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Abstract

This paper is concerned with finding a fingerprint of a sequence. As input data one uses
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1 Introduction and Result

1.1 The information recovery problem

Let ξ : Z → {0, 1} designate a double-infinite message-text with 2 letters. Such a coloring
of the integers is also called a (2-color) scenery. Let S = {S(t)}t∈N be a recurrent random
walk on Z starting at the origin. In this paper we allow the random walk S to jump, i.e.
P (|S(t + 1) − S(t)| > 1) > 0. We use S to mix up the message-text ξ. For this we assume that
ξ is observed along the path of S: At each point in time t, one observes χ(t) := ξ(S(t)). Thus,
χ designates the mixed up message-text, which is also the scenery ξ seen along the path of S.
The information recovery problem can be described as follows: observing only one path realiza-
tion of the process χ, can one retrieve a certain amount of information contained in ξ? A special
case of the information recovery problem is when one tries to reconstruct the whole ξ. This
problem is called the scenery reconstruction problem . In many cases being able to reconstruct
a finite quantity of the information contained in ξ, already implies that one can reconstruct all
of ξ. This paper is concerned with the information recovery problem in the context of a 2-color
scenery seen along a random walk with jumps. The methods which exist so far seem useless for
this case: Matzinger’s reconstruction methods [Mat99a; Mat05] do not work when the random
walk may jump. Furthermore, it seems impossible to recycle the method of Matzinger, Merkl
and Löwe [LMM04] for the 2-color case with jumps. The reason is that their method, requires
more than 2-colors. Hence, the fundamentally new approach is needed. That is presented in
this paper.

1.2 Main assumptions

Let us explain the assumptions which remain valid throughout this paper:

• ξ = {ξ(z)}z∈Z is a collection of i.i.d. Bernoulli variables with parameter 1/2. The path
realization ξ : z 7→ ξ(z) is the scenery from which we want to recover some information.
Often the realization of the process {ξ(z)}z∈Z is also denoted by ψ.

• S = {S(t)}t∈N is a symmetric recurrent random walk starting at the origin, i.e. P (S(0) =
0) = 1. We assume that S has bounded jump length L < ∞, where

L := max{z|P (S(1) − S(0) = z) > 0}.

We also assume that S has positive probability to visit any point in Z, i.e. for any z ∈ Z

there exists t ∈ N, such that P (S(t) = z) > 0.

• ξ and S are independent.

• m = m(n) designates a natural number depending on n, so that

1

4
exp

( αn

lnn

)

≤ m(n) < exp(2n)

where α := ln 1.5
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• For all t ∈ N, let χ(t) := ξ(S(t)). Let

χ := (χ(0), χ(1), . . .)

designate the observations made by the random walk S of the random scenery ξ. Hence
χ corresponds to the scenery ξ seen along the path of the random walk S.

We need also a few notations:

• For every k ∈ N, let ξk
0 := (ξ(0), ξ(1), . . . , ξ(k)) and let ξ−k

0 := (ξ(0), ξ(−1), . . . , ξ(−k)).

• Let f : D → I be a map. For a subset E ⊂ D we shall write f |E for the restriction of f
to E.

Thus, when [a, b] ∈ Z is an integer interval and ξ is a scenery, then ξ|[a, b] stands for the
vector (ξ(a), . . . , ξ(b)). We also write ξb

a for ξ|[a, b] and ψb
a for ψ|[a, b]. The notation

χm2

0 := (χ(0), χ(1), χ(2), . . . , χ(m2))

is often used.

• Let a = (a1, . . . , aN ), b = (b1, . . . , bN+1) be two vectors with length N and N + 1, respec-
tively. We write a ⊑ b, if

a ∈ {(b1, . . . , bN ), (b2, . . . bN+1)}.

Thus, a ⊑ b holds if a can be obtained from b by ”removing the first or the last element”.

1.3 Main result

The 2-color scenery reconstruction problem for a random walk with jumps is solved in two
phases:

1. Given a finite portion of the observations χ only, one proves that it is possible to reconstruct
a certain amount of information contained in the underlying scenery ξ.

2. If one can reconstruct a certain amount of information, then the whole scenery ξ can a.s.
be reconstructed. This is proven in the second phase.

This paper solves the first of the two problems above. The second problem is essentially solved in
the follow-up paper [LM02a]. In order to understand the meaning of the present paper, imagine
that we want to transmit the word ξm

0 . During transmission the lector head gets crazy and
starts moving around on ξ following the path of a random walk. At time m2, the lector head
has reached the point m. Can we now, given only the mixed up information χm2

0 , retrieve any
information about the underlying code ξm

0 ? The main result of this paper theorem 1.1, shows
that with high probability a certain amount of the information contained in ξm

0 can be retrieved
from the mixed up information χm2

0 . This is the fingerprint of ξm
0 , referred to in the abstract.

Here is the main result of this paper.
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Theorem 1.1. For every n > 0 big enough, there exist two maps

g : {0, 1}m+1 → {0, 1}n2+1

ĝ : {0, 1}m2+1 → {0, 1}n2

and an event
En

cell OK ∈ σ(ξ(z)|z ∈ [−cm, cm])

with c > 0 not depending on n such that all the following holds:

1) P (En
cell OK) → 1 when n → ∞.

2) For any scenery ξ ∈ En
cell OK,

P
(

ĝ(χm2

0 ) ⊑ g(ξm
0 )

∣

∣S(m2) = m, ξ
)

> 3/4.

3) g(ξm
0 ) is a random vector with (n2 + 1) components which are i.i.d. Bernoulli variables with

parameter 1/2.

The mapping g can be interpreted as a coding that compresses the information contained in
ξm
0 ; the mapping ĝ can be interpreted as a decoder that reads the information g(ξm

0 ) from the

mixed-up observations χm2+1
0 . The vector g(ξm

0 ) is the desired fingerprint of ξm
0 . We call it the

g-information. The function ĝ will be referred to as the g-information reconstruction algorithm.
Let us explain the content of the above theorem more in detail. The event {ĝ(χm2

0 ) ⊑ g(ξm
0 )} is

the event that ĝ reconstructs the information g(ξm
0 ) correctly (up to the first or last bit), based

on the observations χm2

0 . The probability that ĝ reconstructs g(ξm
0 ) correctly is large given the

event {S(m2) = m} holds. The event {S(m2) = m} is needed to make sure the random walk
S visits the entire ξm

0 up to time m2. Obviously, if S does not visit ξm
0 , we can not reconstruct

g(ξm
0 ).

The reconstruction of the g-information works with high probability, but conditional on the event
that the scenery is nicely behaved. The scenery ξ behaves nicely, if ξ ∈ En

cell OK. In a sense,
En

cell OK contains “ typical” (pieces of) sceneries. These are sceneries for which the g-information
reconstruction algorithm works with high probability.
Condition 3) ensures that the content of the reconstructed information is large enough. Indeed,
if the piece of observations χm2

0 were generated far from ξm
0 , i.e. the random walk S would start

far from 0, then g(ξm
0 ) were independent of χm2

0 , and P
(

ĝ(χm2

0 ) ⊑ g(ξm
0 )

)

would be about 2−n2
.

On the other hand, if S starts from 0 and n is big enough, then from 1) and 2), it follows that

P
(

ĝ(χm2

0 ) ⊑ g(ξm
0 )

∣

∣S(m2) = m
)

> 3/4 (1.1)

and

P
(

ĝ(χm2

0 ) ⊑ g(ξm
0 )

)

≥ 3

4
P (S(m2) = m).

Since, by local central limit theorem, P (S(m2) = m) is of order 1
m ≥ e−2n, we get that

P
(

ĝ(χm2

0 ) ⊑ g(ξm
0 )

)

is at least O(e−2n). Although, for big n, the difference between 2−n2

and e−2n is negligible, it can be still used to make the scenery reconstruction possible.
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1.4 History and related problems

A coloring of the integers ξ : Z → {0, 1, . . . , C − 1} is called a C-color scenery. In a sense,
the scenery reconstruction started with the so-called scenery distinguishing problem that can
be described as follows: Let ψa and ψb be two non-equivalent sceneries which are known to
us. Assume that we are only given one realization of the observations χ := ψ ◦ S, where
ψ ∈ {ψa, ψb}. Can we a.s. find out whether ψ is equal to ψa or ψb? If yes, we say that the
sceneries ψa and ψb are distinguishable. Kesten and Benjamini [BK96] considered the case
where the sceneries ψa and ψb are drawn randomly. They take ψa to be an i.i.d. scenery
which is independent of ψb. In this setting, they prove that almost every couple of sceneries is
distinguishable even in the two dimensional case and with only 2 colors. Before that Howard
[How97] had shown that any two periodical non-equivalent sceneries are distinguishable. The
problem of distinguishing two sceneries which differ only in one element is called the single
defect detection problem. In [How96], Howard showed that single defects can always be detected
in periodic sceneries observed along a simple random walk. Kesten [Kes96] showed that one
can a.s. detect single defects in the case of 5-color i.i.d. sceneries.
The question of Kesten whether one can detect a single defect in 2-color sceneries lead Matzinger
to investigate the scenery reconstruction problem: Given only one path realization of {χ(t)}t∈N,
can we a.s. reconstruct ξ? In other words, does one path realization of χ a.s. uniquely
determine ξ? In general, it does not: in many cases it is not possible to distinguish a scenery
from a shifted one. Furthermore, Lindenstrauss proved [Lin99] the existence of sceneries which
can not be reconstructed. However, one can reconstruct ”typical” sceneries: Matzinger takes ξ
randomly, independent of S and shows that one can reconstruct a.s. the scenery up to shift and
reflection. In [Mat05] and [Mat99a], he proves this for 2-color sceneries observed along the path
of simple random walk or a simple random walk with holding. In [Mat99b], he reconstructs
3-color i.i.d. sceneries observed along a simple random walk path. The two cases require
very different methods (for an overview of different techniques, see [ML06]). Later Kesten
[Kes98] asked, whether one can also reconstruct two dimensional random sceneries. Loewe and
Matzinger [LM02b] give a positive answer provided the scenery contains many colors. Another
question was formulated first by Den Hollander: To which extent can sceneries be reconstructed
when they are not i.i.d. in distribution. Loewe and Matzinger [LM03] characterize those
distributions for which Matzinger’s 3-color reconstruction works. Yet another problem comes
from Benjamini: Is it possible to reconstruct a finite piece of a scenery close to the origin in
polynomial time? We take for this polynomially many observations in the length of the piece
we try to reconstruct. Matzinger and Rolles [MR03a; MR06] provide a positive answer.
The scenery reconstruction problem varies greatly in difficulty depending on the number of
colors and the properties of the random walk. In general, when there are less colors and the
random walk is allowed to jump, the problem gets more difficult. Kesten [Kes98] noticed,
that Matzinger’s reconstruction methods [Mat99a] and [Mat05] do not work when the random
walk is allowed to jump. Matzinger, Merkl and Loewe [LMM04] showed that it is possible to
reconstruct a.s. a scenery seen along the path of a random walk with jumps, provided the
scenery contains enough colors. However, with more colors the system is completely differently
behaved. This implies that the method of Matzinger, Merkl and Loewe is not useful for the
2-color case with jumps. The present paper is the first step towards reconstructing the 2-color
scenery.
Let us mention some more recent developments and related works. A generalization of the
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scenery reconstruction problem is the scenery reconstruction problem for error-corrupted
observations. In that problem, there exists an error process νt, t ∈ N and error-corrupted
observations χ̂ so that χ̂t equals to the usual observation χt if and only if νt = 0. The error
process is i.i.d. Bernoulli and independent of everything else. The problem now is: is possible
to reconstruct the scenery based on one realization of the process χ̂ only? Matzinger and
Rolles [MR03b] showed that almost every random scenery seen with random errors can be
reconstructed a.s. when it contains a lot of colors. However, their method cannot be used for
the case of error corrupted 2-color sceneries. The error-corrupted observations were also studied
by Matzinger and Hart in [HM06]. A closely related problem is the so-called Harris-Keane coin
tossing problem introduced and studied by Harris and Keane in [HK97] and further investigated
by Levin, Pemantle and Peres in [LPP01].
In the scenery reconstruction results above, the reconstructable scenery is a ”typical” realization
of a random (i.i.d. Bernoulli) scenery. A periodic scenery is not such kind of ”typical”
realization, so the abovementioned results do not apply for the case of periodic scenery.
Howard [How97] proved that all periodic sceneries observed along a simple random walk path,
can be reconstructed. This lead Kesten to ask what happens when the random walk is not
simple. In [LM06], Matzinger and Lember give sufficient conditions for a periodic scenery being
reconstructable when observed along a random walk with jumps.
A problem closely related to the reconstruction of periodic sceneries, is the reconstruction of
sceneries with a finite number of ones. This problem was solved by Levin and Peres in [LP04],
where they prove that every scenery which has only finite many one’s can a.s. be reconstructed
up to shift or reflection when seen along the path of a symmetric random walk. The used a
more general framework of stochastic scenery. A stochastic scenery is a map ξ : Z → I, where
I denotes a set of distributions. At time t, one observes the random variable χ(t), drawn
according to the distribution ξ(St) ∈ I. Given S and ξ, the observations χ(t) for different t’s
are independent of each other. The observations are generated as follows : if at time t the
random walk is at z, then a random variable with distribution η(z) is observed. Hence, at time
t, we observe χ(t), where L(χ(t)|S(t) = z) = η(z).
Recently, Matzinger and Popov have been studied continuous sceneries [MP07]. They define
a continuous scenery as a location of countably many bells placed on R. In continuous case,
instead of random walk, a Brownian motion is considered. Whenever the Brownian motion hits
a bell, it rings. So, unlike the discrete scenery reconstruction, there are no colors: all the bells
ring in the same way. The observations consists of time lengths between successive rings.
For a well-written overview of the scenery distinguishing and scenery reconstruction areas, we
recommend Kesten’s review paper [Kes98]. An overview of different techniques as well as the
recent developments in scenery reconstruction can be found in [ML06].
Scenery reconstruction belongs to the field which investigates the properties of a color record ob-
tained by observing a random media along the path of a stochastic process. The T T−1-problem
as studied by Kalikow [Kal82] is one motivation. The ergodic properties of observations have
been investigated by Keane and den Hollander [KdH86], den Hollander [dH88], den Hollander
and Steiff [dHS97] and Heicklen, Hoffman and Rudolph [HHR00]. An overview of mentioned
results as well as many others can be found in [dHS06].
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1.5 Organization of the paper

In order to explain the main ideas behind the g-information reconstruction algorithm, we first
consider a simplified example in Subsection 1.6. In this example, ξ is a 3-color i.i.d. scenery
instead of a 2-color scenery. The 2’s are pretty rare in the scenery ξ: P (ξ(z) = 2) is of negative
exponential order in n. The one’s and zero’s have equal probability: P (ξ(z) = 0) = P (ξ(z) = 1).
The (random) locations z̄i of the 2’s in ξ are called signal carriers. For each signal carrier z̄i,
we define the frequency of ones at z̄i. The frequency of one’s at z̄i is a weighted average of
ξ in the neighborhood of z̄i. The g-information g(ξm

0 ) if a function of the different frequencies
of ones of the signal carriers which are located in the interval [0, m]. The vector of frequencies
works as a fingerprint for ξm

0 . The reading of this fingerprint works as follows: Typically, the
signal carriers are apart from each other by a distance of order en. Suppose that S visits a signal
carrier. Before moving to the next signal carrier, it returns to the same signal carrier many
times with high probability. By doing this, S generates many 2’s in the observations at short
distance from each other. This implies: when in the observations we see a cluster of 2’s, there
is a good reason to believe that they all correspond to the same 2 in the underlying scenery. In
this manner we can determine many return times of S to the same signal carrier. This enables
us to make inference about ξ in the neighborhood of that signal carrier. In particular, we can
precisely estimate the frequencies of ones of the different signal carriers visited. This allows us to
estimate g(ξn

0 ). The estimator ĝ is the desired decoder. The details are explained in Subsection
1.6. However, it is important to note, that between this simplified example and our general case
there is only one difference: The signal carriers. In the general case we can no longer rely on
the 2’s and the signal carriers need to be constructed in a different manner. Everything else –
from the definition of g and ĝ up to the proof that the g-information reconstruction algorithm
works with high probability – is exactly the same. (Note that the solution to our information
recovery problem in the simplified 3-color case requires only five pages!)
For the general case with a 2-color scenery and a jumping random walk, the main difficulty
consists in the elaboration of the signal carriers. In Section 2, we define many concepts which
are subsequently used for the definition of the signal carriers. Also there, some technical results
connected to the signal carriers are proved. The signal carriers are defined in Section 3.
The main goal of the paper is to prove that the g-reconstruction algorithm works with high
probability (i.e. that the estimator ĝ is precise). For this, we define two sets of events: the ran-
dom walk dependent events and the scenery dependent event. All these events describe typical
behavior of S or ξ. In Section 3, we define the scenery dependent events and prove that they
have high probability. In Section 4 the same is done for the events that depend on S.
In section 5, we prove that if all these events hold, then the g-information reconstruction algo-
rithm works, i.e. the event

En
g works := {ĝ(χm2

0 ) ⊑ g(ξm
0 )}

holds. The results of Section 3 and Section 4 then guarantee that the g-information reconstruc-
tion algorithm works with high probability. This finishes the proof of Theorem 1.1.

1.6 3-color example

In this subsection, we solve the scenery reconstruction problem in a simplified 3-color case. We
do not change the assumptions on S.
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1.6.1 Setup

Recall that ξm
0 and χm2

0 denote the piece of scenery ξ|[0, m] and the first m observations χ|[0, m],
respectively. We aim to construct two functions

g : {0, 1}m+1 → {0, 1}n2+1 and ĝ : {0, 1}m2+1 → {0, 1}n2

and a ξ-dependent event En
cell OK such that

1) P (En
cell OK) → 1

2) For every ξ ∈ En
cell OK, it holds

P
(

ĝ(χm2

0 ) ⊑ g(ξm
0 )

∣

∣

∣
S(m2) = m, ξ

)

>
3

4

3) g(ξm
0 ) is i.i.d. binary vector where the components are Bernoulli random variables with

parameter 1
2 .

Then (1.1) holds, implying that with high probability we can reconstruct g(ξm
0 ) from the

observations, provided that random walk S goes in m2 steps from 0 to m.

Since this is not yet the real case, during the present subsection we will not be very for-
mal. For this subsection only, let us assume that the scenery ξ has three colors instead of two.
Moreover, we assume that {ξ(z)} satisfies all of the following three conditions:

a) {ξ(z) : z ∈ Z} are i.i.d. variables with state space {0, 1, 2},

b) exp(n/ lnn) ≤ 1/P (ξ(0) = 2) ≤ exp(n),

c) P (ξ(0) = 0) = P (ξ(0) = 1).

We define m = n2.5(1/P (ξ(0) = 2)). Because of b) this means

n2.5 exp(n/ lnn) ≤ m(n) ≤ n2.5 exp(n).

The so defined scenery distribution is very similar to our usual scenery except that sometimes
(quite rarely) there appear also 2’s in this scenery. We now introduce some necessary definitions.

Let z̄i denote the i-th place in [0,∞) where we have a 2 in ξ. Thus

z̄1 := min{z ≥ 0|ξ(z) = 2}, z̄i+1 := min{z > z̄i|ξ(z) = 2}.

We make the convention that z̄0 is the last location before zero where we have a 2 in ξ. For
a negative integer i < 0, z̄i designates the i + 1-th point before 0 where we have a 2 in ξ.
The random variables z̄i-s are called signal carriers. For each signal carrier, z̄i, we define the
frequency of ones at z̄i. By this we mean the (conditional on ξ) probability to see 1 exactly
after en0.1

observations having been at z̄i. We denote that conditional probability by h(z̄i) and
will also write h(i) for it. Formally:

h(i) := h(z̄i) := P
(

ξ(S(en0.1
) + z̄i) = 1

∣

∣

∣
ξ
)

.
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It is easy to see that the frequency of ones is equal to a weighted average of the scenery in a
neighborhood of radius Len0.1

of the point z̄i. That is h(i) is equal to

h(i) :=
∑

z∈[−Len0.1
,Len0.1

]
z 6=z̄i

ξ(z)P
(

S(en0.1
) + z̄i = z

)

(1.2)

(Of course this formula to hold assumes that there are no other two’s in

[z̄i − Len0.1
, z̄i + Len0.1

]

except the two at z̄i. This is very likely to hold, see event En
6 below).

Let
gi(ξ

m
0 ) := I[0,0.5)(h(i)).

We now define some events that describe the typical behavior of ξ.

• Let En
6 denote the event that in [0, m] all the signal carriers are further apart than

exp(n/(2 lnn)) from each other as well as from the points 0 and m. By the definition
of P (ξ(i) = 2), the event P (En

6 ) → 1 as n → ∞.

• Let En
1 be the event that in [0, m] there are more than n2 +1 signal carrier points. Because

of the definition of m, P (En
1 ) → 1 as n → ∞.

When En
1 and En

6 both hold, we define g(ξm
0 ) in the following way:

g (ξm
0 ) := (g1 (ξm

0 ) , g2 (ξm
0 ) , g3 (ξm

0 ) , . . . , gn2+1 (ξm
0 )) .

Conditional on En
1 ∩En

6 we get that g (ξm) is an i.i.d. random vector with the components being
Bernoulli variables with parameter 1/2. Here the parameter 1/2 follows simply by symmetry of
our definition (to be precise, P (gi (ξ

m
i ) = 1) = 1/2− P (h(i) = 1/2), but we disregard this small

error term in this example) and the independence follows from the fact that the scenery is i.i.d.
and gi(ξ

m
0 ) depends only on the scenery in a radius Len0.1

of the point z̄i and, due to En
6 , the

points z̄i are further apart than exp(n/2 lnn) > L exp(n0.1).
Hence, with almost no effort we get that when En

1 and En
6 both hold, then condition 3) is

satisfied. To be complete, we have to define the function g such that 3) holds also outside
En

1 ∩ En
6 . We actually are not interested in g outside En

1 ∩ En
6 - it would be enough that we

reconstruct g on En
1 ∩En

6 . Therefore, extend g in any possible way, so that g (ξm
0 ) depends only

on ξm
0 and its component are i.i.d.

1.6.2 ĝ-algorithm

We show, how to construct a map ĝ : {0, 1}n2 7→ {0, 1}n and an event En
cell OK ∈ σ(ξ) such that

P (En
cell OK) is close to 1 and, for each scenery belonging to En

cell OK, the probability

P
(

ĝ(χm2

0 ) ⊑ g(ξm
0 )

∣

∣

∣
S(m2) = m, ξ

)

(1.3)

is also high. Note, when the scenery ξ is fixed, then the probability (1.3) depends on S, only.
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The construction of ĝ consists of several steps. The first step is the estimation of the frequency
of one’s h(i). Note: due to En

6 we have that in the region of our interest we can assume that
all the signal carriers are further apart form each other than exp(n/(2 lnn)). In this case we
have that all the 2’s observed in a time interval of length en0.3

must come from the same signal
carrier. We will thus take time intervals T of length en0.3

to estimate the frequency of one’s.

