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Abstract

We consider the stochastic-game-analogue of McKean’s optimal stopping problem when the
underlying source of randomness is a spectrally negative Lévy process. Compared to the
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component.
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1 Introduction.

Let X = {Xt : t ≥ 0} be a Lévy process defined on a filtered probability space (Ω,F , F, P), where
F := {Ft : t ≥ 0} is the filtration generated by X which is naturally enlarged (cf. Definition
1.3.38 of Bichteler (2002)). Write T0,∞ for the family of stopping times with respect to F. For
x ∈ R denote by Px the law of X when it is started at x and write simply P0 = P. Accordingly
we shall write Ex and E for the associated expectation operators. In this paper we shall assume
throughout that X is spectrally negative meaning here that it has no positive jumps and that it
is not the negative of a subordinator. It is well known that the latter allows us to talk about
the Laplace exponent ψ(θ) := log E[eθX1 ] for θ ≥ 0. In general one may write

ψ(θ) = aθ +
σ2

2
θ2 +

∫

(−∞,0)
(eθx − 1 − θx1{x>−1})Π(dx), for θ ≥ 0 (1)

where a ∈ R, σ2 ≥ 0 and where the jump measure Π of X has zero mass on [0,∞) and satisfies

∫

(−∞,0)
(1 ∧ x2)Π(dx) < ∞. (2)

This paper is concerned with stochastic games in the sense of, for example, Dynkin (1969),
Cvitanić and Karatzas (1996) and Kifer (2000). We are principally interested in showing, under
certain assumptions, the existence of a pair of stopping times τ∗ and σ∗ in T0,∞ such that for
all x ∈ R and all stopping times τ, σ ∈ T0,∞,

Mx(τ, σ∗) ≤ Mx(τ∗, σ∗) ≤ Mx(τ∗, σ), (3)

where
Mx(τ, σ) = Ex[e−rτ (K − eXτ )+1{τ≤σ} + e−rσ((K − eXσ)+ + δ))1{σ<τ}]

and K, δ > 0. When this happens we shall refer the pair (τ∗, σ∗) as a stochastic saddle
point (also known as Nash equilibrium cf. Ekström and Peskir (2006)) and we shall refer to
V (x) = Mx(τ∗, σ∗) as the value of the game (3). Moreover we shall refer to the triple (τ∗, σ∗, V )
as a solution to the stochastic game (3). Another objective is to be able to say something
constructive about the nature of the stopping times τ∗ and σ∗ as well as the function V . The
assumptions we shall make are that the parameter r satisfies

0 ≤ ψ(1) ≤ r and r > 0. (4)

Note that the assumption that r > 0 conveniently means that the gain in the expectations in
(3) is well defined and equal to zero on the event {σ = τ = ∞}. In Section 10 at the end of this
paper we shall make some remarks on the case that r = 0 and ψ(1) > 0.

When ψ(1) = r > 0 the stochastic game (3) can be understood to characterise the risk neutral
price of a so-called game option in a simple market consisting of a risky asset whose value is
given by {eXt : t ≥ 0} and a riskless asset which grows at rate r (cf. Kifer (2000)). The latter
game option is an American-type contract with infinite horizon which offers the holder the right
but not the obligation to claim (K − eXσ)+ at any stopping time σ ∈ T0,∞, but in addition, the
contract also gives the writer the right but not the obligation to force a payment of (K−eXτ )++δ
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at any stopping time τ ∈ T0,∞. This paper does not per se discuss the financial consequences of
the mathematical object (3) however.

The stochastic game (3) is closely related to the McKean optimal stopping problem

U(x) = sup
τ∈T0,∞

Ex[e−rτ (K − eXτ )+] (5)

which, when r = ψ(1), characterises the value of a perpetual American put option (cf. McKean
(1965)). Indeed, should it be the case that the stochastic saddle point in (3) is achieved when
σ = ∞, then U = V . Thanks to a plethora of research papers on the latter topic it is known
that an optimal stopping strategy for (5) is then

τ∗ = inf{t > 0 : Xt < log(KE[eX
er ])}

where Xt = infs≤t Xs and er is an exponentially distributed random variable with parameter
r which is independent of X. We refer to Chan (2004) and Mordecki (2002) who handled
specifically the case that X is spectrally negative and the case that X is a general Lévy process
respectively. The stochastic game (3) may therefore be thought of as a natural extension of the
McKean optimal stopping problem and we henceforth refer to it as the McKean stochastic game.

Despite the fact that a solution to the stochastic game (3) has been explicitly characterised for
the case that X is a linear Brownian motion in Kyprianou (2004), it turns out that working with
spectrally negative Lévy processes, as we do here, is a much more difficult problem. Naturally,
this is the consequence of the introduction of jumps which necessitates the use of more compli-
cated potential and stochastic analysis as well as being the cause of a more complicated optimal
strategy for particular types of spectrally negative Lévy processes thanks to the possibility of
passing barriers by jumping over them. Indeed the analysis performed in this paper leaves open
a number of finer issues concerning the exact characterisation of the solution, in particular when
a Gaussian component is present. In that case, it appears that a considerably more subtle anal-
ysis is necessary to take account of how the strategies of the sup-player and inf-player (who are
looking for a maximising τ∗ and minimising σ∗ in (3), respectively) will depend on the ‘size’
of the jumps compared to the Gaussian coefficient. This is left for further study and in this
respect, the current work may be seen as a first treatment on the topic. The case of two-sided
jumps is also an open issue and we refer to Remark 8 later in the text for some discussion on
the additional difficulties that arise. Finally we refer the reader to Gapeev and Kühn (2005)
and Baurdoux and Kyprianou (2008) for other examples of stochastic games driven by Lévy
processes.

2 Solutions to the McKean stochastic game.

The conclusions of Ekström and Peskir (2006) guarantee that a solution to the McKean stochastic
game exists, but tells us nothing of the nature of the value function. Below in Theorems 2, 3 and
4 we give a qualitative and quantitative exposition of the solution to (3) under the assumption
(4). Before doing so we need to give a brief reminder of a class of special functions which
appear commonly in connection with the study of spectrally negative Lévy processes and indeed
in connection with the description below of the McKean stochastic game. For each q ≥ 0 we
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introduce the functions W (q) : R → [0,∞) which are known to satisfy for all x ∈ R and a ≥ 0

Ex[e−qτ+
a 1{τ+

a <τ−

0 }] =
W (q)(x ∧ a)

W (q)(a)
, (6)

where
τ+
a := inf{t > 0 : Xt > a} and τ−

0 = inf{t > 0 : Xt < 0}

(cf. Chapter 8 of Kyprianou (2006)). In particular it is evident that W (q)(x) = 0 for all x < 0
and further, it is known that on (0,∞) W (q) is almost everywhere differentiable, there is right
continuity at zero and

∫ ∞

0
e−βxW (q)(x)dx =

1

ψ(β) − q

for all β > Φ(q), where Φ(q) is the largest root of the equation ψ(θ) = q (of which there are at
most two). For convenience we shall write W in place of W (0). Associated to the functions W (q)

are the functions Z(q) : R → [1,∞) defined by

Z(q)(x) = 1 + q

∫ x

0
W (q)(y)dy

for q ≥ 0. Together the functions W (q) and Z(q) are collectively known as scale functions and
predominantly appear in almost all fluctuation identities for spectrally negative Lévy processes.
For example it is also known that for all x ∈ R and a, q ≥ 0,

Ex[e−qτ−

0 1{τ+
a >τ−

0 }] = Z(q)(x ∧ a) −
Z(q)(a)

W (q)(a)
W (q)(x ∧ a) (7)

and
Ex[e−qτ−

0 1{τ−

0 <∞}] = Z(q)(x) −
q

Φ(q)
W (q)(x), (8)

where q/Φ(q) is to be understood in the limiting sense ψ′(0) ∨ 0 when q = 0.

