions, this key lemma reduces to the fact that for independent Γr and Γr+1/2 variables
there is Wilks identity [77]:

2
√

Γr Γr+1/2
d
= Γ2r (r > 0). (37)

By evaluation of moments [77, 30], this is a probabilistic expression of Legendre’s gamma duplication formula:

Γ(2r)

Γ(r)
= 22r−1 Γ(r + 1

2)

Γ(1
2)

. (38)

See [47],[31], [80, §8.4], [9, §4.7] for other proofs and interpretations of (37). This identity is the simplest
case, when s − r = 1/2, of the fact that the distribution of 2

√
ΓrΓs for independent Γr and Γs is a finite

mixture of gamma distributions whenever s− r is half an integer [53, 72]. By a simple density computation
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reviewed in Section 4, this is a probabilistic expression of the fact that the McDonald function or Bessel
function of imaginary argument

Kν(x) :=
1

2

(
x

2

)−ν ∫ ∞
0

tν−1e−t−(x/2)2/t dt (39)

admits the evaluation

Kn+1/2(x) =

√
π

2x
e−xθn(x)x−n (n = 0, 1, 2, . . .) (40)

with

θn(x) =
n∑

m=0

(n+m)!

2m(n−m)!m!
xn−m (41)

the nth Bessel polynomial [76, §3.71 (12)],[25, (7.2(40)], [37]. ¿From this perspective, Wilks’ identity (37)
amounts to the fundamental case of (40)-(41) with n = 0. That is, with a more probabilistic notation and
the substitution ξ =

√
2x,

E exp
(
−ξ(2Γ1/2)−1

)
= e−

√
2ξ (ξ ≥ 0). (42)

This is Lévy’s well known formula [51] for the Laplace transform of the common distribution of 1/(2Γ1/2),

1/B2(1) and the first hitting time of 1 by B, which is stable with index 1
2 .

Immediately from (39) and (40), there is the following well known formula for the Fourier transform of the
distribution of B(1)/

√
2Γν, for Γν independent of the standard Gaussian B(1), and for the Laplace transform

of the distribution of 1/Γν, where the first two identities hold for all real ν > 0 and the last assumes ν = n+ 1
2

for n = 0, 1, 2, . . .. For all real λ

E exp

(
iλB(1)
√

2Γν

)
= E exp

(
−λ2

4Γν

)
=

2

Γ(ν)

(
λ

2

)ν
Kν(λ) =

2nn!

(2n)!
θn(λ)e−λ (43)

These identities were exploited in the first proof [35] of the infinite divisibility the Student t-distribution

of
√
mB(1)/

√
2Γm/2 for an odd number of degrees of freedom m. Subsequent work [36] showed that the

distributions of 1/Γν and B(1)/
√

2Γν are infinitely divisible for all real ν > 0. As indicated in [64] a Brownian
proof and interpretation of this fact follow from the result of [29, 64] that for all ν > 0

(2Γν)−1 d
= L1,2+2ν (44)

where L1,δ denotes the last hitting time of 1 by a Bessel process of dimension δ starting at 0, defined as
below (25) for positive integer δ, and as in [64, 68] for all real δ > 0. See also [19] for further results on the
infinite divisibility of powers of gamma variables. Formulae (43) and (44) combine to give the identity

E exp
(
−1

2λ
2L1,2n+3

)
=

2nn!

(2n)!
θn(λ) e−λ for n = 0, 1, 2 . . . (45)

which underlies the simple form of many results related to last exit times of Bessel processes in 2n + 3
dimensions, such as the consequence of William’s time reversal theorem [68, Ch. VII, Corollary (4.6)] or of
(25) that the distribution of L1,3 is stable with index 1

2 . The Bessel polynomials have also found applications
in many other branches of mathematics [37], for instance to proofs of the irrationality of π and of eq for
rational q.

Section 4 shows how the structure of Poisson processes embedded in the alternating exponential walk com-
bines with the meander sampling identity to give a probabilistic proof of the representation (40) of Kn+1/2(λ)
for n = 0, 1, 2, . . ., along with some very different interpretations of the Bessel polynomial θn(λ), first in terms
of sampling from a Brownian meander, then in terms of a Brownian bridge or even a simple lattice walk:
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Corollary 9 Let Jn be the number of j ∈ {1, . . . , n} such that Bme(Un,j, Un,j+1) = Bme(Un,j, 1). Then

(i) the distribution of Jn is determined by any one of the following three formulae:

P (Jn = j) =
j (2n− j − 1)! n! 2j

(n− j)! (2n)!
(1 ≤ j ≤ n) (46)

E

(
λJn

Jn!

)
=

2nn!

(2n)!
λ θn−1(λ) (λ ∈ R) (47)

E(λJn) =
λ

(2n− 1)
F

(
1− n, 2

2− 2n

∣∣∣∣ 2λ) (λ ∈ R) (48)

where θn−1 is the (n − 1)th Bessel polynomial and F is Gauss’s hypergeometric function; other random
variables Jn with the same distribution are

(ii) [61] the number of distinct excursion intervals of Bbr away from 0 discovered by a sample of n points
picked uniformly at random from (0, 1), independently of each other and of Bbr;

(iii) [61] the number of returns to 0 after 2n steps of a simple random walk with increments ±1 conditioned
to return to 0 after 2n steps, so the walk path has uniform distribution on a set of

(2n
n

)
possible paths.

Note that Jn as in (i) is a function of B̂me
(n), the nth zig-zag approximation to the meander. Parts (ii) and

(iii) of the Corollary were established in [61], with the distribution of Jn defined by (46). To explain the
connection between parts (i) and (ii), let Fme denote the future infimum process derived from the meander,
that is

Fme(t) := Bme(t, 1) (0 ≤ t ≤ 1).

The random variable Jn in (i) is the number of j such that Bme(t) = Fme(t) for some t ∈ [Un,j, Un,j+1],
which is the number of distinct excursion intervals of the process Bme − Fme away from 0 discovered by
the Un,i, 1 ≤ i ≤ n. So the equality in distribution of the two random variables considered in (i) and (ii) is
implied by the equality of distributions on C[0, 1]

Bme − Fme d
= |Bbr|. (49)

This is read from the consequence of (5) and (25), pointed out by Biane-Yor [15], that

(Bme, Fme)
d
= (|Bbr|+ Lbr, Lbr) (50)

where Lbr := (Lbr(t), 0 ≤ t ≤ 1) is the usual local time process at level zero of the bridge Bbr. The identity
(49) also allows the results of [61] regarding the joint distribution of the lengths of excursion intervals of
Bbr discovered by the sample points, and the numbers of sample points in these intervals, to be expressed
in terms of sampling Bme and its future infimum process Fme. These results overlap with, but are are not
identical to, those which can be deduced by the meander sampling identity from the simple structure of
(Wj, 1 ≤ j ≤ n |N− > n) exposed in the proof of Corollary 9 in Section 4. Going in the other direction, (50)
combined with the meander sampling identity (13) gives an explicit description of the joint law of the two
random vectors (|Bbr(Un,i)|, 1 ≤ i ≤ n) and (Lbr(Un,i), 1 ≤ i ≤ n + 1), neither of which was considered in
[61].

