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Introduction

In a recent joint work with P. Tarrès ([15], see also [22]), we studied the convergence of the so-
called two armed bandit algorithm. The purpose of the present paper is to investigate a modified
version of this recursive algorithm, in which a penalization is introduced. In the terminology of
learning theory (see [17; 18]), the algorithm studied in [15] appeared as a Linear Reward-Inaction
(LRI) scheme (with possibly decreasing step), whereas the one we will introduce is related to
the Linear Reward-Penalty (LRP ) or (LRεP ) schemes.

In our previous paper, we introduced the algorithm in a financial context. However, historically,
this recursive procedure was designed independently in the fields of mathematical psychology
(see [19]) and of engineering (see [21]). Its name goes back to another interpretation as a model
of slot machine with two “arms” providing two different rates of gain. It can also be interpreted
as an adaptive procedure for clinical trials, based on its connections with generalized urn models
(see [15]) that are often proposed in the literature for that purpose (see e.g. [1] and the references
therein).

Another important motivation for investigating is that the two armed bandit algorithm is known
in the field of stochastic approximation as the simplest example of a recursive stochastic algo-
rithm having a noiseless trap in the following sense: one zero of its mean function is repulsive
for the related ODE but the algorithm has no stochastic noise at this equilibrium. Therefore,
the standard “first order” ODE method as well as the “second order” approach based on the
repeling effect induced by the presence of noise (see e.g. the seminal paper [20] by Pemantle) do
not seem to apply for proving the non-convergence of the algorithm toward this “noiseless trap”.

Let us first present the (LRI) procedure (with possibly decreasing step) in a gambling framework:
one considers a slot machine in a casino (a “bandit”) with two arms, say A and B (by contrast
with the famous “one-armed-bandit” machines). When playing arm A (resp. B), the average
yield (for 1 Euro) is pA ∈ (0, 1) (resp. pB ). These parameters are unknown to the gambler. For
the sake of simplicity one may assume that the slot machine has a 0-1 gross profit: one wins
0 or 1. Then pA and pB are the respective theoretical frequencies of winning with the arms.
More precisely, the events An (resp. Bn) “winning at time n using A (resp. B)” are iid with
probability P(An) = pA (resp. P(Bn) = pB ) with pA , pB ∈ (0, 1). The (LRI) procedure is an
adaptive natural method to detect the most performing arm: at every time n, the player selects
an arm at random, namely A with probability Xn and B with probability 1 − Xn. Once the
selected arm has delivered its verdict, the probability Xn is updated as follows (in view of the
arm selection at time n+ 1):

Xn+1 = Xn + γn+1

(
1{Un+1≤Xn}∩An+1

(1−Xn)− 1{Un+1>Xn}∩Bn+1
Xn

)
, X0 = x∈ [0, 1],

where (Un)n≥1 is an iid sequence of uniform random variables on the interval [0, 1], independent
of (An, Bn)n≥1. In words, if the player plays arm A (as a result of the biased tossing) and
wins 1 Euro at time n + 1, the probability to choose A (at time n + 2) will be increased
by γn+1(1 − Xn) (i.e. proportionally to the probability of selecting B). If the gain is 0, the
probability is left unchanged. One proceeds symmetrically when B is selected. The (0, 1)-valued
parameter sequence (γn)n≥1 rules the intensity of the updating. When γn = γ∈ (0, 1), the above
alorithm reduces to the original (LRI) procedure (see [18]) and γ is known as the reward rate
parameter. This sequence (γn) specifies how the recursive learning procedure keeps the memory
of the past and how fast it forgets the starting value X0 = x∈ (0, 1) of the procedure. Also note
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that such a procedure is only based on rewarding: no arm is ever “penalized” when it provides
no gain (“Reward” or “Inaction”).
In a financial framework, A and B can be two traders who manage at time n, Xn % and 1−Xn %
of a fund respectively. In the framework of clinical tests, A and B model two possible clinical
protocols to be tested on patients. In the framework of engineering, one may think of two
subcontractors which provide a car manufacturer with specific mechanical devices (windscreen-
wipers, tires, gearbox, etc) with respective reliability pA and pB .
This procedure has been designed in order to be“infallible”(or“optimal”in the learning automata
terminology) i.e. to always select asymptotically the most profitable arm. The underlying feature
of the above (LRI) procedure that supports such an intuition is that it is the only recursive
procedure of that type which is always a sub-(resp. super)-martingale as soon as pA > pB (resp.
pA < pB ) as emphasized in [14]. To be more specific, by “infallibility” we mean that if pA > pB ,
then Xn converges to 1 with probability 1 provided X0 ∈ (0, 1) (and if pA < pB , the limit is 0
with symmetric results).
Unfortunately it turns out that this intuition is misleading: the algorithm is often “fallible”,
depending on the choice of the step sequence γ. In fact“infallibility”needs some further stringent
assumptions on this step sequence (see [15], and also [23] for an ergodic version of the algorithm).
Furthermore, the rate of convergence of the procedure either to its “target” 1 or to its “trap” 0
is never ruled by a CLT with rate

√
γn like standard stochastic approximation algorithms are

(see [11]). It is shown in [14] that its rate structure is complex, highly non-standard and strongly
depends on the (unknown) values pA and pB . As a result, this rate becomes quite poor as these
probabilities get close to each other. This illustrates in a rather striking way the effects induced
by a “noiselss trap” on the dynamics of a stochastic approximation procedure.

In order to improve the efficiency of the algorithm, i.e. to make it “unconditionally” infallible, a
natural idea is to introduce a penalty when the selected arm delivers no gain. More precisely, if
the selected arm at time n performs badly, its probability to be selected is decreased by a penalty
factor ρnγn. This leads to introduce a (variant of the) Linear Reward Penalty – or “penalized
two-armed bandit” – procedure:

Xn+1 = Xn + γn+1

(
1{Un+1≤Xn}∩An+1

(1−Xn)− 1{Un+1>Xn}∩Bn+1
Xn

)
−γn+1ρn+1

(
Xn1{Un+1≤Xn}∩Acn+1

− (1−Xn)1{Un+1>Xn}∩Bcn+1

)
, n ∈ N,

where the notation Ac is used for the complement of an event A. The precise assumptions on the
reward rate γn and the penalty rate γnρn will be given in the following sections. When γn = γ
and ρn = ρ the procedure reduces to the original (LRP ) procedure.
From a stochastic approximation viewpoint as well as for practical applications, our main results
are on the one hand that infallibility always holds and on the other hand that it is possible to
specify the sequences (γn) and (ρn) regardless of the values of pA and pB so that the convergence
rate satisfies a CLT theorem like standard stochastic approximation procedures. However with
a quite important difference: the limiting distribution is never Gaussian: it can be characterized
as the (absolutely continuous) invariant distribution of a homogeneous Markov process with
jumps.

The paper is organized as follows. In Section 1, we discuss the convergence of the sequence
(Xn)n≥0. First we show that, if ρn is a positive constant ρ, the sequence converges with prob-
ability one to a limit x∗ρ ∈ (0, 1) satisfying x∗ρ >

1
2 if and only if pA > pB , so that, although the
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algorithm manages to distinguish which arm is the most performing, it does not prescribe to
play exclusively with that arm. However, when ρ is small, one observes a kind of asymptotic
infallibility, namely that x∗ρ → 1 as ρ→ 0 (see section 1.2 below). Note that a somewhat similar
setting (but with γn = γ) has been investigated in learning automata theory as the “LRεP”
procedure (see [12] or also [13]). To obtain true infallibility, we consider a sequence (ρn)n≥1

which goes to zero so that the penalty rate becomes negligible with respect to the reward rate
(γnρn = o(γn)). This framework (ρn → 0) seems new in the learning theory literature. Then, we
are able to establish the infallibility of the algorithm under very light conditions on the reward
rate γn (and ρn) in which pA and pB are not involved. From a purely stochastic approximation
viewpoint, this modification of the original procedure has the same mean function and time
scale (hence the same target and trap, see (5)) as the LRI procedure with decreasing step but it
always keeps the algorithm away from the trap, without adding noise at any equilibrium point.
(In fact, this last condition was necessary in order to keep the algorithm inside its domain [0, 1]
since the equilibrium points are endpoints 0 and 1.)

The other two sections are devoted to the rate of convergence. In Section 2, we show that
under some conditions (including lim

n→∞
γn/ρn = 0) the sequence Yn = (1 − Xn)/ρn converges

in probability to (1 − pA)/π, where π = pA − pB > 0. With additional assumptions, we prove
that this convergence occurs with probability 1. In Section 3, we show that if the ratio γn/ρn
goes to a positive limit as n goes to infinity, then (Yn)n≥1 converges in a weak sense to a
probability distribution ν. This distribution is identified as the unique stationary distribution
of a discontinuous Markov process. This result is obtained by using weak functional methods
applied to a re-scaling of the algorithm. This approach can be seen as an extension of the
SDE method used to prove the CLT in a more standard framework of stochastic approximation
(see [11]). Furthermore, we show that ν is absolutely continuous with continuous, possibly
non-smooth, piecewise C∞ density. An interesting consequence of these results for practical
applications is that, by choosing ρn and γn proportional to n−1/2, one can achieve convergence
at the rate 1/

√
n, without any a priori knowledge about the values of pA and pB . This is in

contrast with the case of the LRI procedure, where the rate of convergence depends heavily on
these parameters (see [14]) and becomes quite poor when they get close to each other.

Notation. Let (an)n≥0 and (bn)n≥0 be two sequences of positive real numbers. The symbol
an ∼ bn means an = bn + o(bn).

1 Convergence of the LRP algorithm with decreasing step

1.1 Some classical background on stochastic approximation

We will rely on the ODE lemma recalled below for a stochastic procedure (Zn) taking its values
in a given compact interval I.

