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Abstract

A class of discrete renewal processes with exponentially decaying inter-arrival distributions
coincides with the infinite volume limit of general homogeneous pinning models in their local-
ized phase. Pinning models are statistical mechanics systems to which a lot of attention has
been devoted both for their relevance for applications and because they are solvable models
exhibiting a non-trivial phase transition. The spatial decay of correlations in these systems
is directly mapped to the speed of convergence to equilibrium for the associated renewal
processes. We show that close to criticality, under general assumptions, the correlation de-
cay rate, or the renewal convergence rate, coincides with the inter-arrival decay rate. We
also show that, in general, this is false away from criticality. Under a stronger assumption
on the inter-arrival distribution we establish a local limit theorem, capturing thus the sharp
asymptotic behavior of correlations.
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1 Introduction and main results

1.1 Renewals processes and the Renewal Theorem

Consider a discrete, non–delayed, persistent renewal process τ := {τj}j∈N∪{0}, that is the se-

quence of random variables such that τ0 = 0, {τj − τj−1}j∈N
is IID and such that the law of τ1, the

inter-arrival law, takes values in N := {1, 2, . . .}. We introduce the notation F (n) := P(τ1 = n)
and we observe that it is at times practical to look at τ as a random subset of N ∪ {0}, so in
particular if we set u(n) := P(n ∈ τ), then {u(n)}n∈N∪{0} is the renewal sequence of τ . Note
that u(0) = 1 and, if F (·) is aperiodic (i.e. if gcd{n : F (n) > 0} = 1), there exists n0 > 0 such
that u(n) > 0 for every n ≥ n0. The classical Renewal Theorem (see e.g. [2]) says that, if F (·)
is aperiodic, we have

u(∞) := lim
n→∞

u(n) =
1

E[τ1]
∈ [0, 1]. (1.1)

Much effort has been put into refining such a result. Refinements are of course a very natural
question when E[τ1] = +∞ (e.g. [11; 14]), but also when E[τ1] < +∞. In the latter case sharp
estimates on u(n)− u(∞) have been obtained for sub-exponential tail decay of the inter-arrival
distribution sequence, like for example in the case of F (n)

n→∞∼ c1/n2+c2 (c1 and c2 > 0), and
the tails of the two sequences are directly related (e.g. [18] and references therein). Throughout
the text the notation an

n→∞∼ bn stands for limn→∞ an/bn = 1.

When instead the inter-arrival distribution has exponential decay the situation is quite dif-
ferent. In fact, what can be proven in general is that, if there exists c1 > 0 such that
limn→∞ exp(c1n)F (n) = 0, then there exists c2 > 0 such that limn→∞ exp(c2n)|u(n)−u(∞)| = 0.
However the precise decay, or even only the exponential asymptotic behavior (that is the supre-
mum of the values of c2 for which the previous equality holds), in general does not depend only
on the tail behavior of the inter-arrival probability. This is definitely a very classical problem
[20; 19], and a number of results have been proven in specific instances (see e.g [4; 5; 22]). We
are now going to treat this point in some detail.

1.2 On exponentially decaying inter-arrival laws

From the very definition of renewal process one directly derives the equivalent expressions

u(n) = 1{0}(n) +
n−1∑

j=0

u(j)F (n − j) and û(z) =
1

1 − F̂ (z)
, (1.2)

with the notation f̂(z) =
∑∞

n=0 znf(n) (f̂(·) is the generating function, or z-transform, of f(·))
and z is a complex number. Of course f̂(·) is a power series and |z| a priori has to be chosen
smaller than the radius of convergence, which, for the two series appearing in (1.2), is at least 1.