The last interpretation (iii) in Corollary 9 provides a simple combinatorial model for the Bessel polynomials
by an exponential generating function derived from lattice path enumerations. Another combinatorial model
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for Bessel polynomials, based on an ordinary generating function derived from weighted involutions, was
proposed by Dulucq and Favreau [24]. Presumably a natural bijection can be constructed which explains
the equivalence of these two combinatorial models, but that will not be attempted here. See [63] for further
discussion.

As indicated in Section 4, the representation (47) of the Bessel polynomials implies some remarkable formulae
for moments of the distribution of Jn defined by this formula. Some of these formulae are the particular
cases for α = θ = 1

2 of results for a family of probability distributions on {1, . . . , n}, indexed by (α, θ) with
0 < α < 1, θ > −α, obtained as the distributions of the number of components of a particular two-parameter
family of distributions for random partitions of {1, . . . , n}. This model for random partitions was introduced
in an abstract setting in [59], and related to excursions of the recurrent Bessel process of dimension 2−2α in
[61, 66]. Section 5 relates the associated two-parameter family of distributions on {1, . . . , n} to generalized
Stirling numbers and the calculus of finite differences. This line of reasoning establishes a connection between
Bessel polynomials and the calculus of finite differences which can be expressed in purely combinatorial
terms, though it is established here by an intermediate interpretation involving random partitions derived
from Brownian motion.

3 Proofs of the Sampling Formulae

Proof of Lemma 6. By elementary calculations based on of the joint law of −B(0, t) and B(t) for t > 0,
which can be found in [68, III (3.14)], the random variables −B(µ1) and B(τ1) − B(µ1) are independent,
with the same exponential(1) distribution as |B(τ1)|:

−B(µ1)
d
= B(τ1)− B(µ1)

d
= |B(τ1)|

d
= Γ1. (51)

Lemma 6 follows from this observation by the strong Markov property of B. 2

As indicated in Section 7, the independence of −B(µ1) and B(τ1) − B(µ1) and the identification (51) of
their distribution can also be deduced from the path decomposition of B at time µ1 which is presented in
Proposition 15.

Proof of the Brownian sampling identities (12) and (33). Formula (33) follows from Lemma 6 by
Brownian scaling, as indicated in the introduction. Formula (12) follows from (33) by gamma cancellation
(Lemma 8), because the random vector on the right side of (33) can be rewritten as

Γ2n+2

(
Si−1 − Ti

Sn+1 + Tn+1
,

Si − Ti
Sn+1 + Tn+1

; 1 ≤ i ≤ n + 1

)
(52)

where Γ2n+2 := Sn+1 + Tn+1 is independent of the following random vector, by application of (8) with n

replaced by 2n+ 1. 2

The laws of Bme, Bbr and Bex are derived from B by conditioning one or both of B(1) and B(0, 1) to equal
zero, in the sense made rigorous by weak limits such as (1) for the meander. The law of each of the (2n+ 2)-
dimensional random vectors Bme

(n), B
br
(n) and Bex

(n) is therefore obtained by conditioning B(n) on one or both of

B(1) and B(0, 1). Since B(1) is a component of B(n), and B(0, 1) is the minimum of n + 1 components of
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B(n), this conditioning could be done by the naive method of computations with the joint density of the 2n+3
independent random variables Si, Ti, 1 ≤ i ≤ n + 1 and Γn+3/2 appearing on the right side of the Brownian
sampling identity (12). This naive method is used in Section 8 to obtain a more refined sampling identity for
the bridge ending at x for arbitrary real x. But as will be seen from this example, computations by the naive
method are somewhat tedious, and it would be painful to derive the sampling identities for the meander
and excursion this way. The rest of this section presents proofs of the conditioned sampling identities by
the simpler approach of first deriving the variants of these identities presented in Corollary 7, all of which
have natural interpretations in terms of sampling the Brownian path at the points of an independent Poisson
process.

Proof of the bridge sampling identities (35) and (14). Formula (35) follows easily from (33) after
checking that

(τn+1 |B(τn+1) = 0)
d
= 2Γn+1/2. (53)

This is obtained by setting x = 0 in the elementary formula

P (τn+1 ∈ dt, B(τn+1 ∈ dx) =
1

n!
tn(1

2)ne−t/2
1
√

2πt
e−

1
2x

2/t dt dx (t > 0, x ∈ R). (54)

To pass from (35) to (14), observe that the definitions Un,i := Si/Sn+1 and Vn,i := Ti/Tn+1 create four
independent random elements, the two random vectors (Un,i, 0 ≤ i ≤ n + 1) and (Vn,i, 0 ≤ i ≤ n + 1) and
the two random variables Sn+1 and Tn+1. An elementary calculation gives

(Sn+1 |Sn+1 − Tn+1 = 0)
d
= 1

2Γ2n+1. (55)

So the right side of (35) can be replaced by

1
2Γ2n+1(Un,i−1 − Vn,i, Un,i − Vn,i; 1 ≤ i ≤ n + 1). (56)

and (14) follows by gamma cancellation (Lemma 8). 2

The next lemma is a preliminary for the proofs of the meander and excursion sampling identities. For τi, i =
1, 2, . . . as in Lemma 6 the points of a Poisson process with rate 1/2, independent of B, let (G(τ1), D(τ1))
denote the excursion interval of B straddling time τ1, meaning G(τ1) is the time of the last zero of B before
time τ1 and D(τ1) is time of the next zero of B after time τ1. Let N := max{j : τj < D(τ1)} be the number
of Poisson points which fall in this excursion interval (G(τ1), D(τ1)), so τN < D(τ1) < τN+1. It is now
convenient to set τ0 := G(τ1) rather than τ0 = 0 as in Lemma 6.

Lemma 10 The distribution of

(B(τi−1, τi), B(τi); 1 ≤ i ≤ N |B(τ1) > 0) (57)

is identical to the distribution of

(Si−1 − Ti−1, Si − Ti−1; 1 ≤ i ≤ N−) (58)

where N− is the first j such that Sj − Tj < 0, and S0 = T0 = 0. Moreover, for each n = 0, 1, 2, . . .