Theorem 1. (a) Kushner & Clark’s ODE Lemma (see [10]): Consider a function g : I →
R, such that Id+ g leaves I stable1, and the stochastic approximation procedure defined on I by

Zn+1 = Zn + γn+1(g(Zn) + ∆Rn+1), n ≥ 0, Z0∈ I,
1then, for every γ∈ [0, 1], Id+ γg = γ(Id+ g) + (1− γ)Id still takes values in the convex set I.
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where (γn)n≥1 is a sequence of [0, 1]-valued real numbers satisfying γn → 0 and
∑

n≥1 γn = +∞.
Set N(t) := min{n : γ1 + · · ·+ γn+1 > t}. Let z∗ be an attracting zero of g in I and G(z∗) its
attracting interval. If, for every T > 0,

max
N(t)≤n≤N(t+T )

∣∣∣∣∣∣
n∑

k=N(t)+1

γk ∆Rk

∣∣∣∣∣∣ −→ 0 P-a.s. as t→ +∞, (1)

then, Zn
a.s.−→ z∗ on the event

{Zn visits infinitely often a compact subset of G(z∗)}.

(b) The Hoeffding condition (see [2]): If (∆Rn)n≥0 is a sequence of L∞-bounded martingale

increments, if (γn) is non-increasing and
∑
n≥1

e
− ϑ
γn < +∞ for every ϑ > 0, then Assumption (1)

is satisfied.

1.2 Basic properties of the algorithm

We first recall the definition of the algorithm. We are interested in the asymptotic behavior of
the sequence (Xn)n∈N, where X0 = x, with x ∈ (0, 1), and

Xn+1 = Xn + γn+1

(
1{Un+1≤Xn}∩An+1

(1−Xn)− 1{Un+1>Xn}∩Bn+1
Xn

)
−γn+1ρn+1

(
Xn1{Un+1≤Xn}∩Acn+1

− (1−Xn)1{Un+1>Xn}∩Bcn+1

)
, n ∈ N.

Throughout the paper, we assume that (γn)n≥1 is a non-increasing sequence of positive numbers

satisfying γn < 1,
∞∑
n=1

γn = +∞ and

∀ϑ > 0,
∑
n

e
− ϑ
γn <∞,

and that (ρn)n≥1 is a sequence of positive numbers satisfying γnρn < 1; (Un)n≥1 is a sequence of
independent random variables which are uniformly distributed on the interval [0, 1], the events
An, Bn satisfy

P(An) = pA , P(Bn) = pB , n ∈ N,
where 0 < pB ≤ pA < 1, and the sequences (Un)n≥1 and (1An ,1Bn)n≥1 are independent. The
natural filtration of the sequence (Un,1An ,1Bn)n≥1 is denoted by (Fn)n≥0 and we set

π = pA − pB .

With this notation, we have, for n ≥ 0,

Xn+1 = Xn + γn+1 (πh(Xn) + ρn+1κ(Xn)) + γn+1∆Mn+1, (2)

where the functions h and κ are defined by

h(x) = x(1− x), κ(x) = −(1− pA)x2 + (1− pB )(1− x)2, 0 ≤ x ≤ 1,
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∆Mn+1 = Mn+1 −Mn, and the sequence (Mn)n≥0 is the martingale defined by M0 = 0 and

∆Mn+1 = 1{Un+1≤Xn}∩An+1
(1−Xn)− 1{Un+1>Xn}∩Bn+1

Xn − πh(Xn)

−ρn+1

(
Xn1{Un+1≤Xn}∩Acn+1

− (1−Xn)1{Un+1>Xn}∩Bcn+1
+ κ(Xn)

)
. (3)

Observe that the increments ∆Mn+1 are bounded.

1.3 The case of a constant penalty rate (an (LRεP ) setting)

In this subsection, we assume
∀n ≥ 1, ρn = ρ,

with 0 < ρ ≤ 1. We then have

Xn+1 = Xn + γn+1 (hρ(Xn) + ∆Mn+1) ,

where
hρ(x) = πh(x) + ρκ(x), 0 ≤ x ≤ 1.

Note that hρ(0) = ρ(1 − pB ) > 0 and hρ(1) = −ρ(1 − pA) < 0, and that there exists a unique
x∗ρ ∈ (0, 1) such that hρ(x∗ρ) = 0. By a straightforward computation, we have

x∗ρ =
π − 2ρ(1− pB ) +

√
π2 + 4ρ2(1− pB)(1− pA)

2π(1− ρ)
if π 6= 0 and ρ 6= 1

∗[.5em] =
(1− pA)

(1− pA) + (1− pB )
if π = 0 or ρ = 1.

In particular, x∗ρ = 1/2 if π = 0 regardless of the value of ρ. We also have hρ(1/2) = π(1+ρ)/4 ≥
0, so that

x∗ρ > 1/2 if π > 0. (4)

Now, let x be a solution of the ODE dx/dt = hρ(x). If x(0) ∈ [0, x∗ρ], x is non-decreasing and
lim
t→∞

x(t) = x∗ρ. If x(0) ∈ [x∗ρ, 1], x is non-increasing and lim
t→∞

x(t) = x∗ρ. It follows that the

interval [0, 1] is a domain of attraction for x∗ρ. Consequently, using Kushner and Clark’s ODE
Lemma (see Theorem 1), one reaches the following conclusion.

Proposition 1. Assume that ρn = ρ∈ (0, 1], then

Xn
a.s.−→x∗ρ as n→∞.

The natural interpretation, given the above inequalities on x∗ρ, is that this algorithm never
fails in pointing the best arm thanks to Inequality (4), but it will never select the best arm
asymptotically as the original LRI procedure did. However, note that

x∗ρ → 1 as ρ→ 0

which makes the family of algorithms (indexed by ρ) “asymptotically” infallible as ρ→ 0. These
results are in some way similar to those obtained in [12] for the so-called (LRεP ) scheme (with
constant reward and penalty rates γ and ρ). By considering a penalty rate ρn going to zero we
will show that the resulting algorithm becomes “unconditionaly” infallible as n goes to infinity.
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1.4 Convergence when the penalty rate goes to zero

Proposition 2. Assume lim
n→∞

ρn = 0. The sequence (Xn)n∈N is almost surely convergent and

its limit X∞ satisfies X∞ ∈ {0, 1} with probability 1.

Proof: We first write the algorithm in its canonical form

Xn+1 = Xn + γn+1(π h(Xn) + ∆Rn+1) with ∆Rn = ∆Mn + ρnκ(Xn−1). (5)

It is straightforward to check that the ODE ẋ = h(x) has two equilibrium points, 0 and 1, 1
being attractive with (0, 1] as an attracting interval and 0 is unstable.

Since the martingale increments ∆Mn are bounded, it follows from the assumptions on the
sequence (γn)n≥1 and the Hoeffding condition (see Theorem 1(b)) that

max
N(t)≤n≤N(t+T )

∣∣∣∣∣∣
n∑

k=N(t)+1

γk∆Mk

∣∣∣∣∣∣ P-a.s.−→ 0 as t→ +∞,

for every T > 0. On the other hand, the function κ being bounded on [0, 1] and ρn converging
to 0, we have, for every T > 0, with the notation ‖κ‖∞ = supx∈[0,1] |κ(x)|,

max
N(t)≤n≤N(t+T )

∣∣∣∣∣∣
n∑

k=N(t)+1

γkρkκ(Xk−1)

∣∣∣∣∣∣ ≤ ‖κ‖∞(T + γ
N(t+T )

) max
k≥N(t)+1

ρk −→ 0 as t→ +∞.

Finally, the sequence (∆Rn)n≥1 satisfies Assumption (1). Consequently, either Xn visits in-
finitely often an interval [ε, 1] for some ε > 0 and Xn converges toward 1, or Xn converges
toward 0. ♦

Remark 1. If π = 0, i.e. pA = pB , the algorithm reduces to

Xn+1 = Xn + γn+1ρn+1(1− pA)(1− 2Xn) + γn+1∆Mn+1.

The number 1/2 is the unique equilibrium of the ODE ẋ = (1 − pA)(1 − 2x), and the interval
[0, 1] is a domain of attraction. Assuming

∑∞
n=1 ρnγn = +∞, and that the sequence (γn/ρn)n≥1

is non-increasing and satisfies

∀ϑ > 0,
∞∑
n=1

exp
(
−ϑρn

γn

)
< +∞,

it can be proved, using the Kushner-Clark ODE Lemma (Theorem 1), that lim
n→∞

Xn = 1/2

almost surely. As concerns the asymptotics of the algorithm when π = 0 and γn = g ρn (for
which the above condition is not satisfied), we refer to the final remark of the paper.

From now on, we will assume that pA > pB . The next proposition shows that the penalized
algorithm is infallible under very light assumptions on γn and ρn.

Proposition 3. (Infallibility) Assume lim
n→∞

ρn = 0. If the sequence (γn/ρn)n≥1 is bounded and∑
n γnρn =∞, and if π > 0, we have lim

n→∞
Xn = 1 almost surely.
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Proof: We have from (2), since h ≥ 0 on the interval [0, 1],

Xn ≥ X0 +
n∑
j=1

γjρjκ(Xj−1) +
n∑
j=1

γj∆Mj , n ≥ 1.

Since the jumps ∆Mj are bounded, we have∣∣∣∣∣∣
∣∣∣∣∣∣
n∑
j=1

γj∆Mj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

L2

≤ C
n∑
j=1

γ2
j ≤ C sup

j∈N
(γj/ρj)

n∑
j=1

γjρj ,

for some positive constant C. Therefore, since
∑

n γnρn =∞,

L2- lim
n→∞

∑n
j=1 γj∆Mj∑n
j=1 γjρj

= 0 so that lim sup
n

∑n
j=1 γj∆Mj∑n
j=1 γjρj

≥ 0 a.s..