As a matter of fact, we are interested (in particular) in the radius of convergence of

∆(z) :=
∞∑

n=0

(u(n) − u(∞))zn =
1

1 − F̂ (z)
− 1

E[τ1](1 − z)
. (1.3)

514



If we assume that lim supn→∞ exp(cn)F (n) < ∞ for some c > 0, the radius of convergence of F̂ (·)
is at least exp(c), however it is not at all clear that the radius of convergence of ∆(·) coincides
with the radius of convergence of F̂ (·). The problem does not come from the singularity at z = 1
since it is easily seen that it is removable (F̂ (z) = E[τ1](1 − z) + O((1 − z)2)). And notice also
that, when F (·) is aperiodic, F̂ (z) = 1 on the unit circle only if z = 1, while of course |F̂ (z)| < 1
for |z| < 1. What may happen is the existence of other solutions z to F̂ (z) = 1 for z within the
radius of convergence of F̂ (·). And it may even happen that ∆(·) can be analytically continued
beyond the radius of convergence of F̂ (·). Let us make this clear by giving two (classical) explicit
examples:

• F (1) = 1 − p, F (2) = p and F (n) = 0 for n = 3, 4, . . . (p ∈ (0, 1)). The radius of
convergence of F̂ (·) is ∞, but ∆(z) = p/((1 + p)(1 + pz)) and therefore the radius of
convergence of ∆(·) is 1/p, and in fact, by expanding ∆(z) around z = 0, we obtain
u(n) − u(∞) = (−p)n(p/(1 + p)) for n = 1, 2, . . ..

• F (n) = pn(1 − p)/p, p ∈ (0, 1). In this case the radius of convergences of F̂ (·) is 1/p, but
∆(z) = p for every z, so the radius of convergence is ∞ and in fact u(n) − u(∞) = 0 for
every n ≥ 1.

These examples show that the tail decay of u(·)−u(∞) may have little to do with the tail decay
of the F (·): in particular, changing fine details of F (·) may have a drastic effect on the decay
of u(·)− u(∞). For further examples of such a behavior see in particular [5], but also Section 4
below.

The main purpose of this note is, however, to point out that, in a suitable class of renewal
processes motivated by statistical mechanics modeling, the tail decay of u(·) − u(∞) is closely
linked with the tail decay of F (·).

1.3 Our set–up

We introduce the class of renewals we are going to focus on without insisting on the physical
motivations, that are postponed to § 1.5. We consider the aperiodic discrete probability density
K(·) concentrated on N such that for some α > 0 and some function L(·) which is slowly varying
at infinity we have

K(N) :=
∑

n>N

K(n)
N→∞∼ L(N)

αNα
. (1.4)

We recall that a function L(·) defined on the positive semi-axis is slowly varying at infinity if it
is positive, measurable and if limt→∞ L(ct)/L(t) = 1 for every c > 0. We refer to [6] for the full
theory of slowly varying functions, recalling simply that both L(t) and 1/L(t) are much smaller
than tδ (as t → ∞), and this for any δ > 0. It is customary to say that K(·) varies regularly
with exponent −α. We point out that (1.4) and aperiodicity are implied by

K(n)
n→∞∼ L(n)

n1+α
. (1.5)

Starting from K(·), we introduce a family of discrete probability densities indexed by b ≥ 0:

Kb(n) := c(b)K(n) exp(−bn), (1.6)
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and c(b) = 1/
∑

n K(n) exp(−bn) (of course c(0) = 1). Our attention focuses on the renewal
process τ(b) := {τj(b)}j with inter-arrival law Kb(·), that is the renewal process τ with F (·) =
Kb(·) with the notation in § 1.1. The renewal sequence this time is denoted by {ub(n)}n, that
is ub(n) := P (n ∈ τ(b)).

1.4 Main result

With the set-up of § 1.3 we have the following:

Theorem 1.1. Given K(·) call b0(∈ [0,∞]) the infimum of the values of b > 0 such that there

exists z satisfying 1 < |z| ≤ exp(b) and K̂b(z) = 1.