(τn+1 −G(τ1) |N ≥ n+ 1)
d
= 2Γn+1/2

d
= (D(τ1)−G(τ1) |N = n + 1) (59)

and the same identities hold if the conditioning events (N ≥ n + 1) and (N = n + 1) are replaced by
(N ≥ n + 1, B(τ1) > 0) and (N = n+ 1, B(τ1) > 0) respectively.
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Proof. Using the obvious independence of |B(τ1)| and the sign of B(τ1), (51) gives

(B(τ1) |B(τ1) > 0)
d
= S1. (60)

The identification of the distribution of the sequence in (57) given B(τ1) > 0 now follows easily from the
strong Markov property, as in Lemma 6. The identities in (59) are consequences of the well known result of
Lévy[68, XII (2.8)] that the Brownian motion B generates excursion intervals of various lengths, which are
the jumps of the stable subordinator of index 1

2 which is the inverse local time process of B at 0, according
to the points of a homogeneous Poisson process with intensity measure Λ such that Λ(s,∞) =

√
2/(πs)

for s > 0. Thus the intensity of intervals in which there is an (n + 1)th auxiliary Poisson point in ds

is P (τn+1 ∈ ds)Λ(s,∞), which is proportional to sns−1/2e−s/2ds. This is the density of 2Γn+1/2 up to a
constant, which gives the first identity in (59). A similar calculation gives the second identity in (59), which
was observed already in [61]. The results with further conditioning on (B(τ1) > 0) follow from the obvious
independence of this event and (N,G(τ1), D(τ1), τ1, τ2, . . .). 2

Proof of the meander sampling identities (13) and (34). In the notation of Lemma 10, it is easily
seen that (

τi −G(τ1)

τn+1 −G(τ1)
, 1 ≤ i ≤ n+ 1

∣∣∣∣B(τ1) > 0, N ≥ n+ 1

)
d
= (Un,i, 1 ≤ i ≤ n+ 1)

and that the random vector on the left side above is independent of τn+1 − G(τ1) given B(τ1) > 0 and
N ≥ n + 1. Given also τn+1 − G(τ1) = t the process (B(G(τ1) + s), 0 ≤ s ≤ t) is a Brownian meander of
length t, with the same law as (

√
tBme(s/t), 0 ≤ s ≤ t). Formula (34) can now be read from Lemma 10, and

(13) follows from (34) by the gamma cancellation lemma. 2

Proof of the excursion sampling identities (36) and (15). The proof of (36) follows the same pattern
as the preceding proof of (34), this time conditioning on B(τ1) > 0, N = n + 1 and D(τ1) − G(τ1) = t to
make the process (B(G(τ1) + s), 0 ≤ s ≤ t) a Brownian excursion of length t. The passage from (36) to (15)
uses the easily verified facts that given N− = n + 1 the sum Sn+1 is independent of the normalized vector
S−1
n+1(Ti, Si; 1 ≤ i ≤ n) with

(Sn+1 |N− = n+ 1)
d
= 1

2Γ2n+1 (61)

(S−1
n+1(Ti, Si; 1 ≤ i ≤ n) |N− = n+ 1)

d
= (Vn,i, Un,i; 1 ≤ i ≤ n | ∩ni=1 (Vn,i < Un,i)),

so the proof is completed by another application of gamma cancellation. 2

Proof of Corollary 4 (Vervaat’s identity). For any process X which like Bbr has cyclically stationary

increments, meaning Θu(X)
d
= X for every 0 < u < 1, and which attains its minimum a.s. uniquely at time

µ(X), it is easily seen that the nth zig-zag approximation X̂(n) attains its minimum at time µ(X̂(n)) which

has uniform distribution on {(i− 1/2)/n+ 1), 1 ≤ i ≤ n+ 1}, and that µ(X̂(n)) is independent of Θ∗(X̂(n)).

For X = Bbr inspection of the bridge and excursion sampling identities shows further that

Θ∗(B̂
br
(n))

d
=

(
B̂ex

(n+1)

(
1
2 + u(n + 1)

n+ 2

)
, 0 ≤ u ≤ 1

)
(62)

where the linear time change on the right side of (62) just eliminates the initial and final intervals, each of
length 1

2/(n+2) where B̂ex
(n+1) equals 0. As n→∞, µ(B̂br

(n))→ µ(Bbr) and Θ∗(B̂
br
(n))→ Θ∗(B

br) with respect
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to the uniform metric on C[0, 1] almost surely, and the zig-zag process on the right side of (62) converges
uniformly a.s. to Bex. 2

4 Bessel polynomials, products of independent gamma variables, and
the meander

By an elementary change of variables, for independent Γr and Γs with r, s > 0, the joint density of Γr and
2
√

ΓrΓs is given for x, z > 0 by the formula

P (Γr ∈ dx, 2
√

ΓrΓs ∈ dz)

dx dz
=

21−2s

Γ(r)Γ(s)
xr−s−1z2s−1e−x−(z/2)2/x. (63)

Hence by integrating out x and applying (39), there is the formula [53],[72]: for z > 0

P
(
2
√

ΓrΓs ∈ dz
)
/dz =

22−r−s

Γ(r)Γ(s)
zr+s−1Kr−s(z). (64)

As remarked in [70, p. 96], (63) and (64) identify the conditional law of Γr given ΓrΓs = w as the generalized
inverse Gaussian distribution, which has found many applications [70].

As noted in [53, 72], the classical expression (40) for Kn+1/2(x) in terms of the Bessel polynomial θn(x)

as in (41) implies that for each n = 0, 1, . . . the density of 2
√

ΓrΓr+n+1/2 is a finite linear combination of

gamma densities with positive coefficients. That is to say, the distribution of 2
√

ΓrΓr+n+1/2 is a probabilistic

mixture of gamma distributions. After some simplifications using the gamma duplication formula (38), it
emerges that for each n = 1, 2, . . . and each r > 0 there is the identity in distribution

2
√

ΓrΓr+n−1/2
d
= Γ2r+Jn,r−1 (65)

where on the left the gamma variables Γr and Γr+n−1/2 are independent, and on the right Jn,r is a random
variable assumed independent of gamma variables Γ2r+j−1, j = 1, 2, . . ., with the following distribution on
{1, . . . , n}:

P (Jn,r = j) =
(2n− j − 1)! (2r)j−1

(n− j)! (j− 1)! 22n−j−1 (r+ 1
2)n−1

(1 ≤ j ≤ n) (66)

where
(x)n := x(x+ 1) · · ·(x+ n− 1) = Γ(x+ n)/Γ(x). (67)

The probability generating function of Jn,r − 1 is found to be

E(λJn,r−1) =
(1

2)n−1

(r + 1
2)n−1

F

(
1− n, 2r

2− 2n

∣∣∣∣ 2λ) (68)

where F is Gauss’s hypergeometric function

F

(
a, b

c

∣∣∣∣ z) =
∞∑
k=0

(a)k(b)k
(c)k

zk

k!
(69)

with the understanding that for a = 1− n as in (68) the series terminates at k = n− 1.
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In the particular case r = 1, the identity (65) for all n = 1, 2, . . . can be read from the Rayleigh distribution
(6) of Bme(1), the form (34) of the meander sampling identity and the interpretation of the right side
of (65) for r = 1 implied by the following lemma. The proof of this lemma combined with the meander
sampling identity yields also Corollary 9, formulae (46) and (48) being the particular cases r = 1 of (66) and
(68). Moreover the previous argument leading to (65) can be retraced to recover first the classical identities
(40)-(41) for all n = 0, 1, . . ., then (65) for all r > 0 and all n = 1, 2, . . ..