Here, we use the fact that a sequence which converges in L2 has a subsequence which converges
almost surely. Now, on the set {X∞ = 0}, we have

lim
n→∞

n∑
j=1

γjρjκ(Xj−1)

n∑
j=1

γjρj

= κ(0) > 0.

Hence, it follows that, still on the set {X∞ = 0},

lim sup
n→∞

Xn
n∑
j=1

γjρj

> 0.

Therefore, we must have P(X∞ = 0) = 0. ♦

The following Proposition will give a control on the conditional variance process of the martingale
(Mn)n∈N which will be crucial to elucidate the rate of convergence of the algorithm.

Proposition 4. We have, for n ≥ 0,

E
(
∆M2

n+1 | Fn
)
≤ pA(1−Xn) + ρ2

n+1(1− pB ).

Proof: We have

∆Mn+1 = Vn+1 − E(Vn+1 | Fn) +Wn+1 − E(Wn+1 | Fn),

with
Vn+1 = 1{Un+1≤Xn}∩An+1

(1−Xn)− 1{Un+1>Xn}∩Bn+1
Xn

and
Wn+1 = −ρn+1

(
Xn1{Un+1≤Xn}∩Acn+1

− (1−Xn)1{Un+1>Xn}∩Bcn+1

)
.
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Note that Vn+1Wn+1 = 0, so that

E
(
∆M2

n+1 | Fn
)

= E(V 2
n+1 | Fn) + E(W 2

n+1 | Fn)− (E(Vn+1 +Wn+1 | Fn))2

≤ E(V 2
n+1 | Fn) + E(W 2

n+1 | Fn).

Now, using pB ≤ pA and Xn ≤ 1,

E
(
V 2
n+1 | Fn

)
= pAXn(1−Xn)2 + pB (1−Xn)X2

n

≤ pA(1−Xn)
and E(W 2

n+1 | Fn) = ρ2
n+1

(
X3
n(1− pA) + (1−Xn)3(1− pB )

)
≤ ρ2

n+1(1− pB ).

This proves the Proposition. ♦

2 The rate of convergence: pointwise convergence

2.1 Convergence in probability

Theorem 2. Assume

lim
n→∞

ρn = 0, lim
n→∞

γn
ρn

= 0,
∑
n

ρnγn =∞, ρn − ρn−1 = o(ρnγn). (6)

Then, the sequence ((1−Xn)/ρn)n≥1 converges to (1− pA)/π in probability.

Note that the assumptions of Theorem 2 are satisfied if γn = C/na and ρn = C ′/nr, with
C,C ′ > 0, 0 < r < a and a + r < 1. In fact, we will see that for this choice of parameters,
convergence holds with probability one (see Theorem 3).

Before proving Theorem 2, we introduce the notation

Yn =
1−Xn

ρn
.

We have, from (2),

1−Xn+1 = 1−Xn − γn+1πXn(1−Xn)− ρn+1γn+1κ(Xn)− γn+1∆Mn+1

1−Xn+1

ρn+1
=

1−Xn

ρn+1
− γn+1

ρn+1
πXn(1−Xn)− γn+1κ(Xn)− γn+1

ρn+1
∆Mn+1.

Hence

Yn+1 = Yn + (1−Xn)
(

1
ρn+1

− 1
ρn
− γn+1

ρn+1
πXn

)
− γn+1κ(Xn)− γn+1

ρn+1
∆Mn+1

Yn+1 = Yn (1 + γn+1εn − πnγn+1Xn)− γn+1κ(Xn)− γn+1

ρn+1
∆Mn+1,

where

εn =
ρn
γn+1

(
1

ρn+1
− 1
ρn

)
and πn =

ρn
ρn+1

π.

It follows from the assumption ρn − ρn−1 = o(ρnγn) that lim
n→∞

εn = 0 and lim
n→∞

πn = π.
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Lemma 1. Assume (6) and consider two positive numbers π− and π+ with 0 < π− < π < π+ <
1. Given l ∈ N, let

νl = inf{n ≥ l | πnXn − εn > π+ or πnXn − εn < π−}.

We have

• lim
l→∞

P(νl =∞) = 1,

• for n ≥ l, if θ+
n =

∏n
k=l+1(1 − π+γk) and θ−n =

∏n
k=l+1(1 − π−γk) (with the convention

θ±l = 1),

Yn∧νl

θ−
n∧νl

≤ Yl −
n∧νl∑
k=l+1

γk

θ−k
κ(Xk−1)−

n∧νl∑
k=l+1

γk

ρkθ
−
k

∆Mk (7)

and
Yn∧νl

θ+
n∧νl

≥ Yl −
n∧νl∑
k=l+1

γk

θ+
k

κ(Xk−1)−
n∧νl∑
k=l+1

γk

ρkθ
+
k

∆Mk. (8)

Moreover, with the notation ||κ||∞ = sup0<x<1 |κ(x)|,

sup
n≥l

E
(
Yn1{νl≥n}

)
≤ EYl +

||κ||∞
π−

.

Remark 2. Note that, as the proof will show, Lemma 1 remains valid if the condition
lim
n→∞

γn/ρn = 0 in (6) is replaced by the boundedness of the sequence (γn/ρn)n≥1. In par-

ticular, the last statement, which implies the tightness of the sequence (Yn)n≥1, will be used in
Section 3.

Proof: Since lim
n→∞

(πnXn − εn) = π a.s., we clearly have lim
l→∞

P(νl =∞) = 1.

On the other hand, for l ≤ n < νl, we have

Yn+1 ≤ Yn(1− γn+1π
−)− γn+1κ(Xn)− γn+1

ρn+1
∆Mn+1

and
Yn+1 ≥ Yn(1− γn+1π

+)− γn+1κ(Xn)− γn+1

ρn+1
∆Mn+1,

so that, with the notation θ+
n =

∏n
k=l+1(1− π+γk) and θ−n =

∏n
k=l+1(1− π−γk),

Yn+1

θ−n+1

≤ Yn

θ−n
− γn+1

θ−n+1

κ(Xn)− γn+1

ρn+1θ
−
n+1

∆Mn+1

and
Yn+1

θ+
n+1

≥ Yn

θ+
n
− γn+1

θ+
n+1

κ(Xn)− γn+1

ρn+1θ
+
n+1

∆Mn+1.

By summing up these inequalities, we get (7) and (8).
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By taking expectations in (7), we get

EYn∧νl
θ−
n∧νl

≤ EYl + ||κ||∞E
n∧νl∑
k=l+1

γk

θ−k

= EYl +
||κ||∞
π−

E
n∧νl∑
k=l+1

(
1
θ−k
− 1
θ−k−1

)

≤ EYl +
||κ||∞
π−

1
θ−n
.

We then have

E(Yn1{νl≥n}) = θ−nE
(
Yn∧νl

θ−
n∧νl

1{νl≥n}

)
≤ θ−nEYn∧νl

θ−
n∧νl

≤ θ−n

(
EYl +

||κ||∞
π−

1
θ−n

)
≤ EYl +

||κ||∞
π−

. ♦

Lemma 2. Assume (6) and let (θn)n∈N be a sequence of positive numbers such that θn =∏n
k=1(1 − pγk) for some p ∈ (0, 1). The sequence

(
θn
∑n

k=1
γk
θkρk

∆Mk

)
n∈N

converges to 0 in

probability.

Proof: It suffices to show convergence to 0 in probability for the associated conditional variances
Tn, defined by

Tn = θ2
n

n∑
k=1

γ2
k

θ2
kρ

2
k

E
(
∆M2

k | Fk−1

)
.

We know from Proposition 4 that

E
(
∆M2

k | Fk−1

)
≤ pA(1−Xk−1) + ρ2

k(1− pB )
= pAρk−1Yk−1 + ρ2

k(1− pB ).

Therefore, Tn ≤ pAT
(1)
n + (1− pB )T (2)

n , where

T (1)
n = θ2

n

n∑
k=1

γ2
k

θ2
kρ

2
k

ρk−1Yk−1

and

T (2)
n = θ2

n

n∑
k=1

γ2
k

θ2
k

.

We first prove that lim
n→∞

T (2)
n = 0. Note that, since pγk ≤ 1,

1
θ2
k

− 1
θ2
k−1

=
2pγk − p2γ2

k

θ2
k

≥ pγk
θ2
k

. (9)
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Therefore,

T (2)
n ≤ θ2

n

p

n∑
k=1

γk

(
1
θ2
k

− 1
θ2
k−1

)
,

and lim
n→∞

T (2)
n = 0 follows from Cesaro’s lemma.

We now deal with T
(1)
n . First note that the assumption ρn − ρn−1 = o(ρnγn) implies

lim
n→∞

ρn/ρn−1 = 1, so that, the sequence (γn)n≥1 being non-increasing with limit 0, we only

need to prove that lim
n→∞

T̄ (1)
n = 0 in probability, where

T̄ (1)
n = θ2

n

n∑
k=1

γ2
k

θ2
kρk

Yk.

Now, with the notation of Lemma 1, we have, for n ≥ l > 1 and ε > 0,

P
(
T̄ (1)
n ≥ ε

)
≤ P(νl <∞) + P

(
θ2
n

n∑
k=1

γ2
k

θ2
kρk

Yk1{νl=∞} ≥ ε

)

≤ P(νl <∞) +
1
ε
θ2
n

n∑
k=1

γ2
k

θ2
kρk

E
(
Yk1{νl=∞}

)
.

Using Lemma 1, lim
n→∞

γn/ρn = 0 and (9), we have

lim
n→∞

θ2
n

n∑
k=1

γ2
k

θ2
kρk

E
(
Yk1{νl=∞}

)
= 0.

We also know that lim
l→∞

P(νl <∞) = 0. Hence,

lim
n→∞

P
(
T̄ (1)
n ≥ ε

)
= 0. ♦

Proof of Theorem 2: First note that if θn =
∏n
k=1(1− pγk), with 0 < p < 1, we have

n∑
k=1

γk
θk
κ(Xk−1) =

1
p

n∑
k=1

(
1
θk
− 1
θk−1

)
κ(Xk−1).