1. For every choice of K(·) satisfying (1.4) we have b0 ∈ (0,∞] and for every b ∈ (0, b0] we
have

lim sup
n→∞

1

n
log |ub(n) − ub(∞)| = −b, (1.7)

while for b > b0

lim sup
n→∞

1

n
log |ub(n) − ub(∞)| ≥ −b. (1.8)

2. For every choice of K(·) satisfying (1.5) we have that for every b ∈ (0, b0)

ub(n) − ub(∞)
n→∞∼ Kb(n)

(c(b) − 1)2
, (1.9)

which implies

lim
n→∞

1

n
log (ub(n) − ub(∞)) = −b. (1.10)

Remark 1.2. When there exists z0, 1 < |z0| < exp(b), such that K̂b(z0) = 1 (therefore b > b0)
one can easily write down the sharp asymptotic behavior of {ub(n) − ub(∞)}n in terms of the
values of z0 with minimal |z0| obtaining that the sequence changes sign infinitely often and that,
while of course

lim sup
n→∞

1

n
log |ub(n) − ub(∞)| = − log |z0| > −b, (1.11)

in general the superior limit cannot be replaced by a limit (see Section 4 for details). In Section 4
we also provide explicit examples showing that b0 can be arbitrarily small by choosing K(·)
suitably. In all the examples we have worked out the inequality in (1.8) is strict (for every
b > b0), but it is unclear to us whether or not this is a general phenomenon.

The proof of Theorem 1.1(1) can be found in Section 2 which is devoted to the study of

Rb :=
1

lim supn |ub(n) − ub(∞)|1/n
, (1.12)

which of course is the radius of convergence of ∆b(·) (defined in analogy with (1.3)), and to
establishing that b0 is not zero, see Proposition 2.1. Theorem 1.1(2) follows instead by applying
a well established technique [9]: this is detailed in Section 3.
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In Section 2, Proposition 2.2 (see also Remark 3.1), we give a generalization of Theorem 1.1. This
generalization deals with the case in which we do not assume (1.4), but we require

∑
n nK(n) <

∞. As a matter of fact, in proving Proposition 2.1, that yields Theorem 1.1(1), we use (1.4)
only to prove b0 > 0 and actually, as we shall see, the argument leading to b0 > 0 goes through
without assuming (1.4) if

∑
n nK(n) < ∞. We would like to point out that it is possible to

show that b0 > 0 also by coupling arguments, when
∑

n nK(n) < ∞. This is achieved by
applying for example the results in [23], but we will not detail this here. The proof we give,
when

∑
n nK(n) < ∞, is extremely short. Moreover, it does not seem to be easy to extract our

results when
∑

n nK(n) = ∞ from coupling arguments: the results in the literature are either
not as sharp or they are restricted to very particular cases (see the last part of § 1.5, notably
Remark 1.3, for more details). Of course in the case

∑
n nK(n) = ∞ we do use (1.4) in order to

establish b0 > 0: this choice is driven by the applications we have in mind and we do not know
to which extent one can relax it.

1.5 Homogeneous pinning models and decay of correlations

What motivated, and what even suggested the validity of the results in this note, is the behavior
near criticality of homogeneous pinning models. As it as been pointed out in particular in [13],
a large class of physical models boils down to a family of Gibbs measures that, in mathematical
terms, are just obtained from discrete renewal processes modified by introducing an exponential
weight, or Boltzmann factor, depending on NN (τ) := |τ ∩ (0, N ]|. More precisely if P is the law
of τ and the latter is the renewal process with inter-arrival distribution K(·), we consider the
family of probability measures {PN,β}N∈N

defined by

dPN,β

dP
(τ) =

1

ZN,β
exp (βNN (τ)) , (1.13)

with ZN,β the normalization constant. Then one can show ([8],[15, Ch. 2]) that the weak limit
P∞,β of {PN,β}N∈N

exists for every β ∈ R (to be precise, this statement holds for every β
assuming (1.5), but it holds also assuming only (1.4) if β > 0 and, as we shall see, this is
the relevant regime for us). The parameter β actually plays a crucial role. In fact if β < 0
then τ , under P∞,β , is a transient renewal and it contains therefore only a finite number of
points (this is the so-called delocalized phase). If instead β > 0 then τ , again under P∞,β , is a
positive recurrent renewal with inter-arrival distribution given by Kb(·), with b = b(β) unique
real solution of

∑
n K(n) exp(−bn) = exp(−β) (this is the localized phase). Note that if β ց 0,

then b ց 0. We point also out that it is not difficult to see that b coincides with the limit as
N tends to infinity of (log ZN,β)/N and it is hence the free energy of the system [15, Ch. 1]. In
[13] and, more completely in [15, Ch. 2], one can find the analysis of b(β) as β ց 0 (and (1.4)
is the natural hypothesis to get a regular behavior of b(β) as β ց 0).