Lemma 11 Let

Wn := Sn − Tn =
n∑
i=1

(Xi − Yi)

be symmetric random walk derived from independent standard exponential variables Xi, Yi, and let N− :=
inf{n : Wn < 0} be the hitting time of the negative half-line for this walk. For each n = 1, 2, . . . the
distribution of Wn given the event

(N− > n) := (Wi > 0 for all 1 ≤ i ≤ n)

is determined by

(Wn |N− > n)
d
= SJn (70)

where Jn is a random variable independent of S1, S2, . . . with the distribution displayed in (46), which is also
the distribution of Jn,1 defined by (66).

Proof. Let 1 ≤ N1 < N2 < . . . denote the sequence of ascending ladder indices of the walk (Wn), that is
the sequence of successive j such that Wj = max1≤i≤jWi. It is a well known consequence of the memoryless
property of the exponential distribution that

(WN1,WN2, . . .)
d
= (S1, S2, . . .) (71)

and that the WN1 ,WN2, . . . are independent of N1, N2 − N1, N3 − N2, . . ., which are independent, all with
the same distribution as N−; that is for i ≥ 1 and n ≥ 0, with N0 := 0,

P (Ni −Ni−1 > n + 1) = P (N− > n)
(1

2)n
n!

=

(
2n

n

)
2−2n, (72)

See Feller [27, VI.8,XII.7]. For each n ≥ 1 let Rn,1 = 1, . . . , Rn,Ln = n be the successive indices j such
that Wj = minj≤i≤nWi. By consideration of the walk with increments Xi − Yi, 1 ≤ i ≤ n replaced by
Xn+1−i − Yn+1−i, 1 ≤ i ≤ n, as in [27, XII.2], for each n = 1, 2, . . . there is the identity in distribution

((Ln;Rn,1, . . . , Rn,Ln) |N1 > n)
d
= ((Kn;N1, . . . , NKn) |An) (73)

where
An := (Ni = n for some i ) = (Wn = max

0≤i≤n
Wi) (74)

is the event that n is an ascending ladder index, and

Kn :=
n∑

m=1

1(Am) (75)

16



is the number of ascending ladder indices up to time n. Moreover, the two conditioning events have the same
probability P (An) = P (N− > n) as in (72), and from (71) given N1 > n and Ln = ` the WRn,i for 1 ≤ i ≤ `
are independent of the Rn,i for 1 ≤ i ≤ `, where Rn,` = n, with

((WRn,1, . . . ,WRn,`) |Ln = `)
d
= (S1, . . . , S`)

The distribution of the random vectors in (73) was studied in [61]. As indicated there, and shown also by
Lemma 12 and formula (85) below, the distribution of Kn given An is that of Jn,1 described by (66). 2

According to the above argument, two more random variables with the distribution of Jn = Jn,1 described
in Corollary 9 can be defined as follows in terms of the walk (Wj):

(iv) the number Ln of j ∈ {1, . . . , n} with Wj = minj≤i≤nWi, given N− > n;

(v) as the number Kn of j ∈ {1, . . . , n} with Wj = max1≤i≤jWi, given Wn = max1≤i≤nWi.

The discussion in [27, XII.2,XII.7] shows that the same distribution is obtained from either of these con-
structions for any random walk (Wj) with independent increments whose common distribution is continuous
and symmetric.

The fact that formula (66) defines a probability distribution on {1, . . . , n} for every r > 0 can be reformulated
as follows. Replace n − 1 by m and use (68) for λ = 1 to obtain the following identity, the case r = 1

2 of
which appears in [32, (5.98)]:

F

(
−m, 2r

−2m

∣∣∣∣ 2) =
(r + 1

2)m

(1
2)m

(m = 0, 1, 2, . . .). (76)

Put another way, there is the following formula for moments of Jn = Jn,1: for all n = 1, 2, . . . and all r > 0

E

(
(2r)Jn−1

Jn!

)
=

(r+ 1
2)n−1

(3
2)n−1

. (77)

In particular, for r = 1 + k/2 for positive integer k this reduces to the following expression for the rising
factorial moments of Jn + 1:

E(Jn + 1)k =
(k + 1)!(1

2(k + 3))n−1

(3
2)n−1

(k = 0, 1, 2, . . .) (78)

which for even k can be further reduced by cancellation. If Jn is defined as in Corollary 9 to be the number
of j ∈ {1, . . . , n} such that Bme(Un,j, Un,j+1) = Bme(Un,j , 1), then by application of [61, Proposition 4] and
(50),

Jn/
√

2n→ Bme(1) almost surely as n→∞. (79)

Straightforward asymptotics using (78) and (6) show that the convergence (79) holds also in kth mean for
every k = 1, 2, . . ..

It is natural to look for interpretations of the distribution of Jn,r appearing in (65) and (68) for other values
of r. For r = 1/2 it can be verified by elementary computation that for Wn := Sn− Tn, the difference of two
independent gamma(n) variables there is the following companion of (70):

|Wn|
d
= SJn,1/2 (80)
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where Jn,1/2 is independent of S1, S2, . . .. If Wn is embedded in Brownian motion as in Lemma 6 as Wn =
B(τn), this can also be derived as follows from the decomposition of the Brownian path at the time λn of its
last exit from 0 before time τn:

|Wn|
d
=
√
τnAB

me(1) = 2
√

ΓnAΓ1 (81)

where A := (τn−λn)/τn is an arcsine variable independent of τn = 2Γn and Bme(1) =
√

2Γ1. It is elementary

that AΓ1
d
= Γ1/2, so (80) follows from (81) and (65) for r = 1

2 . Formula (80) can also be interpreted directly
in terms of the alternating exponential walk. Let

Λn := max{j ≤ n : WjWn ≤ 0},

and let
un := P (N− > n) = (1

2)n/n!

as in Lemma 11. Elementary calculations based on (80) and Lemma 11 show that

Jn,1/2
d
= Jn−Λn (82)

where given Λn = j the distribution of Jn−Λn is that of Jn−j , and

P (Λn = j) =

{
2un if j = 0
ujun−j if 1 ≤ j ≤ n− 1

(83)

This argument shows also that Jn,1/2 can be constructed from the walk (Wj, 0 ≤ j ≤ n) as the number of

k > Λn such that |Wk| = mink≤j≤n |Wj|. Let Gn,r(λ) := EλJn,r as determined by (68). Then (82) and (83)
imply the identity of hypergeometric polynomials

n−1∑
j=1

ujun−jGn−j,1(λ) = Gn,1/2(λ)− 2unGn,1(λ) (84)

which is easily checked for small n. A question left open here is whether the identity (65) has any natural
interpretation in terms of Brownian motion or the alternating exponential random walk for values of r other
than the values r = 1 and r = 1

2 discussed above.