Hence, using lim
n→∞

Xn = 1 and κ(1) = −(1− pA),

lim
n→∞

θn

n∑
k=1

γk
θk
κ(Xk−1) = −1− pA

p
.

Going back to (7) and (8) and using Lemma 2 with p = π+ and π−, and the fact that lim
l→∞

P(νl =

∞) = 1, we have, for all ε > 0, lim
n→∞

P(Yn ≥
1− pA
π−

+ ε) = lim
n→∞

P(Yn ≤
1− pA
π+

− ε) = 0, and

since π+ and π− can be made arbitrarily close to π, the Theorem is proved. ♦
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2.2 Almost sure convergence

Theorem 3. In addition to (6), we assume that for all β ∈ [0, 1],

γnρ
β
n − γn−1ρ

β
n−1 = o(γ2

nρ
β
n), (10)

and that, for some η > 0, we have

∀C > 0,
∑
n

exp

(
−Cρ

1+η
n

γn

)
<∞. (11)

Then, with probability 1,

lim
n→∞

1−Xn

ρn
=

1− pA
π

.

Note that the assumptions of Theorem 3 are satisfied if γn = Cn−a and ρn = C ′n−r, with
C,C ′ > 0, 0 < r < a and a+ r < 1.

The proof of Theorem 3 is based on the following lemma, which will be proved later.

Lemma 3. Under the assumptions of Theorem 3, let α ∈ [0, 1] and let (θn)n∈≥1 be a sequence of
positive numbers such that θn =

∏n
k=1(1− pγk), for some p ∈ (0, 1). On the set {supn(ραnYn) <

∞}, we have

lim
n→∞

θnρ
α−η

2
−1

n

n∑
k=1

γk
θk

∆Mk = 0 a.s.,

where η satisfies (11).

Proof of Theorem 3: We start from the following form of (2):

1−Xn+1 = (1−Xn)(1− γn+1πXn)− ρn+1γn+1κ(Xn)− γn+1∆Mn+1.

We know that lim
n→∞

Xn = 1 a.s.. Therefore, given π+ and π−, with 0 < π− < π < π+ < 1, there

exists l ∈ N such that, for n ≥ l,

1−Xn+1 ≤ (1−Xn)(1− γn+1π
−)− ρn+1γn+1κ(Xn)− γn+1∆Mn+1

and
1−Xn+1 ≥ (1−Xn)(1− γn+1π

+)− ρn+1γn+1κ(Xn)− γn+1∆Mn+1,

so that, with the notation θ+
n =

∏n
k=l+1(1− π+γk) and θ−n =

∏n
k=l+1(1− π−γk),

1−Xn+1

θ−n+1

≤ 1−Xn

θ−n
− ρn+1γn+1

θ−n+1

κ(Xn)− γn+1

θ−n+1

∆Mn+1

and
1−Xn+1

θ+
n+1

≥ 1−Xn

θ+
n
− ρn+1γn+1

θ+
n+1

κ(Xn)− γn+1

θ+
n+1

∆Mn+1.

By summing up these inequalities, we get, for n ≥ l + 1,

1−Xn

θ−n
≤ (1−Xl)−

n∑
k=l+1

ρkγk

θ−k
κ(Xk−1)−

n∑
k=l+1

γk

θ−k
∆Mk
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and
1−Xn

θ+
n

≥ (1−Xl)−
n∑

k=l+1

ρkγk

θ+
k

κ(Xk−1)−
n∑

k=l+1

γk

θ+
k

∆Mk.

Hence

Yn ≤
θ−n
ρn

(1−Xl)−
θ−n
ρn

n∑
k=l+1

ρkγk

θ−k
κ(Xk−1)− θ−n

ρn

n∑
k=l+1

γk

θ−k
∆Mk (12)

and

Yn ≥
θ+
n

ρn
(1−Xl)−

θ+
n

ρn

n∑
k=l+1

ρkγk

θ+
k

κ(Xk−1)− θ+
n

ρn

n∑
k=l+1

γk

θ+
k

∆Mk. (13)

We have, with probability 1, lim
n→∞

κ(Xn) = κ(1) = −(1− pA), and, since
∑∞

n=1 ρnγn = +∞,

n∑
k=l+1

ρkγk

θ−k
κ(Xk−1) ∼ −(1− pA)

n∑
k=l+1

ρkγk

θ−k
. (14)

On the other hand,

n∑
k=l+1

ρkγk

θ−k
=

1
π−

n∑
k=l+1

ρk

(
1
θ−k
− 1
θ−k−1

)

=
1
π−

(
n∑

k=l+1

(ρk−1 − ρk)
1

θ−k−1

+
ρn

θ−n
− ρl

θ−l

)

∼ 1
π−

ρn

θ−n
, (15)

where we have used the condition ρk−ρk−1 = o(ρkγk) and
∑∞

k=l+1
ρkγk
θ−k

= +∞. We deduce

from (14) and (15) that

lim
n→∞

θ−n
ρn

n∑
k=1

ρkγk

θ−k
κ(Xk−1) = −1− pA

π−

and, also, that lim
n→∞

θ−n
ρn

= 0. By a similar argument, we get lim
n→∞

θ+
n

ρn
= 0 and

lim
n→∞

θ+
n

ρn

n∑
k=1

ρkγk

θ+
k

κ(Xk−1) = −1− pA
π+

It follows from Lemma 3, that given α∈ [0, 1], we have, on the set Eα := {supn(ραnYn)<∞},

lim
n→∞

ρ
α−η

2
−1

n θ±n

n∑
k=1

γk

θ±k
∆Mk = 0.

Together with (12) and (13) this implies

• lim
n→∞

Yn = (1− pA)/π a.s., if α−η
2 ≤ 0,
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• lim
n→∞

Ynρ
α−η

2
n = 0 a.s., if α−η

2 > 0.

We obviously have P(Eα) = 1 for α = 1. We deduce from the previous argument that if
P(Eα) = 1 and α−η

2 > 0, then P(Eα′) = 1, with α′ = α−η
2 . Set α0 = 1 and αk+1 = αk−η

2 . If
α0 ≤ η, we have lim

n→∞
Yn = (1 − pA)/π a.s. on Eα0 . If α0 > η, let j be the largest integer such

that αj > η (note that j exists because lim
k→∞

αk = −η < 0). We have P(Eαj+1) = 1, and, on

Eαj+1 , lim
n→∞

Yn = (1− pA)/π a.s., because αj+1−η
2 ≤ 0. ♦

We now turn to the proof of Lemma 3 which is based on the following classical martingale
inequality (see [16], remark 1, p.14 for a proof in the case of i.i.d. random variables: the
extension to bounded martingale increments is straightforward).

Lemma 4. (Bernstein’s inequality for bounded martingale increments) Let (Zi)1≤i≤n be a finite
sequence of square integrable random variables, adapted to the filtration (Fi)1≤i≤n, such that

1. E(Zi | Fi−1) = 0, i = 1, . . . , n,

2. E(Z2
i | Fi−1) ≤ σ2

i , i = 1, . . . , n,

3. |Zi| ≤ ∆n, i = 1, . . . , n,

where σ2
1, . . . , σ2

n, ∆n are deterministic positive constants.

Then, the following inequality holds:

∀λ > 0, P
(∣∣∣∣∣

n∑
i=1

Zi

∣∣∣∣∣ ≥ λ
)
≤ 2 exp

(
− λ2

2
(
b2n + λ∆n

3

)) ,
with b2n =

∑n
i=1 σ

2
i .

We will also need the following technical result.

Lemma 5. Let (θn)n≥1 be a sequence of positive numbers such that θn =
∏n
k=1(1 − pγk), for

some p ∈ (0, 1) and let (ξn)n≥1 be a sequence of non-negative numbers satisfying

γnξn − γn−1ξn−1 = o(γ2
nξn).

We have
n∑
k=1

γ2
kξk
θ2
k

∼ γnξn
2pθ2

n

.

Proof: First observe that the condition γnξn − γn−1ξn−1 = o(γ2
nξn) implies γnξn ∼ γn−1ξn−1

and that, given ε > 0, we have, for n large enough,

γnξn − γn−1ξn−1 ≥ −εγ2
nξn

≥ −εγn−1γnξn,
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where we have used the fact that the sequence (γn) is non-increasing. Since γnξn ∼ γn−1ξn−1,
we have, for n large enough, say n ≥ n0,

γnξn ≥ γn−1ξn−1(1− 2εγn−1).

Therefore, for n > n0,

γnξn ≥ γn0ξn0

n∏
k=n0+1

(1− 2εγk−1).

From this, we easily deduce that lim
n→∞

γnξn/θn =∞ and that
∑

n γ
2
nξn/θ

2
n =∞.

Now, from
1
θ2
k

− 1
θ2
k−1

=
2γkp− γ2

kp
2

θ2
k

∼ 2γkp
θ2
k

,

we deduce (recall that lim
n→∞

γn = 0)

γ2
kξk
θ2
k

∼ γkξk
2p

(
1
θ2
k

− 1
θ2
k−1

)
,

and, since
∑

n γ
2
nξn/θ

2
n =∞,
n∑
k=1

γ2
kξk
θ2
k

∼ 1
2p

n∑
k=1

γkξk

(
1
θ2
k

− 1
θ2
k−1

)

=
1
2p

(
γnξn
θ2
n

+
n∑
k=1

(γk−1ξk−1 − γkξk)
1

θ2
k−1

)

=
γnξn
2pθ2

n

+ o

(
n∑
k=1

γ2
kξk
θ2
k

)
,

where, for the first equality, we have assumed ξ0 = 0, and, for the last one, we have used again
γnξn − γn−1ξn−1 = o(γ2

nξn). ♦

Proof of Lemma 3: Given µ > 0, let

νµ = inf{n ≥ 0 | ραnYn > µ}.