Let T = [t1, t2] be a (non-random) time interval such that t2 − t1 = en0.3
. Assume that during

time T the random walk is close to the signal carrier z̄i. Then every time we see a 2 during T
this gives us a stopping time which stops the random walk at z̄i. We can now use these stopping
times to get a very precise estimate of h(i). In order to obtain the independence (which makes
proofs easier), we do not take all the 2’s which we observe during T . Instead we take the 2’s
apart by at least en0.1

from each other.

To be more formal, let us now give a few definitions.
Let νt1(1) denote the first time t > t1 that we observe a 2 in the observations χ after time t1.
Let νt1(k + 1) be the first time after time νt1(k) + en0.1

that we observe a 2 in the observations
χ. Thus νt1(k + 1) is equal to min{t|χ(t) = 2, t ≥ νt1(k) + en0.1}. We say that T is such that
we can significantly estimate the frequency of one’s for T , if there are more than en0.2

stopping
times νt1(k) during T . In other words, we say that we can significantly estimate the frequency
of one’s for T , if and only if νt1(e

n0.2
) ≤ t2 − en0.1

.
Let X̂t1(k) designate the Bernoulli variable which is equal to one if and only if

χ(νt1(k) + en0.1
) = 1.

When νt1(e
n0.2

) ≤ t2 − en0.1
we define ĥT the estimated frequency of one’s during T in the

following obvious way:

ĥT :=
1

en0.2

en0.2

∑

k=1

X̂t1(k).

Suppose we can significantly estimate the frequency of one’s for T . Assume En
6 ∩En

1 hold. Then
all the stopping times νt1(e

n0.2
) stop the random walk S at one signal carrier, say z̄i. Because

of the strong Markov property of S we get then that, conditional on ξ, the variables Xt1(k) are
i.i.d. with expectations hi. Now, by Höffding inequality,

P (|ĥT − h(i)| > e−n0.2/4) ≤ exp(−(2en0.2/2))

So that, with high probability, ĥT is a precise estimate for h(i):

|ĥT − h(i)| ≤ e−n0.2/4. (1.4)

The obtained preciseness of ĥT is of the great importance. Namely, it is of smaller order than
the typical variation of h(i). In other words, with high probability |h(i)−h(j)| is of much bigger
order than exp(−n0.2/4), i 6= j. To see this, consider (1.2). Note that, for each z,

µi(z) := P (S(en0.1
) + z̄i = z)

is constant, and, conditional under the event that in the radius of L exp(n0.1) are no more 2’s
in the scenery than z̄i, we have that ξ(z̄i + z) are i.i.d. Bernoulli variables with parameter 1

2 .
Hence

V ar[h(i)] ≤
∑

z∈[−Len0.1
,Len0.1

]

1

4

(

µi(z)
)2

.
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Since our random walk is symmetric we get that

∑

z∈[−Len0.1
,Len0.1

]

1

4
(µi(z))2

is equal to 1/4 times the probability that the random walk is back at the origin after 2en0.1
time.

By the local central limit theorem that probability is of order e−n0.1/2. This is much bigger
than the order of the precision of the estimation of the frequencies of one’s, e−n0.2/4. Since
h(i) is approximately normal, it is possible to show that with high probability all frequencies
h(0), h(1), . . . , h(n2+1) are more than exp(−n0.11) apart from 1

2 . By the similar argument holds:
If {z̄i}i∈I is the set of signal carriers that S encounters during the time [0, m2], then for each
pair i, j ∈ I, the frequencies of ones satisfy

|h(i) − h(j)| > exp(−n0.11).

Let En
3 be the set on which both statements (h(i)’s are more than exp(−n0.11) apart from 1/2

and from each other) hold.

Define
En

cell OK := En
1 ∩ En

3 ∩ En
6 .

Since En
1 , En

3 and En
6 all depend on ξ, only, so does En

cell OK. From now on we assume that
En

cell OK hold and we describe the ĝ-construction algorithm in this case:

Phase I Determine the intervals T ⊆ [0, m2] containing more than en0.2
two’s (in the observa-

tions.) Let Tj designate the j-th such interval. Recall that these are the intervals where
we can significantly estimate the frequency of one’s. Let K designate the total number of
such time-intervals in [0, m2].

Let π(j) designate the index of the signal carrier z̄i the random walk visits during time
Tj (due to En

6 , the visited signal carriers are further apart than Len0.2
from each other

and, hence, there is only one signal carrier that can get visited during time Tj . Thus the
definition of π(j) is correct.)

Phase II Estimate the frequency of one’s for each interval Tj , j = 1, . . . , K. Based on the

observations χm2

0 only, obtain the vector

(ĥT1 , . . . , ĥTK
) =

(

ĥ(π(1)), ĥ(π(2)), . . . , ĥ(π(K))
)

.

Here ĥ(i) denotes the estimate of h(i), obtained by time interval Tj , with π(j) = i.

The further construction of the ĝ-reconstruction algorithm bases on an important property of
the mapping

π : {1, . . . , K} → Z.

Namely, with high probability π is a skip free walk, i.e. |π(j) − π(j + 1)| ≤ 1. Clearly, after
being near to the point ẑi, S moves to the neighborhood of ẑi+1 or ẑi−1 (recall that on En

cell OK,
2’s are rather far from each other). Say, it goes to the neighborhood of ẑi+1. The important
property of S is that, with high probability, before moving to the vicinity of the next 2 (that is
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located in ẑi+2 or ẑi) it visits ẑi+1 sufficiently many times. This means that there exists a time
interval [t1, t2] of length en0.3

such that νt1(e
n0.2

) ≤ t2 − en0.1
. For big n, this clearly holds holds,

if, after visiting ẑi+1 once, before en0.3 −en0.1
steps, S visits ẑi+1 again at least en0.21

times. This
can be proven to hold with high probability.
Hence, the random walk during time [0, m2] is unlikely to go from one signal carrier to another
without signaling all those in-between. By signaling those in-between, we mean producing in the
observations for each signal carrier z̄i a time intervals of for which one can significantly estimate
the frequency of one’s h(i). In other words, with high probability, the mapping π is a skip-free
random walk. In particular, π(1) ∈ {0.1}, i.e. π∗ ≤ 1, where

π∗ := min{π(j) : j = 1, . . . , K}, π∗ := max{π(j) : j = 1, . . . , K}.

If S(m2) = m, then by the event En
1 , it holds π∗ > n2.

Phase III Apply clustering to the vector (ĥT1 , ĥT2 , . . . , ĥTK
), i.e. define

Ci := {ĥTj
: |ĥTj

− ĥTi
| ≤ exp(−n0.12)}, f̂i :=

1

|Ci|
∑

j∈Ci

ĥTj
, i = 1, . . . , K.

Formally there are K clusters. However, if En
3 holds and for every T , the estimate ĥT satisfies

(1.4), then for each different i, j either Ci = Cj or Ci∩Cj = ∅. To see this note that |ĥTj
− ĥTi

| ≤
exp[−n0.12] if and only if they estimate the same signal carrier. Indeed, if ĥTj

and ĥTi
estimate

the same signal carrier, then by (1.4), their difference is at most 2 exp[−n0.2/4] < exp[−n0.12].
On the other hand, if ĥTi

and ĥTj
estimate h(i) 6= h(j), respectively, then

|ĥTi
− ĥTj

| ≥ |h(i) − h(j)| − 2 exp[−n0.2/4] ≥ exp[−n0.11] − 2 exp[−n0.2/4] > exp[−n0.12],

since on En
3 , exp[−n0.11] < |h(i) − h(j)|. Hence the clusters Ci and Cj coincide if and only if

π(i) = π(j), otherwise they are disjoint. Thus, f̂j is the average of all estimates of h(π(j)) and,

therefore, f̂j is a good estimate of h(π(j)). Since Ci and Cj coincide if and only if π(i) = π(j),
it obviously holds that

f̂i = f̂j if and only if π(i) = π(j). (1.5)

We denote f̂(z̄i) := f̂j , if π(j) = i; (1.5) implies f̂(z̄i)) 6= f̂(z̄j), if i 6= j.

After phrase III we, therefore, (with high probability) end up with a sequence of estimators

f̂(z̄π(1)), . . . , f̂(z̄π(K))

that correspond to the sequence of frequencies h(π(1)), . . . , h(π(1)). Or, equivalently, j 7→ f̂j is

a path of a skip-free random walk π on the set of different reals {f̂(z̄π∗
), . . . , f̂(z̄π∗)}.

The problem is that the estimates, f̂(z̄π(1)), . . . , f̂(z̄π(K)) are in the wrong order, i.e. we are not
aware of the values π(j), j = 1, . . . , K. But having some information about the values π(j) is
necessary for estimating the frequencies h(1), . . . , h(n2 + 1). So the question is: How can get
from the sequence f̂(z̄(π(1)), . . . , f̂(z̄π(K)) the elements f̂(z̄1), . . . , f̂(z̄n2+1)? Or, equivalently:

after observing the path of π on {f̂(z̄π∗
), . . . , f̂(z̄π∗)}, how can we deduce f̂(z̄1), . . . , f̂(z̄n2+1)?
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1.6.3 Real scenery reconstruction algorithm

We now present the so-called real scenery reconstruction algorithm - AR
n . This algorithm is able

to answer to the stated questions up to the (swift by) one element.

The algorithm works due to the particular properties of π and {f̂(z̄π∗
), . . . , f̂(z̄π∗)}. These

properties are:

A1) π(1) ∈ {0, 1}, i.e. the first estimated frequency of one’s, f̂1 must be either an estimate of
h(1) or of h(0). Unfortunately there is no way to find out which one of the two signal
carriers z̄0 or z̄1 was visited first. This is why our algorithm can reconstruct the real
scenery up to the first or last bit, only;

A2) π(K) > n2. This is true, because we condition on S(m2) = m and we assume that there
are at least n2 + 1 2-s in [0, m] (event En

1 );

A3) π is skip-free (it does not jump);

A4) f̂(z̄i) 6= f̂(z̄j) ∀j 6= i, i, j ∈ {π∗, . . . , π∗}.

Algorithm 1.2. Let f̂ = (f̂1, f̂2, . . . , f̂K) be the vector of real numbers such that the number of
different reals in f̂ is at least n2 + 1. The vector f̂ is the input for AR

n .

• Define R1 := f̂1.

• From here on we proceed by induction on j : once Rj is defined, we define

Rj+1 := f̂s where s := 1 + max{j : f̂j = Rj}.

• Proceed until j = n2 + 1 and put

AR

n(f̂) :=
(

R2,R3, . . . ,Rn2+1

)

.

The idea of the algorithm is very simple: Take the first element f̂1 of f̂ and consider all elements
of the input vector f̂ that are equal to f̂1 and find the one with the biggest index (the last f̂1).
Let j1 be this index. Then take f̂j1+1 as the first output. By A1), f̂1 is either f̂(z̄0) or f̂(z̄1); by

A2) and A3), f̂j1+1 ie either f̂(z̄1) or f̂(z̄2). Now look for the last f̂j1+1. Let the corresponding

index be j2 and take f̂j2+1 as the second output. By A2) and A3), f̂j1+1 is either f̂(z̄2) or f̂(z̄3)

(depending whether the first output were f̂(z̄1) or f̂(z̄2)). Proceed so n2 times. As a result, on
obtains one of the following vectors

(f̂(z̄1), . . . , f̂(z̄n2)) or (f̂(z̄2), . . . , f̂(z̄n2+1)).

This means AR
n(f̂) ∈ {(f̂(z̄1), . . . , f̂(z̄n2)), (f̂(z̄2), . . . , f̂(z̄n2+1))}, i.e.

AR

n(f̂) ⊑ (f̂(z̄1), . . . , f̂(z̄n2+1)). (1.6)

Phase IV Apply AR
n to f̂ . Denote the output AR

n(f̂) by (f1, . . . , fn2). By (1.6) ,

(f1, . . . , fn2) ⊑
(

f̂(z̄1), . . . , f̂(z̄n2+1)
)

. (1.7)
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Now recall that we are interested in reconstructing the gi(ξ
m
0 ) := I[0,5)(h(i)) rather than ĥ(i).

Thus, having estimates for h(z̄i), namely f̂(z̄i), we use the obvious estimator for gi: I[0,0.5)(fi).

Phase V Define the final output of ĝ

ĝ(χm2

0 ) :=
(

I[0.5,1](f1), . . . I[0.5,1](fn2)
)

.

Recall that because of En
3 , with high probability all random variables h(1), . . . , h(n2 + 1) are

more than exp(−n0.11) apart from 1
2 . Since exp(−n0.11) is much bigger than the preciseness of

our estimate, with high probability we have f̂(z̄i) < 0.5 if and only if h(z̄i) < 0.5. By (1.7) this
means

ĝ(χm2

0 ) =
(

I[0.5,1](f1), . . . I[0.5,1](fn2)
)

⊑
(

I[0.5,1]

(

h(z̄1)
)

, . . . I[0.5,1]

(

h(zn2+1)
)

)

= g(ξm
0 ).

Hence, when En
cell OK holds, then ĝ is properly defined and the probability (1.3) is high. In

particular, by choosing n big enough, it can be proven to be greater that 3
4 . Since we are not

interested in ĝ beyond En
cell OK, we extend the definition of ĝ arbitrary.

2 Whole truth about signal probabilities

In the previous section we considered the case where the scenery has three colors: {0, 1, 2}. The
locations of the 2’s where called signal carriers. The i-th such place was denoted by z̄i. In reality
we have only two colors 0 and 1. Thus, we need to show that with 2 colors we also manage to
define signal carriers z̄i in such a way that all of the following holds:

a) Whenever the random walk passes by a signal carrier, we can recognize that the random
walk is close to a signal carrier by looking at the observations (with high probability).

b) The probability to be induced in error by the observations, so that one infers that at a certain
time one is close to a signal carrier when one is not, is small. This type of mistake never
happens up to time m2.

c) When we pass a signal carrier we are able to estimate its frequency of one’s with high precision
(with high probability).

In the present section, we define and investigate an important concept that leads to the signal
carriers: Markov signal probability.

2.1 Definitions

In this subsection, we define the main notions of the section: delayed signal probability, strong
signal probability and Markov signal probability. We also give a few equivalent characterizations
of these concepts, and we try to explain their meaning. In the end of the subsection we give a
formal definition of the frequency of ones.
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• Let D ⊂ Z and let ζ : D → {0, 1}. For example, ζ can be the scenery, ξ or the observations,
χ. Let T = [t1, t2] ⊂ D be an integer interval of length at least 3. Then we say that T is
a block of ζ if and only if we have that

ζ (t1) = ζ (t2) 6= ζ (t) ,∀t ∈]t1, t2[

We call t2 − t1 the length of the block T . The point t1 is called the beginning of the block.
For example, T is a block of ζ with length 4, if ζ|T = 01110.

• Let T = T (χ) ⊂ N be a time interval, possibly depending on the observations. For example,
T can be a block of χ or T = [t, t + n2] can be a time interval of length n2 + 1 such that
χ(t) = χ(t + 1) = · · · = χ(t + n2). Let I ⊂ Z be an integer interval (a location set). We
say that T was generated (by S) on I, if and only if ∀t ∈ T, S(t) ∈ I.

• We now define the delayed signal probability. To simplify the notations afterwards, define

M = M(n) := n1000 − n2, M̃ := n1000 − 2n2.

Fix z ∈ Z and let Sz denote the random walk translated by z, i.e. for all t ∈ N, Sz (t) :=
S (t) + z. We define the random variable δd

z in the following way:

δd
z := P

(

ξ (Sz (M)) = · · · = ξ
(

Sz

(

n1000 − 1
))

= ξ
(

Sz

(

n1000
))

∣

∣

∣
ξ
)

. (2.1)

In other words, δd
z is the conditional probability (conditional on ξ) to observe only one

color in the time interval [n1000 − n2, n2] if the random walk starts at z. We shall call δd
z

delayed signal probability at z.
During time n1000 the random walk can not move more than Ln1000. Thus, δd

z depends
only on the scenery ξ in the interval

[

z − Ln1000, z + Ln1000
]

.

• Let, for each z ∈ Z

Iz := [z − Ln1000, z + Ln1000]. (2.2)

We have that δd
z is a random variable which is measurable with respect to σ(ξ(s)|s ∈ Iz).

Since the distribution of ξ is translation invariant, the distribution of δd
z does not depend

on z.

• For some technical reason, we need a stronger version of the delayed signal probability.
Again, let z ∈ Z. We define the strong signal probability at z, δ̃d

z , as follows

δ̃d
z := P

(

ξ(Sz(M)) = · · · = ξ(Sz(n
1000)), Sz(M+1), Sz(M+2), . . . , Sz(n

1000) ∈ [z−LM̃, z+LM̃ ]
∣

∣

∣
ξ
)

.

Note that δ̃d
z is measurable with respect to the sigma algebra σ(ξ(s)|s ∈ [z−LM̃, z+LM̃ ]).

Also note that, obviously, δd
z ≥ δ̃d

z . However, the difference is not too big. Indeed, Höffding
inequality states that for some constant d > 0

δd
z − δ̃d

z = P
(

ξ(Sz(M)) = · · · = ξ(Sz(n
1000)), ∃s ∈ {M, . . . , n1000} : |z − Sz(s)| > LM̃

∣

∣

∣
ξ
)

≤ P
(

|S(M)| > L(M̃ − n2)
)

≤ exp(−dn999).

(2.3)

410



Next we define the Markov signal probability at z. Roughly speaking, the Markov signal prob-
ability at z, denoted by δM

z , is the conditional (on ξ) probability to have (at least) n2 + 1 times
the same color generated on Iz exactly n1000 − n2 after we observe n2 + 1 times the same color
generated on Iz. In this formulation the part ”after we observe a string of n2 + 1 times the
same color generated on Iz” needs to be clarified. The explanation is the following: every time
there is in the observations n2 +1 times the same color generated on Iz, we introduce a stopping
time νz(i). The position of the random walk at these stopping times defines a Markov chain
with state space Iz. As we will prove later, this Markov chain {S(νz(k))}k≥1 converges very

quickly to a stationary measure, say µz. So, by ”M after we observe n2 +1 times the same color
generated on Iz” we actually mean: ”M time after starting the random walk from an initial
position distributed according to µz”. Since the distribution of S(νz(i)) converges quickly to µz,
δM
z is close to the probability of observing n2 + 1 times the same color generated on Iz exactly

M time after time νz(i). In other words, δM
z is close to the conditional (on ξ) probability of the

event that we observe only one color in the time interval [νz(i) + n1000 − n2, νz(i) + n1000] and
that during that time interval the random walk S is in Iz. Thus (for k big enough) δM

z is close
to:

P
(

χ(νz(i) + M) = · · · = χ(νz(i) + n1000) and S(νz(i) + M), . . . , S(νz(i) + n1000) ∈ Iz|ξ
)

.

(2.4)
The ergodic theorem then implies that on the long run the proportion of stopping times νz(i)
which are followed after M by n2 + 1 observations of the same color generated on Iz converges
a.s. to δM

z . Actually, to make some subsequent proofs easier, we do not take a stopping time
νz(i) after each n2 + 1 observations of the same color generated on Iz. Rather we ask that the
stopping times be apart by at least en0.1

.

In order to prove how quickly we converge to the stationary measure, we also view the explained
notions in terms of a regenerative process. The renewal times will be defined as the stopping
times, denoted by ϑz(k), which stop the random walk at the point z−2Len0.1

. To simplify some
proofs, we also require that there is at least one stopping νz(i) between ϑz(k) and ϑz(k + 1).
Thus ϑz(0) denotes the first visit by the random walk S to the point z − 2Len0.1

. We define
νz(1) to be the first time after ϑz(0) where there happens to be n2 + 1 times the same color
generated on Iz. Then, ϑz(1) is the first return of S to z − 2Len0.1

after νz(1) and so on. Let us
give the formal definitions of all introduced notions.

• Let ϑz(0) denote the first visit of S to the point z − 2Len0.1
. Thus

ϑz(0) = min{ t ≥ 0|S(t) = z − 2Len0.1}.

• Let νz(1) designate the first time after ϑz(0) where we observe n2 + 1 zero’s or one’s in a
row, generated on Iz. More precisely:

νz(1) := min

{

t > ϑz(0)

∣

∣

∣

∣

χ (t) = χ (t − 1) = ... = χ
(

t − n2
)

and S(t − n2), S(t − n2 + 1), . . . , S(t) ∈ Iz

}

.

Once νz(i) is well defined, define νz(i + 1) in the following manner:

νz(i + 1) := min

{

t > νz(i) + en0.1

∣

∣

∣

∣

χ (t) = χ (t − 1) = ... = χ
(

t − n2
)

and S(t − n2), S(t − n2 + 1), . . . , S(t) ∈ Iz

}

.
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• Let ϑz(k) denote the consecutive visits of S to the point z−2Len0.1
provided that between

two visits random walk S generates (at least once) n+1 consecutive 0-s or 1-s on Iz. More
precisely,

ϑz(k + 1) := min{t > ϑz(k)|S(t) = z − 2Len0.1
,∃j : ϑz(k) < νz(j) < t}, k = 1, 2 . . . .

Basically, the definition above says: if ϑz(k) is defined, we wait until we observe n2 + 1
same colors generated on Iz. Since S(ϑz(k)) = z − 2Len0.1

, then the first n2 + 1 same
colors generated on Iz can not happen earlier than en0.1

times after ϑz(k). This means,
the first n2 + 1 same colors generated on Iz can not happen earlier than en0.1

times after
last stopping time νz, say νz(i) (this happens before ϑz(k)). Thus, the first n2 + 1 same
colors generated on Iz is actually νz(i + 1). Observing νz(i + 1), we just wait for the next
visit of S to the z − 2Len0.1

. This defines ϑz(k + 1).

• Let Xz,i, i = 1, 2, . . . designate the Bernoulli variable which is equal to one if exactly after
time M the stopping time νz(i) is followed by a sequence of n2+1 one’s or zero’s generated
on Iz. More precisely, Xz,i = 1 if and only if

χ(νz(i) + M) = χ(νz(i) + M + 1) = · · · = χ(νz(i) + n1000)

and
S(j) ∈ Iz ∀j = νz(i) + M, . . . , νz(i) + n1000

• Define κz(0) := 0. Let κz(k) designate the number of stopping times νz(k) occurring
during the time from ϑz(0) to ϑz(k). Thus κz(k) is defined by the inequalities:

νz(κz(k)) ≤ ϑz(k) < νz(κz(k) + 1).

For all k, S(ϑz(k)) = z−2Ln1000. Hence, for all i, ϑz(k) 6= νz(i) and the inequalities above
are strict.

• Define the following variables:

Xz(k) =

κ(k)
∑

i=κ(k−1)+1

Xz,i, Zz(k)=κ(k) − κ(k − 1), k = 1, 2, . . .

Thus, Zz(k) is the number of stopping times occurring during the time interval from
time ϑz(k − 1) to time ϑz(k). Note that Zz(k) ≥ 1, ∀k. The random variable Xz(k)
designates the number of such stopping times which, during the same time interval, have
been followed exactly after time M by a sequence of n2 + 1 0’s or 1’s generated on Iz.
Note that conditional on ξ the variables Xz(1), Xz(2), . . . are i.i.d. and the same holds for
Zz(1), Zz(2), . . ..