5 Combinatorial identities related to random partitions

By evaluation of moments on both sides, and using the special case n = 1, the identity (65) for n ≥ 1 is seen
after some elementary calculations to amount to the formula

(1
2t)n =

n∑
k=1

a(n, k, 1
2)(t)k (85)

where

a(n, k, 1
2) :=

2k−2n(2n− k − 1)!

(k − 1)!(n− k)!
= P (Jn = k)

(1
2)n
k!

(86)
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for Jn
d
= Jn,1 as in the previous section. The identity (85) with a(n, k, 1

2) given by the the first equality in
(86) can be read from formulae for finite difference operators due to Toscano [73, (17),(122)],[74, (2.3),(2.11)].
In a similar vein, (76) reduces to the following identity: for all r > 0 and m = 0, 1, 2, . . .

(r + 1
2)m =

m∑
j=0

2a(m+ 1, j + 1, 1
2)(2r)j. (87)

For each m both sides are polynomials in r of degree m, so this holds also an identity of polynomials. Many
similar identities can be found in Toscano’s paper [73].

As shown by Toscano, for arbitrary real α the coefficients a(n, k, α) in the formula

(tα)n =
n∑
k=1

a(n, k, α)(t)k (88)

define polynomials in α, known as generalized Stirling numbers [73, 74, 20, 38] which can be expressed as

a(n, k, α) =
1

k!

k∑
j=1

(−1)j
(
k

j

)
(−jα)n =

n∑
r=k

(−1)n−r
[
n

r

]{
r

k

}
αr (89)

where
[n
r

]
and

{ r
k

}
are the unsigned Stirling numbers of the first and second kinds respectively, as defined in

[32]. The following probabilistic interpretation of the a(n, k, α) for 0 < α < 1 gives a generalization of (86).

Lemma 12 Let 0 < N1 < N2, . . . be the ascending ladder indices of a random walk Wn = Z1 + · · ·+ Zn
where the Zi independent and identically distributed, such that P (Wn > 0) = α for all n for some α ∈ (0, 1),
let Kn be the number of ascending ladder indices up to time n, and An the event that n is an ascending
ladder index. Then for 1 ≤ k ≤ n

P (Kn = k, An) = coefficient of xn in (1− (1− x)α)k =
k!

n!
a(n, k, α) (90)

P (An) =
(α)n
n!

(91)

and hence

P (Kn = k |An) =
k!

(α)n
a(n, k, α) (1 ≤ k ≤ n) (92)

Proof. According to Feller [27, XII.7], the generating function of N1 is E(xN1) = 1− (1− x)α. This gives
the first equality in (90) because (Kn = k, An) = (Nk = n) where Nk is the sum of k independent copies of
N1. The second equality in (90) reduces to the first equality in (89) by binomial expansions. Formula (91),
which appears in [61, (19)], is obtained from a standard generating function computation [26]:

∞∑
n=0

P (An)xn = (1−E(xN1))−1 = (1− (1− (1− x)α))−1 = (1− x)−α.

2
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In the particular case α = 1/2, a classical formula of Lambert [32, (5.70)] gives the expansion

(1− (1− x)1/2)k =

(
x

2

)k ∞∑
m=0

(
2m+ k

m

)
k

2m+ k

(
x

4

)m
for k > 0 which together with (90) yields the two expressions for a(n, k, 1/2) in (86), hence formula (46) for
the distribution of Jn.

Note that Lemma 12 implies

a(n, k, α) > 0 for all 1 ≤ k ≤ n and 0 < α < 1, (93)

which does not seem obvious from either of the combinatorial formulae (89). According to [61, Prop. 4 and
Lemma 7], as n→∞ the conditional distribution of Kn/n

α given An converges weakly to the distribution on
(0,∞) with density Γ(α+ 1)xgα(x), where gα(x) is the density of the Mittag-Leffler distribution determined
by the moments ∫ ∞

0
xpgα(x)dx =

Γ(p+ 1)

Γ(pα+ 1)
(p > −1). (94)

That is [67]

gα(x) =
1

πα

∞∑
k=1

(−1)k+1

k!
Γ(αk + 1)xk−1 sin(παk). (95)

Known local limit approximations [39] to the distribution of Nk for large k by a stable density with index α
yield a corresponding local limit approximation to the distribution of Kn given An. This translates via (92)
into the following asymptotic formula for the generalized Stirling numbers a(n, k, α) which does not seem to
appear in the combinatorial literature: for each 0 < α < 1 and 0 < x <∞,

a(n, k, α) ∼
Γ(n)

Γ(k)
n−α α gα(x) as n→∞ with k ∼ xnα. (96)

As observed in [61], the distribution of Kn given An in (92), depending on a parameter α ∈ (0, 1), is identical
to the distribution of the number of components κ(Πn) of a random partition Πn governed by Pα,α, where
Pα,θ for α ∈ (0, 1) and θ > 0 governs Πn according to the following probability distribution on the finite set
of all partitions of {1, . . . , n}, introduced in [59]:

Pα,θ(Πn = π) =
αk(θ/α)k

(θ)n

k∏
i=1

(1− α)ni−1 (97)

for each partition π with k components of sizes ni ≥ 1 with with
∑k
i=1 ni = n. Easily from (97), by summing

over all π with κ(π) = k,

Pα,θ(κ(Πn) = k) = Pα,α(κ(Πn) = k)
(θ/α)k
k!

(α)n
(θ)n

. (98)

The identity
∑n
k=1 Pα,θ(κ(Πn) = k) = 1 for all θ > 0, applied to θ = tα gives

(tα)n =
n∑
k=1

(α)n
k!

Pα,α(κ(Πn) = k)(t)k
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which allows either of (88) and (92) to be deduced immediately from the other, without passing via (89).
The above argument yields also

Pα,θ(κ(Πn) = k) =
(θ/α)k
(θ)n

a(n, k, α). (99)

As indicated in [59], if formula (98) is modified to avoid dividing by 0 when either α or θ equals 0, the
modified formula defines a probability distribution on partitions for all (α, θ) with 0 ≤ α < 1 and θ > −α.
Similar remarks apply to (99), which in the limit case as α ↓ 0 reduces to a well known result for the Ewens
sampling formula [44, (41.5)]. Easily from (99) and (96), for all (α, θ) with 0 < α < 1 and θ > −α, the Pα,θ
distribution of κ(Πn)/nα converges as n→∞ to the distribution with density (Γ(θ+1)/Γ(θ/α+1))xθ/αgα(x).
See also [66, 60] for further results related to this two-parameter family of random partitions.