Note that {supn ραnYn <∞} =
⋃
µ>0{νµ =∞}.

On the set {νµ =∞}, we have
n∑
k=1

γk
θk

∆Mk =
n∑
k=1

γk
θk

1{k≤νµ}∆Mk.

We now apply Lemma 4 with Zi = γi
θi

1{i≤νµ}∆Mi. We have, using Proposition 4,

E(Z2
i | Fi−1) =

γ2
i

θ2
i

1{i≤νµ}E(∆M2
i | Fi−1)

≤ γ2
i

θ2
i

1{i≤νµ}
(
pAρi−1Yi−1 + ρ2

i (1− pB )
)

≤ γ2
i

θ2
i

(
pAρ

1−α
i−1 µ+ ρ2

i (1− pB )
)
,
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where we have used the fact that, on {i ≤ νµ}, ραi−1Yi−1 ≤ µ. Since lim
n→∞

ρn = 0 and

lim
n→∞

ρn/ρn−1 = 1 (which follows from ρn − ρn−1 = o(γnρn)), we have

E(Z2
i | Fi−1) ≤ σ2

i ,

with σ2
i = Cµ

γ2
i ρ

1−α
i

θ2i
, for some Cµ > 0, depending only on µ. Using Lemma 5 with ξn = ρ1−α

n ,
we have

n∑
i=1

σ2
i ∼ Cµ

γnρ
1−α
n

2pθ2
n

.

On the other hand, we have, because the jumps ∆Mi are bounded,

|Zi| ≤ C
γi
θi
,

for some C > 0. Note that γk/θk
γk−1/θk−1

= γk
γk−1(1−pγk) , and, since γk − γk−1 = o(γ2

k) (take β = 0 in
(10)), we have, for k large enough, γk − γk−1 ≥ −pγkγk−1, so that γk/γk−1 ≥ 1 − pγk, and the
sequence (γn/θn) is non-decreasing for n large enough. Therefore, we have

sup
1≤i≤n

|Zi| ≤ ∆n,

with ∆n=Cγn/θn for some C>0. Now, applying Lemma 4 with λ=λ0ρ
1−α−η

2
n /θn, we get

P
(
θn

∣∣∣∣∣
n∑
k=1

γk
θk

1{k≤νµ}∆Mk

∣∣∣∣∣ ≥ λ0ρ
1−α−η

2
n

)
≤ 2 exp

− λ2
0ρ

2−α+η
n

2θ2
nb

2
n + 2λ0θnρ

1−α−η
2

n
∆n
3


≤ 2 exp

(
− C1ρ

2−α+η
n

C2γnρ
1−α
n + C3γnρ

1−α−η
2

n

)

≤ 2 exp

(
−C4

ρ1+η
n

γn

)
,

where the positive constants C1, C2, C3 and C4 depend on λ0 and µ, but not on n. Using (11)
and the Borel-Cantelli lemma, we conclude that, on {νµ =∞}, we have, for n large enough,

θn

∣∣∣∣∣
n∑
k=1

γk
θk

∆Mk

∣∣∣∣∣ < λ0ρ
1−α−η

2
n , a.s.,

and, since λ0 is arbitrary, this completes the proof of the Lemma. ♦

3 Weak convergence of the normalized algorithm

Throughout this section, we assume (in addition to the initial conditions on the sequence
(γn)n∈N)

γ2
n − γ2

n−1 = o(γ2
n) and

γn
ρn

= g + o(γn), (16)
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where g is a positive constant. Note that a possible choice is γn = ag/
√
n and ρn = a/

√
n, with

a > 0.

Under these conditions, we have ρn − ρn−1 = o(γ2
n), and we can write, as in the beginning of

Section 2,
Yn+1 = Yn (1 + γn+1εn − πnγn+1Xn)− γn+1κ(Xn)− γn+1

ρn+1
∆Mn+1, (17)

where lim
n→∞

εn = 0 and lim
n→∞

πn = π. As observed in Remark 2, we know that, under the assump-

tions (16), the sequence (Yn)n≥1 is tight. We will prove that it is convergent in distribution.

Theorem 4. Under conditions (16), the sequence (Yn = (1 −Xn)/ρn)n∈N converges weakly to
the unique stationary distribution of the Markov process on [0,+∞) with generator L defined by

Lf(y) = pBy
f(y + g)− f(y)

g
+ (1− pA − pAy)f ′(y), y ≥ 0, (18)

for f continuously differentiable and compactly supported in [0,+∞).

The method for proving Theorem 4 is based on the classical functional approach to central limit
theorems for stochastic algorithms (see Bouton [3], Kushner [11], Duflo [7]). The long time
behavior of the sequence (Yn) will be elucidated through the study of a sequence of continuous-
time processes Y (n) = (Y (n)

t )t≥0, which will be proved to converge weakly to the Markov process
with generator L. We will show that this Markov process has a unique stationary distribution,
and that this is the weak limit of the sequence (Yn)n∈N.

The sequence Y (n) is defined as follows. Given n ∈ N, and t ≥ 0, set

Y
(n)
t = YN(n,t), (19)

where

N(n, t) = min

{
m ≥ n |

m∑
k=n

γk+1 > t

}
,

so that N(n, 0) = n, for t ∈ [0, γn+1), and, for m ≥ n+1, N(n, t) = m if and only if
∑m

k=n+1 γk ≤
t <

∑m+1
k=n+1 γk.

Theorem 5. Under the assumptions of Theorem 4, the sequence of continuous time processes
(Y (n))n∈N converges weakly (in the sense of Skorokhod) to a Markov process with generator L.

The proof of Theorem 5 is done in two steps: in section 3.1, we prove tightness, in section 3.2,
we characterize the limit by a martingale problem. In section 3.3, we study the stationary
distribution of the limit Markov process and we prove Theorem 4.

3.1 Tightness

It follows from (17) that the process Y (n) admits the following decomposition:

Y
(n)
t = Yn +B

(n)
t +M

(n)
t , (20)
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with

B
(n)
t = −

N(n,t)∑
k=n+1

γk [κ(Xk−1) + (πk−1Xk−1 − εk−1)Yk−1]

and

M
(n)
t = −

N(n,t)∑
k=n+1

γk
ρk

∆Mk.

The process (M (n)
t )t≥0 is a square integrable martingale with respect to the filtration (F (n)

t )t≥0,
with F (n)

t = FN(n,t), and we have

〈M (n)〉t =
N(n,t)∑
k=n+1

(
γk
ρk

)2

E(∆M2
k | Fk−1).

We already know (see Remark 2) that the sequence (Yn)n∈N is tight. Recall that in order for
the sequence (M (n)) to be tight, it is sufficient that the sequence (〈M (n)〉) is C-tight (see [8],
Theorem 4.13, p. 358, chapter VI). Therefore, the tightness of the sequence (Y (n)) in the sense
of Skorokhod will follow from the following result.

Proposition 5. Under the assumptions (16), the sequences (B(n)) and (〈M (n)〉) are C-tight.

For the proof of this proposition,we will need the following lemma.

Lemma 6. Define νl as in Lemma 1, for l ∈ N. There exists a positive constant C such that,
for all l, n,N ∈ N with l ≤ n ≤ N , we have

∀λ ≥ 1, P
(

sup
n≤j≤N

|Yj − Yn| ≥ λ

)
≤ P(νl <∞) + C

(1 + EYl)
(∑N

k=n+1 γk

)
λ

.

Proof: The function κ being bounded on [0, 1], it follows from (17) that there exist positive,
deterministic constants a and b such that, for all n ∈ N,

− γn+1(a+ bYn)− γn+1

ρn+1
∆Mn+1 ≤ Yn+1 − Yn ≤ γn+1(a+ bYn)− γn+1

ρn+1
∆Mn+1. (21)

We also know from Proposition 4 that

E
(
∆M2

n+1 | Fn
)
≤ pAρnYn + (1− pB )ρ2

n+1. (22)

From (21), we derive, for j ≥ n,

|Yj − Yn| ≤
j∑

k=n+1

γk(a+ bYk−1) +

∣∣∣∣∣
j∑

k=n+1

γk
ρk

∆Mk.

∣∣∣∣∣
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Let Ỹk = Yk1{k≤νl} and ∆M̃k = 1{k≤νl}∆Mk On the set νl = ∞, we have Yk−1 = Ỹk−1 and
∆Mk = ∆M̃k. Hence

P
(

sup
n≤j≤N

|Yj − Yn| ≥ λ

)
≤ P(νl <∞) + P

(
N∑

k=n+1

γk(a+ bỸk−1) ≥ λ/2

)
+

P
(

sup
n≤j≤N

∣∣∣∣∣
j∑

k=n+1

γk
ρk

∆M̃k

∣∣∣∣∣ ≥ λ/2
)
.

We have, using Markov’s inequality and Lemma 1,

P
(

N∑
k=n+1

γk(a+ bỸk−1) ≥ λ/2

)
≤ 2

λ
E

N∑
k=n+1

γk(a+ bỸk−1)

≤ 2
λ

(
a+ b sup

k≥l
E
(
Yk1{νl≥k}

)) N∑
k=n+1

γk

≤ 2
λ

(
bEYl + b

||κ||∞
π−

+ a

) N∑
k=n+1

γk.

On the other hand, using Doob’s inequality,

P
(

sup
n≤j≤N

∣∣∣∣∣
j∑

k=n+1

γk
ρk

∆M̃k

∣∣∣∣∣ ≥ λ/2
)
≤ 16

λ2
E

N∑
k=n+1

γ2
k

ρ2
k

E
(

∆M̃2
k | Fk−1

)

≤ 16
λ2

E
N∑

k=n+1

γ2
k

ρ2
k

1{k≤νl}
(
pAρk−1Yk−1 + (1− pB )ρ2

k

)
.