• Fix ξ and z. Let Yi := S(νz(i)), i = 1, 2, . . . denote the Markov chain obtained by stopping
the random walk S by νz(i). The state space of Yi is Iz. Because of the nature of S, Yi is
finite, irreducible aperiodic and, therefore, an ergodic Markov chain.
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• Let µz denote the stationary distribution of {Yk}. In the present section z is fixed, so we
write µ. The measure µ is a discrete probability measure on Iz, so µ = (µ(j))j∈Iz

. For
each state, j ∈ Iz define the hitting times τj(l), l = 1, 2, 3, . . .. Formally,

τj(1) := min{i ≥ 1 : Yi = j}, τj(l) := min{i > τj(l − 1) : Yi = j}, l = 2, 3 . . . .

• We define:

δM
z :=

E [Xz(1)| ξ]
E [Zz(1)| ξ] . (2.5)

We call δM
z Markov signal probability at z.

In the following we give some equivalent forms of (2.5). Note that conditional on ξ, Xz,i is a
regenerative process with respect to the renewal κz(k). Hence, conditioning on ξ, we have

lim
r→∞

r
∑

i=1

Xz,i

r
= lim

k→∞

κ(k)
∑

i=1

Xz,i

κ(k)
= lim

k→∞

∑k
i=1 Xz(i)

∑k
i=1 Zz(i)

=
E [Xz,1| ξ]
E [Zz,1| ξ]

. a.s. (2.6)

We count (up to time r) all sequences of length n2+1 of one’s or zero’s, generated on the interval
Iz according to the stopping times νz(i), k = 1, 2, . . .. Among such sequences, the proportion of
those sequences which are followed after exactly time M by another sequence of n2 +1 zero’s or
one’s generated on the interval Iz converges a.s. to δM

z , as r goes to infinity.

On the other hand,

1

r

r
∑

i=1

Xz,i =
∑

j

Nj(r)

r

1

Nj(r)

Nj(r)
∑

l=1

Xz,τj(l),

where Nj(r) := max{l : τj(l) ≤ r}, r = 1, 2, 3, . . .. Since τj(l), l = 1, 2, 3, . . . is a (delayed)
renewal process with the corresponding renewal numbers Nj(r) and with the expected renewal
time 1

µ(j) we get

Nj(r)

r
→ µ(j) a.s..

On the other hand, Xz,i is a regenerative process with respect to each τj(l), l = 1, 2, 3, . . .. Hence

1

Nj(r)

Nj(r)
∑

l=1

Xz,τj(l) → E[Xz,τj(2)], as r → ∞ a.s..

Since E[Xz,τj(2)] = P (Xz,τj(2) = 1). The latter equals

P
(

Sj(M), Sj(M+1), · · · , Sj(n
1000) ∈ Iz and ξ(Sj(M)) = ξ(Sj(M+1)) = · · · = ξ(Sj(n

1000)
)

.

This can be rewritten as
∑

l∈Iz

P (j, l)δz(l),

where P (j, l) := P (S(M) = j − l) and

δz(l) := P

(

Sl(0), Sl(1), . . . , Sl(n
2) ∈ Iz and ξ(Sl(0)) = ξ(Sl(1)) = . . . = ξ(Sl(n

2))

)

(2.7)
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Hence

δM
z =

∑

j∈Iz

µ(j)P
(

Sj(M), Sj(M+1), · · · , Sj(n
1000) ∈ Iz, ξ(Sj(M)) = · · · = ξ(Sj(n

1000)
)

(2.8)

or
δM
z =

∑

j,l∈Iz

µ(j)P (j, l)δz(l). (2.9)

Using the same notation, we have an equivalent form of writing the delayed signal probability

δd
z =

∑

l=Iz

P (z, l)δz(l). (2.10)

Formula (2.9) can be interpreted as follows: let U be a random variable with distribution µz

and let S be a random walk, independent of U . Let SU denote the translation of S by U , i.e.,
for each t, SU (t) = U + S(t). Then (2.9) states

δM
z = P

(

ξ(SU (M)) = · · · = ξ(SU (n1000)) and SU (M), · · · , SU (n1000) ∈ Iz|ξ
)

. (2.11)

Thus, δM
z is the limit-version of (2.4) when i → ∞.

We now define the frequency of ones. To obtain the consistency with the Markov signal
probability, we formally define the frequency of ones in terms of regenerative processes.
However, we also derive the analogue of (2.11), which explains the meaning of the notion.

• Let Uz,i = ξ(S(νz(i) + en0.1
)) and define

Uz(k) :=

κ(k)
∑

i=κ(k−1)+1

Uz,i.

• Let

h(z) :=
E(Uz(1)|ξ)
E(Zz(1)|ξ) .

The random variable h(z) is σ(ξ(i) : i ∈ [z − L(n1000 + en0.1
), z + L(n1000 + en0.1

)])-
measurable; h(z) is called as frequency of ones at z. As in (2.6), conditioning on ξ, we
have

lim
r→∞

r
∑

i=1

Uz,i

r
= h(z) a.s..

With the same argument as above, we get

lim
r→∞

1

r

r
∑

i=1

Uz,i = lim
r→∞

∑

j

Nj(r)

r

1

Nj(r)

Nj(r)
∑

l=1

Uz,τj(l) =
∑

j

µ(j)E(Uz,τj(2)).

Now,

E(Uz,τj(2)) =

i=j+Len0.1

∑

i=j−Len0.1

ξ(i)P
(

Sj(e
n0.1

) = i
)
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and, therefore

h(z) =
∑

j=Iz

µ(j)

j+Len0.1

∑

i=j−Len0.1

ξ(i)P
(

Sj(e
n0.1

) = i
)

=

z+L(n1000+en0.1
)

∑

i=z−L(n1000+en0.1
)

ξ(i)
∑

j=Iz

µ(j)P (Sj(e
n0.1

) = i).

(2.12)
Now, it is easy to see that in terms of U and S as in (2.11), i.e. U and S are independent,
U has law µz, we have

h(z) = P (ξ(U + S(en0.1
)) = 1|ξ) = E[ξ(U + S(en0.1

))|ξ], (2.13)

2.2 Auxiliary results

In the present section we investigate the relations between δM
z and δd

z . Note that they only
depend on the scenery ξ in the interval [z − Ln1000, z + Ln1000]. In other words,

δM
z , δd

z ∈ σ
(

ξ(j)|j ∈ [z − Ln1000, z + Ln1000]
)

.

The distribution of both δM
z and δd

z does not depend on particular choice of z. Hence, without
loss of generality, in the following we consider the point z = 0, only.

Define pM := max{P (S(M) = z)|z ∈ Z}. We call a block big, if its length is bigger
than n

ln n .

Proposition 2.1. For any cδ ∈ [pM , 2pM ], the following statement hold:

a P (δd
z ≥ cδ) ≤ exp(−αn/ lnn), where α := ln(1.5)

b P
(

δd
z ≥ cδ

)

≥ (0.5)n > exp (−n)

c If all blocks of ξ|[z − Ln1000, z + Ln1000] are shorter than n/ lnn + 1, then δd
z < cδ. Formally:

{

δd
z ≥ cδ

}

⊆
{

[z − Ln1000, z + Ln1000] contains a big block of ξ
}

d Conditional on
{

δd
z ≥ cδ

}

it is likely that [z−Ln1000, z +Ln1000] contains at most 0.5 lnn big
blocks of ξ. More precisely:

P
(

Ec
δ,z

∣

∣ δd
z ≥ cδ

)

≤
(

2Ln1000
)0.5 ln n

(0.5)−0.5n

where

Eδ,z :=
{

[z − Ln1000, z + Ln1000] has less than 0.5 lnn big blocks of ξ
}

In order to prove Proposition 2.1, we use the following lemma. The proof of it can be found in
[LMM04].
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Lemma 2.1. There exists a constant a > 0 such that for each t, r ∈ N, for each subset I ⊂ Z,
and for each j ∈ I and for every mapping ζ : Z → {0, 1}, the following implication holds

if all blocks of ζ in I are shorter or equal to r, then

P

(

ζ (Sj (0)) = ζ (Sj (1)) = · · · = ζ (Sj (t))
and Sj (0) , Sj (1) , ..., Sj (t) ∈ I

)

≤ exp

(

−at

r2

)

.

Proof that c holds: Without loss of generality assume z = 0. Suppose that the length of all
blocks of ξ|[−Ln1000, Ln1000] is at most n/ lnn. Let I := [−Ln1000, Ln1000]. Denote δ(l) = δ0(l),
where δ0(l) is as in (2.7). If the all the blocks in I are not longer than n/ lnn we get by Lemma
2.1 that for all j ∈ I

δ(j) ≤ exp
(

− an2

(n/ lnn)2

)

= n−a ln n.

By (2.10) we get that

δd
0 =

Ln1000
∑

j=−Ln1000

P (0, j)δ(j) ≤
Ln1000
∑

j=−Ln1000

P (0, j)n−a ln n ≤ n−a ln n (2.14)

The expression on the right side of the last inequality is of smaller order than any negative

polynomial order in n. By the local central limit theorem pM is of order n−M
2 . Thus, for n big

enough
δd
0 < pM ≤ cδ.

Proof that a holds: Without loss of generality assume z = 0. Define the event

Ez := {ξ(z) = ξ(z + 1) = · · · = ξ(z +
n

lnn
)}

Part c states that
{δd

0 ≥ cδ} ⊆
⋃

z∈[−Ln1000,Ln1000]

Ez.

Thus,

P
(

δd
0 ≥ cδ

)

≤
Ln1000
∑

z=−Ln1000

P (Ez).

Now, clearly

P (Ez) = exp

(

− ln(2)n

lnn

)

.

So,

P (δd
0 ≥ cδ) ≤ 2Ln1000 exp

(

− ln (2)n

lnn

)

. (2.15)

The dominating term in the product on the right side (2.15) is exp (− ln (2)n/ lnn). Hence, for

n big enough, the expression on the right side of (2.15) is smaller than exp(− ln(1.5)n
ln n ).
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Proof that b holds: It suffices to prove that

P (δd
z ≥ 2pM ) ≥ (0.5)n.

Without loss of generality assume z = 0. Define E := {ξ(0) = ξ(1) = · · · = ξ(n)}. We are going
to show that

E ⊆ {δd
0 ≥ 2pM} and P (E) ≥ exp(−n).

Recall the definition of δ(j). If E holds, then for any j ∈ [0, n] we have

δ(j) ≥ P
(

Sj(t) ∈ [0, n],∀t ∈ [0, n2]
)

Now, because of the central limit theorem, there is a constant b > 0 not depending on n, such
that for all j ∈ [n/3, 2n/3] we have:

P
(

Sj(t) ∈ [0, n],∀t ∈ [0, n2]
)

> b.

By the local central limit theorem, again, for all j ∈ [n/3, 2n/3] we have, for n big enough, that

P (0, j) ≥ pM

2
. (2.16)

Using (2.10) and (2.16) we find that when E holds, then

δd
0 ≥

2n
3

∑

j=n
3

bP (0, j) ≥ bnpM

6
. (2.17)

For n big enough, obviously the right side of (2.17) is bigger than 2pM . This proves E ⊆ {δd
0 ≥

2pM}. Furthermore, we have that P (E) = 0.5n. The inequality 0.5n > exp(−n) finishes the
proof.

Proof that d holds: Without loss of generality assume z = 0. For a block T , the point inf T
is called the beginning of the block. Let t1, t2, . . . denote the beginnings of the consecutive big
blocks in [−Ln1000,∞). Define t0 := −Ln1000 and gi := ti − ti−1, i = 1, 2, . . . . So, gi measures
the distances between consecutive big blocks. Clearly, gi-s are i.i.d. Note,

Ec
δ,0 ⊂

{

0.5 ln n
∑

i=1

gi ≤ 2Ln1000
}

⊂ ∩0.5 ln n
i=1

{

gi < 2Ln1000
}

.

Note

P (g1 < 2Ln1000) ≤
Ln1000−1

∑

z=t0

P (a big block begins at z) ≤ 2Ln1000(0.5)
n

ln n .

Hence,

P (Ec
δ,0) ≤ P (gi ≤ 2Ln1000)0.5 ln n =

(

2Ln1000
)0.5 ln n

(0.5)0.5n.

Combining this with b, we get

P (Ec
δ,0|δd

0 > cδ) ≤
P (Ec

δ,0)

P (δd
0 > cδ)

≤
(

2Ln1000
)0.5 ln n

(0.5)−0.5n → 0.

Lemma 2.2.

P
(

δd
z ≥ cδ

)

(

2Ln1000
)−0.5 ln n ≤ 2P

(

δd
z ∧ δM

z ≥ cδ(1 − O(M− 1
2 ))

)

.
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2.3 Proof of Lemma 2.2

In the present subsection we prove Lemma 2.2. To the end of the section we assume z = 0. At
first we define fences.

Fences

An interval [t, t + 4L − 1] ⊂ D is called a fence of ζ, if

0 = ζ(t) = ζ(t + 1) · · · = ζ(t + L − 1) 6= ζ(t + L) = · · · = ζ(t + 2L − 1) 6=
ζ(t + 2L) = · · · = ζ(t + 3L − 1) 6= ζ(t + 3L) = · · · = ζ(t + 4L − 1)

The point t + 2L is the breakpoint of the fence. So, T is a fence of ζ corresponding to the L = 3,
if and only if ζ|T = 000111000111.

Let z0 := −Ln1000 and let zk, k = 1, 2, . . . be defined inductively: zk denotes the breakpoint of the
first fence of scenery ξ in [zk+4L,∞). We call the points zk the breakpoints of consecutive fences
(of scenery ξ). Define li := zi − zi−1, i = 1, 2, . . . and N := max{k : zk−1 ≤ Ln1000} < Ln1000.
The random variables li measure the distances between the breakpoints of consecutive fences,
they are i.i.d. Let l := Ln1000 − zN , l ≤ lN+1. The moment generating function of l1, say M(λ),
does not depend on n and it is finite, if λ > 0 is small enough. Let M := exp(λl1) < ∞ and
choose C > 1 such that λC > 1. Now define the event

Eb := {l, li ≤ Cn, i = 1, 2, . . . , N}

and apply the large deviation inequality to see P (l1 > Cn) = P (λl1 > λCn) < Me−λCn. Now,

P (Ec
b) ≤

Ln1000
∑

i=1

P (li > Cn) = Ln1000P (l1 > Cn) < Ln1000Me−λCn.

Applying b, we get

P (Ec
b |δd

0 ≥ cδ) ≤
P (Ec

b)

P (δd
0 ≥ cδ)

≤ Ln1000Me(1−λC)n → 0. (2.18)

Mapping

Let O denote the set of all possible pieces of sceneries in I := [−Ln1000, Ln1000], i.e. O := {0, 1}I .
The random variables δd

0 , δM
0 as well as the events {δd

0 > cδ}, Eδ,0, Eb depend on the restriction
of the scenery to I, only. Hence they can be defined on the probability space (O, 2O, P ), where
P stands for the normalized counting measure.

Define
C := {δd

0 > cδ} ∩ Eδ,0 ∩ Eb ⊂ O.

Hence C consists of all pieces of sceneries, η, with the following properties: δd
0(η) is bigger than

cδ, the number of big blocks is less than 0.5 lnn and the gaps between the breakpoints of the
consecutive fences in I is at most Cn.
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Let η ∈ C and let z0, z1, . . . , zN be the breakpoints of consecutive fences (restricted to I) of η.
Since η ⊂ Eb, we have N ≥ 2Ln999. Now partition the interval I as follows:

I = I1 ∪ I2 ∪ · · · ∪ IN ∪ IN+1, (2.19)

where Ik := [zk−1, zk − 1], k = 1, . . . , N, IN+1 := [IN , Ln1000]. Let l(Ik) := zk − kk−1 denote the
length of Ik. We shall call the partition (2.19) the fence-partition corresponding to η. The fences
guarantee that any block of η, that is longer than L is a proper subset of one interval Ik. Since
η ∈ {δd

0 > cδ} ∩ Eδ,0, there is at least one and at most 0.5 lnn big blocks. Let I∗k , k = 1, . . . N∗,
N∗ ≤ 0.5 lnn denote the k − th interval containing at least one big block. Similarly, let Io

k ,
k = 1, . . . , N + 1 − N∗ denote the k − th interval with no big blocks. Clearly, most of the
intervals Ik are without big blocks, in particular

∑

k l(Io
k) > Ln1000. Define

jo := min{j :

j
∑

k=1

l(Io
k) > Ln1000}.

To summarize - to each η ∈ C corresponds an unique fence-partition, an unique labelling of the
interval according to the blocks, and, therefore, unique jo. We now define a mapping B : C → O
as follows:

B(η) := (η|Io
1 , η|Io

2 , . . . , η|Io
jo , η|I∗1 , . . . , η|I∗N∗ , η|Io

jo+1, . . . , η|Io
N+1−N∗).

We also define the corresponding permutation:

Πη : I → I, Πη(I) = (Io
1 , Io

2 , . . . , Io
jo , I∗1 , . . . , I∗N∗ , Io

jo+1, . . . , I
o
N+1−N∗).

Thus, B(η) = η ◦ Πη.

Since all big blocks of η are contained in the intervals Ik, the mapping B keeps all big blocks
unchanged, and just moves them closer to the origin.
The mapping B is clearly not injective. However, B(η1) = B(η2) implies that the fence-partitions
corresponding to η1 and η2 consists of the same intervals, with possibly different order. Also
the intervals with big blocks (marked with star) are the same, but possibly differently located.
Moreover, the ordering of the similarly marked blocks corresponding to η1 and η2 are the same
(i.e. if the 8-th interval, I8, of the partition corresponding to η1 is the 20-th interval, I20,
of the partition corresponding to η2, then their marks are the same. If I8 in its partition is
the seventh interval with o (I8 = Io

7 in the partition corresponding to the η1), then the same
block in the second partition must be also the seventh interval with o (I20 = Io

7 in the partition
corresponding to η2). Therefore, the partition corresponding to η1 and η2 differ on the location of
the star-intervals, only. Since the number of intervals is smaller than 2Ln1000 and the number of
star-intervals is at most 0.5 lnn, the number of different partitions with the properties described
above, is less than (2Ln1000)0.5 ln n. This means

|B(C)|(2Ln1000)0.5 ln n > |C|. (2.20)

Proof of Lemma 2.2: Because of the counting measure and (2.20) we get

P (B(C))

P (C)
=

|B(C)|
|C| > (2Ln1000)−0.5 ln n.
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By Propositions 2.2 and 2.3,

P (B(C)) ≤ P
(

δd
0 ∧ δM

0 ≥ cδ(1 − O(M− 1
2 ))

)

.

By (2.18) and d) of Proposition 2.1, we get:

P (C)

P (δd
0 > cδ)

= P (Eδ,0 ∩ Eb|δd
0 ≥ cδ) > 0.5,

provided n is big enough. These relations yield:

P
(

δd
0 ∧ δM

0 ≥ cδ(1 − O(M− 1
2 ))

)

≥ (2Ln1000)−0.5 ln n · 0.5 · P (δd
0 > cδ).

The lemma is proved.

Proposition 2.2. For any ς ∈ B(C) we have

δd
0(ς) ≥ cδ[1 − O(M− 1

2 )].

Proof. Let ς ∈ B(C). Choose η ∈ B−1(ς). Let {Ik} be the fence-partition corresponding to η.
Let δη

z (l), δς
z(l) denote the probabilities defined in (2.7), with ξ replaced by η and ς, respectively.

As already noted, because of the fencing-structure, any sequence of consecutive one’s or zero’s
can be generated on the one interval Ik, only. More precisely, if l ∈ Ik, then

δη
0(l) = P

(

Sl(0), . . . , Sl(n
2) ∈ Ik , η(Sl(0)) = . . . = η(Sl(n

2))
)

. (2.21)

By the argument of the proof of c of Proposition 2.1, we get that each interval without big
blocks, Io

k , has the property: the probability of generating n2 + 1 consecutive zeros or ones is
smaller than n−a ln n. In other words δη

0(l) ≤ n−a ln n, ∀l ∈ Io, where Io := ∪kI
o
k . Denote

I∗ := ∪kI
∗
k . Now, by (2.10) and (2.21) we have

δd
0(η) =

∑

l∈I

P (0, l)δη
0(l) =

(

∑

l∈Io

+
∑

l∈I∗

)

P (0, l)δη
0(l)

≤
∑

l∈Io

P (0, l)n−a ln n +
∑

l∈I∗

P (0, l)δη
0(l)

≤ n−a ln n +
∑

l∈I∗

P (0, l)δη
0(l) ≤ n−a ln n + pM

∑

l∈I∗

δη
0(l).

Since η ∈ C, δd
0(η) ≥ cδ ≥ pM , we have

∑

l∈I∗

δη
0(l) ≥ cδ − n−a ln n

pM
≥ 1 − n−a ln n

pM
= 1 − O

(

√
M

na ln n

)

, (2.22)

Clearly O(
√

M
na ln n ) = o(n−α), for all α ≥ 0.

Now consider ς = M(η). Let J1, J2, . . . JN+1 denote the new location of the intervals Ii after
applying the mapping Πη to I. Fix an j ∈ I and let j ∈ Jk. The equation ς|Jk = η|Ik and (2.21)
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imply
δς
0(j) = P

(

Sj(0), . . . , Sj(n
2) ∈ I, ς(Sj(0)) = · · · = ς(Sj(n

2))
)

≥ P
(

Sj(0), . . . , Sj(n
2) ∈ Jk, ς(Sj(0)) = · · · ς(Sj(n

2))
)

= P
(

Sl(0), . . . , Sl(n
2) ∈ Ik, η(Sl(0)) = · · · = η(Sl(n

2))
)

= δη
0(l),

where l = Π(j) ∈ Ik. This means δς
0(j) ≥ δη

0(Πη(j)), ∀j ∈ I. In particular,

∑

j∈Jk

δς
0(j) ≥

∑

l∈Ik

δη
0(j) (2.23)

If I1 = J1 and IN+1 = JN+1, i.e. the first and last intervals do not contain big blocks, then,
obviously, (2.23) is an equation.

Let J∗ = Πη(I
∗), i.e. J∗ is the union of all intervals with big blocks in the new location. The

length of I∗ (and, therefore, that of J∗) is at most 0.5Cn lnn. Thus, J∗ is at most Cn+0.5Cn lnn
from the origin. Let n be so big, that Cn + 0.5Cn lnn ≤ n2. Then, j ≤ n2 for each for each
j ∈ J∗. Denote by:

po = min{P (S(M) = i) : |i| ≤ n2}.
Now from (2.22) and (2.23) we get

δd
0(ς) =

∑

j

P (0, j)δς
0(l) ≥

∑

j∈J∗

P (0, j)δς
0(j) ≥

∑

l∈I∗

P (0, j)δη
0(l)

≥ po

∑

l∈I∗

δη
0(l) ≥ (cδ − n−a ln n)

po

pM
= cδ(1 − pM − po

pM
− n−a ln npo

cδpM
)

= cδ[1 − O(M− 1
2 )] − O(

√
M

na ln n
) = cδ[1 − O(M− 1

2 )].

Proposition 2.3. For any ς ∈ B(C) we have

δM
0 (ς) ≥ cδ[1 − O(M− 1

2 )].

Proof. We use the notation and the results of the previous proof. By the representation (2.8)
we have

δM
0 (ς) =

∑

i,j∈I

µ(i)P (i, j)δς
0(j) ≥

∑

i,j∈J∗

µ(i)P (i, j)δς
0(j) (2.24)

where µ = {µ(i)}i∈I is the stationary measure of Yk = S(ν0(k)), k = 1, 2, . . ..