6 Distributions of some total variations

In view of the simple exact formulae provided by Corollary 3 for the distributions of ||X(n)|| for X =

B,Bbr, Bex, Bme, it is natural to look for corresponding descriptions of the laws of the variations ||X̃(n)|| :=∑n+1
i=1 |X(Un,i) − X(Un,i−1)| for these processes. As an immediate consequence of the form (33) of the

Brownian sampling identity and the elementary identity |S1 − T1|
d
= S1, the distribution of ||B̃(n)|| is such

that √
2Γn+1 ||B̃(n)||

d
= Γn+1. (100)

So for each n = 0, 1, . . . the distribution of ||B̃(n)|| is uniquely determined by the moments

E||B̃(n)||
p = 2−p/2

Γ(n+ 1 + p)

Γ(n + 1 + p/2)
(n+ 1 + p > 0). (101)

This formula is easily verified for p = 1 and p = 2 by conditioning on the Uni. The same method shows
that the formula for any positive integer p reduces to an evaluation of a sum over partititions of p which is
a known evaluation of a Bell polynomial [22, p. 135, 3h]. A more explicit description of the distribution of
||B̃(n)||, and a corresponding result for ||B̃br

(n)||, will now be obtained by application of the following lemma.
This leaves open the problem of finding analogous results for Bme and Bex.

Let βa,b denote a random variable with the beta(a, b) distribution of Γa/(Γa + Γ′b) for independent gamma
variables Γa and Γ′b.

Lemma 13 For each pair of real parameters r and s with 0 ≤ s ≤ 2r− 1 the identity in distribution√
2Γr Y

d
= Γs (102)

holds for Γr independent of Y iff

Y
d
= βs,2r−1−s

√
2Γr−1/2 (103)

where the beta and gamma variables are independent.

Proof. By Wilks’ identity (37) and the elementary fact that βa,b := Γa/(Γa + Γ′b) is independent of

Γa + Γ′b
d
= Γa+b,√

2Γr βs,2r−1−s

√
2Γr−1/2 = βs,2r−1−s

√
2Γr−1/2

√
2Γr

d
= βs,2r−1−sΓ2r−1

d
= Γs.
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So (103) implies (102). The converse holds because the distribution of Y in (102) is obviously determined
by its moments. 2

By conditioning on
√

2Γc, whose density is displayed in (11), for a, b, c > 0 the density fa,b,c of βa,b
√

2Γc in
(103) is given by the formula

fa,b,c(y) =
Γ(a+ b) ya−1

Γ(a)Γ(b)Γ(c)2c−1

∫ ∞
y

t2c−a−b(t− y)b−1e−
1
2 t

2

dt. (104)

In particular, for c = (a + b)/2 the density fa,b := fa,b,(a+b)/2 of βa,b
√

2Γ(a+b)/2 reduces by the gamma

duplication formula (38) to

fa,b(y) =
2(a+b+1)/2Γ((a+ b+ 1)/2)

Γ(a)Γ(b)
ya−1φb(y) (105)

where the function φb is defined as follows for b > 0 in terms of Z with the standard Gaussian density

φ(z) := 1/
√

2πe−
1
2 z

2

:

φb(y) := E((Z − y)b−11(Z > y)) =
∫ ∞
y

(z − y)b−1φ(z)dz. (106)

By comparison of (106) with [50, (10.5.2)], the function φb(y) can be expressed in terms of the either the
Hermite function Hν(z) of [50] or the confluent Hypergeometric function U(a, b, z) of [1] as

φb(y) = φ(y)Γ(b)2b/2H−b(y/
√

2) = φ(y)Γ(b)2−b/2U(1
2b,

1
2 ,

1
2y

2). (107)

As indicated in [55, 50], this function can also be expressed in terms of one of Weber’s parabolic cylinder
functions. Easily from (106) there are the formulae

φ1(y) = P (Z > y); φ2(y) = φ(y)− yφ1(y); φ3(y) = −yφ(y) + (1 + y2)φ1(y) (108)

and so on, according to the recursion

φb(y) = (b− 2)φb−2(y)− yφb−1(y) (b > 2) (109)

which follows from (106) by integration by parts. Hence for m = 0, 1, 2, . . .

φm+1(y) = φ(y)

(
−
d

dy

)m φ1(y)

φ(y)
= (−1)m[h∗m(y)φ1(y)− k∗m(y)φ(y)] (110)

where h∗m and k∗m are variations of the Hermite polynomials, with non-negative integer coefficients, of degrees
m and m− 1 respectively, determined by the same recurrence pm+1(y) = ypm(y) +mpm−1(y) with different
initial conditions [55, p. 74-77].

Corollary 14 For each n = 1, 2, . . . the distribution of

||B̃(n)|| :=
n+1∑
i=1

|B(Un,i)− B(Un,i−1)|
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is that of βn+1,n

√
2Γn+1/2 derived from independent beta and gamma variables: for y > 0

P (||B̃(n)|| ∈ dy) =
2n+1

Γ(n)
ynφn(y) dy (111)

while the corresponding distribution for Bbr instead of B is that of βn,n
√

2Γn, with

P (||B̃br
(n)|| ∈ dy) =

2n+1/2Γ(n+ 1
2)

Γ(n)2
yn−1 φn(y) dy. (112)

As n→∞ the distributions of both ||B̃(n)|| −
√
n/2 and ||B̃br

(n)|| −
√
n/2 converge to the normal distribution

with mean 0 and variance 3/8.

Proof. Formula (111) is read from (100), Lemma 13, and (105). The result for the bridge is obtained
similarly using the following property of the random walk Wn :=

∑n
i=1(Xi − Yi). If Γn :=

∑n
i=1 |Xi − Yi|,

then
(Γn+1 |Wn+1 = 0)

d
= Γn. (113)

Combined with the bridge sampling identity (35) this gives√
2Γn+1/2 ||B̃

br
(n)||

d
= Γn (114)

and (112) now follows from Lemma 13 and (105). To check (113), observe first that

(Γn+1,Wn+1)
d
= (Γn+1,Γn+1Qn+1)

for a random variable Qn+1 with values in [−1, 1] which is independent of Γn+1, with a distribution which
has atoms at ±1 and a density qn+1 on (−1, 1) which is strictly positive and continuous, but whose precise
form is irrelevant. Thus for |w| < t

P (Wn+1 ∈ dw |Γn+1 = t) = t−1qn+1(w/t)dw

which implies (113). The asymptotic normality of ||B̃(n)|| and ||B̃br
(n)|| follows easily from the representations

in terms of beta and gamma variables, and the well known normal approximations of these variables. The
limiting variance can be checked using the moment formulae (101) and (115) below, and standard asymptotics
for the gamma function [1, 6.1.47]. 2

The following graphs display the densities found in (111)-(112):

Density of ||B̃(n)|| for n = 0, 1, 2 . . . , 10 Density of ||B̃br
(n)|| for n = 1, 2 . . . , 10
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According to (111)-(112), for each n = 1, 2, . . . the distribution of ||B̃(n)|| is the size-biased distribution of

||B̃br
(n)||. This is reminiscent of Lévy’s result that for L0

1(ω) the local time at 0 of a path ω up to time 1,

the Rayleigh distribution of L0
1(Bbr) is the sized biased distribution L0

1(B), where L0
1(B)

d
= |B(1)| = ||B̃(0)||.