As a consequence τ(b), for b > 0, does describe the localized regime of an infinite volume
statistical mechanics system: if b is small, the system is close to criticality. The correlation

length is a key quantity in statistical mechanics, see e.g. [13]. Moreover it is expected to scale
nicely with β (or, which is equivalent, with b) approaching criticality, typically like β to some
(negative) power, possibly times logarithmic corrections. The correlation length may be defined
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by introducing first the correlation function:

c(n) :=

lim
m→∞

P (m ∈ τ(b), m + n ∈ τ(b)) − P (m ∈ τ(b))P (m + n ∈ τ(b))√
P (m ∈ τ(b)) (1 − P (m ∈ τ(b)))P (m + n ∈ τ(b)) (1 − P (m + n ∈ τ(b)))

=
E [τ1(b)]

E [τ1(b)] − 1

(
P (n ∈ τ(b)) − 1

E [τ1(b)]

)
, (1.14)

where we have used the Renewal Theorem. Then the correlation length is just one over the
decay rate ξ(b) of c(·): ξ(b) := −1/ lim supn→∞ n−1 log |c(n)| and therefore

ξ(b) = −1/ lim sup
n→∞

n−1 log |ub(n) − ub(∞)|, (1.15)

so that Theorem 1.1 (largely) guarantees that

ξ(b)
bց0∼ 1

b
, (1.16)

which roughly can be rephrased by saying that the correlation length, close to criticality, scales
like one over the free energy.

On physical grounds (1.16), or rather the weaker form log ξ(b) ∼ − log b, is certainly expected
[13], not only in the homogeneous set-up, but also in the disordered one. A disordered pinning
model is defined by taking a typical realization of an IID sequence {ω1, ω2, . . .} of centered
random variables and by replacing NN (τ) in (1.13) with NN (τ) + ε

∑N
n=1 ωn1n∈τ : if ε 6= 0 one

can no longer solve exactly this model and, as a matter of fact, the disorder introduces some
striking effects (see [1; 10; 15; 17] for the state of the art and further details). A proof of (1.16)
has been given in [24] by coupling arguments for the case in which K(·) is given by the return
times of a simple random walk and the proof is given also for disordered models. The result
actually holds as an equality for every b (like the case presented in § 4.1 below: we point out
that for α = 1/2 the distribution K(·) treated in § 4.1 coincides with the distribution of the
returns to zero of a simple random walk in the sense that K(n) is the probability that the first
return to zero of a simple random walk happens at time 2n). In general, coupling arguments
yield precise upper and lower bounds on the rate when suitable monotonicity properties are
present (see in particular [21]): the returns of a simple random walk are in this class. In absence
of monotonicity properties coupling arguments usually yield only upper bounds on the speed
of convergence (and hence lower bounds on the rate, see [2] and references therein): in [25]
a coupling argument is given for disordered pinning models and it yields in our homogeneous
set-up that for every α > 0

lim sup
bց0

log ξ(b)

log(b)
≤ −1, (1.17)

under the stronger hypothesis (1.5) (compare (1.16) and (1.17)).

Remark 1.3. The result (1.17) is obtained [25] by a coupling argument that is substantially
more complex than the over-jumps coupling technique in [23]. The argument, which tries to
mimic the proof for the simple random walk, involves suitably chosen Bessel processes and it
is tuned to the regular variation character of K(·), i.e. to hypothesis (1.5). It yields however
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stronger results in the direction of having more quantitative bounds, namely results that hold
for every n. It must be said that coupling results typically do yield quantitative estimates, but
also the generating function techniques can be pushed beyond asymptotic results like the one
we have presented (see e.g. [5], but also [4]): we have not pursued this direction. On the other
hand, it is less obvious how to apply generating function techniques when disorder is present.