Using lim
n

(γn/ρn) = g, ρk−1 ∼ ρk, lim
n
ρn = 0 and Lemma 1, we get, for some C > 0,

P
(

sup
n≤j≤N

∣∣∣∣∣
j∑

k=n+1

γk
ρk

∆M̃k

∣∣∣∣∣ ≥ λ/2
)
≤ C

(1 + EYl)
(∑N

k=n+1 γk

)
λ2

,

and, since we have assumed λ ≥ 1, the proof of the lemma is completed. ♦

Proof of Proposition 5: Given s and t, with 0 ≤ s ≤ t, we have, using the boundedness of
κ,

|B(n)
t −B(n)

s | ≤
N(n,t)∑

k=N(n,s)+1

γk(a+ bYk−1)

for some a, b > 0.

Similarly, using (22), we have

∣∣∣〈M (n)〉t − 〈M (n)〉s
∣∣∣ ≤ N(n,t)∑

k=N(n,s)+1

γk(a′ + b′Yk−1)
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for some a′, b′ > 0. These inequalities express the fact that the processes B(n) and 〈M (n)〉 are
strongly dominated (in the sense of [8], definition 3.34) by a linear combination of the processes
X(n) and Z(n), where X(n)

t =
∑N(n,t)

k=n+1 γk and Z
(n)
t =

∑N(n,t)
k=n+1 γkYk−1. Therefore, we only need

to prove that the sequences (X(n)) and (Z(n)) are C-tight. This is obvious for the sequence
X(n), which in fact converges to the deterministic process t. We now prove that Z(n) is C-tight.
We have, for 0 ≤ s ≤ t ≤ T

|Z(n)
t − Z(n)

s | ≤

(
sup

n≤j≤N(n,T )
Yj

)
N(n,t)∑

k=N(n,s)+1

γk

≤ (t− s+ γN(n,s)+1) sup
n≤j≤N(n,T )

Yj

≤ (t− s+ γn+1) sup
n≤j≤N(n,T )

Yj ,

where we have used
∑N(n,t)

k=n+1 γk ≤ t and s ≤
∑N(n,s)+1

k=n+1 γk and the monotony of the sequence
(γn)n≥1.

Therefore, for δ > 0, and n large enough so that γn+1 ≤ δ,

P
(

sup
0≤s≤t≤T,t−s≤δ

|Z(n)
t − Z(n)

s | ≥ η

)
≤ P

(
sup

n≤j≤N(n,T )
Yj ≥

η

δ + γn+1

)

≤ P
(

sup
n≤j≤N(n,T )

Yj ≥
η

2δ

)
≤ P

(
Yn ≥

η

4δ

)
+P

(
sup

n≤j≤N(n,T )
|Yj − Yn| ≥

η

4δ

)
.

For l ≤ n, we have, from Lemma 6,

P
(

sup
n≤j≤N(n,T )

|Yj − Yn| ≥
η

4δ

)
≤ P(νl <∞) +

4Cδ
η

(1 + EYl)
N(n,T )∑
k=n+1

γk

≤ P(νl <∞) +
4CTδ
η

(1 + EYl).

We easily conclude from these estimates and Lemma 1 that, given T > 0, ε > 0 and η > 0, we
have for n large enough and δ small enough,

P
(

sup
0≤s≤t≤T,t−s≤δ

|Z(n)
t − Z(n)

s | ≥ η

)
< ε,

which proves the C-tightness of the sequence (Z(n))n≥0. ♦

361



3.2 Identification of the limit

Lemma 7. Let f be a C1 function with compact support in [0,+∞). We have

E (f(Yn+1)− f(Yn) | Fn) = γn+1Lf(Yn) + γn+1Zn, n ∈ N,

where the operator L is defined by

Lf(y) = pBy
f(y + g)− f(y)

g
+ (1− pA − pAy)f ′(y), y ≥ 0, (23)

and the sequence (Zn)n∈N satisfies lim
n→∞

Zn = 0 in probability.

Proof: From (17), we have

Yn+1 = Yn + γn+1(−κ(1)− πYn)− γn+1

ρn+1
∆Mn+1 + γn+1ζn

= Yn + γn+1(1− pA − πYn)− γn+1

ρn+1
∆Mn+1 + γn+1ζn

= Yn + γn+1(1− pA − πYn)− g∆Mn+1 + γn+1ζn +
(
g − γn+1

ρn+1

)
∆Mn+1, (24)

where ζn = κ(1) − κ(Xn) + Yn(π − (πnXn − εn)), so that ζn is Fn-measurable and, using the
tightness of (Yn), lim

n→∞
ζn = 0 in probability. Going back to (3), we rewrite the martingale

increment ∆Mn+1 as follows:

∆Mn+1 = −Xn

(
1{Un+1>Xn}∩Bn+1

− pB (1−Xn)
)

+ ρnYn
(
1{Un+1≤Xn}∩An+1

− pAXn

)
−ρn+1

(
Xn1{Un+1≤Xn}∩Acn+1

− (1−Xn)1{Un+1>Xn}∩Bcn+1
+ κ(Xn)

)
.

Hence,
Yn+1 = Yn + γn+1(1− pA − πYn + ζn) + ξn+1 + ∆M̂n+1,

where
ξn+1 = gXn

(
1{Un+1>Xn}∩Bn+1

− pB (1−Xn)
)

and

∆M̂n+1 =
(
g − γn+1

ρn+1

)
∆Mn+1 − gρnYn

(
1{Un+1≤Xn}∩An+1

− pAXn

)
+gρn+1

(
Xn1{Un+1≤Xn}∩Acn+1

− (1−Xn)1{Un+1>Xn}∩Bcn+1
+ κ(Xn)

)
.

Note that, due to our assumptions on γn and ρn, we have, for some deterministic positive
constant C, ∣∣∣∆M̂n+1

∣∣∣ ≤ Cγn+1(1 + Yn), n ∈ N. (25)

Now, let
Ỹn = Yn + γn+1(1− pA − πYn + ζn) and Ȳn+1 = Ỹn + ξn+1,

so that Yn+1 = Ȳn+1 + ∆M̂n+1. We have

f(Yn+1)− f(Yn) = f(Yn+1)− f(Ȳn+1) + f(Ȳn+1)− f(Yn).
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We will first show that

f(Yn+1)− f(Ȳn+1) = f ′(Ỹn)∆M̂n+1 + γn+1Tn+1, where P- lim
n→∞

E(Tn+1 | Fn) = 0, (26)

with the notation P- lim for a limit in probability. Denote by w the modulus of continuity of f ′:

w(δ) = sup
|x−y|≤δ

|f ′(y)− f ′(x)|, δ > 0.

We have, for some (random) θ ∈ (0, 1),

f(Yn+1)− f(Ȳn+1) = f ′(Ȳn+1 + θ∆M̂n+1)∆M̂n+1

= f ′(Ỹn)∆M̂n+1 + Vn+1,

where Vn+1 =
(
f ′(Ȳn+1 + θ∆M̂n+1)− f ′(Ỹn)

)
∆M̂n+1. We have

|Vn+1| ≤ w
(
|ξn+1|+ |∆M̂n+1|

)
|∆M̂n+1|

≤ Cw (|ξn+1|+ Cγn+1(1 + Yn)) γn+1(1 + Yn),

where we have used Ȳn+1 = Ỹn + ξn+1 and (25). In order to get (26), it suffices to prove that
lim
n→∞

E (w (|ξn+1|+ Cγn+1(1 + Yn)) | Fn) = 0 in probability. On the set {Un+1 > Xn} ∩ Bn+1,

we have |ξn+1| = gXn (1− pB (1−Xn)) ≤ g, and, on the complement, |ξn+1| = gXnpB (1−Xn) ≤
g(1−Xn). Hence

E (w (|ξn+1|+ Cγn+1(1 + Yn)) | Fn) ≤ pB (1−Xn)w (g + Cγn+1(1 + Yn))

+(1− pB (1−Xn))w
(
Ŷn

)
,

where Ŷn = g(1 − Xn) + Cγn+1(1 + Yn). Observe that lim
n→∞

Ŷn = 0 in probability (recall that

lim
n→∞

Xn = 1 almost surely). Therefore, we have (26).

We deduce from E(∆M̂n+1 | Fn) = 0 that

E (f(Yn+1)− f(Yn) | Fn) = γn+1E(Tn+1 | Fn) + E
(
f(Ȳn+1)− f(Yn) | Fn

)
,

so that the proof will be completed when we have shown

P- lim
n→∞

E
(
f(Ȳn+1)− f(Yn)− γn+1Lf(Yn)

γn+1
| Fn

)
= 0. (27)

We have

E
(
f(Ȳn+1) | Fn

)
= E

(
f(Ỹn + ξn+1) | Fn

)
= pB (1−Xn)f(Ỹn + gXn(1− pB (1−Xn)))

∗[.4em] +(1− pB (1−Xn))f(Ỹn − gXnpB (1−Xn))

= pBρnYnf(Ỹn + gXn(1− pB (1−Xn)))

∗[.4em] +(1− pBρnYn)f(Ỹn − gXnpB (1−Xn)).
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Hence
E
(
f(Ȳn+1)− f(Yn) | Fn

)
= Fn +Gn,

with
Fn = pBρnYn

(
f(Ỹn + gXn(1− pB (1−Xn)))− f(Yn)

)
and

Gn = (1− pBρnYn)
(
f(Ỹn − gXnpB (1−Xn))− f(Yn)

)
.

For the behavior of Fn as n goes to infinity, we use

P- lim
n→∞

(
Ỹn + gXn(1− pB (1−Xn))− Yn − g

)
= 0,

and lim
n→∞

ρn/γn+1 = 1/g, so that

P- lim
n→∞

(
Fn
γn+1

− pBYn
f(Yn + g)− f(Yn)

g

)
= 0.