If we assume that

the jump measure X has no atoms when X has bounded variation

then it is known from existing literature (cf. Kyprianou et al. (2008) and Doney (2005)) that
W (q) ∈ C1(0,∞) and hence Z(q) ∈ C2(0,∞) and further, if X has a Gaussian component
they both belong to C2(0,∞). For computational convenience we shall proceed with the above
assumption on X. It is also known that if X has bounded variation with drift d, then W (q)(0) =
1/d and otherwise W (q)(0) = 0. (Here and in the sequel we take the canonical representation of
a bounded variation spectrally negative Lévy process Xt = dt − St for t ≥ 0 where {St : t ≥ 0}
is a driftless subordinator and d is a strictly positive constant which is referred to as the drift).
Further,

W (q)′(0+) =







2/σ2 when σ > 0,
(Π(−∞, 0) + q)/d2 when X is of bounded variation with Π(−∞, 0) < ∞,
∞ otherwise.

(9)
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Consider the exponential change of measure

dP
1

dP

∣

∣

∣

∣

Ft

= eXt−ψ(1)t. (10)

Under P
1, the process X is still a spectrally negative Lévy process and we mark its Laplace

exponent and scale functions with the subscript 1. It holds that

ψ1(λ) = ψ(1 + λ) − ψ(1) (11)

for λ ≥ 0 and, by taking Laplace transforms, we find

W
(q)
1 (x) = e−xW (q+ψ(1))(x) (12)

for q ≥ 0. The reader is otherwise referred to Chapter VII of Bertoin (1996) or Chapter 8 of
Kyprianou (2006) for a general overview of scale functions of spectrally negative Lévy processes.

For comparison with the main results in Theorems 2, 3 and 4 below we give the solution to the
McKean optimal stopping problem as it appears in Chan (2004) (see also Mordecki (2002)).

Theorem 1. For the McKean optimal stopping problem under (4) we have

U(x) = KZ(r)(x − k∗) − exZ
(r−ψ(1))
1 (x − k∗),

where

ek∗

= K
r

Φ(r)

Φ(r) − 1

r − ψ(1)
,

which is to be understood in the limiting sense when r = ψ(1), in other words, ek∗

=
Kψ(1)/ψ′(1). An optimal stopping time is given by τ∗ = inf{t > 0 : Xt < k∗}.

We return now to the solution of the McKean stochastic game and present our main results in
terms of scale functions.

Theorem 2. Consider the McKean stochastic game under the assumption (4).

(i) If δ ≥ U(log K), then a stochastic saddle point is given by τ∗ in Theorem 1 and σ∗ = ∞,
in which case V = U.

(ii) If δ < U(log K), a stochastic saddle point is given by the pair

τ∗ = inf{t > 0 : Xt < x∗} and σ∗ = inf{t > 0 : Xt ∈ [log K, y∗]},

where x∗ uniquely solves

Z(r)(log K − x) − Z
(r−ψ(1))
1 (log K − x) =

δ

K
, (13)

x∗ > k∗ (the optimal level of the corresponding McKean optimal stopping problem in
Theorem 1) and y∗ ∈ [log K, z∗], where z∗ is the unique solution to

Z(r)(z − log K) −
r

Φ(r)
W (r)(z − log K) =

δ

K
. (14)
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The next theorem gives partial information on the value of y∗. Unfortunately, we are unable to
give a complete characterisation of y∗.

Theorem 3. Suppose in Theorem 2 that δ < U(log K). If X has no Gaussian component, then
y∗ > log K and necessarily Π(−∞, log K − y∗) > 0.

The question whether y∗ = log K is more difficult to answer when the Gaussian component of
X is strictly positive and we refer to Section 8 for a discussion on this case.

For practical purposes, one would also like to be able to characterise y∗ as the unique solution to
some functional equation. Recall that the value function V is said to have smooth pasting at a
boundary point of the stopping region whenever it is differentiable there. Similarly, continuous
pasting at a boundary point of the stopping region is said to occur whenever there is continuity
there. Experience in the theory of optimal stopping shows that the position of an optimal
threshold often follows as a consequence of a continuous or smooth pasting condition. See for
example Boyarchenko and Levendorskii (2002) Chan (2004), Peskir and Shiryaev (2000, 2002),
Gapeev (2002), Kyprianou (2005) and Surya (2007). In this case, despite the fact that we are
able to make decisive statements about pasting of the value function onto the upper and lower
gain functions (see Theorem 4 below), the desired characterisation of y∗ has not been achieved
(note however the discussion following Theorem 4).

Our last main result gives information concerning the analytical shape of the value function V .
In particular we address the issue of smooth and continuous pasting at x∗ and y∗. Define the
function j : R → R by

j(x) = KZ(r)(x − x∗) − exZ
(r−ψ(1))
1 (x − x∗) + αeΦ(r)(log K−x∗)W (r)(x − log K), (15)

where

α = ex∗ r − ψ(1)

Φ(r) − 1
−

rK

Φ(r)
, (16)

which is to be understood in the limiting sense, i.e. α = ex∗

ψ′(1) − Kψ(1) when r = ψ(1).

Theorem 4. For the McKean stochastic game under the assumption (4), when δ < U(log K),
V is continuous everywhere. In particular

V (x) = KZ(r)(x − x∗) − exZ
(r−ψ(1))
1 (x − x∗) (17)

for x ∈ (−∞, log K] and V (x) = δ for x ∈ [log K, y∗]. Further, if y∗ = log K, then for any
x ∈ R

V (x) = j(x).

Moreover

(i) If X has unbounded variation, then there is smooth pasting at x∗. Further, there is smooth
pasting at y∗ if and only if y∗ > log K.

(ii) If X has bounded variation, then there is no smooth pasting at x∗ and no smooth pasting
at y∗.
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Note that it is in fact possible to show that V is everywhere differentiable except possibly at
x∗, y∗ and log K. This is clear from the expression for V (x) on x ∈ (−∞, y∗). However, when
y∗ > log K, for the region x ∈ (y∗,∞) things are less clear without an expression for V . None the
less, it is possible with the help of potential densities, which themselves can be written in terms
of the scale functions, to write down a formula for V on the aforementioned region. This formula
is rather convoluted involving several terms and simply for the sake of brevity we refrain from
including it here. It may be possible to use this formula and the pasting conditions to find y∗,
though it seems difficult to show that a solution to the resulting functional equation is unique.

There are a number of remarks which are worth making about the above three theorems.

Theorem 2 (i) follows as a consequence of the same reasoning that one sees for the case that
X is a linear Brownian motion in Kyprianou (2004). That is to say, when δ ≥ U(log K) it
follows that U(x) ≤ (K − ex)+ + δ showing that the inf-player would not be behaving optimally
by stopping in a finite time. The proof of this fact is virtually identical to the proof given in
Kyprianou (2004) with the help of the Verification Lemma given in the next section and so we
leave this part of the proof of Theorem 2 (i) as an exercise.

We shall henceforth assume that U(log K) > δ.