Use local central limit theorem (CLT in the sequel) to estimate

min
i,j∈J∗

P (j, i) ≥ min{P (i, j) : |i − j| ≤ n2} ≥ c√
M

exp
(

−dn2

M

)

− O(M−1)

=
c√
M

(

1 − O
(n2

M

)

)

− O(M−1) = pM

(

1 − O(
1√
M

)
)

.

(2.25)

with d, c being constants not depending on n.
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Hence, because of (2.24), (2.22) and (2.25)

δM
0 (ς) ≥µ(J∗)[pM

(

1 − O(
1√
M

)
)

]
cδ − n−a ln n

pM

=µ(J∗)
(

1 − O(
1√
M

)
)

(cδ − n−a ln n) = µ(J∗)
(

1 − O(
1√
M

)
)

cδ.

(2.26)

We now estimate µ(J∗). We shall show that

P (Yk+1 ∈ J∗|Yk = j) ≥ 1 − o(M−1) ∀j ∈ I.

Then µ(J∗) =
∑

j P (Yk+1 ∈ J∗|Yk = j)µ(j) ≥ 1 − o(M−1) and, by (2.26)

δM
0 (ς) ≥ µ(J∗) ≥ (1 − o(M−1))cδ[1 − O(M− 1

2 )] = cδ[1 − O(M− 1
2 )].

Estimation of µ(J∗)

Fix an j ∈ I and define ν as the first time after en0.1
when n2 + 1 consecutive 0-s or 1-s are

generated on I. Formally,

ν := min

{

t ≥ en0.1
∣

∣

∣

χ (t) = χ (t − 1) = ... = χ
(

t − n2
)

and Sj(i) ∈ I,∀i = t − n2, . . . , t

}

where χ = ς ◦ Sj . Clearly

P (Sj(ν) ∈ J∗) = P (Yk+1 ∈ J∗|Yk = j).

Thus, it suffices to estimate P (Sj(ν) ∈ J∗).

At first note that by (2.22) and (2.23,) we get
∑

j∈J∗ δη
0(j) → 1. Since |J∗| ≤ n2 (and n is big

enough), we deduce the existence of j∗ ∈ J∗ such that

δη
0(j∗) >

1

n3
. (2.27)

Then, because of the fences we have:

{Sj(ν) 6∈ J∗} = {Sj(ν − n2), . . . , Sj(ν) ∈ I\J∗, χ(ν − n2) = · · · = χ(ν)}.

Now, let τk be the k-th visit after time en0.1 −n2 to the interval I. Let τ∗
k be the k-th visit after

time en0.1 − n2 to the point j∗. Define the events

Fk := {Sj(τk − n2), . . . , Sj(τk) ∈ I\J∗, χ(τk − n2) = · · · = χ(τk)}, k = 1, 2 . . .

F ′
k = ∪n2000−1

i=0 {Sj(τk + i) = j∗}, k = 1, 2, . . .

F ∗
k = {χ(τ∗

k ) = · · · = χ(τ∗
k + n2)}, k = 1, 2, . . .
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We consider the events

E1 := {ν > τn2020} ∪ {Sj(ν) ∈ J∗}, E2 := {τ∗
n10 ≤ τn2020 − n2}, E3 := ∪n10

k=1F
∗
k

The event E1 ensures that within the first n2020 visits of Sj to I no consecutive 0’s or 1’s were
generated on I\J∗. The event E2 ensures that before time τn2020 −n2 the random walk visits at
least n10 times the point j∗. Finally, the event E3 ensures that during these n10 visits of j∗, at
least one of them is a beginning of n2 consecutive 0’s or 1’s. If these events hold, then ν ≤ τn2020

and Sj(ν) ∈ J∗. Thus
E1 ∩ E2 ∩ E3 ⊂ {Sj(ν) ∈ J∗}.

Next, we give upper bounds for the probabilities P (E1), P (E2), P (E3).

1) Note that: Ec
1 ⊂ ∪n2020

k=1 Fk, implies: P (Ec
1) ≤

∑n2020

k=1 P (Fk). For each k,

P (Fk) =
∑

l∈I\J∗

P [Sl(0), . . . , Sl(n
2) ∈ I\J∗, ς(Sl(0)) = · · · = ς(Sl(n

2))]×

× P (Sj(τk − n2) = l).

There is no big blocks in I\J∗, hence by the argument of c:

P [Sl(0), . . . , Sl(n
2) ∈ I\J∗, ς(Sl(0)) = · · · = ς(Sl(n

2))] ≤ n−a ln n,

implying that:
P (Ec

1) ≤ n2020−a ln n.

2) To estimate P (E2) we use the Höffding inequality. By central limit theorem there exists
a constant p > 0 not depending on n such that P (F ′

k) ≥ p. Also note that F ′
k and F ′

l are
independent if |k − l| ≥ n2000. Hence, the set {F ′

k}, k = 1, . . . , n2020 contains a subset {F ′
ki
}

i = 1, . . . n20 consisting of independent events. Let Xi := IF ′

ki

. Now, τn2018 + n2000 ≤ τn2019 ≤
τn2020 − n2, if n is big enough. This means

{

n18
∑

i=1

Xi ≥ n10
}

⊂ E2.

Now, when n is big enough, we have

P (Ec
2) ≤ P

(

n18
∑

i=1

Xi < n10
)

= P
(

n18
∑

i=1

(Xi − EXi) < n10 −
n18
∑

i=1

EXi

)

≤ P
(

n18
∑

i=1

(Xi − EXi) < −(n18p − n10)
)

≤ P
(

n18
∑

i=1

(Xi − EXi) < −n17
)

≤

≤ exp(−2n34

n18
) = exp(−2n16).

3) Note F ∗
l , F ∗

k are independent, if |k − l| > n2 Let {F ∗
ki
}, i = 1, 2, . . . , n7 be a subset of {F ∗

k }
consisting on independent events, only. By (2.27), P (F ∗

k ) > 1
n3 , ∀k. Now

P (Ec
3) ≤ P (∩n7

i=1F
∗
ki

) =
n7
∏

i=1

(1 − P (F ∗
ki

)) ≤
(

1 − 1

n3

)n7

. (2.28)
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The right side of (2.28) is smaller than (0.5)n4
if n is big enough.

Thus,

P (Sj(ν) ∈ J∗) ≥ 1 − [n2020−a ln n + exp(−2n16) + (0.5)n4
]

= 1 − O(n−2020+a ln n) = 1 − o(M−1).

2.4 Corollaries

We determine the critical value cr. Since we choose it within the interval [pM , 2pM ], it has
all properties stated in Proposition 2.1 and Lemma 2.2. However, we also have to ensure that
with high probability the signal probabilities δd

z and δM
z are significantly away from cr. By

”significantly” we mean that the difference between these probabilities and cr is bigger than a
polynomially small quantity in n. This polynomially small quantity will be denoted by ∆. Thus,
cr must be properly chosen and that will be done with the help of Corollary 2.2.

At first, some preliminary observations.

Proposition 2.4. For any j > 2, there exists an interval [a, b] ⊂ [pM , 2pM ] of length pM/
(

nj+2
)

such that

P (δd
0 < b|δd

0 ≥ a) ≤ 1

nj
(2.29)

Proof. We do the proof by contradiction. Assume on the contrary that there exists no interval
[a, b] ⊂ [pM , 2pM ] of length l := pM/nj+2 such that (2.29) is satisfied. Let ai := pM + il,
i = 0, . . . , nj+2. Since [ai, ai+1] ⊂ [pM , 2pM ] is an interval of length l, by assumption:

P (δd
0 ≥ ai+1|δd

0 ≥ pM + ai) ≤
(

1 − 1

nj

)

, i = 1, . . . , nj − 1.

Now, by b) of Proposition 2.1:

e−n < P (δd ≥ 2pM ) =
nj+2−1

∏

i=0

P (δd
0 ≥ ai+1|δd

0 ≥ ai) ≤
(

1 − 1

nj

)nj+2

. (2.30)

Since (1 − 1
nj )nj

< e−1, we have (1 − 1
nj )nj+2

< e−n2
. Thus, (2.30) implies e−n < e−n2

- a
contradiction.

Corollary 2.1. Let [x, y] ⊂ [pM , 2PM ] be an interval of length l. Then there exists an subinterval
[u, v] ⊂ [x, y] of length l

e2n such that

P (δd
0 < v|δd

0 > u) ≤ 1

en
. (2.31)

Proof. The proof of the corollary follows the same argument that the proof of Proposition 2.4:
(2.31) together with the statement b) of Proposition 2.1 yield the contradiction: exp(−n) <

P (δd
0 ≥ 2pM ) ≤ P (δd

0 ≥ v) ≤
[

(

1 − 1
en

)en
]en

< exp(−en).

The next proposition proves the similar result for δM
0 ∧ δd

0 . Since we do not have the analogue
of b) of Proposition 2.1, we use Lemma 2.2, instead.
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Proposition 2.5. Let [a, b] ⊂ [pM , 2pM ] be such that 2pM − b > pMO(M− 1
2 ). For any i > 2

there exists an interval [x, y] ⊂ [a, b] with length (b − a) /ni+2 such that, for n big enough

P (δM
0 < y|δM

0 ∧ δd
0 > x) ≤ P (δM

0 ∧ δd
0 < y|δM

0 ∧ δd
0 > x) ≤ 1

ni
. (2.32)

Proof. Suppose that such a (sub)interval does not exists. Then follow the argument of the
previous proof to get

P
(

δM
0 ∧ δd

0 ≥ 2pM (1 − O(M− 1
2 ))

)

≤ P
(

δM
0 ∧ δd

0 ≥ b
)

≤
(

1 − 1

ni

)ni+2

< exp(−n2). (2.33)

By Lemma 2.2 and b) of Proposition 2.1

P
(

δM
0 ∧ δd

0 ≥ 2pM (1 − O(M− 1
2 ))

)

≥ 0.5(2Ln1000)−0.5 ln n exp(−n). (2.34)

For n big enough, the right side of (2.34) is bigger than e−2n. This contradicts (2.33).

The following corollary specifies cr and ∆.

Corollary 2.2. Let ∆ :=
(

pM/8
)

n−10054, ∆̃ = ∆e−2n. Then there exists cr ∈ [pM +∆, 2pM −∆]
such that, for n big enough, simultaneously,

P
(

δd
0 ≥ cr − ∆

)

≤ exp((lnn)3)P
(

δd
0 ∧ δM

0 ≥ cr − ∆
)

; (2.35)

P (δM
0 < cr + ∆|δM

0 ∧ δd
0 ≥ cr − ∆) ≤ n−10000 (2.36)

and
P (δd

0 < cr − ∆ + ∆̃|δd
0 ≥ cr − ∆) ≤ exp(−n). (2.37)

Proof. By Proposition 2.4 there exists an interval [a, b] ⊂ [pM , 2pM ] of length pM/n52 such that

P (δd
0 ≥ b)

P (δd
0 ≥ a)

= P (δd
0 ≥ b|δd

0 ≥ a) > 1 − 1

n50
> 0.5. (2.38)

We now consider the interval [a, a+b
2 ]. Note that:

2pM − a + b

2
≥ b − b + a

2
=

b − a

2
=

pM

2n52
> pMO(M− 1

2 ).

Now use Proposition 2.5 with i = 10000 to find a subset [x, y] ∈ [a, a+b
2 ] with length l :=

b−a
2 n−10002 = pM

2 n−10054 such that (2.32) holds.

Let us now take z = x + l
4 . By Corollary 2.1, there exists an subinterval [u, u + ∆̃] ∈ [x, z] with

length l
4e2n such that

P (δd
0 < u + ∆̃|δd > u) ≤ exp(−n). (2.39)

425



Now take ∆ := l
4 =

(

pM/8
)

n−10054, cr := u + ∆. Since [cr − ∆, cr + ∆] ⊂ [x, y], we have that

P (δM
0 < cr + ∆|δM

0 ∧ δd
0 > cr − ∆) ≤ P (δM

0 ∧ δd
0 < cr + ∆|δM

0 ∧ δd
0 > cr − ∆) ≤

P (δM
0 ∧ δd

0 < y|δM
0 ∧ δd

0 > cr − ∆) =
P (∆ − cr < δM

0 ∧ δd
0 < y)

P (δM
0 ∧ δd

0 > ∆ − cr)
≤

P (y > δM
0 ∧ δd

0 > x) − P (x ≤ δM
0 ∧ δd

0 ≤ cr − ∆)

P (δM
0 ∧ δd

0 > x) − P (x < δM
0 ∧ δd

0 ≤ cr − ∆)
≤ P (y > δM

0 ∧ δd
0 > x)

P (δM
0 ∧ δd

0 > x)
=

P (δM
0 ∧ δd

0 < y|δM
0 ∧ δd

0 > x) ≤ 1

n10000
.

Hence, (2.36) holds.
Since u = cr − ∆, we also have that (2.37) holds.
It only remains to show that the chosen cr also satisfies (2.35).

Clearly ∆ > 2pMO(M− 1
2 ) > crO(M− 1

2 ). That implies:

P
(

δd
0 ∧ δM

0 ≥ cr(1 − O(M− 1
2 )

)

≤ P (δd
0 ∧ δM

0 ≥ cr − ∆).

Combine this with Lemma 2.2 to get

P (δd
0 ≥ cr)0.5(2Ln1000)−0.5 ln n ≤ P (δd

0 ∧ δM
0 ≥ cr − ∆) (2.40)

Since [cr − ∆, cr + ∆] ⊂ [a, b] we have

P (δd
0 ≥ a) ≥ P (δd

0 ≥ cr − ∆) ≥ P (δd
0 ≥ cr) ≥ P (δd

0 ≥ b).

Now, by (2.38)
P (δd

0 ≥ cr)

P (δd
0 ≥ cr − ∆)

≥ P (δd
0 ≥ b)

P (δd
0 ≥ a)

> 0.5.

The last inequality above, together with (2.40) implies

P (δd
0 ≥ cr − ∆) ≤ 0.25(2Ln1000)0.5 ln nP (δd

0 ∧ δM
0 ≥ cr − ∆) (2.41)

Now, the relation
0.25(2Ln1000)0.5 ln n ≤ exp((lnn)3)

together with (2.41) establishes (2.35).

3 Scenery-dependent events

In the present section we define and investigate the signal points and Markov signal points.
We show that with high probability the location of the signal points follows certain clustering
structure. This structure gives us the desired signal carriers in the 2-color case.
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3.1 Signal points

We are now going to define the Markov signal points, strong signal points and signal points –
these are the location points, where the corresponding signal probabilities are above the critical
value cr. The Markov signal points form the core of the signal carriers, the (strong) signal points
will be used in our proofs. In an oversimplified way, we could say that the Markov signal points
are places in the scenery ξ where the conditional probability to see in the observations some rare
unusual pattern is above cr. The unusual pattern is basically a string of n2, zero’s or one’s.

In the present subsection, with the help of the signal points, we define many other important
notions, and we also investigate their properties.

In the following, ∆ and cr are as in Corollary 2.2. In particular,

∆ =
pM

8
n−10054, pM = max{P (S(M) = z)|z ∈ Z}.

• A (location) point z ∈ Z is called signal point, if δd
z > cr − ∆.

• A (location) point z ∈ Z is called strong signal point, if δ̃d
z > cr − ∆.

• A (location) point z ∈ Z is called Markov signal point, if

δd
z > cr − ∆ and δM

z > cr − ∆.

• We call a Markov signal point z regular, if δM
z > cr + ∆.

• Let z̄1 be the first Markov signal point in [0,∞). Let z̄k be defined inductively: z̄k is the
first Markov signal point in [z̄k−1 + 2Ln1000,∞). Let z̄0 be the Markov signal point in
(−∞, 0] which laies closest to the origin. Let z̄−k be defined inductively: z̄−k is the right-
most Markov signal point in (−∞, z̄−(k−1) − 2Ln1000]. Thus . . . , z̄−2, z̄−1, z̄0, z̄1, z̄2, . . . is a
sequence of ordered random variables which we call signal carrier points.

• For given z, the set

Nz := [z − L(n1000 + en0.3
), z − L(n1000)] ∪ [(z + Ln1000, z + L(n1000 + en0.3

)]

is called the neighborhood of z. We say that the neighborhood of z is empty, if Nz does
not contain any block of ξ longer than n0.35. Thus, {Nz is empty } ⊂ σ(ξi, i ∈ Nz).

• We say that z has empty border, if the set Iz − [z − M̃, z + M̃ ] does not contain any block
of ξ longer than n0.35. Thus, {Nz has empty border } ⊂ σ(ξi, i ∈ Iz − [z − M̃, z + M̃ ]).

• Let p, p̃ and pd be the probability, that a fixed point is a Markov signal point, a strong
signal point or a signal point, respectively. From (2.3), part a) of Proposition 2.1 and by
(2.35) of Corollary 2.2 we know

pd − exp(−dn999) < p̃ ≤ pd; (3.1)

p ≤ pd ≤ exp(− αn

lnn
); (3.2)

pd

p
≤ exp((lnn)3). (3.3)
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• For each j = 0, 1, 2, . . . , 2Ln1000 partition the set Z∩ [−Ln1000+j,∞) into adjacent integer
intervals of length 2Ln1000. Let Ik,j denote the k-th interval of the partition who’s first
interval starts at −Ln1000 + j. Thus,

I1,j = [j − Ln1000, j + Ln1000], I2,j = [j + Ln1000 + 1, j + 3Ln1000 + 1],

I3,j = [j + 3Ln1000 + 2, j + 5Ln1000 + 2],

. . .

Ik,j = [j + kLn1000 + k − 1, j + (k + 2)Ln1000 + k − 1].

• Let zj,k denote the midpoints of Ik,j . Hence

zj,1 = j, zj,2 = j + 2Ln1000 + 1, . . . , zj,k = j + 2kLn1000 + (k − 1).

For each j, the intervals Ik,j , k = 1, 2, . . . are disjoint. Thus, the events

{zk,j is a Markov signal point}, k = 1, 2, . . .

are independent with the same probability p.

• Let k′ denote the integer valued random variable that shows the index of the first interval
Ik,0 which has its midpoint being a Markov signal point. By such a counting we disregard
the first interval. Thus, k′ > 1 and, formally, k′ is defined by the relations

δz2,0 ∧ δM
z2,0

≤ cr − ∆, . . . δM
zk′−1,0

∧ δd
zk′−1,0

≤ cr − ∆, δM
zk′,0

∧ δd
zk′,0

> cr − ∆

Clearly, k′−1 is a geometrical random variable with parameter p and, hence, Ek′ = 1
p +1.

• Let Z be the location of the first Markov signal point after 2Ln1000. Recall z̄1 is the
location of the first Markov signal point after 0. Note, that for each i ≥ 0, we have

P (z̄1 ≤ i) < P (∪i
j=0{i is a Markov signal point}) ≤ pi (3.4)

and
P (Z ≤ i) ≤ p(i − 2Ln1000), i ≥ 2Ln1000. (3.5)

From (3.4) and (3.2) we get

P (z̄1 ≤ 2Ln1000) ≤ p2Ln1000 ≤ 2Ln1000 exp(− αn

lnn
) → 0. (3.6)

• We now estimate EZ. For this note: Z ≤ zk′,0 = 2k′Ln1000 + k′ − 1 and

EZ ≤ (
1

p
+ 1)2Ln1000 +

1

p
≤ 3

p
Ln1000. (3.7)

From (3.3) we get

EZpd ≤ 3
pd

p
Ln1000 ≤ 3Ln1000 exp((lnn)3). (3.8)

428



On the other hand by (3.5) we have, for each x, EZ ≥ xP (Z ≥ x) ≥ x(1− px). Now, take
x = (2p)−1 and use (3.2) to get

EZ ≥ 1

4p
≥ 1

4
exp(

αn

lnn
). (3.9)

• Take m(n) = pn2.5EZq.

By (3.3) and b) of Proposition 2.1 we get

n2.5EZ ≤ 3Ln1002.5

pd
exp((lnn)3) ≤ 3Ln1002.5 exp((lnn)3 + n) < exp(2n),

implying
1

4
exp(

αn

lnn
) ≤ m < exp(2n), (3.10)

provided n is big enough.

• Next, we define the random variables which we are using later:

Xz := I{δd
z>cr−∆, δM

i >cr−∆}, z = 0, 1, 2, . . . .

Thus, Xz indicates, whether z is a Markov signal point or not. The random variables Xz

are identically distributed with mean p.

• We estimate the number of Markov signal points in [0, cm], where c > 1 is a fixed integer,
not depending on n . For this define:

E0 :=
{

cm
∑

z=0

Xz ≤ n10000
}

.

Thus, when E0 holds, the interval [0, cm] contains at most n10000 Markov signal points.

To estimate P (E0) we use the Markov inequality and (3.7)

P (Ec
0) = P

(

cm
∑

i=0

Xi > n10000
)

<
(cm + 1)p

n10000
≤ c(n2.5EZ + 1)p + 1

n10000

< c3Ln1002.5−10000 + (c + 1)n−10000 = o(1).

• Finally, define Z0 < Z1 < · · · < Zk < · · · as follows:

Z0 := 0, Z1 := Z, and, let Zk+1 be the first Markov signal point that is greater than
2Ln1000 +Zk. Note the differences: Z, Z2 −Z1, Z3 −Z2, . . ., Zk+1 −Zk, . . . are i.i.d. Also:

{No Markov signal points in [0, 2Ln1000]} = {Zi = z̄i for all i} := En
s . (3.11)

From (3.6) we know that
P (En

s ) → 1. (3.12)
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3.2 Scenery-dependent events

Next, we describe the typical behavior of the signal points in the interval [0, cm]. Here c > 1
is a fixed integer, not depending on n. Among others we show that, with high probability, for
each signal carrier point z̄i in [0, cm], the corresponding frequency of ones, h(z̄i), vary more than
e−n0.11

(events Ēn
3 and Ēn

4 below). We also show that, with high probability, all signal points in
[0, cm] have empty neighborhood.

All the properties listed below depend on the scenery ξ only. Therefore we refer to them as the
scenery dependent events.

We now define all scenery dependent events, Ēn
1 , . . . , Ēn

9 and prove the convergence of their
probabilities. All the events will be defined on the interval [0, cm], where c > 1 is a fixed integer.
Thus, if a point z is such that Nz 6∈ [0, cm], by the neighborhood of z, we mean Nz ∩ [0, cm].
This means Ēn

i ∈ σ(ξz : z ∈ [0, cm]). The exact value of c will be defined in the next chapter
(in connection with the event En

2,S). During this chapter, c is assumed to be any fixed integer
bigger than 1.

At first, we list the events of interest:

Ēn
1 := {z̄n2+1 ≤ m};

Ēn
2 := {every signal point in [0, cm] has an empty neighborhood};

Ēn
3 := {every pair z̄1, z̄

′ of signal carrier points in [0, cm] satisfies : |h(z̄) − h(z̄′)| ≥ e−n0.11
if z̄ 6= z̄′};

Ēn
4 := {every signal carrier point z̄, in [0, cm] satisfies : |h(z̄) − 1

2 | ≥ e−n0.11};

Ēn
5 := {every signal point z ∈ [0, cm] satisfies δM

z 6∈ [cr − ∆, cr + ∆]};

Ēn
6 := { for all signal carrier points z̄i in [0, cm] we have EZn11001 ≥ |z̄i − z̄i+1| ≥ EZn−11001};

Ēn
7 := {no signal carrier points in [m − EZn−11001, m + EZn−11001 ∧ cm] ∪ [0, EZn−11001]};

Ēn
8 := {every strong signal point in [0, cm] has empty border};

Ēn
9 := {every signal point in [0, cm] is a strong signal point}.