See [14, 65] for some developments of the latter result.

The above description (114) of the law of ||B̃br
(n)|| amount to the following moment formula: for p > 0

E||B̃br
(n)||

p = 2−p/2
Γ(n+ p)

Γ(n)

Γ(n+ 1
2)

Γ(n + 1
2 + p

2)
. (115)

For p = 1 this is easily checked by conditioning on the Uni, using the fact that the exchangeability of
increments of the bridge and the exchangeability of the spacings Un,i − Un,i−1 for 1 ≤ i ≤ n + 1, im-
plies that the random variables Bbr(Un,i) − Bbr(Un,i−1) are exchangeable, with the same distribution as√
Un,1(1− Un,1)B(1) for B(1) standard Gaussian independent of Un,1. For p = 2 formula (115) reduces to

E||B̃br
(n)||

2 = n(n+ 1)/(2n+ 1).

This can be checked by the same method, but not so easily. As shown in [42], this formula is related via some
remarkable integral identities to algebraic evaluations of some Euler integrals and to duplication formulae
for Appell’s hypergeometric function F1.

7 Decomposition at the minimum

The following proposition can be read from the work of Williams [79], Millar [54] and Greenwood-Pitman
[34].

Proposition 15 [79, 54, 34]. For τ1 independent of B with τ1
d
= 2Γ1, and µ1 the a.s. unique time that B

attains its minimum on [0, τ1], the processes

(B(µ1 − t)− B(µ1))0≤t≤µ1 and (B(µ1 + t)−B(µ1))0≤t≤τ1−µ1 (116)

are two independent copies of
(
√
µ1B

me(t/µ1))0≤t≤µ1 (117)

for a standard meander Bme that is independent of µ1, and µ1
d
= 2Γ1/2.
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Proof. To briefly review the derivation of this result via [79, 54, 34], the identity in distribution between
the second process in (116) and that in (117), with µ1 in (117) replaced by τ1 − µ1, follows from Lévy’s
theorem that (B(t) − B(0, t))t≥0 has the same distribution as (|B(t)|)t≥0 and the first identity in (3). As
indicated in [34], the independence of the two fragments in (116) amounts to the last exit decomposition of
(B(t)−B(0, t))t≥0 at the time µ1 of its last zero before time τ1, which can be deduced from Itô’s excursion
theory, and the identical distribution of the two fragments in (116) is explained by a duality argument using

time reversal. That µ1
d
= 2Γ1/2 is evident because the sum of two independent copies of µ1 is τ1

d
= 2Γ1. 2

The strong Markov property of B shows that the common distribution of −B(µ1) and B(τ1)−B(µ1) has the
memoryless property, hence is exponential with rate λ for some λ > 0. The claim of (51) that λ = 1 follows
easily, since the decomposition gives

2Var(−B(µ1)) = E[B(τ1)]2 = Eτ1 = 2.

Note the implication of Proposition 15 and (51) that√
2Γ1/2B

me(1)
d
= Γ1 (118)

for Γ1/2 independent of Bme(1). Thus the identification (6) of the distribution of Bme(1) amounts to the
particular case r = 1/2 of Wilks’ identity (37).

It is easily seen that Proposition 15 is equivalent to Denisov’s decomposition (Corollary 5) by application
of Brownian scaling. The following argument shows how these decompositions can be deduced from the
sampling identities for Brownian motion and Brownian meander.

Proof of Corollary 5 (Denisov’s decomposition). Consider the symmetric random walk Wj := Sj −
Tj, j ≥ 0, with N− := min{j : Wj < 0} as before. Let Mn be the a.s. unique index m in {0, . . . , n} such that
Wm = min0≤j≤nWj. As observed by Feller [27, XII.8] and Denisov [23, (3)], it is elementary that

P (Mn = m) = P (N− > m)P (N− > n−m) (m = 0, . . . , n) (119)

and that for each m the fragments (Wm−j −Wm)0≤j≤m and (Wm+j −Wm)0≤j≤n−m are conditionally inde-
pendent given (Mn = m) with

((Wm−j −Wm)0≤j≤m |Mn = m)
d
= ((Wj)0≤j≤m |N− > m) (120)

((Wm+j −Wm)0≤j≤n−m |Mn = m)
d
= ((Wj)0≤j≤n−m |N− > n−m). (121)

Recall that X̃(n) ∈ C[0, 1] denotes the zig-zag approximation to X ∈ C[0, 1] defined by X̃(n)(i/(n+ 1)) :=
X(Un,i) and linear interpolation between these values. The sampling identities (33) and (34) allow the above
decomposition for the walk (Wj) to be expressed in Brownian terms as follows: for each n ≥ 2, there is the

identity in distribution µ(B̃(n−1))
d
= Mn/n, and given µ(B̃(n−1)) = m/n for each 1 ≤ m ≤ n− 1 the random

vectors
√

2ΓnPREµ(B̃(n−1)) and
√

2ΓnPOSTµ(B̃(n−1)) are conditionally independent given µ(B̃(n−1)) = m/n

with (√
2ΓnPREµ(B̃(n−1))

∣∣∣µ(B̃(n−1)) =
m

n

)
d
=
√

2Γm−1/2 B̃
me
(m−1)

and (√
2ΓnPOSTµ(B̂(n−1))

∣∣∣µ(B̃(n−1)) =
m

n

)
d
=
√

2Γn−m−1/2 B̃
me
(n−m−1)
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Because B attains its minimum at a unique time a.s., there is a.s. convergence of µ(B̃(n−1)) to µ(B), whose
distribution is therefore arcsine [27, XII.8]. Since Γr/r converges in probability to 1 as r → ∞, Denisov’s
decomposition follows easily. 2

The difference between the above argument and Denisov’s is that the passage from the random walk de-
composition to the Brownian one is done by an easy strong approximation with a particular walk rather
than by the more general weak convergence result of Iglehart [40]. Iglehart’s argument can be simplified as
indicated by Bolthausen [18] to avoid painful discussions of tightness, but the above derivation of Denisov’s
decomposition seems even simpler.