For the McKean stochastic game when X is a linear Brownian motion and r = ψ(1) > 0 it was
shown in Kyprianou (2004) that, with the above assumption on δ, is small enough, a saddle
point is given by

τ∗ = inf{t > 0 : Xt < x∗} and σ∗ = inf{t > 0 : Xt = log K},

for the sup-player and inf-player respectively, where x∗ is some value strictly less than log K.
Also it was shown there that the solution is convex and that there is smooth pasting at x∗. For
spectrally negative Lévy processes in general, Theorems 2-4 show that considerably different
behaviour occurs.

Firstly, as was already found in numerous papers concerning optimal stopping problems driven
by spectrally one sided Lévy processes (cf. Alili and Kyprianou (2005), Chan (2004) and Avram
et al. (2004)), smooth pasting breaks down when the Lévy process is of bounded variation.
Secondly and more interestingly, the different form of the stopping region for the inf-player
can be understood intuitively by the following reasoning. In the linear Brownian motion case
there is no possibility for the process started at x > log K to enter (−∞, log K] without hitting
{log K}. The positive discount rate r and the constant pay-off on [log K,∞) imply that in this
case it does not make sense for the inf-player to stop anywhere on (log K,∞). However, when
X has negative jumps there is a positive probability to jump below points. When X starts
at a value which is slightly greater than log K, there is the danger (for the inf-player) that X
jumps to a large negative value, which could in principle lead to a relatively large pay-off to
the sup-player. The trade-off between this fact and the positive discount rate r when there is
no Gaussian component results in the interval hitting strategy for the inf-player indicated by
Theorem 3. Note also in that case that the fact that Π(−∞, log K − y∗) > 0 implies that when
X0 > y∗ the Lévy process may still jump over the stopping interval of the inf-player and possibly
stop the game (either immediately or with further movement of X) by entering (−∞, x∗). This
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is also a new feature of the optimal strategies compared to the linear Brownian motion case as
in the latter context, when X0 > y∗, the sup-player will never exercise before the inf-player.

The paper continues with the following structure. In the next section we present a set of
sufficient conditions to check for a solution to the McKean stochastic game. Following that, in
Sections 4 and 5 we present a description of the candidate solution in the regions x ≤ log K
and x > log K. To some extent, the solution may be de-coupled into these two regions thanks
to the spectral negativity of the underlying process. In Section 6 we show that the previously
described candidate solution fulfils the sufficient conditions outlined in Section 3 thus proving
Theorem 2. Finally in Sections 7 and 9 we give the proofs of Theorems 3 and 4 respectively.

3 Verification technique.

To keep calculations brief and to avoid repetition of ideas, it is worth stating up front the
fundamental technique which leads to establishing the existence and hence characterisation of a
solution. This comes in the form of the following Verification Lemma.

Lemma 5 (Verification Lemma). Consider the stochastic game (3) with r > 0. Suppose that τ∗

and σ∗ are both in T0,∞ and let

V ∗(x) = Ex[e−rτ∗

(K − eXτ∗ )+1{τ∗≤σ∗} + e−rσ∗

((K − eXσ∗ )+ + δ))1{σ∗<τ∗}].

Then the triple (V ∗, τ∗, σ∗) is a solution to (3) if

(i) V ∗(x) ≥ (K − ex)+,

(ii) V ∗(x) ≤ (K − ex)+ + δ,

(iii) V ∗(Xτ∗) = (K − eXτ∗ )+ almost surely on {τ∗ < ∞},

(iv) V ∗(Xσ∗) = (K − eXσ∗ )+ + δ almost surely on {σ∗ < ∞},

(v) the process {e−r(t∧τ∗)V ∗(Xt∧τ∗) : t ≥ 0} is a right continuous submartingale and

(vi) the process {e−r(t∧σ∗)V ∗(Xt∧σ∗) : t ≥ 0} is a right continuous supermartingale.

Proof. For convenience, write G(x) = (K − ex)+, H(x) = (K − ex)+ + δ and

Θr
τ,σ = e−rτG(Xτ )1{τ≤σ} + e−rσH(Xσ)1{σ<τ}.

Note that the assumption r > 0 implies that Θr
∞,∞ = 0. From the supermartingale property

(vi), Doob’s Optional Stopping Theorem, (iv) and (i) we know that for any τ ∈ T0,∞ and t ≥ 0,

V ∗(x) ≥ Ex[e−r(t∧τ∧σ∗)V ∗(Xt∧τ∧σ∗)]

≥ Ex[e−r(t∧τ)G(Xt∧τ )1{σ∗≥t∧τ} + e−rσ∗

H(Xσ∗)1{σ∗<t∧τ}].

It follows from Fatou’s Lemma by taking t ↑ ∞ that

V ∗(x) ≥ Ex[Θr
τ,σ∗ ].
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Now using (v), Doob’s Optimal Stopping Theorem, (iii) and (ii), we have for any σ ∈ T0,∞ and
t ≥ 0 ,

V ∗(x) ≤ Ex[e−rτ∗

G(Xτ∗)1{τ∗≤t∧σ} + e−r(t∧σ)H(Xt∧σ)1{τ∗>t∧σ}].

Taking limits as t ↑ ∞ and applying the Dominated Convergence Theorem, taking note of the
non-negativity of G, we have

V ∗(x) ≤ Ex[Θr
τ∗,σ] (18)

and hence (τ∗, σ∗) is a saddle point to (3).

4 Candidature on x ≤ log K.

Here we describe analytically a proposed solution when X0 ∈ (−∞, log K].

Lemma 6. For x ∈ (−∞, log K] define

w(x) = KZ(r)(x − x∗) − exZ
(r−ψ(1))
1 (x − x∗), (19)

where x∗ > k∗ uniquely solves (13). Then w has the following properties on (−∞, log K],

(i) w(x) = Ex[e−rτ+
log K δ1{τ+

log K
<τ−

x∗
} + e−rτ−

x∗ (K − e
X

τ
−

x∗ )1{τ−

x∗
<τ+

log K
}],

(ii) w(x) ≥ (K − ex)+,

(iii) w(x) ≤ (K − ex)+ + δ,

(iv) the right derivative at x∗ is computed as follows

w′(x∗+) =

{

−ex∗

if X has unbounded variation,
−ex∗

+ (Kr − (r − ψ(1))ex∗

)/d if X has bounded variation,

where in the latter case d is the drift term,

(v) w is decreasing,

(vi) w(Xτ+
log K

) = δ on {τ+
log K < ∞, X0 ≤ log K},

(vii) w(Xτ−

x∗
) = (K − e

X
τ
−

x∗ ) on {τ−
x∗ < ∞},

(viii) {e−r(t∧τ−

x∗
∧τ+

log K
)w(Xt∧τ−

x∗
∧τ+

log K
) : t ≥ 0} is a Px-martingale for x ≤ log K and

(ix) {e−r(t∧τ−

x∗
∧τ+

log K
)w(Xt∧τ+

log K
) : t ≥ 0} is a Px-supermartingale for x ≤ log K.
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Proof. First note that the left hand side of (13) is equal to

h(x) :=

∫ log K−x

0
(ψ(1)e−y − r(e−y − 1))W (r)(y)dy

which is a decreasing continuous function in x. Further, h(log K) = 0 and so we need to show
that h(−∞) > δ/K in order to deduce that x∗ is uniquely defined. From Theorem 1 we have
that U(log K) = Kh(k∗) where k∗ < log K is defined in Theorem 1. Hence by monotonicity
and the assumption on the size of δ, h(−∞) ≥ h(k∗) = U(log K)/K > δ/K. It also follows
immediately from this observation that x∗ > k∗.