Proof that P (Ēn
1 ) → 1

If Ēn
1 holds, then in [0, m] we have more than n2 signal carrier points .

Define the random variables Z0 < Z1 < · · · < Zk < · · · as in (3.11). Let En
1a := {Zn2+1 ≤ m}.

Since Es ∩ En
1a ⊂ Ēn

1 , it suffices to show that P (En
1a) → 1. To see this, we use the Markov

inequality:

P (Enc
1a) = P (Zn2+1 > m) ≤ EZn2+1

m
≤ (n2 + 1)

n2.5
→ 0.
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Proof that P (Ēn
2 ) → 1

Ēnc
2 = { there exists a signal point in [0, cm] with non − empty neighborhood}.

Clearly,

Ēnc
2 = ∪cm

z=0E2(z), where E2(z) := {z is a signal point and Nz is not empty}.

For each z, the events {Nz is empty} and {δz > cr − ∆} are independent. Thus, for each z,

P (E2(z)) = P (δz > cr − ∆)P (Nz is empty) = pdP (Nz is not empty).

We obviously have P (Nz is empty) = P (No is empty) and

P (No is not empty) =

P (No contains at least one block longer than n0.3) < 2L exp(n0.3)2−n0.35
.

Hence, from (3.8):

P (Ēnc
2 ) ≤ cmpd2L exp(n0.3)(

1

2
)n0.35 ≤ 6cn2.5L2n1000 exp((lnn)3 + n0.3)2−n0.35

= 6cL2n1002.5 exp(n0.3 + (lnn)3)2−n0.35 → 0,

if n → ∞.

Proof that P (Ēn
8 ) → 1

For each z, the events {δd
z > cr − ∆} and {z has empty border } are independent. Now use the

same argument as in the previous proof.

Proof that P (Ēn
5 ) → 1

Note
Ēnc

5 = {there exists a non − regular Markov signal point z ∈ [0, cm]}.
As in the previous proof, write:

Ēn
5 = ∪cm

z=0E5(z), where E5(z) := {z is a non − regular Markov signal point}.

For each z,

P (Ec
5(z)) = P (δM

z ∧ δd
z > cr − ∆)P (δM

z ≤ cr + ∆|δM
z ∧ δd

z > cr − ∆)

= pP (δM
z ≤ cr + ∆|δM

z ∧ δd
z > cr − ∆).

From (2.36) of Corollary 2.2 we have:

P (δM
z ≤ cr + ∆|δM

z ∧ δd
z > cr − ∆) ≤ n−105

.

Thus, from (3.7) P (Ēnc
5 ) ≤ cmpn−105 ≤ c(n2.5EZ+1)pn−105

= c3Ln1002.5−100000+cpn−105 → 0,
as n → ∞.
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Proof that P (Ēn
9 ) → 1

We use the same argument as in the previous proof. Note

Ēnc
9 = {there exists a signal point z ∈ [0, cm] that is not a strong signal point}.

As in the previous proof, write

Ēnc
9 = ∪cm

z=0E9(z), where E9(z) := {z is a non − strong signal point}.

Recall (2.3): δ̃d
z > δd

z − exp(−dn999). Since, for n big enough, exp(−dn999) < ∆̃ = ∆ exp(−2n),
we get

δ̃d
z > δd

z − ∆̃.

Now, for each z,

P (E9(z)) = P (δd
z > cr − ∆)P (δ̃d

z ≤ cr − ∆|δd
z > cr − ∆)

= pdP (δ̃d
z ≤ cr − ∆|δd

z > cr − ∆) ≤ pdP (δd
z − ∆̃ ≤ cr − ∆|δd

z > cr − ∆)

≤ pdP (δd
z ≤ cr − ∆ + ∆̃|δd

z > cr − ∆).

By (2.37) of Corollary 2.2 we now have:

P (E9(z)) ≤ pd exp(−n).

Hence, by (3.8):

P (Ēnc
9 ) ≤ cmpd exp(−n) ≤ pdc(EZn2.5+1) exp(−n) ≤ c3Ln1000 exp (lnn)3 exp(−n)+o(1) = o(1).

Proof that P (Ēn
6 ) → 1

Consider random variables Z0 < Z1 < · · · < Zk < · · · as in (3.11). Let N = max{i : Zi ≤ cm}.
Define

En
6b := {Zi − Zi−1 ≤ EZn10001, i = 1, 2, . . . , n1000} (3.13)

Ēn
6c := {Zi − Zi−1 ≥ EZn−11001, i = 1, 2, . . . , n1000} (3.14)

and note that:
Es ∩ En

6b ∩ En
6a ∩ {N ≤ n10000} ⊂ Ēn

6 .

Since E ⊂ {N ≤ n10000}, we get P (N ≤ n10000) → 1. We also know that P (Es) → 1. Thus, it
suffices to show that P (Enc

6b ), P (Enc
6c ) → 0 as n → ∞. Now, by the Markov inequality, (3.5) and
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(3.7):
P (Enc

6b ) = P (∃1 ≤ i ≤ n10000 such that : Zi − Zi−1 > EZn10001)

≤ ∑n10000

i=1 P (Zi − Zi−1 > EZn10001) = n10000P (Z > EZn10001) ≤

n10000 EZ
EZn10001 = 1

n ;

P (Enc
6c ) = P (∃ 1 ≤ i ≤ n10000 such that : Zi − Zi−1 < EZn−11001)

≤ ∑n10000

i=1 P (Zi − Zi−1 < EZn−11001) ≤ n10000P (Z < EZn−11001) <

pEZn−1001 ≤ 3Ln1000−1001 = 3L
n .

Proof that P (Ēn
7 ) → 1

Consider the event

{there is no signal carrier points in [0, EZn11001]}.

Every signal carrier point is a Markov signal point. Hence, for the proof, it suffices to show,
that with high probability there is no Markov signal points in the interval [0, EZn11001].

Now, by (3.4) and (3.7)

P (No Markov signal points in [0, EZn11001]) =

P (Zo > EZn−11001) ≤ pEZn−11001 ≤ 3Ln−11001+1000 = o(1).

Thus P (No Markov signal points in [0, EZn−11001]) → 1.

Now repeat the same argument for the intervals [m, m − EZn−11001] and [m, m + EZn−11001].

3.3 Proof of P (Ēn
3 ) → 1 and P (Ēn

4 ) → 1

The proof relies on the rate of convergence in the local central limit theorem (LCLT in sequel).
In the next subsection we present some technical preliminaries related to the proof.

3.3.1 Some preliminaries

Let S be the symmetric random walk with span 1. Define: pN (k) = P (S(N) = k). The random
walk S has lattice +\ − z,z ∈ Z; its variance is σ2.

Use local CLT ([Pet95], page 197):

sup
k

∣

∣

∣
σ
√

NpN (k) − 1√
2π

exp{− k2

2σ2N
}
∣

∣

∣
= O(

1√
N

) (3.15)
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or

sup
k

∣

∣

∣
pN (k) − 1

σ
√

N
√

2π
exp{− k2

2σ2N
}
∣

∣

∣
= O(

1

N
).

Denote

qN (k) :=
1

σ
√

N
√

2π
exp{− k2

2σ2N
} |k| ≤ LN.

Let tN := (lnN)b, b > 1.

We estimate:

|p2
N (k) − q2

N (k)| ≤ (pN (k) + qN (k)) sup
k

|pN (k) − qN (k)|

≤ [2qN (k) + O(
1√
N

)]O(
1

N
) = O(

1√
NN

)

and
L
√

N
∑

k>tN+j

[p2
N (k) − q2

N (k)] ≤ (L
√

N)O(
1√
NN

) = O(
1

N
), j = −tN , · · · , tN .

Estimate:

p2
N (k)

∑

k>tN+j p2
N (k)

≤ p2
N (k)

∑L
√

N
k>tN+j p2

N (k)
≤ q2

N (k) + O( 1
N )

∑L
√

N
k>tN+j [p

2
N (k) − q2

N (k)] +
∑L

√
N

k>tN+j q2
N (k)

≤ O( 1
N )

∑L
√

N
k>tN+j q2

N (k) − O( 1
N )

,

for all k and j = −tN . . . , tN .

Now,
L
√

N
∑

k>tN+j

q2
N (k) =

1

2σ2πN

L
√

N
∑

k>tN+j

exp(− k2

σ2N
)

and

L
√

N
∑

k>tN+j

exp(− k2

σ2N
) ≥

L
√

N
∑

k>2tN

exp(− k2

σ2N
) >

L
√

N
∑

k>2tN

exp(−L2

σ2
) = M(L

√
N − 2tN ).

Thus, for each j = −tN , . . . , tN ,

sup
k

p2
N (k)

∑

k>tN+j p2
N (k)

≤ O( 1
N )

K
N (L

√
N − 2tN ) − O( 1

N )
= l

K4

K1

√
N − K2tN − K3

= O(
1√
N

) (3.16)

where K, K1, K2, K3, K4 are constants.

Let µ be a probability distribution on {−tN ,−tN + 1, . . . , 0, . . . , tN − 1, tN}. Consider the
convolutions

uN (k) =

tN
∑

j=−tN

pN (k − j)µj , k = −(LN − tN ), . . . , LN + tN . (3.17)
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If pN (k) ≥ pN (k + 1) for all k ≥ 0, then for each k > tN , we have the bounds

pN (k + tN ) ≤ uN (k) ≤ pN (k − tN ). (3.18)

In this case,
tN+LN
∑

k>tN

uN (k) ≥
N

∑

l>2tN

pN (l).

And from (3.16), taking j = tN we may deduce that:

sup
tN<k

u2
N (k)

∑

k>tN
u2

N (k)
≤ sup

0<k

p2
N (k)

∑

k>2tN
p2

N (k)
≤ O(

1√
N

). (3.19)

Generally, choose an atom λ := µj > 0. Then

uN (k) ≥ λpN (k + j), u2
N (k) ≥ λ2p2

N (k + j)

and
tN+LN
∑

k>tN

u2
N (k) ≥ λ2

N
∑

k>tN+j

p2
N (k). (3.20)

Since supk>tN u2
N (k) ≤ supk>0 p2

N (k), we get from (3.16):

sup
tN≤k

u2
N (k)

∑

k>tN
u2

N (k)
≤ sup

k

p2
N (k)

λ2
∑

k>tN+j p2
N (k)

= O(
1

N
1
4

). (3.21)

In particular, from (3.21) follows:

∑

u3
N (k)

∑

u2
N (k)

√

∑

u2
N (k)

≤ max
k

uN (k)

∑

u2
N (k)

∑

u2
N (k)

√

∑

u2
N (k)

≤ max
k

uN (k)
√

∑

u2
N (k)

≤ O
( 1

N
1
4

)

. (3.22)

Suppose that arrays uk := uN (k) and vk := vN (k), tN < k ≤ LN + tN both satisfy (3.22). Then

∑

(u3
k + v3

k)
∑

(u2
k + v2

k)
√

∑

(u2
k + v2

k)
≤ max{uk, vk}

∑

(u2
k + v2

k)
∑

(u2
k + v2

k)
√

∑

(u2
k + v2

k)
(3.23)

≤ max{max
k

uk
√

∑

u2
k

, max
k

vk
√

∑

v2
k

} = O(N− 1
4 ) (3.24)

Let us make one more observation. Since exp(
−9t2

N

2σ2N
) → 1, there exists a c′ > 0 such that

exp(
−9t2N
2σ2N

) > c′

for each N big enough. Thus, there exists a constant c > 0 such that

pN (k) >
c√
N

, ∀|k| ≤ 3tN .
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Take λ as previously. Then

uN (k) ≥ p(k + j)λ ≥ cλ√
N

.

Hence there exists C > 0: u(l) ≥ C√
N

∀l such that |l + j| ≤ 3tN .

In particular

uN (k) ≥ C√
N

, −2tN ≥ k ≤ 2tN . (3.25)

3.3.2 Proof that P (Ēn
3 ) → 1

Define the random variables z1, z2, . . . as follows: z1 is the first Markov signal point in [0,∞),
zk is the first Markov signal point in [zk−1 + en0.3

,∞). Note that a.s. there are infinitely many
such points.

From the signal carrier part we know that, if each Markov signal point in [0, cm] has empty
neighborhood, i.e. Ēn

2 holds, then they form clusters which have radius at most 2Ln1000 and lie
at least en0.3

apart from each other. In this case all signal carrier points in [0, cm] coincide with
the zi’s defined above. We define the event:

En
3a :=

{

for each i, j ≤ n10000, i 6= j we have |h(zi) − h(zj)| ≥ exp(−n0.11)
}

.

Then:
En

3a ∩ Ēn
2 ∩ E0 ⊂ Ēn

3 .

Since P (En
3a ∩ E0) → 1, it suffices to show that P (En

3a) → 1 as n → ∞.

Let zi, zj , i 6= j. For simplicity denote them as z and z′ Let

ǫn := exp(−n0.11).

Consider the event:
En(i, j) := {|h(z) − h(z′)| ≥ ǫn}.

For each y ∈ Z, define the random vector:

ξn(y) :=
(

ξ(y − Ln1000 − en0.1
), ξ(y − Ln1000 − en0.1

+ 1), . . . , ξ(y + Ln1000)
)

.

Now, let ξn := ξn(z) and ξ′n := ξn(z′). They are independent.

fn :=

z+L(n1000+en0.1
)

∑

k=z+Ln1000+1

un(k)ξ(k), f ′
n :=

z′+L(n1000+en0.1
)

∑

k=z′+Ln1000+1

u′
n(k)ξ(k),

where

un(k) :=
z+Ln1000

∑

i=z−Ln1000

P (Si(e
n0.1

) = k)µi, u′
n(k) :=

z′+Ln1000
∑

i=z′−Ln1000

P (Si(e
n0.1

) = k)µ′
i

and µi, i = z −Ln1000, · · · , z +Ln1000 and µ′
i, i = z′−Ln1000, · · · , z′ +Ln1000 denote the atoms

of the stationary measure corresponding to z and z′, respectively.
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Recall that by (2.13)

h(z) :=

z+L(n1000+en0.1
)

∑

k=z−L(n1000+en0.1
)

un(k)ξ(k), f ′
n :=

z′+L(n1000+en0.1
)

∑

k=z′−L(n1000+en0.1
)

u′
n(k)ξ(k).

Note that conditioning on ξn, the coefficients un(k) become constants.

(More precisely, fn has the same distribution as

f̃n :=

L(n1000+en0.1
)

∑

k>Ln1000

ũn(k)ξ(k),

with

ũn(k) :=
Ln1000
∑

j=−Ln1000

P (Sj(e
n0.1

) = k)µ̃j =
Ln1000
∑

j=−Ln1000

P (S(en0.1
) = k − j)µ̃j ,

with µ̃ := {µ̃j} := {µz+j}, −Ln1000 ≤ j ≤ Ln1000 being a random probability measure indepen-
dent of ξLn1000+1, . . . ξen0.1 . In this setup, conditioning on ξn means conditioning on µ̃.)

Hence

P
(fn − Efn√

Dfn
≤ x|ξn

)

= P
(

∑L(en0.1
+N1000)

k>Ln1000 un(k)(ξ(k) − 1
2)

1
2

√

∑L(en0.1
+N1000)

k>Ln1000 u2
n(k)

≤ x|ξn

)

,

where (un(k)) are the fixed coefficients of type (3.17) (with N = en0.1
, b = 10000). Now the

Berry-Esseen inequality for independent random variables (see, [Pet95], Thm 3, p.111) states:

sup
x

∣

∣

∣
P

(

∑

un(k)(ξ(k) − 1
2)

1
2

√

∑

u2
n(k)

≤ x|ξn

)

− Φ(x)
∣

∣

∣
≤ A

∑

u3
n(k)

∑

u2
n(k)

√

∑

u2
n(k)

, (3.26)

with some constant A not depending on n and un(k)-s. By (3.22) (with N = en0.1
, b = 10000),

the right side of (3.26) is bounded by O(e
−n0.1

4 ). Here Φ stands for the standard normal distri-
bution function.

By similar argument, conditioning on (ξn, ξ′n) and using (3.23) instead of (3.22) yields:

sup
x

∣

∣

∣
P

(fn − f ′
n − µn

σn
≤ x|ξn, ξ′n

)

− Φ(x)
∣

∣

∣
= O(e

−n0.1

4 ), (3.27)

with µn := E(fn − f ′
n), σn :=

√

Dfn + Df ′
n where (fn and f ′

n are independent.)

Let gn := hn − fn, g′n := h′
n − f ′

n. The event En(i, j) can be written as:

Ec
n(i, j) := {fn − f ′

n ∈ gn − g′n + [−ǫn, ǫn]}.
Given ξn and ξ′n, the random variable gn − g′n is a constant. By (3.27) we have

P (Ec
n(i, j)|ξn, ξ′b) = P

(

f ′

n−fn−µn

σn
∈ gn−g′n+[−ǫn,ǫn]−µn

σn
|ξn, ξ′n

)

≤

2 supx

∣

∣

∣
P

(f ′

n−fn−µn

σn
≤ x|ξn, ξ′n

)

− Φ(x)
∣

∣

∣
+ sup

{

Φ(a) − Φ(b)
∣

∣a − b = 2ǫn√
2πσn

}

≤

O(e
−n0.1

4 ) +
√

2
π

ǫn

σn
.
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Next, we estimate the standard deviation σn. For that note: because of (3.25) u2
n(z + Ln1000 +

1) ≥ C2e−n0.1
, u′2

n(z′ + Ln1000 + 1) ≥ C2e−n0.1
if n is big enough. Thus,

σn =
√

Dfn + Df ′
n =

1

2

√

∑

u2
N (k) +

∑

u′2
N (k) >

1

2

√

2C2en0.1 =
√

2Ce
−n0.1

2 .

Hence, for n big enough there exists a constant C2 < ∞ such that

√

2

π

ǫn

σn
≤ 1√

π
exp(−n0.11 +

n0.1

2
) ≤ C2 exp(−n0.05). (3.28)

Thus, (3.28), (3.27) give:

P (En(i, j)) ≤ O(e
−n0.11

4 ) + O(e−n0.05
) = O(e−n0.05

).

By definition
En

3a = ∩n10000

i,j,i6=jE
n(i, j)

and

P (Enc
3a) ≤

n10000
∑

i,j,i6=j

P (Enc(i, j)) < n20000O(e−n0.05
) = o(1).

Outline of the proof that P (Ēn
4 ) is close to one

Denote the Use (3.26) to get:

P (Ēnc
4 |ξn) = P (|fn + gn − 0.5| ≤ ǫn|ξn) = P (fn + gn ∈ [0.5 − ǫn, 0.5 + ǫn]|ξn)

= P (fn ∈ [(0.5 − gn) − ǫn, 0.5 − gn + ǫn]|ξn)

= P
(fn − Efn√

Dfn
∈

[0.5 − Efn − gn − ǫn√
Dfn

,
0.5 − Efn − gn + ǫn√

Dfn

]

|ξn

)

≤ 2 sup
x

P
(fn − Efn√

Dfn
≤ x|ξn

)

+ sup
{

Φ(a) − Φ(b)
∣

∣

∣
a − b =

√

2

π

ǫn√
Dfn

}

≤ O(e
−n0.1

4 ) +

√

2

π

ǫn√
Dfn

= O(e−n0.05
),

because
√

Dfn > C exp(−n0.1

2 ). The rest of the proof goes as previously.

• In the following we consider the scenery dependent events defined on [−cm, cm]. For this,
we define the events Ẽn

i , i = 1, . . . , 9, where Ẽn
i is defined exactly as Ēn

i , with [−cm, 0]
instead of [0, cm].

• Finally, we define the events:
En

i := Ẽn
i ∩ Ēn

i .

The results of the present section show that ∀ i = 1, . . . , 9,

P (En
i ) → 0, n → ∞.
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3.4 What is a signal carrier?

Let us briefly summarize the main ideas of the previous sections.

A signal carrier is a place in the scenery, where the probability to generate a block of n2 + 1
times the same color is high. However, it is clear that such a place can not be too small. In the
3-color example the signal carrier depends on only one bit of the scenery. In the 2-color case, it
takes many more bits to make the scenery (locally) atypical. We saw in Proposition 2.1, that
for z to be a signal point, it is necessary that the interval Iz contains at least one big (longer
than n/ lnn) block of ξ. Thus, if a point z is a (Markov, strong) signal point or not, depends
on ξ|Iz.

If z is a signal point, then the scenery ξ is atypical in the interval Iz: δd
z is high. Thus, signal

points would be our candidates for the signal carriers, if, for each z, we could estimate δd
z . The

latter would be easy, if we knew when the random walk visits z. Then just take all such visits
and consider the proportion of those visits that were followed by n2 + 1 same colors after M
steps. Unfortunately, we do not know when the random walk S visits z. But we do know (we
observe) when S generates blocks with length at least n2. Thus we can take these observations
(times) as the visits of (the neighborhood of) z and estimate the probability of generating n2 +1
times the same color, M steps after previously observing n2 + 1 times the same color. This idea
yields the Markov signal probability. The problem now is to localize the area where the random
walk (during a given time period) can generate n2 +1 times the same colors in the observations.
If this area was too big, we could neither estimate the Markov signal probability nor understand
where we are. To localize the described area, we showed (event En

2 ) that signal points have
empty neighborhood. In the next section we shall see that the probability to generate a block of
n2 + 1 times the same color on the empty neighborhood is very small. This means, if S is close
to a signal point z, then, with high probability, (and during a certain time period) all strings
of n2 + 1 times the same colors in the observations are be generated on Iz. The fact that all
signal points have also empty borders (events En

8 and En
9 ) makes the latter statement precise.

Thus, a Markov signal point seems to be a reasonable signal carrier. But which one? Note, if
z is a Markov signal point, i.e. Iz contains at least one big block, then, very likely the point
z + 1 is a Markov signal point, too. In other words, Markov signal points come in clusters.
However, when En

2 holds, then each point in such a cluster has empty neighborhood. On the
other hand, for z to be a Markov signal point, it is necessary to have at least one big block
of ξ in Iz. This means that the diameter of every cluster of Markov signal points is at most
2Ln1000. The distances between the clusters are at least L(en0.3 − n1000). Hence, in 2-color case
one can think of signal carriers as clusters of Markov signal points (provided En

2 holds, but this
holds with high probability). However, to make some statements more formal, for each cluster
we have one representator, namely the signal carrier point. Since the diameters of the clusters
are at most 2Ln1000, our definition of signal carrier points ensures that different signal carrier
points belong to different clusters. If the cluster is located in [0,∞), then the signal carrier point
is the left most Markov signal point in the cluster; if the cluster is located in (−∞, 0), then the
signal carrier point is the right most Markov signal point in the cluster. The event En

7 ensures
that there are no Markov signal points in the 2Ln1000-neighborhood of 0, so z̄1 and z̄0 belong
to different clusters, too. The exact choice of a signal carrier point is irrelevant. However, it is
important to note that given a cluster, everything that makes this cluster a signal carrier cluster
(namely, the big blocks of scenery) is inside the interval Iz̄, where z̄ is the signal carrier point
corresponding to the cluster. In particular, all blocks in the observations that are longer than
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n2 will be generated on Iz̄. This means that the signal carrier points, z̄i (or the corresponding
intervals Iz̄i

) serve as signal carriers as well. At least, if we are able to estimate δM
z̄i

with great
precision. This is the subject of the next section.