Identities for generating functions. According to the decomposition of the walk (Wj)0≤j≤n at the time
Mn that it achieves its minimum value, described around (119),(120), (121), the conditional distribution of
Wn given Mn = m is that of Zn−m − Z′m, where Zn−m and Z′m are independent, and distributed like Wn−m

given N− > n−m and Wm given N− > m respectively. Combined with the description of the distribution of
Wn given N− > n provided by Lemma 11, and the formula (72) for P (N− > n), the implied decomposition
of the distribution of Wn by conditioning on Mn can be expressed as follows in terms of moment generating
functions: for |θ| < 1(

1

1− θ2

)n
=

n∑
m=0

(
2m

m

)(
2n− 2m

n−m

)
2−2nGm

(
1

1 + θ

)
Gn−m

(
1

1− θ

)
(122)

where G0(λ) = 1 and Gn(λ) for n ≥ 1 is the ordinary probability generating function of Jn as in (48).
Multiply (122) by zn and sum over n to see that (122) is equivalent to the following expression of the
Wiener-Hopf factorization associated with the random walk (Wn), which can be interpreted probabilistically
for 0 < z < 1 by stopping the walk at an independent random time with geometric(1− z) distribution [33]:

1− θ2

1− θ2 − z
= H(θ, z)H(−θ, z) where H(θ, z) :=

∞∑
n=0

(
2n

n

)
2−2nznGn

(
1

1 + θ

)
. (123)

To check (123), consider an arbitrary sequence of independent positive integer valued random variables
N1, N2 − N1, N3 − N2, . . . with common distribution with generating function F (s) := E(sN1). Let An :=
(Ni = n for some i), let Jn :=

∑n
m=1 1(Am), and Gn(x) := E(xJn |An). Then by an easy extension of a

standard formula of renewal theory ([26, XIII.2] which is the special case x = 1)

∞∑
n=0

Gn(x)P (An)sn = (1− xF (s))−1. (124)

In the case at hand, F (s) = 1−
√

1− s, P (An) =
(2n
n

)
2−2n, so (123) is easily confirmed using (124).

The continuous analog of (122), which arises in the Brownian limit, is the following formula which is valid
for all real θ and all t > 0:

e
1
2 θ

2t =
1

π

∫ t

0

Ψ2(θ
√
w)Ψ2(−θ

√
w)

√
t
√
t−w

dw (125)

where

Ψ2(θ) :=
∫ ∞

0
te−

1
2 t

2−θtdt = 1− θφ1(θ)/φ(θ)

for φ1 and φ as in (106) and (108). Since Ψ2(θ) = E(e−θρ) for ρ with the Rayleigh distribution (6) of Bme(1),
for t = 1 this is the disintegration of the m.g.f. of B(1) implied by Denisov’s decomposition (Corollary 5).
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The formula for general t > 0 follows by scaling. The formula can also be checked as follows by an argument
which parallels the discrete case discussed above. After taking a Laplace transform, formula (125) reduces
to the following Wiener-Hopf factorization, which can be interpreted probabilistically via Proposition 15: for
λ > 1

2θ
2 (

λ− 1
2θ

2
)−1

= L(θ, λ)L(−θ, λ) (126)

where

L(θ, λ) =
∫ ∞

0

Ψ2(θ
√
w)

√
π
√
w

e−λw dw =

√
2

√
2λ+ θ

, (127)

the final identity being an analytic expression of (6) and (118).

8 Bridges with arbitrary end point

The following corollary of the Brownian sampling identity establishes a result for the bridge Bbr,x with an
arbitrary endpoint x.

Corollary 16 For all real x and all n = 0, 1, 2, . . .

Bbr,x
(n)

d
= 1

2(Un,i−1,x − Vn,i,x, Un,i,x − Vn,i,x; 1 ≤ i ≤ n + 1) (128)

where (Un,i,x, Vn,i,x; 1 ≤ i ≤ n+ 1) is constructed from the uniform order statistics Un,i and Vn,i and a family
of independent positive random variables Ln,r as

Un,i,x := Un,i(Ln,|x| + 2x) and Vn,i,x := Vn,iLn,|x| (129)

where Ln,r for r ≥ 0 is assumed to have the probability density

P (Ln,r ∈ dy)/dy =
1

n!2n
yn(y + r)(y + 2r)ne−

1
2 y

2−ry (y > 0). (130)

In particular, with notation as in (21)

||Bbr,x
(n) ||

d
= |x|+ Ln,|x| (131)

Proof. According to the Brownian sampling identity (12),

B(1)
d
= ξn(2βn − 1) where ξn :=

√
2Γn+3/2 and βn :=

Sn+1

Sn+1 + Tn+1
. (132)

By construction of Bbr,x as (B |B(1) = x), the proof of (128) is just a matter of checking that for each x the
random vector on the right side of (128) is distributed according to the conditional density of the random
vector on the right side of the Brownian sampling identity (12) given ξn(2βn − 1) = x, as defined by an
elementary calculation with ratios of densities. Because ξn and (2βn − 1) are independent,

P (ξn ∈ dw | ξn(2βn − 1) = x)/dw =
fξn(w)f2βn−1(|x|/w)

wfB1(x)
(133)
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where fY (y) denotes the density of a random variable Y at y. Since |(2βn − 1)| ≤ 1 the density in (133)
vanishes except if w ≥ |x|, so we can define the distribution of a positive random variable Ln,r for r ≥ 0 by

(ξn | ξn(2βn− 1) = x)
d
= |x|+ Ln,|x|. (134)

By an elementary computation using (132), (133), ξn =
√

2Γn+3/2, the beta(n+ 1, n+ 1) density of βn, and

the gamma duplication formula (38), the density of Ln,r is given by (130). Now√
2Γn+3/2Si

Sn+1 + Tn+1
= ξnβnUn,i and

√
2Γn+3/2Ti

Sn+1 + Tn+1
= ξn(1− βn)Vn,i (135)

where the Un,i := Si/Sn+1 and Vn,i := Ti/Tn+1 are independent of βn and ξn, and the conclusion follows. 2

For x > 0 let fn,r(y) := P (Ln,r ∈ dy)/dy as given by the right side of formula (130). A byproduct of the
above argument is the fact that fn,r(y) is a probability density in y for each n ≥ 1 and each r ≥ 0. This
was shown by two entirely different methods in Aldous-Pitman [3], where this family of densities arose from
the distribution of the total length of edges in a natural model for random trees with n+ 2 labelled vertices
and some random number of unlabeled vertices. The work of Neveu-Pitman [56, 57] and Aldous [7] relates
Brownian excursions to certain kinds of binary trees, with no junctions of degree higher than 3. But in the
trees constructed by the model of [3] there is no limit on the degrees of some vertices. So the coincidence
invites a deeper explanation.

Note the consequence of (131) and (23), that if Z is a standard normal variable independent of the family

Ln,r, r ≥ 0 then |Z|+ Ln,|Z|
d
=
√

2Γn+3/2. In terms of densities, for y ≥ 0

∫ y

0
fn,r(y − r)

√
2

π
e−

1
2 r

2

dr =
(1

2)n+1/2

Γ(n + 3
2)
y2n+2e−

1
2 y

2

(136)

as can be checked by reduction to a beta integral. Is there is a natural construction of the family (Ln,r, r ≥ 0)
as a stochastic process which might give another interpretation of this identity?
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Inst. Henri Poincaré, 34:637–686, 1998.

[10] L. Alili, C. Donati-Martin, and M. Yor. Une identité en loi remarquable pour l’excursion brownienne
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