Next, denote by w(x) the right hand side of (19). The remainder of the proof consists of verifying
that w fulfils conditions (i) to (ix) of Lemma 6 for x ∈ (−∞, log K]. We label the proof in parts
accordingly.

(i) Using (6) and (7) and the exponential change of measure (10), we find that for x ≤ log K

Ex[e−rτ+
log K δ1{τ+

log K
<τ−

x∗
} + e−rτ−

x∗ (K − e
X

τ
−

x∗ )1{τ−

x∗
<τ+

log K
}]

= δ
W (r)(x − x∗)

W (r)(log K − x∗)
+ K

(

Z(r)(x − x∗) −
W (r)(x − x∗)Z(r)(log K − x∗)

W (r)(log K − x∗)

)

−ex
E

1
x[e−(r−ψ(1))τ−

x∗1{τ−

x∗
<τlog K,y∗}

]

= δ
W (r)(x − x∗)

W (r)(log K − x∗)
+ K

(

Z(r)(x − x∗) −
W (r)(x − x∗)Z(r)(log K − x∗)

W (r)(log K − x∗)

)

−ex

(

Z
(r−ψ(1))
1 (x − x∗) −

W
(r−ψ(1))
1 (x − x∗)Z

(r−ψ(1))
1 (log K − x∗)

W
(r−ψ(1))
1 (log K − x∗)

)

=
W (r)(x − x∗)

W (r)(log K − x∗)

(

δ − KZ(r)(log K − x∗) + KZ
(r−ψ(1))
1 (log K − x∗)

)

+KZ(r)(x − x∗) − exZ
(r−ψ(1))
1 (x − x∗)

= w(x),

where the last equality follows from the definition of x∗ in (13).

(ii) By definition

w(x) = K − ex +

∫ x−x∗

0
r(K − ex−y)W (r)(y) + ψ(1)ex−yW (r)(y)dy.

For any x ≤ log K, the integrand on the right hand side above is positive and hence w(x) ≥ K−ex

for x ≤ log K.

(iii) We also see that

w(x) − (K − ex) =

∫ x−x∗

0
(rK + ex−y(ψ(1) − r))W (r)(y)dy

=

∫ x

x∗

(r(K − ez) + ψ(1)ez)W (r)(x − z)dz
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is increasing in x on [x∗, log K], which implies that for any x ≤ log K

w(x) ≤ K − ex +

∫ log K−x∗

0
KrW (r)(y) − cKW

(r−ψ(1))
1 (y)dy = K − ex + δ,

where c = r − ψ(1) ≥ 0.

(iv) The derivative of w at x ∈ (−∞, log K]\{x∗} is given by

w′(x) = −ex + KrW (r)(x − x∗) − cex∗

W (r)(x − x∗) − cex

∫ x−x∗

0
e−yW (r)(y)dy.

Taking limits as x ↓ x∗ gives the stated result. In taking the latter limit, one needs to take
account of the fact for all q ≥ 0, W (q)(0) = 0 if X has unbounded variation and otherwise it is
equal to 1/d where d is the underlying drift.

(v) Taking the expression for the value function, U , of the McKean optimal stopping problem
(5) recall that x∗ > k∗ where k∗ is optimal level for (5). It is also known that U is convex and
decreasing in x. Hence for any x > k∗

U ′(x) = KrW (r)(x − k∗) − exZ
(r−ψ(1))
1 (x − k∗) − cexW

(r−ψ(1))
1 (x − k∗) < 0.

Since we have that x∗ > k∗ we deduce that for x > x∗

w′(x) = KrW (r)(x − x∗) − exZ
(r−ψ(1))
1 (x − x∗) − cexW

(r−ψ(1))
1 (x − x∗)

< KrW (r)(x − x∗) − ex+k∗−x∗

Z
(r−ψ(1))
1 (x − x∗) − cex+k∗−x∗

W
(r−ψ(1))
1 (x − x∗)

= U ′(x + k∗ − x∗) < 0.

(vi) and (vii). These two conditions follow by inspection using (13) in the case of (vi) and the
fact that Z(q)(x) = 1 for all x ≤ 0 in the case of (vii).

(viii) From (i), (vi) and (vii) we deduce from the strong Markov property that for X0 = x ≤ log K
we have that

Ex[e−rτ+
log K δ1{τ+

log K
<τ−

x∗
} + e−rτ−

x∗ (K − e
X

τ
−

x∗ )1{τ−

x∗
<τ+

log K
}|Ft∧τ−

x∗
∧τ+

log K
]

= e−r(t∧τ−

x∗
∧τ+

log K
)w(Xt∧τ−

x∗
∧τ+

log K
)

and now by the tower property of conditional expectation we observe the required martingale
property.

(ix). Noting that w is a C2(x∗, log K) function, a standard computation involving Itô’s formula
shows that (Γ − r)w = 0 on (x∗, log K) thanks to the just established martingale property. For
x < x∗ we have that

(Γ − r)w(x) = (Γ − r)(K − ex) = (−r − ψ(1))ex < 0,

where Γ is the infinitesimal generator of X. Despite the conclusion of part (iv) for the case of
bounded variation, the function w is smooth enough to allow one to use the change of variable
formula in the case of bounded variation, and the classical Itô’s formula in the case of unbounded
variation (cf. Kyprianou and Surya (2007) and Protter (2004)) to show that, in light of the above

inequality, {e−r(t∧τ+
log K

)w(Xt∧τ+
log K

) : t ≥ 0} is a Px-supermartingale for x ≤ log K.
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5 Candidature on x >log K.

In this section we give an analytical and probabilistic description of a proposed solution when
X0 > log K.

Lemma 7. Define the function v : R → [0, K] by

v(x) = inf
σ∈T0,∞

Ex[e−r(σ∧τ−

log K
)wδ(Xτ−

log K
∧σ)],

where wδ(x) = w(x) given in (19) for x ≤ log K and wδ(x) = δ for x > log K. Then v has the
following properties,

(i) v(x) = w(x) for x < log K,

(ii) v(x) ≥ (K − ex)+ for x ∈ R,

(iii) v(x) ≤ (K − ex)+ + δ for x ∈ R,

(iv) v(x) is non-increasing,

(v) there exists a y∗ ≥ log K such that

v(x) = Ex[e
−rτ−

y∗wδ(Xτ−

y∗
)],

(vi) if y∗ = log K then necessarily X has a Gaussian component and for x ∈ R

v(x) = j(x) (20)

where the function j was defined in (15),

(vii) y∗ ≤ z∗, where z∗ was defined as the unique solution of (14),

(viii) v(Xτ−

x∗
) = (K − e

X
τ
−

x∗ ) on {τ−
x∗ = τ−

y∗ < ∞, X0 ≤ log K},

(ix) v(Xτ−

y∗
) = δ on {τ[log K,y∗] = τ−

y∗ < ∞} where

τ[log K,y∗] = inf{t > 0 : Xt ∈ [log K, y∗]},

(x) {e
−r(t∧τ−

y∗
)
v(Xt∧τ−

y∗
) : t ≥ 0} is a Px-martingale for x > log K,

(xi) {e−r(t∧τ−

log K
)v(Xt∧τ−

log K
) : t ≥ 0} is a Px-submartingale for x > log K.