4 Events depending on random walk

In the previous section we saw: if all scenery dependent events hold, then the signal carrier
points are good candidates for the signal carriers. In this case the signal is an untypically high
Markov signal probability. Hence, to observe this signal, we must be able to estimate the Markov
signal probability. In the present section we define these estimators and in the next section we
will see that they perform well, if the random walk S behaves typically. We describe the typical
behavior of S in terms of several events depending on S. The main objective of the present
section is to show that the (conditional) probability of such events tends to 1 as n tends to
infinity.

4.1 Some preliminaries

As argued in Subsection 3.4, the main idea of the estimation of the Markov signal probability is
very simple - given a time interval T , consider all blocks in the observations χ|T that are bigger
than n2. Among these observations calculate the proportions of such blocks, that after exactly
M steps, are followed by another such block. The time interval used for this estimation must
be big enough to get a precise estimate but, on the other hand, it must be in correspondence
with the size of an (empty) neighborhood. Recall that the neighborhood Nz consisted of two
intervals of length Len0.3

. Hence, the optimal size of the interval T is en0.3
.

We now define the necessary concepts related to the described estimate - stopping times (that
stop when a string of at least n2+1 times the same color is observed) and the Bernoulli variables
that show whether the stopping times are followed (after M step) by another such string or not.
For technical reasons after stopping the process, we wait at least en0.1

steps until we look for the
next block.

• Let t > 0 and let ν̂t(1) be the smallest s ≥ t such that:

χ(t) = χ(t − 1) = · · · = χ(t − n2). (4.1)

We define the stopping times ν̂t(i), i = 2, 3, . . . inductively: ν̂t(i) is the smallest t ≥
ν̂t(i − 1) + en0.1

such that (4.1) holds.

• Let Xt,i be the Bernoulli random variable that is one if and only if:

χ(ν̂t(i) + M) = χ(ν̂t(i) + M + 1) = ... = χ(ν̂t(i) + M + n2).

Let T = T (t) := [t, t + en0.3
]. Define:

δ̂M
T =

{

1

en0.2

∑en0.2

i=1 Xt,i if ν̂t(e
n0.2

) < t + en0.3 − en0.1

0 otherwise.
(4.2)
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• We define some analogues of ν̂t and Xt. Let z ∈ Z and t ∈ N. Let νz,t(1) designate the
first time after t where we observe n2 zero’s or one’s in a row, generated on the interval
Iz. More precisely:

νz,t(1) := min

{

s > 0

∣

∣

∣

∣

χ (s) = χ (s − 1) = · · · = χ
(

s − n2
)

S(j) ∈ Iz, ∀j = s − n2, . . . , s

}

.

Once νz,t(i) is well defined, define νz,t(i + 1) in the following manner:

νz,t(i + 1) := min

{

t ≥ νz,t(i) + en0.1

∣

∣

∣

∣

χ (s) = χ (s − 1) = ... = χ
(

s − n2
)

S(j) ∈ Iz, ∀j = s − n2, . . . , s

}

.

• Let Xz,t,i, i = 1, 2, . . . designate the Bernoulli variable which is equal to one if exactly
after time M the stopping time νz,t(i) is followed by a sequence of n2 + 1 one’s or zero’s
generated on Iz. More precisely, Xz,t,i = 1 if and only if

χ(νz,t(i) + M) = χ(νz,t(i) + M + 1) = · · · = χ(νz,t(i) + n2) and

S(νz,t(i) + M), . . . , S(νz,t(i) + n1000) ∈ Iz.

Define

δ̂M
z,t :=

1

en0.2

en0.2

∑

i=1

Xz,t,i.

As argued in Subsection 2.1, {S(νz,t,i)} is an ergodic Markov process with state space Iz

and with the stationary measure Iz. Hence,

1

j

j
∑

i=1

Xz,t,i → δM
z , a.s.

Now we can apply some large deviation inequality to see that if j ≥ exp(n0.2), then δ̂M
z,t

gives a very precise estimate of δM
z .

The problem is that the random variables Xz,t,i and, hence, the estimate δ̂M
z,t is a priori not

observable. This is because we cannot observe whether a string of n2 + 1 times the same
color in the observations is generated on Iz or not. Thus, we can not observe neither νt,z(i)

nor Xt,z,i. However, the event En
3,S , stated below, ensures that with high probability δ̂M

z,t

is the same as δ̂M
T , provided that during the time interval T , the random walk S is close

to z (the sense of closeness will specified later).

• We define the estimates for the frequency of ones. Again, we define a general, observable,
estimate: ĥt and its theoretical, a priori not-observable counterpart: ĥz,t.

Define

ĥt :=

{

1

en0.2

∑en0.2

i=1 χ(νt(i) + en0.1
) if, ν̂t(e

n0.2
) < t + en0.3 − en0.1

0 otherwise.
,

ĥz,t :=
1

en0.2

en0.2

∑

i=1

χ(νz,t(i) + en0.1
).
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• Finally, we define the stopping time that stop the walk, when a new signal carrier is visited.
Let . . . , z̄−1, z̄0, z̄1, . . . denote the signal carrier-points in R. Denote Ii := Izi

and let ρ(k)
denote the time of the k-th visit of S to one of the intervals Ii in the following manner:
when an interval Ii is visited, then the next stop is on a different interval.

More precisely, let ρ(0) be the first time t ≥ 0 such that S(t) ∈ ∪iIi. Denote I(ρ(k)) the
interval Ii visited at time ρ(k). Then define ρ(k) inductively:

ρ(k + 1) = min{t > ρ(k)|S(t) ∈ ∪iIi, S(t) /∈ I(ρ(k))}.

4.2 Random walk-dependent events

In this section, we define the events that characterize the typical behavior of the random walk S
on the typical scenery on the interval [−cm, cm]. The (piece of) scenery ξ|[−cm, cm] is typical if
it satisfies all the scenery-dependent events En

i , i = 1, . . . , 9. Recall, that the events En
i are the

same as the events Ēn
i defined in Section 4.2 with [0, cm] replaced by [−cm, cm]. Also recall that

c > 1 is an arbitrary fixed constant not depending on n, and m = pn2.5EZq. Hence, throughout
the section we consider the sceneries belonging to the set:

Ecell OK := ∩9
i=1E

n
i . (4.3)

Clearly, Ecell OK depends on n. We know that P (Ecell OK) → 1 if n → ∞.

Let ψ : Z → {0, 1} be a (non random) scenery. Let Pψ(·) designate the measure obtained by
conditioning on {ξ = ψ} and

{

S(m2) = m
}

. Thus,

Pψ(·) := P (·|ξ = ψ, S(m2) = m). (4.4)

Let P (·|ψ) denote P (·|ξ = ψ). We now list the events that describe the typical behavior
of S. The objective of the section is to show: if n is big and ψn :=: ψ ∈ Ecell OK then all
listed events have big conditional probabilities Pψ. The events depending on the random walk are:
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En
1,S :=

{

S(m2) = m
}

;

En
2,S :=

{

∀t ∈ [0, m2] we have that S(t) ∈ [−cm, cm]
}

;

En
3,S := {∀t ∈ [0, m2], it holds : δ̂M

T ≤ cr, if δd
S(s) ≤ cr − ∆ ∀s ∈ T (t)};

En
4,S := {ρ(n25000) ≥ m2};

En
5,S := {∀k ≤ n25000 we have: if ρ(k) ≤ m2 then ν̂ρ(k)(e

n0.2
) ≤ ρ(k) + en0.3 − en0.1};

En
6,S :=







for any t ∈ [0, m2] satisfying χ(t) = · · · = χ(t + n2)
there exists s ∈ [t, t + n2] such thatS(s)

is contained in a block of ξ bigger thann0.35







;

En
7,S(z, t) :=

{
∣

∣

∣
δ̂M
z,t − δM

z

∣

∣

∣
< e−n0.12

}

, z ∈ Z, t > 0;

En
7,S := ∩cm

z=−cm ∩m2

t=0 En
13,S(z, t);

En
8,S(z, t) :=

{
∣

∣

∣
ĥz,t − h(z)

∣

∣

∣
< e−n0.12

}

, z ∈ Z, t > 0;

En
8,S := ∩cm

z=−cm ∩m2

t=0 En
8,S(z, t);

We now estimate the conditional probabilities of all listed events. In most cases we prove
statements like Pψ(En

j,S) → 1. This means: for an arbitrary sequence ψn ∈ En
cell OK, we have:

lim
n→∞

P (En
j,S |S(m2) = m, ξ = ψn) = 1.

4.3 Proofs

At first note that by LCLT, we have:

P (E1,S) =
1

m
+ O(

1

m2
).

Clearly, E1,S does not depend on ξ, i.e. P (E1,S |ψ) = P (E1,S). Using (3.10) we get:

P (E1,S |ψ) ≥ exp(−2n) − O(exp(−4n)) ≥ exp(−3n). (4.5)

From (4.5) follows that for any event E,

Pψ(E) =
P (E, S(m2) = m|ψ)

P (S(m2) = m|ψ)
≤ P (E|ψ)

exp(−3n)
. (4.6)
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Proposition 4.1. For each ǫ > 0 there exists c(ǫ), independent of n, such that for each ψ,
Pψ(En

2,S) ≥ 1 − ǫ, provided n is big enough.

Proof. At first note, that, for each n, the event En
2,S is independent of the scenery ψ. Thus,

Pψ(En
2,S) = P (En

2,S |S(m2) = m).

Define
En

a (c) = {∀t ∈ [0, m2] we have that S(t) ≤ cm}

En
b (c) =

{

∀t ∈ [0, m2] we have that S(t) ≥ −cm}
Clearly,

En
2,S = En

a (c) ∩ En
b (c).

We now find c, not depending on n such that Pψ(Enc
a (c)), Pψ(Enc

b (c)) ≤ ǫ
2 .

Let us define the stopping time ϑ:

ϑ := min{t|S(t) > cm}.

Let for all j ∈ 1, . . . , L:

pj := P
(

S(m2) = m, ϑ ≤ m2 and S(ϑ) = cm + j
)

We have that

P
(

Enc
a (c) ∩ En

1,S

)

=
L

∑

j=1

pj .

Our random walk S is symmetric. By the reflection principle, for all j ∈ 1, . . . , L, we have:

pj = P (S(m2) = cm + j + (cm + j − m) = 2cm + 2j − m, ϑ ≤ m2 and S(ϑ) = cm + j).

Thus pj ≤ P
(

S
(

m2
)

= 2cm − m + 2j
)

and

P
(

Enc
a (c) ∩ En

1,S

)

≤
L

∑

j=1

P
(

S(m2) = m(2c − 1) + 2j
)

. (4.7)

By LCLT, for big m, the right side of (4.7) can be made arbitrary small in comparison to
P

(

S
(

m2
)

= m
)

by taking c big enough. In other words, there exists c , not depending on n
such that:

∑L
j=1 P

(

S
(

m2
)

= 2cm + m + 2j
)

P (S (m2) = m)
≤ ǫ

2
.

This means
P

(

Enc
a (c) ∩ En

1,S

)

P
(

En
1,S

) = Pψ (Enc
a (c)) ≤ ǫ

2
.

Similar argument gives Pψ (Enc
b (c)) ≤ ǫ

2 .
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Note, that the choice of c does not depend on n. From now on, we fix c such that Proposition
4.1 holds with ǫ > 1

8 . This particular c is used in the definition of all scenery-dependent events
and, therefore, in the definition of Ecell OK as well as in the definitions En

4,S , En
5,S .

In what follows, we often use these versions of the Hoeffding inequality:
Let X1, . . . , XN be independent random variables with range in [a, b]. Let SN denote their sum.
Then:

P (|SN − ESN | ≥ ǫ) ≤ 2 exp(−2
ǫ2

N(b − a)2
) ≤ exp(−d′ǫ2

N
);

P (
1

N
|SN − ESN | ≥ ǫ) ≤ 2 exp(−2

ǫ2N

(b − a)2
) ≤ exp(−d′ǫ2N).

(4.8)

For our random walk, this gives:

P (|S(N)| ≥ ǫ) ≤ 2 exp(− ǫ2

4L2N
) ≤ exp(−dǫ2

N
)

P (|S(N)

N
| ≥ ǫ) ≤ 2 exp(−ǫ2N

4L2
) ≤ exp(−dǫ2N),

(4.9)

for some d′, d > 0.

We also use the following results: let X1, . . . , XN be i.i.d. random variables with mean 0 and
finite variance σ2. Let M+

n = maxi=1,...,N Si, Mn = maxi=1,...,N |Si|. Then

M+
N

σ
√

N
⇒ sup

0≤t≤1
Wt, and

( MN

σ
√

N
,
S(N)

σ
√

N

)

⇒ ( sup
0≤t≤1

|Wt|, W (1)), (4.10)

where Wt is standard Brownian motion. It is well-known that ∀x > 0, P (sup0≤t≤1 Wt ≤ x) =
2Φ(x) − 1.

Proof that lim infn Pψ(En
4,S) ≥ 1 − 1

8 .

For each n, fix an arbitrary ψn ∈ En
cell OK. Since ψn ∈ En

cell OK ⊂ En
6 , we have that for every

signal carrier point z̄i ∈ [−cm, cm]:

z̄i+1 − z̄i, z̄i − z̄i−1 ≥ EZn−11001. (4.11)

For this proof, let µ := EZ and N(n) := µ2n−24000. Since m ≤ n2.5µ + 1, we have n25000 ×N =
n25000 × µ2n−24000 = µ2n1000 > m2. Hence, if En

4,S fails, then there must be at least one

k ∈ {0, . . . , n25000 − 1} such that ρ(k + 1) − ρ(k) < N . Moreover, if En
4,S fails, then for each

k ∈ {0, . . . , n25000 − 1} it holds ρ(k) ≤ m2. We formalize this observation. Let:

Ea,4(k) := {ρ(k + 1) − ρ(k) ≥ N, ρ(k) ≤ m2}
Ea,4 := ∩n25000−1

k=0 Ea,4(k). (4.12)

It holds
Enc

4,S ⊂ Ec
a,4. (4.13)
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By Proposition 4.1, for n big enough, Pψ(En
2,S) ≤ 1

8 . Thus,

Pψ(Enc
4,S) ≤ Pψ(Ec

4,a ∩ En
2,S) + Pψ(Enc

2,S) ≤ 1

8
+

n25000−1
∑

k=0

Pψ(Ec
a,4(k) ∩ En

2,S). (4.14)

We now bound Pψ(Ea,4(k)).

Suppose En
2,S holds. Then ρ(k) ≤ m2 implies that the signal carrier visited at time ρ(k)

is in [−cm, cm]. By (4.11) this means that the closest signal carrier point is at least at distance
µn−11001. Let Ii be I(ρ(k)). Then

inf{|t − s| : t ∈ Ii, s ∈ Ij} ≥ µn−11001 − 2Ln1000, (4.15)

where j ∈ {i − 1, i + 1}. By (3.9), µ2 > n25000. Then µ > n12500 ≥ 2Ln12002, implying

µn−11001 − 2Ln1000 ≥ µn−11002. (4.16)

We consider the event

Ea,4(k)c ∩ En
2,S ⊆ {ρ(k + 1) − ρ(k) < N, S(ρ(k)) ∈ [−cm, cm]}.

From (4.15) and (4.16) it follows that:

P
(

ρ(k + 1) − ρ(k) < N, S(ρ(k)) ∈ [−cm, cm]
∣

∣

∣
ψn

)

≤ P (ρ(k + 1) − ρ(k) < N
∣

∣

∣
S(ρ(k)) ∈ [−cm, cm], ξ = ψn

)

≤

P
(

sup
l≤N

|S(l)| > µn−11001 − 2Ln1000
)

≤ P (sup
l≤N

|S(l)| > µn−11002}.

Use the following maximal inequality:

P (max
l≤N

|S(l)| > µn−11002) ≤ 3 max
l≤N

P
(

|S(l)| >
µ

3
n−11002

)

. (4.17)

By the Hoeffding inequality, for each l ≤ N :

P
(

|S(l)| >
µ

3
n−11002

)

≤ exp(−dµ2n−22004

9l
) ≤ exp

(

−dµ2n−22004

9N

)

≤ exp
(

−dn24000−22004

9

)

= exp
(

−dn1996

9

)

.

Hence,

P (Ea,4(k)|ψ) ≤ exp
(

−dn1996

9

)

, P (Ea,4|ψ) ≤ n25000 exp
(

−dn1996

9

)

.

By (4.6), we get

Pψ(Enc
a,4) ≤ n25000 exp

(

3n − dn2996

9

)

.

The right side of the last inequality tends to 0 if n → ∞. Relation (4.13) now finish the proof.

Proof that Pψ(En
3,S) → 1
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Let t ≥ 0 be an integer and define the stopping times ν̂o
t (1), ν̂o

t (2), . . . as follows:
ν̂o

t (1) is the smallest time s ≥ t + en0.1
such that:

χ(s − n2) = χ(s − n2 + 1) = · · · = χ(s) and δd
S(s) ≤ cr − ∆. (4.18)

Once ν̂o
t (k) is well defined, define ν̂o

t (k + 1) to be the smallest time s ≥ ν̂o
t (k) + en0.1

such that
(4.18) holds.

Let Xo
t,k be the Bernoulli variable which is equal to one if and only if

χ(ν̂o
t (k) + M) = χ(ν̂o

t (k) + M + 1) = · · · = χ(ν̂o
t (k) + M + n2).

Finally define:

δ̂M
o,t :=

1

en0.2

en0.2

∑

k=1

Xo
t,k.

Let
En

3,S(t) :=
{

δ̂M
o,t < cr

}

.

Clearly,

⋂

t∈0,...,m2

En
3,S(t) ⊆ En

3,S , imlpying P (Enc
3,S |ψ) ≤

m2
∑

t=0

P (Enc
3,S(t)|ψ), (4.19)

where ψ is an arbitrary fixed scenery.

Note, for any fixed scenery ψ, the random variables Xo
t,1, X

o
t,2, . . . are clearly independent (but

not necessarily identically distributed). However, for each i, E(Xo
t,i|ψ) ≤ cr − ∆, implying that

cr −
1

en0.2

en0.2

∑

i=1

E(Xo
t,i|ψ) ≥ ∆.

Recall ∆ = pM

n10054 . We know that ∆ ≥ n−β , where β is an integer bigger than 11000. Thus, by
(4.8)

P (Enc
3,S(t)|ψ) = P (δ̂M

o,t ≥ cr|ψ) = P
( 1

en0.2

en0.2

∑

i=1

Xo
t,i ≥ cr|ψ

)

≤ P
( 1

en0.2

en0.2

∑

i=1

(Xo
t,i − EXo

t,k) ≥ ∆|ψ
)

≤ exp(−d′∆2en0.2
)

≤ exp
(

− (d′n−2βen0.2
)
)

.

Now, use (4.6), (4.19) and (3.10) to get

Pψ(Enc
3,S) ≤ m2 exp(−d′n−2βen0.2

+ 3n) ≤ exp
(

7n − (d′n−2βen0.2
)
)

→ 0,

as n → ∞.
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Proof that Pψ(En
6,S) → 1

Let:

En
6,S(t) =







if χ(t) = χ(t + 1) = · · · = χ(t + n2)
then ∃s ∈ [t, t + n2] such that

S(s) is contained in a block of ξ longer than n0.35







.

We have that
En

6,S =
⋂

t∈[0,m2]

En
6,S(t)

and thus

Pψ(Enc
6,S) ≤

m2
∑

t=0

Pψ(Enc
6,S(t)).

Note:

Enc
6,S(t) =







∀s ∈ [t, t + n2] the random walk S(s)
is contained in a block of ξ with length at most n0.35

and χ(t) = χ(t + 1) = · · · = χ(t + n2)







.

Fix a scenery ψ. Let I = Z/∪B(ψ), where B(ψn) is a block of ψ bigger than n0.35 and the union
is taken over all such blocks. Note I = ∪kIk, where Ik are disjoint intervals, at least n0.35 far
from each other. Thus, if S(t) ∈ Ik, then S(t + s) 6∈ Il for each l 6= k and for each s = 1, . . . , n2.

Hence

P (Enc
6,S(t)|ψ) =

∑

j∈I

P
(

S(t), . . . , S(t + n2) ∈ I and χ(t) = · · · = χ(t + n2)|S(t) = j
)

P (S(t) = j)

∑

k

∑

j∈Ik

P
(

Sj(0), . . . , S(n2) ∈ Ik and χ(t) = · · · = χ(t + n2)
)

P (S(t) = j).

By Lemma 2.1, there exists a constant a > 0 not depending on n such that, for each j,

P
(

Sj(0), . . . , S(n2) ∈ Ik and χ(t) = · · · = χ(t + n2)
)

≤ exp
(

−an2

n0.7

)

. (4.20)

Then,
P (Enc

6,S(t)|ψ) ≤ exp(−an1.3).

Thus, by (4.6):
Pψ(Enc

6,S(t)) ≤ exp (−an1.3 + 3n) → 0

and by (3.10)

m2 exp(−an1.2 + 3n) ≤ e7n−an1.3 → 0.

Proof that Pψ(En
7,S) → 1

Preliminaries

Recall that the definitions of stopping times involved:
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a) ϑz(k), k = 0, 1, . . . stands for consecutive visits of S to the point z − 2Len0.1
, provided that

between ϑz(k) and ϑz(k + 1) at least once n2 + 1 same colors have been generated on Iz;

b) νz(1) (νz(i), i = 2, 3, . . . ) is the first time after ϑz(0), (after νz(k − 1) + en0.1
) observing

n2 + 1 times the same color generated on Iz.

In Section 2.1 the stopping times ϑz(k), νz(i) as well as the random variables Xz,i were used to
define the random variables κz(k), Xz(k) and Zz(k). The latter were used to define δM

z . Then
we fix an arbitrary time t and define the counterparts of all the above-mentioned stopping times
and random variables starting from t. In Section 4.1 we already defined the t-counterpart of
νz(i) and Xz,i, namely νz,t(i), and Xz,t,i, i = 1, 2, . . .. Recall that in the definition of νz,t(1),
the starting point ϑz(0) was replaced by t, the induction for νz,t(i) is the same as the one for
νz(i), i = 2, 3, . . .. The Bernoulli random variables Xz,t,i were defined exactly as Xz,i with the
stopping times νz,t(i) instead of the νz(i)’s.

We define the t-counterpart of ϑz(k), k = 0, 1, . . ..

• Let ϑz,t(0) = t and let

ϑz,t(k) := {min s > ϑz,t(k − 1) : S(s) = z − 2Len0.1
, ∃j : s > νz,t(j) > ϑz,t(k − 1)}.

We use ϑz,t(k) to define the t-analogues of κz, Zz and Xz.