We conclude this introduction by recalling that the class of pinning models we have considered is
sometimes presented as the class of (1 + d)–dimensional pinning models. The name comes from
the directed viewpoint on Markov chains: if one considers a Markov chain S with state space
Z

d, the state space of the directed process {(n, Sn)}n is Z
1+d. The renewal structure in this case

is simply given by the successive returns to 0 ∈ Z
d by S or, equivalently, by the intersections of

the directed process with the line {(n, 0) ∈ Z
1+d : n = 0, 1, 2, . . .}. This viewpoint is important

in order to understand the spectrum of applications of pinning models, that includes interfaces
in two dimensional space. We are not going to discuss this further here, and we refer to [15; 26],
but we do point out that precise estimates catching the order of magnitude of the correlation
length in a class of interface pinning models in d-dimensional space (Gaussian effective interfaces
pinned at an (hyper-)plane) have been obtained in [7].

2 The radius of convergence of ∆b(·)

In this section we work in the most general set-up, i.e. we assume (1.4). Recall the definition of
b0 from the statement of Theorem 1.1 and recall (1.12).

Proposition 2.1. Rb ≤ exp(b) and, for every choice of K(·), b0 > 0 and therefore Rb = exp(b)
for b ∈ (0, b0].

Note that this result implies (1.7) and (1.8).

Proof. We are going to show that Rb ≤ exp(b) by making use only of K̂b(exp(b)) < ∞ and of

the fact that the radius of convergence of K̂b(·) is exp(b).

Of course we may assume that ∆b(·) is analytic in the centered ball of radius exp(b), since
otherwise there is nothing to prove. Let us suppose that ∆b(·) has an analytic extension to

the open ball of radius R > exp(b). From (1.3) we immediately derive an expression for K̂b(z)

in terms of ∆b(z), for |z| < exp(b), and this gives the meromorphic extension of K̂b(·) to the

centered ball of radius R. However we know that the radius of convergence of K̂b(·) is exp(b)

and that |K̂b(z)| ≤ c(b)
∑

n K(n) < ∞ if |z| = exp(b). So the singularity of K̂b(·) cannot be a

pole and therefore K̂b(·) does not have a meromorphic extension. This implies that ∆b(·) cannot
be analytically continued beyond the centered ball of radius exp(b).

The question that we have to address in order to complete the proof of Proposition 2.1, that
is proving b0 > 0, can be rephrased as: do there exist two sequences {bj}j , bj ց 0 and {zj}j ,

1 < |zj | ≤ exp(bj) such that K̂bj
(zj) = 1 for every j? Of course, if this is not the case, K̂b(z) 6= 1

if log |z|(> 0) is sufficiently small.
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We make some preliminary observations: first, we may assume ℑ(zj) ≥ 0, since if K̂b(z) = 1, we

have K̂b(z) = 1 too. Then let us remark that, by writing zj = rj exp(iθj), we can pass to the

limit in the equation K̂bj
(zj) = 1: by the Lebesgue Dominated Convergence Theorem we have

that every limit point (1, θ) of {(rj , θj)}j satisfies

∑

n

K(n) exp(inθ) = 1, (2.1)

which gives θ = 0 by aperiodicity. This tells us that, for b small, singularities have necessar-
ily positive real part and small imaginary part (in short, they are close to 1). Moreover, by
monotonicity, we see that the imaginary part cannot be zero (and therefore we assume that it
is positive, since solutions come in conjugate pairs).

Let us now assume by contradiction that there exists a triplet of sequences

(
{bj}j , {δj}j , {θj}j

)
, (2.2)

tending to zero, with the requirements that 0 ≤ δj < bj , θj > 0 for every j and such that

K̂bj
(exp(bj − δj) exp(iθj)) = 1 for every j. Of course the triplet corresponds to the poles of the

associated ∆bj
(·) function at zj = exp ((bj − δj) + iθj). We are going to show that such a triplet

does not exist since we are able to extract subsequences such that

K̂bj
(exp(bj − δj) exp(iθj)) 6= 1, (2.3)

for every j in the subsequence.