Proof. (i) Note that when x < log K we have Px(τ−
log K = 0) = 1 so that v(x) = w(x).

(ii) and (iii) These are trivial to verify in light of (i).

(iv) Denote X∗
t = Xt∧τ−

log K
for all t ≥ 0. Since wδ is a continous function and since X∗ is quasi-

left continuous we can deduce that v is upper semicontinuous. Furthermore, wδ is bounded and
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continuous, so we can apply a variant1 of Corollary 2.9 on p46 of Peskir and Shiryaev (2006),
see Theorem 3 on p127 of Shiryaev (1978), to conclude that there exists an optimal stopping
time, say, σ∗, which without loss of generality we assume to be not greater than τ−

log K . By

considering the stopping time σ = ∞ we see by its definition that v(x) < KEx[e−rτ−

log K ] and
hence limx↑∞ v(x) = 0. From the latter we deduce that the set defined by

C := {x > log K : v(x) < δ}

is non-empty. The upper semicontinuity of v implies that this set is open. Corollary 2.9 of Peskir
and Shiryaev (2006) also implies that it is optimal to take σ∗ as the time of first entry into the
set R\C.

In what follows, if ζ is a stopping time for X we shall write ζ(x) to show the dependence of the
stopping time on the value of X0 = x. For x > y > log K we have that τ−

log K(x) ≥ τ−
log K(y) and

thus, also appealing to the definition of v as an infimum,

v(x) − v(y) ≤ E

[

e−r(τ−

log K
(x)∧σ∗(y))wδ(Xτ−

log K
(x)∧σ∗(y) + x)

−e−r(τ−

log K
(y)∧σ∗(y))wδ(Xτ−

log K
(y)∧σ∗(y) + y)

]

≤ E

[

e−r(τ−

log K
(y)∧σ∗(y)(wδ(Xσ∗(y) + x) − wδ(Xσ∗(y) + y))

]

(21)

≤ 0,

where in the second inequality we have used that σ∗(y) ≤ τ−
log K(y) ≤ τ−

log K(x) and from Lemma
6 (v), wδ is a decreasing function.

(v) The fact that v is non-increasing and that C, defined above, is open implies that there exists
a y∗ ≥ log K such that C = (y∗,∞). In that case σ∗ = τ−

y∗ .

(vi) By the dynamic programming principle, taking into account the fact that wδ = w for
x ≤ log K, it follows that

v(x) = Ex[e−rτ−

x∗ (K − e
X

τ
−

x∗ )1{τ−

x∗
<TK} + e−rTKδ1{TK<τ−

x∗
}].

It is shown in the Appendix that the right hand side above is equal to the right hand side of
(20).

Now assume that X has no Gaussian component and suppose for contradiction that y∗ = log K.
If X has bounded variation with drift d, it is known that W (r)(0) = 1/d and hence this would
entail that

v(log K+) = KZ(r)(log K − x∗) − KZ
(r−ψ(1))
1 (log K − x∗) + eΦ(r)(log K−x∗) α

d

= δ + eΦ(r)(log K−x∗) α

d
> δ

where α was given in (16). Note that we have used the fact that since k∗ < x∗ < log K where k∗

is the optimal crossing boundary in the McKean optimal stopping problem (cf. Theorem 1), we
have that α > 0. Taking account of part (iii) of this Lemma we thus have a contradiction. When

1See also their remarks at the end of Section 1.1.1 on p2, Section 2.1.1 on p27 and 2.2.2 on p35.
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X has unbounded variation with no Gaussian component, we deduce from (9) that v′(log K+) =
∞, which again leads to a violation of the upper bound in (iii).

(vii) First we need to prove that z∗ in (14) is well-defined and that y∗ ≤ z∗. Denote by k(z) the
left hand side of (14). We start by showing that k(log K+) > δ/K. As we have remarked in the
proof of (iv)

v(z) < KEz[e
−rτ−

log K ] = Kk(z),

where the equality follows from (8). We use (vi) to show that v(log K+) = δ. When X has no
Gaussian component this follows from the fact that y∗ > log K and when X has a Gaussian
component this follows from continuity of the function j. It thus holds that k(log K+) > δ/K.
Note that k is a continuous function on (log K,∞) From (8) it follows that k decreases on
(log K,∞) and that limz→∞ k(z) = 0. Hence there exists a unique z∗ ∈ (log K,∞) such that
k(z∗) = δ/K. Now for z > z∗

v(z) < Kk(z) < Kk(z∗) = δ,

which implies y∗ ≤ z∗.

(viii) and (ix) These are trivial statements.

(x) and (xi) These are standard results from the theory of optimal stopping. See for example
Theorem 2.2 on p29 of Peskir and Shiryaev (2006).

6 Existence of a solution: proof of Theorem 2.

Recall from earlier remarks that the first part of the theorem can be proved in the same way as
was dealt with for the case of Brownian motion in Kyprianou (2004). We therefore concentrate
on the second part of the theorem.

We piece together the conclusions of Lemmas 6 and 7 in order to check the conditions of the
Verification Lemma.

In particular we consider the candidate triple (V ∗, τ∗, σ∗) which is generated by the choices
τ∗ = inf{t > 0 : Xt < x∗} and σ∗ = inf{t > 0 : Xt ∈ [log K, y∗]} where the constants x∗ and
y∗ are given in Lemmas 6 and 7 respectively. Note also, thanks to the fact that X is spectrally
negative, we have that

V ∗(x) = v(x)

for x ∈ R.

Note now that conditions (i) – (iv) of Lemma 5 are automatically satisfied and it remains to
establish the supermartingale and submartingale conditions in (v) and (vi). For the former we
note that if the initial value x ∈ [x∗, log K) then spectral negativity and Lemma 6 (ix) gives
the required supermartingale property. If on the other hand x > y∗ then since, by Lemma 7
(ix), e−rtv(Xt) is a martingale up to the stopping time τ−

y∗ and since, by Lemma 6 (ix), given

Fτ−

y∗
∩ {Xτ−

y∗
< log K} the process {e

−r(t+τ−

y∗
)
v(Xt+τ−

y∗
)} is a supermartingale, the required

supermartingale property follows. For the submartingale property, it is more convenient to
break the proof into the cases that y∗ = log K and y∗ > log K.
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For the case that y∗ > log K pick two arbitrary points log K < a < b < y∗. Now note from the
proof of Lemma 6 (ix) that (Γ− r)v(x) = 0 on x ∈ (x∗, log K). Further, it is easy to verify that,
thanks to the fact that {e−rtv(Xt) : t ≤ τ+

a ∧ τ−
log K} is a submartingale, (Γ − r)v(x) > 0 for

x ∈ (log K, a). The submartingale property follows by piece-wise consideration of the path of X
and the following two facts. Firstly, thanks to the above remarks on the value of (Γ−r)v(x) and
an application of the Itô–Meyer–Tanaka formula (cf. Protter (2004), {e−rtv(Xt) : t ≥ 0} is a
submartingale when X0 ≤ a and t < σ+

b ∧ τ−
x∗ . Secondly, from Lemma 7 (xi) {e−rtv(Xt) : t ≥ 0}

is a submartingale when X0 ≥ b and t < σ−
a ∧ τ−

x∗ .