• More precisely, let κz,t(0) = 0 and let κz,t(k) be defined by the inequalities

νz,t(κz,t(k)) < ϑz,t(k) < νz,t(κz,t(k) + 1).

The definition of Zz,t and Xz,t is straightforward:

Xz,t(k) =

κz,t(k)
∑

i=κz,t(k−1)+1

Xz,t,i, Zz,t(k) = κz,t(k) − κz,t(k − 1), k = 1, 2, . . .

Note that, if ξ is fixed, then, for all t > 0, the random variables Xz,t(1),Xz,t(2), . . . are indepen-
dent and the random variables Xz,t(2),Xz,t(3), . . . are i.i.d. with the same distribution as Xz(k).
The same holds for Zz,t(1), Zz,t(2), . . .. Also note, that Zz,t(k) ≥ 1, k = 1, 2, . . ..

Hence, for all t > 0,

δM
z = δM

z (ξ) =
E(Xz,t(2)|ξ)
E(Zz,t(2)|ξ) = lim

k→∞

∑k
i=1 Xz,t(i)

∑k
i=1 Zz,t(i)

.

We are now going to show that for each ξ, t, z, the first en0.2
observations of Xz,t,i are enough

to estimate δM
z (ξ) very precisely, i.e. δ̂M

z,t is close to δM
z .

Fix z, t, ψ and define:

Zk := Zz,t(k), Xk := Xz,t(k), Xi := Xk,t,i, EX = E(X2|ψ), EZ = E(Z2|ψ), P (·) = P (·|ψ).
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Thus:

δM
z = δM

z (ψ) =
EX
EZ .

Let a = pe3n0.1
q and define:

Za
k = Zk ∧ a, X a

k = Xk ∧ a, EX a := E(X a
2 |ψ), EZa := E(Za

2 |ψ).

Finally, define:

∆ := e−
n0.2

4 .

We consider the events:

E7,a =
{

Zk ≤ a, k = 1, 2, . . . , en0.2
}

,

E7,b =
{

∣

∣

X a
1 + · · · + X a

k

k
− EX a

∣

∣ ≤ ∆

3
, ∀k ∈ [

en0.2

a
, en0.2

]
}

and

E7,c =
{

∣

∣

Za
1 + · · · + Za

k

k
− EZa

∣

∣ ≤ ∆

3
, ∀k ∈ [

en0.2

a
, en0.2

]
}

.

First step

First we show that:
E7,a ∩ E7,b ∩ E7,c ⊂ En

7S(z, t). (4.21)

Let ı̄ be (random) number defined by the inequalities:

Z1 + · · · + Zı̄ ≤ en0.2
< Z1 + · · · + Zı̄+1. (4.22)

Since Zk ≥ 1, we have ı̄ ≤ en0.1
. Let k̄ := Z1 + · · · + Zı̄. Now,

δ̂M
z,t =

∑en0.2

i=1 Xi

en0.2 =

∑ı̄
k=1 Xk +

∑en0.2

i=k̄+1 Xi

k̄ + en0.2 − k̄
=

1
ı̄

∑ı̄
k=1 Xk + 1

ı̄

∑en0.2

i=k̄+1 Xi

k̄
ı̄ + en0.2−k̄

ı̄

.

Denote

∆I := E(X a −X ) +
1

ı̄

ı̄
∑

i=1

(Xi − EX a) +
1

ı̄

en0.2

∑

i=k̄+1

Xi,

∆II := E(Za −Z) +
1

ı̄

ı̄
∑

i=1

(Zi − EZa) +
1

ı̄

en0.2

∑

i=k̄+1

Zi.

Thus,

δ̂M
z,t =

EX + ∆I

EZ + ∆II
.

Suppose now, that E7a holds. Then, for each i = 1, . . . , en0.2
, we have Zi = Za

i , Xi = X a
i . From

(4.22) then follows that en0.2 ≤ ı̄a, i.e.

en0.2 ≥ ı̄ ≥ en0.2

a
. (4.23)
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When ı̄ = en0.2
, then en0.2 − k̄ = 0, otherwise en0.2 − k̄ ≤ Zi+1 ≤ a. Since

∑en0.2

i=ı̄+1 Xi ≤ en0.2 − k̄,
we get

1

ı̄

en0.2

∑

i=k̄+1

Xi ≤
en0.2 − k̄

ı̄
≤ a

ı̄
≤ a2e−n0.2

= exp(6n0.1 − n0.2) <
∆

6
, (4.24)

provided n is big enough.
Hence, by (4.23) we have (recall that we assumed E7,a)

{∣

∣

∣

1

ı̄

ı̄
∑

k=1

(Xk − EX a)
∣

∣

∣
≤ ∆

3

}

=
{∣

∣

∣

1

ı̄

ı̄
∑

k=1

(X a
k − EX a)

∣

∣

∣
≤ ∆

3

}

=

en0.2

⋃

l= en0.2

a

{

∣

∣

1

l

l
∑

k=1

(X a
k − EX a)

∣

∣

∣
≤ ∆

3
, ı̄ = l

}

⊃
{

∣

∣

∣

1

l

l
∑

k=1

(X a
k − EX a)

∣

∣

∣
≤ ∆

3
, l =

en0.2

a
, . . . , en0.2

}

= E7,b.

Similarly,
{∣

∣

∣

1

ı̄

ı̄
∑

k=1

(Xk − EX a)
∣

∣

∣
≤ ∆

3

}

⊃ E7,c.

Thus, by (4.24) on E7a ∩ E7b ∩ E7c we have

|∆I | ≤ |EX a − EX| + 2
∆

3
= E(X − X a) + 2

∆

3

|∆II | ≤ |EZa − EZ| − 2
∆

3
= E(Z − Za) + 2

∆

3
.

Fix k = 1, 2, . . .. Denote by n0, n1, n2, . . . integers that satisfy n0 = 0, e2n0.1
+ 1 ≥ ni − ni−1 ≥

e2n0.1
, ∀i. Let Yj , j = 0, 1, . . . denote a Bernoulli random variable which is equal to 1 if and only

if between time ν(ϑ(k) + 1 + nj) and ν(ϑ(k) + 1 + nj+1) the random walk does not visit the

point z∗ := z − 2Len0.1
. The random variables Yj are independent.

By definition, ν(i + 1) − ν(i) ≥ en0.1
. Hence, ν(ϑ(k) + 1 + nj+1) − ν(ϑ(k) + 1 + nj) ≥ e3n0.1

.

At time ν(ϑ(k) + 1), the random walk is located on Iz and, therefore, no more than 3en0.1
from

z∗. By (4.10), the probability to visit the point z∗ within time e3n0.1
starting from the 3en0.1

-
neighborhood of z∗ goes to 1 as n → ∞. Hence, supj P (Yj = 1) → 0. Let n be so big, that
P (Yj = 1) ≤ e−1, for all j. This means, for each

P (Zk ≥ te2n0.1
) ≤ P (Yj = 1, j = 0, . . . , ptq − 1) ≤ exp(−ptq) ≤ exp(−t), k = 1, 2, . . . (4.25)

Now,

E(Z−Za) =

∫

{Z≥a}
ZdP−aP (Z ≥ a) = aP (Z ≥ a)+

∫

(a,∞)
P (Z > x)dx−aP (Z ≥ a) =

∫

(a,∞)
P (Z > x)dx.

By (4.25):

∫

(a,∞)
P (Z > x)dx ≤

∫ ∞

a
exp(−xe−2n0.1

)dx ≤ e2n0.1
exp(−ae−2n0.1

)) ≤ e2n0.1
exp(−en0.1

).
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Thus, for n big enough:

E(Z − Za) ≤ e2n0.1
exp(−en0.1

) ≤ ∆

3
.

Since, X ≤ Z, we get:

E(X − X a) =

∫

(a,∞)
P (X > x)dx ≤

∫

(a,∞)
P (Z > x)dx ≤ ∆

3
.

Thus, on E7a ∩ E7b ∩ E7c we have:
|∆I |, |∆II | ≤ ∆. (4.26)

Recall that we have

δ̂M
z,t =

EX + ∆I

EZ + ∆II
.

Hence, by (4.26):
EX − ∆

EZ + ∆
≤ δ̂M

z,t ≤
EX + ∆

EZ − ∆
.

By Taylor’s formula,
EX − ∆

EZ + ∆
=

EX
EZ −

(EX + EZ
(EZ)2

)

∆ + o(∆).

Since 1 ≤ EX ≤ EZ, the latter means (for ∆ small enough)

∣

∣

∣

EX − ∆

EZ + ∆
− EX

EZ
∣

∣

∣
≤

(EX + EZ
(EZ)2

)

∆ + o(∆) ≤ 2∆ + o(∆) < 3∆.

Similarly
∣

∣

∣

EX + ∆

EZ − ∆
− EX

EZ
∣

∣

∣
< 3∆.

Now, δM
z,t = EX

EZ implying that

|δM
z − δ̂M

z,t| < 3∆ < e−n0.12
.

Thus, (4.21) holds.

Second step

We now show that P (Ec
7,a), P (Ec

7,b) and P (Ec
7,c) are of order o(exp(−n1000)).

Taking t = en0.1
(4.25) yields:

P (Zk > a) ≤ exp(−en0.1
), k = 1, 2, . . . .

Thus:
P (Ec

7,a) ≤ exp(n0.2) exp(−en0.1
) = exp(n0.2 − en0.1

) < exp(−n1000). (4.27)

To estimate P (E7,b) and P (E7,c) we use the Hoeffding inequality. Fix l ∈ [ en0.2

a , en0.2
]. By (4.8)

we have:

P
(
∣

∣

∣

1

l

l
∑

k=1

(X a
k − EX a

k )
∣

∣

∣
≥ ∆

6

)

≤ exp
(

−2l
( ∆

a6

)2
)

.
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On the other hand, since X a
k , k ≥ 2 are i.i.d., we have:

∣

∣

∣

1

l

l
∑

k=1

EX a
k − EX a

∣

∣

∣
=

1

l
|EX a − EX a

1 | ≤
2a

l
≤ 2a2e−n0.2

= 2 exp(6n0.1 − n0.2) <
∆

6
.

Thus,

P
(∣

∣

∣

1

l

l
∑

k=1

X a
k −EX a

∣

∣

∣
≥ ∆

3

)

≤ P
(∣

∣

∣

1

l

l
∑

k=1

(X a
k −EX a)

∣

∣

∣
≥ ∆

6

)

≤ exp
(

−2l
( ∆

a6

)2
)

≤ exp(−Ken0.2 ∆2

a3
),

where K = 2
36 . Now,

en0.2 ∆2

a3
= exp(n0.2 − 1

2
n0.2 − 9n0.1) = exp(

1

2
n0.2 − 9n0.1) > exp(

n0.2

4
)

and

P
(
∣

∣

∣

1

l

l
∑

k=1

X a
k − EX a

∣

∣

∣
≥ ∆

3

)

≤ exp(−Ke
n0.2

4 ).

Finally

P (Ec
7,b) ≤

en0.2

∑

l= en0.2

a

P
(∣

∣

∣

1

l

l
∑

k=1

X a
k −EX a

∣

∣

∣
≥ ∆

3

)

< en0.2
exp(−Ke

n0.2

4 ) < exp(−en0.1
) < exp(−n1000).

(4.28)
The same bound holds for P (Ec

7,c).

Because of (4.21), (4.27) and (4.28) we get:

P (Enc
7S(c, t)) ≤ 3 exp(−n1000). (4.29)

The bound in (4.29) do not depend on the choice of z, t and ψ. Note that on [−cm, cm]× [0, m2],
there are no more than (cm)3 values of (z, t). Hence

P
(

Enc
7,S

)

≤ Σz∈[−cm,cm],t∈[0,m2]P
(

Enc
7,S(z, t)

)

.

From (4.29) it follows
P

(

Enc
7,S

)

≤ (cm)33 exp(−n1000). (4.30)

Recall that by (3.10): (cm)3 ≤ c3e6n. Hence, the right side of (4.30) is less than 3c3 exp(6n −
n1000). This is of order o(exp(−3n)). By (4.6), we therefore have:

Pψ(Enc
7S) → 0.

Outline of the proof that Pψ(En
8,S) → 1
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Note that in the previous proof the exact nature of Xz,i, Xz(k) as well as Xz,t,i, Xz,t(k) was not

used. Hence, the proof holds, if they were replaced by Uz,i, Uz(k), χ(νz,t(i) + en0.1
) and

κ(k)
∑

κ(k−1)+1

χ(νz,t(i) + en0.1
),

respectively. By (2.12) this proves that Pψ(En
8,S) → 1.

Proof that Pψ(En
5,S) → 1.

Fix ψn ∈ En
cell OK.

For each k = 0, 1, 2, . . ., let τk(0) := ρ(k) and for each j = 1, 2, . . ., let τk(j) be the smallest time
t > τk(j − 1) + 2en0.1

for which S(t) ∈ I(ρ(k)).

Let Xk(j) be the Bernoulli random variable which is equal to one if and only if during time
[τk(j), τk(j) + (n3000 + n2)] we observe n2 + 1 consecutive 0’s or 1’s. That is Xk(j) = 1 if and
only if ∃t ∈ [τk(j), τk(j) + n3000] such that χ(t) = χ(t + 1) = · · · = χ(t + n2).
Clearly, for each k, the random variables Xk(j), j = 0, 1, 2, . . . are independent

At first we show that there exists a constant a > 0, not depending on n, such that for each k
and j,

P (Xk(j) = 1) ≥ n−a ln n = e−a ln2 n. (4.31)

Fix k = 0, 1, . . . and let I := I(ρ(k)). Let z̄ be the signal carrier point such that Iz̄ = I. Since
z̄ is a signal carrier point, then, by Corollary 2.2 and c) of Proposition 2.1, I contains at least
one big block of ψn. Let T = [a, b] ⊂ I be that block. Now, let a < a∗ < b∗ < b be such that

a∗ − a, b∗ − a∗, b − b∗ ≥ |T |
3 ≥ ln n

3n . Let T ∗ = [a∗, b∗]. Now,

P (Xk(j) = 1) ≥ P (S(τk(j) + n3000) ∈ T ∗)P (χ(t) = χ(t + 1) = · · · = χ(t + n2)|S(t) ∈ T ∗).

Now, by LCLT:

P (S(τk(j) + n3000) ∈ T ∗) ≥ 1

cn1500
− O(

1

n3000
) ≥ n−1501,

provided that n is big enough.

Let N = ( n
ln n)2 (w.l.o.g we assume that this is an integer) and estimate:

P (χ(t) = χ(t + 1) = · · · = χ(t + n2)|S(t) = j ∈ T ∗) ≥ P (Sj(i) ∈ T, ∀i = 1, 2, . . . , n2) ≥

P
(

max
i=1,...,N

|Sj(i)| ≤
|T |
3

, Sj(N) ∈ T ∗
)ln2 n

= P
(

max
i=1,...,N

|Sj(i)|√
N

≤ 1

3
,
Sj(N)√

N
∈ T ∗

√
N

)ln2 n
.

(4.32)
Note: |T ∗| ≥

√
N . By (4.10):

P
(

max
i=1,...,N

|Sj(i)|√
N

≤ 1

3
,
Sj(N)√

N
∈ T ∗

√
N

)

→ P ( sup
0≥t≤1

|Wt| ≤
1

3σ
, W1 ∈ I) > γ > 0.
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Thus, for n big enough there exists a < ∞ such that the right side of (4.32) is bigger than

( 1
a)ln

2 n = n−c ln n, with c > 0. Hence, (4.31) holds with a = c + 1.

Define the following events:

Ea(k) =







if ρ(k) ≤ m2

then during the time [ρ(k), ρ(k) + en0.3 − en0.1
]

S visits I(ρ(k)) more than en0.22
times







k = 0, 1, . . .

and
Ea := ∩25000

k=1 Ea(k).

Also define

Eb(k) :=
{

en0.21

∑

j=0

Xk(j) ≥ en0.2
}

, Eb := ∩n25000

k=0 Eb(k).

Now, clearly, on Ea(k) we have τk(e
n0.21

) ≤ ρ(k) + en0.3 − 2en0.1
. Thus En

5,S holds, if

en0.21

∑

j=0

Xk(j) ≥ en0.2
.

Hence
E5,S ⊃ Ea ∩ Eb and Pψ(Ec

5,S) ≤ Pψ(Ec
a) + Pψ(Ec

b).

We are now proving that Pψ(Ec
a) → 0 and Pψ(Ec

b) → 0.

Proof that Pψ(Ec
b) → 0

By (4.6) it is enough to show that:

P (Ec
b |ψn) = o(e−3n). (4.33)

Note that for big n, exp(n0.2 − n0.21) < EXk(j), ∀j. Thus,

exp(n0.2 − n0.21) <
1

en0.21 exp(−n0.21)
en0.21

∑

j=0

E(Xk(j)) =: m̄.

By the Hoeffding inequality we obtain that for a constant K > 0:

P (Ec
b(k)|ψn) = P

( 1

en0.21

en0.21

∑

j=0

Xk(j) < exp(n0.2 − n0.21)
)

≤ P
( 1

en0.21

en0.21

∑

j=0

Xk(j) <
m̄

2

)

=

P
( 1

en0.21

en0.21

∑

j=0

(

Xk(j) − EXk(j)
)

< −m̄

2

)

≤ exp(−Km̄2en0.21
) ≤ exp(−Ken0.21−2a ln2 n).

Hence,
P (Ec

b |ψn) ≤ n25000 exp(−Ken0.21−2a ln2 n) = o(e−3n).
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Proof that Pψ(Ec
a) → 0

This proof is a little tricky because unlike the other proofs we have that P (Ea|ψn) is much bigger
than P (S(m2) = m).

Let L = n100000 and consider the event:

C =
{

S
(

m2(1 − n−3L)
)

∈
[

m(1 − n−L), m(1 + n−L)
]

= [m − m

nL
, m +

m

nL
]
}

.

Here and in the rest of the proof we assume (without loss of generality) that all ratios and
exponents are integers. Also define

Ec(k) =
{

ρ(k) /∈ [m2(1 − n−3L), m2]
}

, k = 0, 1, . . . , Ec := ∪25000
k=1 Ec(k).

The event Ec means that no stopping time ρ(k) occurs in the time-interval [m2(1 − n−3L), m2],
the event Ea ∩ Ec satisfies

Ea ∩ Ec = E∗
a := ∩25000

k=1 E∗
a(k),

where

E∗
a(k) =







if ρ(k) ≤ m2(1 − n−L)

then during the time [ρ(k), ρ(k) + en0.3 − en0.1
]

S visits I(ρ(k)) more than en0.22
times







.

We show that the probability P (Ea|En
1,S , ψn), can be very well approximated by the probability

P (E∗
a|C, ψn) and the latter goes to 0 when n → ∞. We proceed in three steps.

1) At first note: since

Cc ∩ En
1,S = {S(m2(1 − n−3L)) 6∈ [m(1 − nL), m(1 + nL)], S(m2) = m},

we get, by the Hoeffdig inequality

P (Cc ∩ En
1,S |ψn) =P (Cc ∩ En

1,S) = P (En
1,S |Cc)P (Cc) ≤ P (En

1,S |Cc)

=P
(∣

∣

∣
S

(

m2

n3L

)

∣

∣

∣
≥ m

nL

)

≤ exp(−dnL) = o(n−3n).

The latter implies
Pψ(Cc) = o(1). (4.34)

2) Second, use the inequalities:

P (E∗c
a ∩ En

1,S ∩ C|ψn) ≤ P (Ec
a ∩ En

1,S ∩ C|ψn) ≤ P (E∗c
a ∩ En

1,S ∩ C|ψn) + P (Ec
c ∩ En

1,S |ψn).

Since ψ ∈ En
7 , it has no signal carrier points in [m − EZn−11001]. Hence, Ec

c ∩ En
1,S can hold

only, if during time interval [m2(1 − n−3L), m2] the random walk covers a distance of at least
EZn−11001 − Ln1000. Thus,

P (Ec
c∩En

1,S |ψn) ≤ P
(

max
l=1,..., m2

n3L

|S(l)| ≥ EZn−11001−Ln1000
)

≤ P
(

max
l=1,..., m2

n3L

|S(l)| ≥ m

n11003
−Ln1000

)

.
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Now use the maximal inequality (4.17) together with the Hoeffding inequality to estimate

P
(

max
l=1,..., m2

n3L

|S(l)| ≥ m

n11003
− Ln1000

)

≤ max
l=1,..., m2

n3L

3P
(

|S(l)| ≥ 1

3

m

n12000

)

≤ 3 exp(−dn3L−12000) = o(e−3n).

This implies:

P (Ec
a ∩ C ∩ En

1,S |ψn) − P (E∗c
a ∩ C ∩ En

1,S , |ψn)

P (En
1,S |ψn)

= Pψ(Ec
a ∩ C) − Pψ(E∗c

a ∩ C) = o(1). (4.35)

3) Finally, note that:

P (E∗c
a ∩ En

1,S ∩ C|ψn) = P (E∗c
a ∩ C|ψn)P (En

1,S |E∗c
a ∩ C, ψn) = P (E∗c

a ∩ C|ψn)P (En
1,S |C, ψn).

On the other hand,

P (En
1,S |ψn) ≥ P (En

1,S ∩ C|ψn) = P (En
1,S |C, ψn)P (C|ψn).

Hence,

Pψ(E∗c
a ∩ C) =

P (E∗c
a ∩ En

1,S ∩ C|ψn)

P (En
1,S |ψn)

≤
P (E∗c

a ∩ C|ψn)P (En
1,S |C, ψn)

P (En
1,S |C, ψ)P (C|ψn)

= P (E∗c
a |C, ψn). (4.36)

By CLT, P (C|ψn) = P (S
(

m2(1 − n−3L
)

∈ [m− m
nL , m+ m

nL ]) is of order 1
nK for some big K > 0.

We estimate the probability P (E∗c
a |ψn).

To do this, fix k and let T1, T2, . . . denote the waiting times of S between visits of the point

S(ρ(k)) (when we start at the time ρ(k)). Although ETi = ∞, it is known that ET
1
3

i =: K ′ < ∞
(see, e.g. [LMM04]). The number K ′, does not depend on n. Thus, by the Markov inequality
we have

P (E∗c
a ) ≤ P

(

en0.22

∑

i=1

Ti > en0.3 − en0.1
)

= P

(

(

en0.22

∑

i=1

Ti

)
1
3
>

(

en0.3 − en0.1) 1
3

)

≤ P
(

en0.22

∑

i=1

T
1
3

i >
(

en0.3 − en0.1) 1
3

)

≤ en0.22
K ′

(

en0.3 − en0.1
)

1
3

≤ e−n0.25
.

Thus, P (Ec
a∗) ≤ n25000e−n0.25

= o(n−K) implying that

P (Ec
a∗|C, ψ) ≤ P (Ec

a∗|ψn)

P (C|ψn)
= o(1). (4.37)

To complete the proof, use (4.34), (4.35), (4.37), (4.37) to get

Pψ(Ec
a) ≤ Pψ(Ec

a ∩ C) + Pψ(Cc) = Pψ(E∗c
a ∩ C) + Pψ(Ec

a ∩ C) − P (E∗c
a ∩ C) + o(1)

≤ P (E∗c
a |C, ψn) + o(1) = o(1).
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5 Combinatorics of g and ĝ

In this section we show: if all scenery dependent events and random walk dependent events hold,
then our estimates δ̂M

T and ĥt are precise. This means, we can observe our signals and, just like
in our 3-color example, we can estimate the g-function.