Let us consider the auxiliary sequence of non-negative numbers {δj/θj}j . By choosing a subse-
quence we may assume that this sequence converges to a limit point γ ∈ [0,∞].

We consider first the case of α ∈ (0, 1). We distinguish the two cases γ < ∞ and γ = ∞.

If γ < ∞ we have the asymptotic relation

∑

n

K(n) exp(−δjn) sin(θjn)
j→∞∼ θα

j L(1/θj)

∫ ∞

0

exp(−γs) sin(s)

s1+α
ds , (2.4)

that follows from a Riemann sum approximation and the uniform convergence property of slowly
varying functions [6, § 1.5] if the sum is restricted to θjn ∈ (ε, 1/ε). The rest is then controlled for
small n’s (n ≤ ε/θj) by replacing sin(x) with x and using summation by parts which tells us that∑N

n=1 nK(n) is equal to
∑N−1

n=0 K(n) − NK(N) and the latter behaves for large values of N as
N1−αL(N)/(1−α) [6, § 1.5]. For large n’s the rest is controlled by using | exp(−δjn) sin(θjn)| ≤
1. Overall the absolute value of the rest is bounded by cθα

j L(1/θj)(ε
1−α + εα) for some c > 0,

with c not depending on ε, for j sufficiently large (for example, θj < ε) and (2.4) follows.

Observe that the left-hand side of (2.4) is asymptotically equivalent to the imaginary part of

K̂b(exp(bj−δj) exp(iθj)), apart for the multiplicative constant c(bj) = 1+o(1) ∈ R. The integral
can be explicitly computed and it is equal to

(
1 + γ2

)α/2
Γ(1 − α) sin (α arctan(1/γ)) , (2.5)

which is positive for every γ ∈ [0,∞), therefore for j sufficiently large (2.3) holds (the definition
of Γ(·) is recalled in Section 4).
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If γ = ∞ instead we write

∑

n

K(n) exp(−δjn) sin(θjn) = R<
j + R>

j , (2.6)

with R<
j the sum for n ≤ ε/θj and R>

j is the rest (0 < ε ≤ π/2 is a fixed positive constant).
Setting sε := sin(ε)/ε we have

R<
j ≥ sε θj

∑

n≤ε/θj

nK(n) exp(−δjn)
j→∞∼ sεΓ(1 − α)L(1/δj)

(
θj

δj

)
δα
j . (2.7)

To obtain (2.7) we have used summation by parts, namely the identity:

∞∑

n=1

nK(n) exp(−δjn) =

∞∑

n=0

K(n) exp(−δj(n + 1)) − (1 − exp(−δj))
∞∑

n=1

nK(n) exp(−δjn). (2.8)

On the other hand

∣∣∣R>
j

∣∣∣ ≤ exp (−(δj/θj)ε)
∑

n>ε/θj

K(n)
j→∞∼ exp (−(δj/θj)ε)

L(1/θj)

α
(θj/ε)α , (2.9)

therefore
∣∣∣∣∣
R>

j

R<
j

∣∣∣∣∣ ≤ c exp (−(δj/θj)ε)
L(1/θj)

L(1/δj)

(
θj

δj

)α−1

≤ c′ exp (−(δj/θj)ε)

(
θj

δj

)α−2

, (2.10)

where c, c′ are positive constants (we have explicitly used the fact that, for every c1 > 1 and every
c2 > 0 there exists c3 > 0 such that L(x)/L(y) ≤ c1(x/y)c2 whenever x/y ≥ c3 [6, Th. 1.5.6]).
Therefore |R>

j /R<
j | → 0 as j → ∞ and for j sufficiently large we have

∑

n

K(n) exp(−δjn) sin(θjn) ≥ 1

2
sεΓ(1 − α)L(1/δj)

θj

δj
δα
j , (2.11)

and then also in this regime (2.3) holds.