To deal with the case that y∗ = log K recall from Lemma 7 (vi) that necessarily X has a
Gaussian component. As mentioned in Section 2, this is a sufficient condition to guarantee
that both scale functions are twice continuously differentiable on (0,∞). An application of Itô’s
formula together with the martingale properties mentioned in Lemmas 6 (viii) and 7 (ix) show
that (Γ − r)v = 0 on (x∗, log K) ∪ (log K,∞). Using this fact together with the Itô–Meyer–

Tanaka formula (cf. Protter (2004)) the submartingale property of {e−r(t∧τ−

x∗
)v(Xt∧τ−

x∗
) : t ≥ 0}

follows thanks to its semi-martingale decomposition which now takes the form

e−rtv(Xt) = v(X0) + Mt +

∫ t

0
e−rs

(

v′(log K+) − v′(log K−)
)

dLlog K
s

on {t < τ−
x∗} where Llog K is semi-martingale local time of X at log K and M is a martingale.

Specifically, the integral is non-negative as one may check from (9) the expression given for v in
Lemma 7 (vi) that

v′(log K+) − v′(log K−) =
2

σ2
αeΦ(r)(log K−x∗) > 0. (22)

Note that we have used the fact that α, defined in (16), is strictly positive. The latter fact was
established in the proof of Lemma 7 (vi).

Remark 8. It is clear from the above proof that we have made heavy use of the fact that X
has jumps only in one direction. In particular, this has enabled us to split the problem into
two auxiliary problems and we have solved the problem independently on (−∞, log K] and then
use this solution to construct the solution on (log K,∞). In the case that X has jumps in both
directions, the analysis breaks down at a number of points. Fundamentally however, since X
may pass a fixed level from below by jumping over it, one is no longer able to solve the stochastic
game on (−∞, log K] without knowing the solution on (log K,∞). None the less, Ekström and
Peskir (2006) still provide us with the existence of a stochastic saddle point.

7 y∗ > log K when X has no Gaussian component: proof of

Theorem 3.

(i) It follows immediately from Lemma 7 that when y∗ = log K we necessarily have that X has
a Gaussian component.

Next we show that Π(−∞, log K − y∗) > 0. Suppose that X0 ∈ (log K, y∗), then we know
that {e−rtV (Xt) : t ≤ τ−

log K} is a submartingale and that V (x) = δ on [log K, y∗]. We deduce
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from Itô’s formula (see for example Theorem 36 of Protter (2004)) that in the semi-martingale
decomposition of the aforementioned submartingale, the drift term must be non-negative and
hence for any x ∈ (log K, y∗)

0 ≤ (L − r)V (x)

= −rδ +

∫ 0

−∞
(V (x + y) − δ)Π(dy)

= −rδ +

∫ log K−x

−∞
(V (x + y) − δ)Π(dy).

Therefore, since V is decreasing on (−∞, log K), we find that Π(−∞, log K−y∗) > 0 as required.

8 Remarks on y∗ for the case that X has no Gaussian compo-

nent.

In the previous section we showed that y∗ > log K whenever X has no Gaussian component. In
this section we show that when X has a Gaussian component the distinction between y∗ = log K
and y∗ > log K is a more subtle issue. This distinction is important, since in the next section
we will show that when X is of unbounded variation, the value function is differentiable at
y∗ if and only if y∗ > log K. Lemma 7 (vi) implies that y∗ = log K exactly when the value
function is equal to j(x). Reviewing the calculations in the previous sections one sees that it is
the upper bound condition (ii) of Lemma 5 which may not hold for j and otherwise all other
conditions are verifiable in the same way as before. A sufficient condition that Lemma 5 (ii)
holds is that j is a decreasing function in which case of course y∗ = log K. Whenever X has
no Gaussian component, the function j violates this upper bound condition, as was shown in
the proof of Lemma 7 (vi). This is caused by the behaviour of the scale function W at zero:
when the Gaussian component of X is zero, either W is discontinuous or it has infinite right
derivative at zero. Assume now that X has a Gaussian component. Then the behaviour of the
scale function at zero implies that j(log K+) = δ and that j has finite derivative on (log K,∞).
From these properties alone we are not able to deduce anything about the value of y∗. In fact,
as we will show next, whether the upper bound condition is satisfied by j depends on the sign of
j′(log K+). Whenever j′(log K+) > 0, it must hold that y∗ > log K, since otherwise Lemma 7
(iii) and (vi) lead to a contradiction. We show that a sufficient condition for j to be decreasing,
and hence for y∗ to be equal to log K, is given by j′(log K+) < 0. Recall that j(x) = w(x) on
(−∞, log K]. From Lemma 19 (v) and j′(log K+) < 0 we deduce the existence some γ > 0 such
that j is decreasing on (−∞, log K + γ]. Next let log K + γ ≤ x < y ≤ x + γ. By the strong
Markov property

j(y) − j(x) = E[e−rτ−

log K−x(j(Xτ−

log K−x
+ y) − j(Xτ−

log K−x
+ x))].

From
Xτ−

log K−x
+ x < Xτ−

log K−x
+ y ≤ log K − x + y ≤ log K + γ

we deduce that j(y) − j(x) < 0, which implies that j is a decreasing function on R.
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Remark 9. Note that when X is a Brownian motion and r = ψ(1) = σ2/2 then the discussion
above agrees with Theorem 2 in Kyprianou (2004). Indeed, in this case the scale functions are
given by

W (ψ(1))(x) =
2

σ2
sinh(x) and Z(ψ(1))(x) = cosh(x)

for x ≥ 0. It follows that

j′(log K+) = ψ(1)KW (ψ(1))(log K − x∗) − K +
2αK

σ2
e−x∗

= K sinh(log K − x∗) − K + 2K − K2e−x∗

= −
K2

2
e−x∗

−
1

2
ex∗

+ K.

Since x∗ solves KZ(ψ(1))(log K − x) − K = δ we deduce that

Ke−x∗

+
1

K
ex∗

= 2(δ + K)

and thus
j′(log K+) = −δ < 0.

We conclude that a stochastic saddle point is indeed given by

τ∗ = τ−
x∗ and σ∗ = TK .

Also, for the other cases r 6= σ2/2, similar calculations lead to the results found in Kyprianou
(2004).

Unfortunately, there are rather few spectrally negative Lévy processes for which the scale func-
tion are known in terms of elementary or special functions. Hence, in general, numerical analysis
is needed to check whether the condition j′(log K+) < 0 holds.

9 Pasting properties at y∗: proof of Theorem 4.

Using notation as in the proof of Lemmas 5 and 7, it follows from monotonicity of V and the
definition of (τ∗, σ∗) as a saddle point that for −∞ < x ≤ y < ∞

0 ≤ V (x) − V (y) ≤ E[e−rτ∗(x)(G(Xτ∗(x) + x) − G(Xτ∗(x) + y))1{τ∗(x)≤σ∗(y)}]

+E[e−rσ∗(y)(G(Xσ∗(y) + x) − G(Xσ∗(y) + y))1{σ∗(y)<τ∗(x)}]

and continuity of V follows from continuity of G and dominated convergence.

It has already been shown in Section 4 whilst proving Theorem 2 that there is smooth pasting
at x∗ if and only if X has unbounded variation. It remains then to establish the smoothness of
V at y∗.

(i) Suppose first that X is of unbounded variation. When X has a Gaussian component, recall
from (22) that

V ′(log K+) − V ′(log K−) =
2

σ2
αeΦ(r)(log K−x∗) > 0
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showing that there can be no smooth fit at y∗ when y∗ = log K.