For the behavior of Gn, we write, using lim
n→∞

ρn/γn+1 = 1/g again,

Ỹn − gXnpB (1−Xn) = Yn + γn+1 (1− pA − πYn + ζn)− gpBXnρnYn

= Yn + γn+1(1− pA − pAYn) + γn+1ηn,

with P- lim
n→∞

ηn = 0, so that, using the fact that f is C1 with compact support and the tightness

of (Yn),

P- lim
n→∞

(
Gn
γn+1

− (1− pA − pAYn)f ′(Yn)
)

= 0,

which completes the proof of (27). ♦

Proof of Theorem 5: As mentioned before, it follows from Proposition 5 that the sequence
of processes (Y (n)) is tight in the Skorokhod sense.

On the other hand, it follows from Lemma 7 that, if f is a C1 function with compact support
in [0,+∞), we have

f(Yn) = f(Y0) +
n∑
k=1

γkLf(Yk−1) +
n∑
k=1

γkZk−1 +Mn,

where (Mn) is a martingale and (Zn) is an adapted sequence satisfying P- lim
n→∞

Zn = 0. Therefore,

f(Y (n)
t )− f(Y (n)

0 ) = M
(n)
t +

N(n,t)∑
k=N(n,0)+1

γk(Lf(Yk−1) + Zk−1),

where M (n)
t = MN(n,t) −MN(n,0). It is easy to verify that M (n) is a martingale with respect to

F (n).
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We also have ∫ t

0
Lf(Y (n)

s )ds =
N(n,t)∑
k=n+1

γkLf(Yk−1) +

t− N(n,t)∑
k=n+1

γk

 f(Y (n)
t ).

Therefore

f(Y (n)
t )− f(Y (n)

0 )−
∫ t

0
Lf(Y (n)

s )ds = M
(n)
t +R

(n)
t ,

where P- lim
n→∞

R
(n)
t = 0. It follows that any weak limit of the sequence (Y (n))n∈N solves the

martingale problem associated with L. From this, together with the study of the stationary
distribution of L (see Section 3.3), we will deduce Theorem 4 and Theorem 5. ♦

3.3 The stationary distribution

Theorem 6. The Markov process (Yt)t≥0, on [0,+∞), with generator L has a unique stationary
probability distribution ν. Moreover, ν has a density on [0,+∞), which vanishes on (0, rA ] (where
rA = (1− pA)/pA), and is positive and continuous on the open interval (rA ,+∞). The stationary
distribution ν also satisfies the following property: for every compact set K in [0,+∞), and
every bounded continuous function f , we have

lim
t→∞

sup
y∈K

∣∣∣∣Ey(f(Yt))−
∫
f dν

∣∣∣∣ = 0, (28)

where Ey refers to the initial condition Y0 = y.

Before proving Theorem 6, we will show how Theorem 4 follows from (28).

Proof of Theorem 4: Fix t > 0. For n large enough, we have γn ≤ t <
∑n

k=1 γk, so that
there exists n̄ ∈ {1, . . . , n− 1} such that

n∑
k=n̄+1

γk ≤ t <
n∑

k=n̄

γk.

Let tn =
∑n

k=n̄+1 γk. We have

0 ≤ t− tn < γn̄ and Y
(n̄)
tn = Yn.

Since t is fixed, the condition
∑n

k=n̄+1 γk ≤ t implies lim
n→∞

n̄ =∞ and lim
n→∞

tn = t.

Now, given ε > 0, there is a compact set K such that for every weak limit µ of the sequence
(Yn)n∈N, µ(Kc) < ε. Using (28), we choose t such that

sup
y∈K

∣∣∣∣Ey(f(Yt))−
∫
fdν

∣∣∣∣ < ε.
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Now take a weakly convergent subsequence (Ynk)k∈N. By another subsequence extraction, we
can assume that the sequence (Y (nk)) converges weakly to a process Y (∞) which satisfies the
martingale problem associated with L. We then have, due to the quasi-left continuity of Y (∞),

lim
k→∞

Ef(Y (nk)
tnk

) = Ef(Y (∞)
t ),

for every bounded continuous function f (keep in mind that the functional tightness of (M (n))
follows from Theorem 1.13 in [8] which in turn relies on the so-called Aldous criterion; any
weak limiting process of such a sequence in the Skorokhod sense is then quasi-left continuous
and so is Y (∞) since every weak limit of the sequence (B(n)) is pathwise continuous). Hence
lim
k→∞

Ef(Ynk) = Ef(Y (∞)
t ). Observe that the law of Y (∞)

0 is a weak limit of the sequence Yn, so

that P(Y (∞)
0 ∈ Kc) < ε. Now we have

Ef(Ynk)−
∫
fdν = Ef(Ynk)− Ef(Y (∞)

t ) + Ef(Y (∞)
t )−

∫
fdν,

so that, if µ denotes the law of Y (∞)
0 ,

lim sup
k→∞

∣∣∣∣Ef(Ynk)−
∫
fdν

∣∣∣∣ ≤ ∣∣∣∣Ef(Y (∞)
t )−

∫
fdν

∣∣∣∣
=

∣∣∣∣∫ Ey(f(Yt))dµ(y)−
∫
fdν

∣∣∣∣
≤ ε+ 2||f ||∞µ(Kc)
≤ ε(1 + 2||f ||∞).

It follows that any weak limit of the sequence (Yn)n∈N is equal to ν, which completes the proof
of Theorem 4. ♦

For the proof of Theorem 6, we first observe that the generator L depends in an affine way on
the state variable y. This affine structure suggests that the Laplace transform Eye

−pYt has the
form eϕp(t)+yψp(t), for some functions ϕp and ψp. Affine models have been recently extensively
studied in connection with interest rate modelling (see for instance [5] or [6]). The following
proposition gives a precise description of the Laplace transform.

Proposition 6. Let (Yt)t≥0 be the Markov process with generator L on [0,+∞). We have, for
p > 0, y ∈ [0,+∞),

Ey e
−pYt = exp (ϕp(t) + yψp(t)) , (29)

where ψp is the unique solution, on [0,+∞) of the differential equation

ψ′ = pB
egψ − 1

g
− pAψ, with ψ(0) = −p,

and

ϕp(t) = (1− pA)
∫ t

0
ψp(s)ds.

Before proving the Proposition, we study the involved ordinary differential equation.
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Lemma 8. Given ψ0 ∈ (−∞, 0], the ordinary differential equation

ψ′ = pB
egψ − 1

g
− pAψ (30)

has a unique solution on [0,+∞) satisfying the initial condition ψ(0) = ψ0. Moreover, we have

∀t ≥ 0, ψ(0) ≤ ψ(t)eπt ≤ 0.

Proof: Existence and uniqueness of a local solution follows from the Cauchy-Lipschitz theorem.
In order to prove non-explosion, observe that if ψ solves (30), we have, using the inequality
(egψ − 1)/g ≥ ψ,

ψ′ + πψ ≥ 0.

Therefore, the function t 7→ ψ(t)eπt is non-decreasing, so that ψ(0) ≤ ψ(t)eπt. Since 0 is an
equilibrium of the equation, we have ψ(t) ≤ 0 if ψ(0) ≤ 0, and the inequality is strict unless
ψ(0) = 0. Hence ψ(0) ≤ ψ(t)eπt ≤ 0 and the lemma follows easily. ♦

Proof of Proposition 6: Let up(t, y) = exp(ϕp(t) + yψp(t)), where ψp and ϕp are defined
as in the statement of the Proposition. The existence of ψp follows from Lemma 8. An easy
computation shows that ∂up

∂t − Lup = 0 on [0,+∞) × [0,+∞), so that, for T > 0, the process
(up(T − t, Yt))0≤t≤T is a martingale, and Eup(T, Y0) = Eup(0, YT ), and the Proposition follows
easily. ♦

Proof of Theorem 6:

• Uniqueness of the invariant distribution. We deduce from Lemma 8 that, with the notation of

Proposition 6, |ψp(t)| ≤ e−πt and lim
t→∞

ϕp(t) = (1− pA)
∫ +∞

0
ψp(s)ds. Therefore

lim
t→∞

Ey(e−pYt) = exp
(

(1− pA)
∫ ∞

0
ψp(s)ds

)
,

and the convergence is uniform on compact sets. This implies the uniqueness of the stationary
distribution as well as (28). We also have the Laplace transform of ν:∫

R+

e−pyν(dy) = exp
(

(1− pA)
∫ ∞

0
ψp(s)ds

)
.

Note that, since ψp ≤ 0 and ψ′p = pB
egψp−1

g − pAψp, we have ψ′p + pAψp ≤ 0. Therefore,
ψp(t) ≤ −pe−pA t, and

∀p ≥ 0,
∫
e−pyν(dy) ≤ exp(−p(1− pA)/pA) = exp(−prA).

This yields
∫

[0,r
A

) e
p(rA−y)ν(dy) ≤ 1, so that (by taking p→ +∞), ν([0, rA)) = 0.

• Further properties of the invariant distribution ν. The stationary distribution satisfies∫
Lfdν = 0 for any continuously differentiable function f with compact support in [0,+∞).

This reads

∀f ∈ C1
K ,

∫ (
ry
f(y + g)− f(y)

g
+ (rA − y)f ′(y)

)
ν(dy) = 0, (31)
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where r = pB/pA and rA = (1− pA)/pA .

We first show that ν({rA}) = 0. Let ϕ be a non-negative continuously differentiable function
satisfying ϕ = 1 in a neighbourhood of the origin and ϕ = 0 outside the interval [−1, 1]. For
n ≥ 1 let

fn(y) = ϕ(n(y − rA)), y ∈ R.
We have fn(y) = 0 if |y − rA | ≥ 1/n. In particular, the support of fn lies in [0,+∞), for n large
enough. Applying (31) with f = fn, we get∫ (

ry
fn(y + g)− fn(y)

g
+ (rA − y)nϕ′(n(y − rA))

)
ν(dy) = 0.