Let us first give the definition of the g-function in the 2-colors case.

5.1 Definition of g

In this subsection we give a formal definition of the function

g : {0, 1}m+1 7→ {0, 1}n2+1.

The function g depends on n. When n is fixed, we choose m = pn2.5EZq, where the random
variable Z is the location of the first Markov signal point after 2Ln1000 in ξ. We consider the
signal carrier points z̄1, z̄2, . . . , in [0, m]. Define the following subset of {0, 1}m+1:

E∗ := {ψ ∈ {0, 1}m+1 : z̄1(ψ) ≥ L(en0.1
+ n1000), z̄n2+1 ≤ m − L(en0.1

+ n1000)}.

Here, z̄i(ψ) = ∞, if the piece of scenery ψ has less than i signal carrier points.

Clearly En
cell OK ⊂ E∗. If ψ ∈ E∗, then for each z̄i(ψ) we define the vector of the frequency of

ones h(i), i = 1, . . . , n2 + 1. Recall from (2.13) that:

h(i) = h(z̄i(ψ)) = P (ψ(U + S(en0.1
)) = 1),

where U is a random variable with distribution µ(z̄i).

Now, if ψ ∈ E∗, let:

gi(ψ) =











1 , if h(i) > 0.5

0 , if h(i) < 0.5

z̄i(ψ) otherwise.

(5.1)

When ψ 6∈ E∗, define
gi(ψ) = ψ(i), i = 2, 3, . . . , n2 + 2. (5.2)

Definition 5.1. g(ψ) = (g1(ψ), . . . , gn2+1(ψ)), where gi(ψ) is (5.1), if ψ ∈ E∗ and gi(ψ) is
(5.2), if ψ 6∈ E∗.

Definition 5.1 ensures that g(ψ) depends only on ξm
0 , and that (g1(ξ), . . . , gn2+1(ξ)) is an i.i.d.

random vector, with the components being Bernoulli random variables with parameter 1
2 .

5.2 Definition of ĝ

Next, we formalize the construction of the ĝ-function. The function ĝ : {0, 1}m2+1 7→ {0, 1}n2

aims to estimate the (non-observable) function g. The argument of ĝ is the vector of observations
χm2

0 := (χ(0), . . . , χ(m2)), and the estimate is given up to the first or last bit. In other words,
ĝ aims to achieve ĝ(χm2

) ⊑ g(ξ|[0, m]).
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The algorithm for computing ĝ has 5 phases and it differs from the ĝ-reconstruction algorithm
for the 3-color case (Subsection 1.6) by the first step, only. The rest of the construction is the
same.

1. For all T = [t, t + en0.3] ⊂ [0, m2] compute the estimate of the Markov signal probability
δ̂M
T . Select all intervals T1 = [t1, t1 + en0.3

], T2 = [t2, t2 + en0.3
], . . . , TK = [tK , tK + en0.3

],
t1 < t2 < · · · < tK , where the estimated Markov signal probability are higher than cr.
Here K stands for the number of such intervals.

2. For all selected intervals, estimate the frequency of ones. Obtain the estimates ĥT1 , . . . , ĥTK
,

i = 1, . . . , K.

3. Define clusters:

Ci := {ĥTj
: |ĥTj

− ĥTi
| ≤ 2 exp(−n0.12)}, f̂i :=

1

|Ci|
∑

j∈Ci

ĥTj
, i = 1, . . . , K.

4. Apply the real scenery construction algorithm AR
n (see Subsection 1.6.3) to the vector

(f̂1, . . . , f̂K). Denote the output, AR
n(f̂1, . . . , f̂K), by

(f1, . . . , fn2). (5.3)

If the number of different reals in (f̂1, . . . , f̂K) is less than n2 (e.g. K ≤ n2), then complete
the vector (5.3) arbitrarily.

5. Define the final output of ĝ as follows

ĝ(χm2
) := (I[0.5,1](f1), . . . , I[0.5,1](fn2)).

5.3 Main proof

Next, we prove the main result: when all previously stated events hold, then the ĝ-algorithm
works, i.e. ĝ(χm2

0 ) ⊑ g(ξm
0 ).

Recall En
cell OK = ∩9

i=1E
n
i . Similarly define the intersection of the random walk dependent

events: En
S := ∩8

i=1E
n
i,S . Finally, let Eg−works be the event that ĝ works, i.e.:

Eg−works :=
{

ĝ(χm2

0 ) ⊑ g(ξm
0 )

}

. (5.4)

At first we show that step 1 in the definition of ĝ works properly, i.e. a time interval T is selected
(i.e. δ̂M

T > cr) only if during the time T the random walk is close to a unique signal carrier
point z̄. The closeness is defined in the following sense: we say that during time period T , the
random walk S is close to z, if there exists s ∈ T such that S(s) ∈ Iz.

Proposition 5.1. Suppose En
cell OK ∩ En

S holds. Let T = [t, t + en0.3
] ⊂ [0, m]. If during T , the

random walk is close to a signal point z, and ν̂t(e
n0.2

) ≤ t + en0.3 − en0.1
, then δ̂M

T = δ̂M
z,t and

ĥT = ĥz,t.
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Proof. Since ξ and S are independent, we fix ξ = ψ ∈ En
cell OK and show that the claim of the

proposition holds.

Let S be close to the signal point z. By En
2 ∩En

8 ∩En
9 , the point z has empty neighborhood and

empty borders. Hence, in the area

([z − L(n1000 + en0.3
), z + L(n1000 + en0.3

)] − [z − LM̃, z + LM̃ ]) ∩ [−cm, cm]

there are no blocks that are bigger than n0.35. Recall that M̃ = n1000 − 2n2. Since 2n0.35 <
n0.4 < n2, this means: all blocks with length at least n0.4 must lay inside the interval [z −
L(n1000 − n2), z + L(n1000 − n2)]. In particular, this implies - if, during the time T the random
walk S visits a block bigger than n0.4, then during the n2 step before and after that visit, it
must stay in the interval Iz. Formally: if ∃s ∈ T : S(s) ∈ B, then

S(s − n2), S(s − n2 + 1), . . . , S(s + n2 − 1), S(s + n2) ∈ Iz. (5.5)

Here B stands for a block of ψ with length at least n0.4.

We now take advantage of the event En
6,S : the random walk cannot generate n2 + 1 times the

same color, if it does not visit a block bigger than n0.4. By (5.5) this means that all n2 +1 same
colors must be generated on Iz. Hence, inside the time interval T , the stopping times ν̂t(i) are
equal to the stopping times νz,t(i). Similarly, Xt,i = Xz,t,i, provided ν̂t(i) + n1000 ≤ t + en0.3

.

By assumption, there are at least en0.2
stopping times ν̂t(i) in [t, t+ en0.3 − en0.1

] These stopping
times are then equal to νz,t(i). Similarly, Xt,i = Xz,t,i, i = 1, . . . , en0.2

. The latter means

that the observable estimates δ̂M
T and ĥT equals the non-observable estimates δ̂M

z,t and ĥz,t,
respectively.

Corollary 5.1. Suppose En
cell OK ∩ En

S holds. Let T = [t, t + en0.3
] ⊂ [0, m]. If during T the

random walk is close to a signal point z, then δ̂M
T > 0 implies that ĥT = ĥz,t and δ̂M

T = δ̂M
z,t .

Proof. By definition, δ̂M
T > 0 if in the time interval [t, t + en0.3 − en0.1

] there are at least en0.2

stopping times ν̂t(i). Now Proposition 5.1 applies.

Lemma 5.1. Suppose En
cell OK ∩ En

S holds. Let T = [t, t + en0.3
] ⊂ [0, m] be such that δ̂M

T > cr.
Then there exists an unique signal carrier point z̄ ∈ [−cm, cm] such that S is close to z̄ during
T and δ̂M

T = δ̂M
z̄,t.

Proof. Fix ξ = ψ ∈ En
cell OK. Note that, since En

2 holds, all signal points in [−cm, cm] have
empty neighborhood. Together with d) of Proposition 2.1 this means that all signal points
in [−cm, cm] are in clusters with diameter less than 2Ln1000. The distance between any two
clusters, i.e. the distance between closest signal points in these clusters, is bigger than en0.3

.
Moreover, by En

8 ∩ En
9 , all signal points have empty borders.

If En
2,S holds, then during time [0, m2], our random walk stays in [−cm, cm]. Together with the

clustering structure of the signal points, this means: if during the time interval T ⊂ [0, m2] of
length en0.3

the random walk S is close to some signal points, then they all belong to the same
cluster. Hence, during T , S can be close to at most one signal carrier point (recall, every cluster
has one representant, the signal carrier point). We have to show that if δ̂M

T > cr, then there
exists at least one signal carrier point z̄ such that, (during T ) S is close to z̄.

During T , the random walk S has 3 options :
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• S is not close to any signal point

• S is close to the signal points that are not Markov signal points

• S is close to a Markov signal point.

If S is not close to any signal point, then by En
3,S , δ̂M

T ≤ cr. This excludes the first possibility.

Hence, δ̂M
T > cr cannot happen, if during T , S is not close to any signal point.

Suppose now that there exists a signal point z such that (during T ) S is close to z. By assumption
we have δ̂M

T > cr > 0. By Corollary 5.1 we have that δ̂M
T = δ̂M

z,t. Now we reap benefit from the

events En
5 and En

7,S . The event En
5 ensures that z is regular, i.e. |δM

z − cr| ≥ ∆ > e−n0.12
(recall,

∆ is polynomially small). On the other hand, the event En
7,S ensures |δ̂M

T − δM
z | = |δ̂M

z,t − δM
z | ≤

exp(−n0.12). Thus on En
5 ∩ En

7,S we have:

δ̂M
T > cr if and only if δM

z > cr − ∆. (5.6)

Suppose that we have the second possibility – S is close to some signal points, but not close
to any Markov signal points. Then z is not a Markov signal point. Hence, (5.6) ensures that
δ̂M
T ≤ cr. This contradicts our assumption that δ̂M

T > cr. Hence, z must be a Markov signal
point and our third option holds.

Thus δ̂M
T > cr implies that during T , the random walk S is close to a Markov signal point.

By clustering structure we know that S is close to a cluster of signal points with at least one
Markov signal points. In Subsection 3.4 we argued that such a cluster serves as the signal carrier.
However, to complete the proof we must show that, during T , S is also close to the corresponding
signal carrier point, say z̄.

The points z̄ and z belong to the same cluster, i.e. |z̄ − z| < 2Ln1000. Consider the interval

Jz := [z − L(exp(n0.3), z + L(exp(n0.3)] ∩ [−cm, cm].

This is the region, where the random walk S stays during time T . We know that the intervals
Iz and Iz̄ both have empty neighborhood and empty borders. Thus all blocks of ψ|Jz that are
longer than n0.4 must lie in Iz ∩ Iz̄ (by c of Proposition 2.1, in Iz ∩ Iz̄ there is at least one
big block of ψ). Argue as in the proof of Proposition 5.1: because of En

6,S , to generate n2 + 1

consecutive 0’s or 1’s, S must visit a block with length at least n0.4. To have δ̂M
T > 0, during T ,

S must have at least en0.2
such visits. All those blocks are in Iz ∩ Iz̄ ⊂ Iz̄. Thus, when δ̂M

T > 0,

then during T , S visits z̄ at least en0.2
times. This means that during T , S is close to z̄. By

Corollary 5.1, we get δ̂M
T = δ̂M

z,t.

Theorem 5.2. If En
cell OK and En

S both hold, then, for n big enough, ĝ works. In other words,

En
cell OK ∩ ES ⊂ Eg−works. (5.7)

Proof. Suppose En
cell OK ∩ En

S hold. Fix ξ = ψ ∈ En
cell OK and let

g(ψ) = (g1(ψ), . . . , gn2+1(ψ)).
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We have to show: if En
S holds, then given the observations χm2

0 , the function

ĝ(χm2

0 ) := (I[0.5,1](f1), . . . , I[0.5,1](fn2))

is equal to ĝ(ψ) up to the first or last bit.

Let χm2

0 be the observations. Apply the ĝ-construction algorithm.

1) At the first step we pick the intervals T1 = [t1, t1 + en0.1
], . . . , [tK , tK + en0.1

] such that for
each j, δ̂M

T > cr, j = 1, . . . , K. By Lemma 5.1 we know that each interval Tj corresponds to
exactly one signal carrier point, say z̄π(j).

Let us investigate the mapping π : {1, . . . , K} 7→ Z, where π(j) is the index of the signal carrier
corresponding to the interval Tj . We now show that π posses the properties A1), A2), A3) that
are familiar from the Subsection 1.6.3

A1) π(1) ∈ {0, 1}

A2) π(K) ≥ n2 + 1

A3) π is skip-free, i.e. ∀j, |π(j) ± π(j)| ≤ 1.

All these properties hold because of En
4,S ∩ En

5,S . Indeed, during the time interval [0, m2] the
random walk starts at 0 and, according to the event En

1,S , ends at m. Let z̄1 . . . , z̄u denote all

signal carrier points of ψ in [0, m]. By En
1 , u > n2. The maximal length of a jump of S is L and,

therefore, on its way, S visits all intervals Iz̄1 , . . . Iz̄u . Recall that the stopping times ρ(k) denote
the first visits of the new interval (the first visit of the next interval, not necessarily new for the
past). By En

4,S ∩ En
5,S , for each k such that ρ(k) < m2 we have: there is at least en0.2

stopping

times ν̂ρ(k)(i) in T := [ρ(k), ρ(k) + en0.3 − en0.1
]. Let z̄ be the signal carrier point such that

S(ρ(k)) ∈ Iz̄. Thus the assumptions of Proposition 5.1 hold and δ̂M
T = δ̂M

z̄,t. Moreover, by (5.6)

we have that δ̂M
T > cr, i.e. the interval T will be selected in the first step of the ĝ-reconstruction.

To summarize: the random walk starts at 0, by convention the first signal carrier point in [0,∞)
is z̄1, the biggest signal carrier point in (−∞, 0] is z̄0. From Lemma 5.1 we know - during T1,
S must be close to a signal carrier point. On the other hand [ρ(0), ρ(0) + en0.3

] is the first time
interval, during which S is close to a signal carrier point. We know that this interval will be
selected. Hence π(1) ∈ {0, 1}.
On its way S visits all signal carrier interval Iz̄1 , . . . Iz̄u . Right after the first visit of a new signal
carrier, ρ(k), the random walk produces an interval T = [ρ(k), ρ(k)+ en0.3

] that will be selected.
Together with Lemma 5.1 the latter yields that π is skip-free.

Recall that z̄u is the last signal carrier point in [0, m]. Thus, the last signal carrier interval S
visits during [0, m2] is z̄u or z̄u+1. By En

7 we know that z̄u lays in [0, m − Len0.3
]. Hence, if

S(ρ(k)) ∈ Iz̄u , then [ρ(k), ρ(k) + en0.3
] will be selected. We get that the last selected interval

corresponds to the signal carrier that is at least z̄n2+1. Thus π(K) ≥ n2 + 1.

Let π∗ := min{π(j) : j = 1, . . . , K}, π∗ := max{π(j) : j = 1, . . . , K}. We just saw that π∗ ≤ 1,
π∗ ≥ n2 + 1 and π is a skip-free random walk on {π∗, π∗ + 1, . . . , π∗}.
The rest of the algorithm was already explained in Subsection 1.6.3. However, in the following
we give a bit more formal explanation.
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2) At the second step we calculate ĥT1 , . . . , ĥTK
. By Lemma 5.1, we know that, for each j =

1, . . . , K
ĥTj

= ĥz̄π(j),tj .

3) Since En
8,S holds, we know that, for each j = 1, . . . , K,

|ĥTj
− h(z̄π(j))| = |ĥz̄π(j),tj − h(z̄π(j))| < exp(−n0.12).

This means: if π(i) = π(j) then |ĥTi
− ĥTj

| ≤ 2 exp(−n0.12).

On the other hand, by En
3 we know that π(i) 6= π(j) implies

|h(z̄π(j)) − h(z̄π(i))| ≥ exp(−n0.11). (5.8)

We assume n to be big enough to satisfy exp(−n0.12) < 5 exp(−n0.11). Hence π(i) 6= π(j) implies
that |ĥTi

− ĥTj
| > 2 exp(−n0.12). Thus, if En

8,S ∩ En
3 , then for each i, j = 1, . . . , k we have

ĥj ∈ Ci if and only if π(i) = π(j). (5.9)

Hence the clusters Ci and Cj are either identical or disjoint; Ci = Cj if and only if π(j) = π(i).
The same, obviously, holds for the averages:

f̂j = f̂i if and only if π(i) = π(j).

Let for each i = {π∗, π∗ +1, . . . , π∗}, f̂(z̄i) = f̂j , if π(j) = i. Hence, f̂(z̄i) is the estimate of h(z̄i)
and

f̂j = f̂(z̄π(j)), j = 1, . . . , K.

Hence, j 7→ f̂j can be considered as the observations of the skip-free random walk π on the

different reals {f̂(z̄π∗
), f̂(z̄π∗+1), . . . f̂(z̄π∗)}.

4) The real scenery construction algorithm AR
n is now able to reconstruct the numbers

f̂(z1), . . . , f̂(zn2+1) up to the first or last number. Thus

(f1, . . . , fn2) = AR(f̂1, . . . , f̂K) ⊑ (f̂(z̄1), . . . , f̂(z̄n2+1)).

5) By En
4 , we have that |h(z̄i) − 0.5| ≤ exp(−n0.11). >From (5.8) and (5.9), it follows:

|f̂i − h(z̄π(i))| ≤ exp(−n0.12).

The latter implies:
f̂(z̄i) ≥ 0.5 if and only if h(z̄i) ≥ 0.5.

Hence , for each i = 1, . . . , n2 + 1, we have that I[0.5,1](f̂(z̄i)) = I[0.5,1](h(z̄i)). Thus:

ĝ(χm2

0 ) =
(

I[0.5,1](f1), . . . I[0.5,1](f
2
n)

)

⊑
(

I[0.5,1](h(z̄1)), . . . I[0.5,1](h(zn2+1))
)

= g(ψ).
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Proof of Theorem 1.1 Fix c > 0 such that Proposition 4.1 holds for ǫ = 1
8 . Use this

particular c to define all scenery dependent events as well as all random walk-dependent vents.

The intersection of all scenery-dependent events is En
cell OK. In Section 3.2, we proved that

P (En
cell OK) → 1. Hence 1) holds.

Now consider the event En
S . Use Theorem 5.2 to find the integer N1 < ∞ such that for each

n > N1, (5.4) hold. Then, for each n > N1, ψn ∈ En
cell OK we have

P (g(χm2

0 ) ⊑ g(ξm
0 )|S(m2) = m, ξ = ψn) ≥ P (En

S |S(m2) = m, ξ = ψn) = Pψ(En
S).

In Section 4.3, we proved that lim infn Pψ(En
S) ≥ 1 − 1

8 . Let N2 be so big that Pψ(En) > 3
4

∀n > N1. Take N := N1 ∨ N2. With such N , 2) holds.
Finally, the statement 3) follows from the definition of g in Section 5.1.
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[LMM04] Matthias Löwe, Heinrich Matzinger, and Franz Merkl. Reconstructing a multicolor
random scenery seen along a random walk path with bounded jumps. Electron. J.
Probab., 9:no. 15, 436–507 (electronic), 2004. MR2080606

[LP04] D. A. Levin and Y. Peres. Identifying several biased coins encountered by a hidden
random walk. Random Structures Algorithms, 25(1):91–114, 2004. MR2069666

[LPP01] David A. Levin, Robin Pemantle, and Yuval Peres. A phase transition in random coin
tossing. Ann. Probab., 29(4):1637–1669, 2001. MR1880236

[Mat99a] Heinrich Matzinger. Reconstructing a 2-color scenery by observing it along a simple
random walk path with holding. PhD thesis, Cornell University, 1999.

[Mat99b] Heinrich Matzinger. Reconstructing a three-color scenery by observing it along a
simple random walk path. Random Structures Algorithms, 15(2):196–207, 1999.
MR1704344

[Mat05] Heinrich Matzinger. Reconstructing a 2-color scenery by observing it along a simple
random walk path. Ann. Appl. Prob, 15(1):778–819, 2005. MR2114990

[ML06] Heinrich Matzinger and Jüri Lember. Scenery reconstruction: an overview. In In-
formation and Randomness (Maass, Martinez, San Martin (Eds)), volume 66, pages
76–125. Hermann, Travaux en cours, 2006.

[MP07] Heinrich Matzinger and Sergue. Popov. Deteting local pertubation in a continuous
scenery. Electronic Journal of Probability, 12:637–660, 2007. MR2318405

465

http://www.ams.org/mathscinet-getitem?mr=1439524
http://www.ams.org/mathscinet-getitem?mr=1630410
http://www.ams.org/mathscinet-getitem?mr=1662199
http://www.ams.org/mathscinet-getitem?mr=1936595
http://www.ams.org/mathscinet-getitem?mr=1978654
http://www.ams.org/mathscinet-getitem?mr=2269217
http://www.ams.org/mathscinet-getitem?mr=2080606
http://www.ams.org/mathscinet-getitem?mr=2069666
http://www.ams.org/mathscinet-getitem?mr=1880236
http://www.ams.org/mathscinet-getitem?mr=1704344
http://www.ams.org/mathscinet-getitem?mr=2114990
http://www.ams.org/mathscinet-getitem?mr=2318405


[MR03a] Heinrich Matzinger and Silke W.W. Rolles. Reconstructing a piece of scenery
with polynomially many observations. Stochastic Processes and their Applications,
107(2):289–300, 2003. MR1999792

[MR03b] Heinrich Matzinger and Silke W.W. Rolles. Reconstructing a random scenery ob-
served with random errors along a random walk path. Probab. Theory Related Fields,
125(4):539 – 577, 2003. MR1974414

[MR06] Heinrich Matzinger and Silke W. W. Rolles. Retrieving random media. Probab. Theory
Related Fields, 136(3):469 – 507, 2006. MR2257132

[Pet95] V. V. Petrov. Limit theorems of probability theory: sequences of independent random
variables. Clarendon Press, Oxford, 1995. MR1353441

466

http://www.ams.org/mathscinet-getitem?mr=1999792
http://www.ams.org/mathscinet-getitem?mr=1974414
http://www.ams.org/mathscinet-getitem?mr=2257132
http://www.ams.org/mathscinet-getitem?mr=1353441

	Introduction and Result
	The information recovery problem
	Main assumptions
	Main result
	History and related problems
	Organization of the paper
	3-color example
	Setup
	-algorithm
	Real scenery reconstruction algorithm


	 Whole truth about signal probabilities
	 Definitions
	 Auxiliary results
	 Proof of Lemma 2.2
	 Corollaries

	 Scenery-dependent events
	Signal points
	Scenery-dependent events
	 Proof of P(3n)1 and P(4n)1
	Some preliminaries
	Proof that P(3n)1

	What is a signal carrier?

	 Events depending on random walk
	 Some preliminaries
	Random walk-dependent events
	Proofs

	Combinatorics of g and g
	Definition of g
	Definition of 
	Main proof

	References