Next suppose that y∗ > log K. Our aim is to show that V ′(y∗+) = 0. In order to do this we
shall need two auxiliary results.

Lemma 10. Suppose X is of unbounded variation and let c < 0. Then

lim
ε↓0

P(τ−
c = τ−

−ε, τ
−
c < τ+

ε )

ε
= 0. (23)

Proof. Let c < 0. Define for ε > 0

Aε := {τ−
c = τ−

−ε, τ
−
c < τ+

ε } = {Xτ−

−ε
< c, τ−

c < τ+
ε }.

and let Xt = sups≤t Xs. Let L = {Lt : t ≥ 0} be the local time at zero of {Xt − Xt : t ≥ 0}.

Denote by {(t, ǫt) : t ≥ 0} the process of excursions from zero of {Xt − Xt : t ≥ 0} on the local
time scale. Note that excursions are of the form ǫt = {ǫt(s) : s ≤ ζt}, where ζt is the duration of
excursion ǫt. For the generic excursion ǫ let

ρx := inf{s > 0 : ǫ(s) > x}.

Note that Aε happens if and only if there exists a left endpoint g of an excursion such that

(i) Lg < ε (at time g the process must not have exceeded ε),

(ii) ǫLh
< Xh + ε ∀h < g in the support of dL (during excursions before time g the process

must stay above −ε),

(iii) ǫLg(ρXg+ε) > Xg − c (the first exit time below −ε must be the first exit time below c).

Hence we can use the compensation formula (with g and h denoting left end points of excursion
intervals) to deduce that

P(Aε) = E





∑

g<L−1
ε

1{ǫLh
<Xh+ε ∀h<g}1{ǫLg (ρ

Xg+ε
)>Xg−c}





= E

[

∫ L−1
ε −

0
dLs · 1{ǫLu<Xu+ε ∀u<s}ϕ(Xs)

]

,

where ϕ(x) = n(ǫ(ρx+ε) > x − c).

Using the fact that XL−1
t

= t we find for ε small enough

0 ≤
1

ε
P(Aε)

=
1

ε
E

[
∫ ε∧L∞

0
dt · 1{ǫθ<θ+ε ∀θ<t}ϕ(t)

]

(24)

≤
1

ε

∫ ε

0
dt · n(ǫ(ρt+ε) > −c)

≤
1

ε

∫ 2ε

0
dt · n(ǫ(ρt) > −c).
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It is known however (cf. Millar (1977)) that since X has unbounded variation limt↓0 ǫ(ρt) = 0
which in turn implies that

lim
ε↓0

P(Aε)

ε
= 0

as required.

Lemma 11. For any spectrally negative Lévy process

lim sup
ε↓0

W (2ε)

W (ε)
≤ 2.

Proof. First suppose that X does not drift to −∞, i.e. Φ(0) = 0. In that case, it is known that
W is proportional to the renewal function of the descending ladder height process. The result is
then immediate from the known sub-additivity of renewal functions (cf. Chapter III of Bertoin
(1996)). In the case that Φ(0) > 0 (i.e. X drifts to −∞), it is known that W (x) = eΦ(0)xW ∗(x)
where W ∗ plays the role of the scale function for X conditioned to drift to +∞ (which is again
a spectrally negative Lévy process) and the result follows.

We are now ready to conclude the proof of part (i) of Theorem 4. To this end suppose y > log K
and X is of unbounded variation. Since V = δ on [log K, y∗] it suffices to show that the right
derivative of V exists at y∗ and that V ′(y∗+) = 0. Since V (y∗) = δ and since V (x) ≤ δ for any
x > log K we have for any x > y∗

V (x) − V (y∗)

x − y∗
≤ 0,

which implies that

lim sup
x↓y∗

V (x) − V (y∗)

x − y∗
≤ 0.

To show that V ′(y∗) = 0 we must thus show that

lim inf
x↓y∗

V (x) − V (y∗)

x − y∗
≥ 0.

In order to achieve this define for ε < log K − y∗

τ∗
ε = inf{t ≥ 0 : Xt /∈ [y∗ − ε, y∗ + ε]}

Furthermore
τ+ := inf{t ≥ 0 : Xt > y∗ + ε}

and
τ− := inf{t ≥ 0 : Xt < y∗ − ε}.

We have that for small enough ε, {e−r(t∧τε)V (Xt∧τε)}t≥0 is a Py∗-submartingale, hence by the
optional sampling theorem

E
∗
y[e

−rτεV (Xτε)]

≥ V (y∗)

= V (y∗)E∗
y[e

−rτ+
1{τ+<τ−}] + δ(1 − E

∗
y[e

−rτ+
1{τ+<τ−}]). (25)
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Furthermore we use Lemma 10 and the fact that V is bounded by K to deduce

E
∗
y[e

−rτεV (Xτε)]

= V (y∗ + ε)E∗
y[e

−rτ+
1{τ+<τ−}] + E

∗
y[e

−rτ−

V (Xτ−)1{τ−<τ+}]

= V (y∗ + ε)E∗
y[e

−rτ+
1{τ+<τ−}] + δE

∗
y[e

−rτ−

1{τ−

log K
<τ−<τ+}]

+E
∗
y[e

−rτ−

V (Xτ−)1{τ−

log K
=τ−<τ+}]

≤ V (y∗ + ε)E∗
y[e

−rτ+
1{τ+<τ−}] + δE

∗
y[e

−rτ−

1{τlog K−<τ−<τ+}]

+KP(τ−
log K = τ− < τ+)

≤ V (y∗ + ε)E∗
y[e

−rτ+
1{τ+<τ−}] + δE

∗
y[e

−rτ−

1{τ−<τ+}] + o(ε) as ε ↓ 0. (26)

The two expectations on the right hand side of (26) can be evaluated in terms of scale functions
with the help of (6) and (7). Also, because X is of unbounded variation, it is known that
W (q)(0) = 0. Combining these facts, (25), (26) and using Lemma 11 we find

lim inf
ε↓0

V (y∗ + ε) − V (y∗)

ε
≥ δ lim inf

ε↓0

1 − E
∗
y[e

−rτε ]

εE∗
y[e

−rτ+1{τ+<τ−}]

= rδ lim inf
ε↓0

1

ε

(

∫ 2ε

0
W (r)(y)dy −

W (r)(2ε)

W (r)(ε)

∫ ε

0
W (r)(y)dy

)

= 0.

This concludes the proof of part (i) of Theorem 4.

(ii) Suppose now that X has bounded variation. We know that necessarily X has no Gaussian
component and hence by Theorem 3 that y∗ > log K. We see from (21) and continuity of V
that for ε > 0

V (y∗ + ε) − δ

ε
≤ E

[

e
−rτ−

y∗
(y∗)

wδ(Xτ−

y∗
(y∗) + y∗ + ε) − wδ(Xτ−

y∗
(y∗) + y∗)

ε

]

where as before we are working under the measure P and indicated the dependency of stopping
times on an initial position of X. Now recalling that wδ is a non-increasing function and is equal
to V on (−∞, log K), we have further with the help of Theorem 3, dominated convergence and
the fact that V is decreasing on (−∞, log K) that

lim sup
ε↓0

V (y∗ + ε) − δ

ε
≤ E[e

−rτ−

y∗
(y∗)

V ′(Xτ−

y∗
(y∗) + y∗)1{X

τ
−

y∗
(y∗)

+y∗<log K}] < 0.