The marginal case of α = 1 and
∑

n nK(n) = +∞ is treated as follows.

If γ ∈ [0,∞) for the step analogous to (2.4) we split the sum according to whether θjn ≤ ε or
θjn > ε. Summing by parts we obtain

N∑

n=1

nK(n) =
N−1∑

n=0

K(n) − NK(N)
N→∞∼

N∑

n=1

L(n)

n
=: L̂(N), (2.12)

where in the asymptotic limit we have used [6, Prop. 1.5.9a] that guarantees that L̂(·) is slowly
varying and that limn→∞ L̂(n)/L(n) = +∞. From this we directly obtain that the first term in
the splitting, i.e. the sum over θjn ≤ ε, is bounded below by a positive constant, depending on ε
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and γ (this constant can be chosen bounded away from zero for γ in any compact subset of [0,∞))
times θjL̂(1/δj). The rest instead is bounded, in absolute value, by a constant (independent of
γ) times θjL(1/θj), for j sufficiently large (just use | sin(θjn) exp(−δjn)| ≤ 1). Using once again

L̂(n) ≫ L(n) for large n, we obtain that
∑

n K(n) exp(−γjn) sin(θjn) > 0 for j sufficiently large.

If instead γ = +∞ we restart from (2.6) and, by proceeding like in (2.7) and (2.9), we obtain
that for j sufficiently large

∑

n

K(n) exp(−δjn) sin(θjn) ≥ 1

2
sεL̂(1/δj)

(
θj

δj

)
δj − 2

ε
exp (−(δj/θj)ε) L(1/θj)θj , (2.13)

which is positive for j sufficiently large and the case α = 1 and
∑

n nK(n) = ∞ is under control.

Let us now consider the case
∑

n nK(n) < ∞. In this case for every γ ∈ [0,∞] we observe that
limj→∞ exp(−δjn) sin(θjn)/θj = n and that | exp(−δjn) sin(θjn)/θj | ≤ n, so that by Dominated
Convergence we have

∑

n

K(n) exp(−δjn)
sin(θjn)

θj

j→∞−→
∑

n

nK(n), (2.14)

and therefore the left-hand side is positive for j sufficiently large. This concludes the proof of
Proposition 2.1.

The very last part of the previous proof (formula (2.14)), that is when
∑

n nK(n) < ∞, clearly
requires no regular variation assumption. More precisely we have proven the following general-
ization of Proposition 2.1:

Proposition 2.2. Assume that inter-arrival laws are of the form (1.6), with K(·) an aperiodic

discrete probability density such that
∑

n nK(n) < ∞. If the radius of convergence of K̂b(z) is
exp(b), then b0 > 0 and Rb = exp(b) for b ∈ (0, b0].

This of course immediately generalizes Theorem 1.1(1) (for what concerns Theorem 1.1(2), see
Remark 3.1).

3 Sharp estimates

Throughout this section K(·) satisfies (1.5), we assume b > 0 and we set ∇ub(n) := ub(n) −
ub(n − 1) for n = 0, 1, . . . (ub(−1) := 0). We also introduce the discrete probability density µb

on N ∪ {0} defined by
µb(n) := Kb(n)/mb, (3.1)

with mb :=
∑

n nKb(n) and Kb(n) :=
∑

j>n Kb(j). Let us observe that

mbµb(n) = Kb(n)
∞∑

j=1

K(n + j)

K(n)
exp(−bj)

n→∞∼ 1

exp(b) − 1
Kb(n), (3.2)
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and that this directly implies the properties
∑n

j=0 µb(j)µb(n − j)

µb(n)

n→∞∼ 2µ̂b(exp(b)) and
µb(n + 1)

µb(n)

n→∞∼ exp(−b). (3.3)

We point out also that from (1.2) we get

∇̂un(z) = φb (µ̂b(z)) , with φb(z) :=
1

mbz
, (3.4)

at least for |z| < 1, like for (1.3). Of course the domain of analyticity of φb(·) is C \ {0} and if
we observe that, by direct computation, we have

µ̂b(z) =
1 − K̂b(z)

mb(1 − z)
, (3.5)

one can then extend the validity of (3.4) to all values of z satisfying |z| ≤ exp(b) and |z| <

inf{|ζ| > 1 : K̂b(ζ) = 1}.