Observe that lim
n→∞

fn = 1{r
A
} so that

lim
n→∞

∫
y(fn(y + g)− fn(y))ν(dy) = (rA − g)ν({rA − g})− rAν({rA}) = −rAν({rA}),

where we have used ν(−∞, rA) = 0. On the other hand, we have |(rA − y)nϕ′(n(y − rA))| ≤
supu∈R(uϕ′(u)), and lim

n→∞
(nϕ′(n(y − rA))) = 0, so that, by dominated convergence,

lim
n→∞

∫
(rA − y)nϕ′(n(y − rA))ν(dy) = 0.

Hence ν({rA}) = 0.

We now study the measure ν on the open interval (rA ,+∞). Denote by D the set of all infinitely
differentiable functions with compact support in (rA ,+∞). We deduce from (31) that, for f ∈ D,

r

g

∫
ν(dy)yf(y + g)− r

g

∫
ν(dy)yf(y) +

∫
ν(dy)(rA − y)f ′(y) = 0. (32)

Denote by νg the measure defined by
∫
νg(dy)f(y) =

∫
ν(dy)f(y + g). We deduce from (32)

that ν satisfies the following equation in the sense of distributions:

(y − rA)ν ′ + (1− (r/g)y)ν = −r
g

(y − g)νg,

or
ν ′ +

1− (r/g)y
y − rA

ν = −r
g

y − g
y − rA

νg. (33)

Denote by F the function defined by

F (y) = ery/g(y − rA)d−1, y > rA , (34)

where d = r rA/g. We have

F ′(y) = −1− (r/g)y
y − rA

F (y),

so that the equation satisfied by ν reads(
1
F
ν

)′
=
G

F
νg, (35)
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where the function G is defined by G(y) = − r
g
y−g
y−r

A
.

On the set (rA , rA +g), the measure νg vanishes, so that ν = λ0F for some non-negative constant
λ0. At this point, we know that the restriction of the measure ν to the set (0, rA + g) has a
density which vanishes on (0, rA) and is given by λ0F on (rA , rA + g).

We will prove by induction that the distribution ν coincides with a continuous function on
(rA , rA + ng), which is infinitely differentiable on (rA + (n − 1)g, rA + ng). The claim has been
proved for n = 1. Assume that it is true for n. On the set (rA , rA + (n+ 1)g), the distributional
derivative of (1/F )ν coincides with the function y 7→ (G(y)/F (y))ν(y − g), which is locally
integrable on (rA , rA + ng + g), continuous on (rA + g, rA + ng + g), and infinitely differentiable
on (rA +ng, rA +ng+g), due to the induction hypothesis (there may be a discontinuity at rA +g
if d < 1). It follows that (1/F )ν is a continuous (resp. infinitely differentiable) function, and so
is ν on (rA , rA + (n+ 1)g) (resp. (rA +ng, rA +ng+ g)). We have proved that ν has a continuous
density on (rA ,+∞), which is infinitely differentiable on the open set

⋃∞
n=1(rA+(n−1)g, rA+ng).

Finally, we prove that the density of ν is positive on (rA ,+∞). Note that G(y) < 0 if y > g

and that the density vanishes at y − g if y < g. Therefore
(

1
F ν
)′ ≤ 0, so that the function

y 7→ ν(y)/F (y) is non-decreasing. It follows that λ0 cannot be zero (otherwise ν would be
identically zero). Hence ν(y) > 0 for y ∈ (rA , rA+g). Now, if ν(y) > 0 for y ∈ (rA+ng−g, rA+ng),
the function ν/F is strictly decreasing on (rA + ng, rA + ng + g) and, therefore, cannot vanish.
So, by induction, the density is positive on (rA ,+∞). This completes the proof of Theorem 6.
♦

Additional remarks • The proof of Theorem 6 provides a bit more information on the invariant
distribution ν. Let g > 0 and let φg denote its continuous density on (rA ,+∞): the function
φg is C∞ on [rA ,+∞) \ (rA + gN) and it follows from (34) and the definitions of r and rA (and
d = rrA/g, see the proof of Theorem 6) that

φg(rA) = +∞ if g > g∗, φg(rA)∈ (0,+∞) if g = g∗ and φg(rA) = 0 if g < g∗

where g∗ = p
B

(1−p
A

)

p2
A

∈ (0, 1−p
A

p
A

). As concerns the regularity of the density φg at points y ∈
rA + gN, one easily derives from Equation (33) that for every m, k ∈ N,

– φg is Cm+k at rA + kg as soon as g < g∗

m+1 ,

– the (m+ k)th derivative φ(m+k)
g is only right and left continuous at rA + kg if g = g∗

m+1 .

• One can characterize the finite positive exponential moments of ν by slightly extending the
proof of Proposition 6 (Laplace transform). For every y > 1, let θ(y) denote the unique (strictly)
positive solution of the equation

eθ − 1
θ

= y.

Note that log y < θ(y) < 2(y − 1) and that lim
y→1

θ(y)
2(y − 1)

= 1 and lim
y→∞

θ(y)
log y

= 1. The result is

as follows ∫
epyν(dy) < +∞ if and only if p < p∗g := g θ(pA/pB ). (36)
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With the notations of Proposition 6, it follows from Fatou’s Lemma that

∀ p > 0,
∫
epyν(dy) ≤ lim inf

t→∞
Ey(epYt). (37)

We know that
Ey(epYt) = eeϕp(t)+y eψp(t)

with ϕ̃p(t) = (1− pA)
∫ t

0 ψ̃p(s)ds and ψ̃p is solution on the non-negative real line (if any) of

ψ′(t) = G(ψ(t)), ψ(0) = p with G(u) = −pAu+
pB
g

(egu − 1).

The function G is convex on R+ and satisfies G(0) = G(p∗g) = 0, G((0, p∗g)) ⊂ (−∞, 0).

Let p∈ (0, p∗g). The convexity of G implies

∀u ∈ [0, p],
G(u)
u
≤ G(p)

p
< 0.

It follows that ψ̃p does exist on R+ and satisfies 0 ≤ ψ̃p(t) ≤ pe
G(p)t
p (hence it goes to 0 when t

goes to infinity). One derives that

lim
t→+∞

ϕ̃p(t) = (1− pA)
∫ +∞

0
ψ̃p(t)dt ≤ −(1− pA)

p2

G(p)
.

Combining this with (37) yields∫
epyν(dy) ≤ e−(1−p

A
) p2

G(p) < +∞.

On the other hand if p = p∗g, ψ̃p(t) = p∗g and ϕ̃p(t) = (1− pA)p∗gt. Consequently

∀ t ≥ 0,
∫
ep
∗
gyν(dy) =

∫
Ey(ep

∗
gYt)ν(dy) = e(1−p

A
)p∗gt

∫
ep
∗
gyν(dy).

Now the right hand side of this equality goes to∞ as t goes to infinity since (1−pA)p∗g>0 which

shows that
∫
ep
∗
gyν(dy)=+∞ (since it cannot be 0).

• One has, in accordance with the convergence rate result obtained for ρn = o(γn), that∫
y ν(dy) =

1− pA
π

.

To prove this claim, one first notes, using the definition (18) of the generator L, that L(Id)(y) =

1 − pA − π y. Hence the above claim will follow from
∫
L(Id)(y)ν(dy) = 0. Let ϕ : R+ → R+

denote a continuously differentiable function such that ϕ(y) = y if y∈ [0, 1], ϕ(y) = 0 if y ≥ 2
and ϕ′ is bounded on R+. Set ϕn(y) = nϕ(y/n), n ≥ 1. One checks that L(ϕn) → L(Id) as n
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Figure 1: Graphs of the p.d.f φg, pA = 2/5, g = 1; the vertical dotted line shows the mean
1−p

A
π of ν. Left: pB = 1/3 (g∗ > g = 1). Center: pB = 4/15 (g∗ = g = 1). Right: pB = 1/6

(g∗ < g = 1).

goes to infinity and |L(ϕn)(y)| ≤ ay + b for some positive real constants a, b. One derives by
the dominated convergence theorem that∫

L(Id)(y)ν(dy) = lim
n

∫
L(ϕn)(y)ν(dy) = 0

where we used that the function ϕn has compact support on [0,+∞). One shows similarly that∫
L(u 7→ u2)(y)ν(dy) = 0 to derive that

∫ (
y − 1− pA

π

)2

ν(dy) = g
pB (1− pA)

2π2
.

Note that, as one could expect, this variance goes to 0 as g → 0. As a conclusion, we present in
Figure 1 three examples of shape for φg. They were obtained from an exact simulation of the
Markov process (Yt)t≥0 (associated to the generator L) at its jump times: we approximated the
p.d.f. by a histogram method using Birkhoff’s ergodic Theorem.

A final remark about the case π = 0 and γn = g ρn. In that setting (see Remark 1) the
asymptotics of the algorithm cannot be elucidated by using the ODE approach since it holds in
a weak sense. Setting Yn = 1− 2Xn one checks that Yn∈ [−1, 1] and

Yn+1 = Yn(1− 2gρ2
n+1(1− pA))− 2g ρn+1∆Mn+1

and that E((∆Mn+1)2 |Fn+1) = p
A
4 (1 − Y 2

n ) + O(ρ2
n+1). Then, a similar approach as that

developed in this section (but significantly less technical since (Yn) is bounded by 1) shows
that Yn converges in distribution to the invariant distribution µ of the Brownian diffusion with
generator Lf(y) = −2g(1− pA)yf ′(y) + 1

2g
2pA(1− y2)f ′′(y). In that case, it is well-known that

µ has a density function for which a closed form is available (see [9]), namely

µ(dy) = m(y)dy with m(y) = Cg,r
A

(1− y2)
2rA
g
−11(−1,1)(y).

Note that when g = 2rA = 2(1/pA − 1) > 0, µ is but the uniform distribution over [−1, 1].
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