Hence there is continuous fit but no smooth fit at y∗ in this case.

10 Remarks on the case r = 0 and ψ(1) > 0.

Dealing with the case that r = 0 and ψ(1) > 0 first requires the problem to be formulated in a
slightly different way as a careful inspection of the proof of the Verification Lemma reveals that
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there is a problem with the inequality in (18) on account of the value of the gain on the event
that {τ = σ = ∞}. The way round this is to reformulate the problem by defining

Θ0
τ,σ = G(Xτ )1{τ≤σ,τ<∞} + H(Xσ)1{σ<τ,σ<∞} + L(lim sup

t↑∞
Xt, lim inf

t↑∞
Xt)1{τ=σ=∞}

where L(∞,∞) = δ and L(−∞,−∞) = K and L(∞,−∞) = K.

Suppose again that U(x) is the solution to (5) but now under the regime r = 0 and ψ(1) > 0.
It is not difficult to see that U(x) = K when X does not drift to ∞ and otherwise is given by
the expression in Theorem 1 with r = 0. When δ is smaller than U(log K), we claim the saddle
point is given by

τ∗ = τ−
x∗ and σ∗ = inf{t : Xt ≥ log K},

where x∗ is the unique solution to

Kψ(1)

∫ log K−x

0
e−yW (y)dy = δ.

(Note that here we use the assumption ψ(1) > 0). For x ≤ log K the value function is given by

V (x) = K − ex + ψ(1)ex

∫ x−x∗

0
e−yW (y)dy.

Indeed it is possible to mildly adapt the statement and proof of the Verification Lemma to show
that these choices of τ∗ and σ∗ constitute a saddle point. The reader is referred to Section 10
of Chapter 5 of Baurdoux (2007) for a more detailed study of the r = 0 case.

Appendix.

Our objective here is to show that

Ex[e−rτ−

x∗ (K − e
X

τ
−

x∗ )1{τ−

x∗
<TK} + e−rTK δ1{TK<τ−

x∗
}]

= KZ(r)(x − x∗) − exZ
(r−ψ(1))
1 (x − x∗)

+αeΦ(r)(log K−x∗)W (r)(x − log K). (27)

We need first a preliminary Lemma. Recall that TK = inf{t > 0 : Xt = log K}.

Lemma 12. For all x ∈ R the following two identities hold

Ex[e−rTK1{TK<τ−

x∗
}] =

W (r)(x − x∗)

W (r)(log K − x∗)
− eΦ(r)(log K−x∗) W (r)(x − log K)

W (r)(log K − x∗)
.

and

Ex[e−rτ−

x∗1{τ−

x∗
<TK}] =

(

Z(r)(log K − x∗)

W (r)(log K − x∗)
−

r

Φ(r)

)

e−Φ(r)(log K−x∗)W (r)(x − log K)

+Z(r)(x − x∗) −
Z(r)(log K − x∗)

W (r)(log K − x∗)
W (r)(x − x∗).
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Proof. Denote by u+
q the q-potential density of the process killed at exiting the positive halfline.

We know that for x, a ≥ 0

u+
q (x, a) = e−Φ(q)aW (q)(x) − W (q)(x − a).

Proposition 1 in Pistorius (2005) allows us to deduce with some algebra that

Ex[e−rTK1{TK<τ−

x∗
}] =

u+
r (x − x∗, log K − x∗)

u+
r ((log K − x∗)−, log K − x∗)

=
W (r)(x − x∗)

W (r)(log K − x∗)
− eΦ(r)(log K−x∗) W (r)(x − log K)

W (r)(log K − x∗)
.

From the Markov property it follows that Ex[e−rτx∗1{τ−

x∗
<TK}] is equal to

Ex[e−rτ−

x∗ ] − Ex[e−rτ−

x∗1{TK<τ−

x∗
}]

= Z(r)(x − x∗) −
r

Φ(r)
W (r)(x − x∗) − Elog K [e−rτ−

x∗ ]Ex[e−rTK1{TK<τ−

x∗
}]

=

(

Z(r)(log K − x∗)

W (r)(log K − x∗)
−

r

Φ(r)

)

eΦ(r)(log K−x∗)W (r)(x − log K)

+Z(r)(x − x∗) −
Z(r)(log K − x∗)

W (r)(log K − x∗)
W (r)(x − x∗)

thus concluding the proof.

Proof of (27). From Lemma 12

Ex[e−rτ−

x∗ (K − e
X

τ
−

x∗ )1{τ−

x∗
<TK} + e−rTK δ1{TK<τ−

x∗
}]

= KEx[e−rτ−

x∗1{τ−

x∗
<TK}] − ex

E
1
x[e−cτx∗−

1{τ−

x∗
<TK}]

+δ
W (r)(x − x∗)

W (r)(log K − x∗)
− δeΦ(r)(log K−x∗) W (r)(x − log K)

W (r)(log K − x∗)

= K

(

Z(r)(log K − x∗)

W (r)(log K − x∗)
−

r

Φ(r)

)

eΦ(r)(log K−x∗)W (r)(x − log K)

+KZ(r)(x − x∗) − K
Z(r)(log K − x∗)

W (r)(log K − x∗)
W (r)(x − x∗)

−ex

(

Z
(r−ψ(1))
1 (log K − x∗)

W
(r−ψ(1))
1 (log K − x∗)

−
r − ψ(1)

Φ1(r − ψ(1))

)

×eΦ1(r−ψ(1))(log K−x∗)W
(r−ψ(1))
1 (x − log K)

−exZ
(r−ψ(1))
1 (x − x∗) + ex Z

(r−ψ(1))
1 (log K − x∗)

W
(r−ψ(1))
1 (log K − x∗)

W
(r−ψ(1))
1 (x − x∗)

+δ
W (r)(x − x∗)

W (r)(log K − x∗)
− δeΦ(r)(log K−x∗) W (r)(x − log K)

W (r)(log K − x∗)
,
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where Φ1 plays the role of Φ under P
1. Using (11) we have ψ1(Φ(r) − 1) = ψ(Φ(r)) − ψ(1) =

r − ψ(1) and thus Φ1(r − ψ(1)) = Φ(r) − 1. By definition of x∗ we have Z(r)(log K − x∗) −

Z
(r−ψ(1))
1 (log K − x∗) = δ/K and we use (12) to conclude

Ex[e−rτ−

x∗ (K − e
X

τ
−

x∗ )1{τ−

x∗
<TK} + e−rTKδ1{TK<τ−

x∗
}]

= KZ(r)(x − x∗) − exZ
(r−ψ(1))
1 (x − x∗)

+eΦ(r)(log K−x∗) W (r)(x − log K)

W (r)(log K − x∗)

×
(

KZ(r)(log K − x∗) − δ − KZ
(r−ψ(1))
1 (log K − x∗)

)

+
W (r)(x − x∗)

W (r)(log K − x∗)

(

δ − KZ(r)(log K − x∗) + KZ
(r−ψ(1))
1 (log K − x∗)

)

+KeΦ(r)(log K−x∗)W (r)(x − log K)

(

−
r

Φ(r)
+ Kex∗ r − ψ(1)

Φ(r) − 1

)

= KZ(r)(x − x∗) − exZ
(r−ψ(1))
1 (x − x∗) + αKeΦ(r)(log K−x∗)W (r)(x − log K)

as required.
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[8] Chan, T. (2004) Some applications of Lévy processes in insurance and finance. Finance.
25, 71–94.
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