Proof of Theorem 1.1(2). Let us choose b < b0. We observe that the two properties in (3.3)
are the hypotheses (α) and (β) of [9, Theorem 1]. Hypothesis (γ) of the same theorem, that
is that µ̂b(z) converges at its radius of convergence (exp(b)), is verified too. Since b < b0,
{µ̂b(z) : |z| ≤ exp(b)} ⊂ C \ {0}, i.e. the range of the power series µ̂b(·) is a subset of the
analyticity domain of φb(·). Therefore [9, Theorem 1] yields

∇ub(n)
n→∞∼ φ′

b (µ̂b(exp(b))) µb(n) = − µb(n)

(µ̂b(exp(b)))2 mb

, (3.6)

and by (3.2) we have

∇ub(n)
n→∞∼ −c(b)(exp(b) − 1)

(c(b) − 1)2
K(n) exp(−bn). (3.7)

We conclude by observing that this yields

ub(n) = −
∑

j>n

∇ub(j)
n→∞∼ c(b)

(c(b) − 1)2
K(n) exp(−bn) =

Kb(n)

(c(b) − 1)2
, (3.8)

and the proof is complete.

Remark 3.1. The validity of the results in [9] go beyond the assumption (1.5), that, in fact,
has been used to verify (3.3). Since, as pointed out in Proposition 2.2, we do not make use of the
regularly varying character of K(·) in establishing b0 > 0 when

∑
n nK(n) < ∞, the results in

this section (and therefore Theorem 1.1(2)) can be generalized to the set-up of Proposition 2.2,
assuming in addition (3.3). The hypotheses (3.3) characterize, in a rather implicit way, a class
of distribution that goes under the name of discrete sub-exponential [6, App. 4]. Just to make
an example, Theorem 1.1 holds also for K(n) = L(n)nq exp(−nγ), with q ∈ R and γ ∈ (0, 1).
Whether sub-exponentiality could replace in general our hypotheses seems to be a delicate point
and in the literature there are some incorrect statements (for example we point out that [6,
Th. A.4], cited from [12], is not correct, as it is proven by the examples we work out in the next
section).
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4 Some examples and further considerations

Recall that Γ(z) :=
∫ ∞
0 tz−1 exp(−t) dt for ℜ(z) > 0, that Γ(·) can be extended as a meromorphic

function to C and that Γ(z + 1) = zΓ(z) for z /∈ {0,−1,−2, . . .} (therefore Γ(n) = (n − 1)! for
n ∈ N). Much of the content of this section is based on the fact that for β ∈ R \ {0,−1,−2, . . .}
and |x| < 1 we have

∞∑

n=0

Γ(β + n)

n!
xn = Γ(β)(1 − x)−β. (4.1)

This is just a matter of realizing that for n ≥ 1

dn

dxn
(1 − x)−β = β(β + 1) . . . (β + n − 1)(1 − x)−β−n, (4.2)

and the formula is the Taylor expansion in x = 0.

Since sign(Γ(β)) = (−1)⌈|β|⌉ for β < 0 (|β| /∈ N) the first terms of the series in (4.1) have
alternating signs, but for n sufficiently large the sign stabilizes and, by Stirling’s formula

Γ(x)
x→∞∼ exp(−x)xx−(1/2)

√
2π, (4.3)

one readily sees that Γ(n − α)/n!
n→∞∼ 1/n1+α. Therefore, with the help of (4.1) we can build

probability inter-arrival distributions with the type of decay we are interested in and for which
the generating function is explicit.

Remark 4.1. It is not difficult to see that one can differentiate, say j times, the expression in
(4.1) generating thus sequences which decay like (log n)j/n1+α and that, for sufficiently large n,
do not change sign. This provides examples involving slowly varying functions.

Since we are just developing examples and that generalizations are straightforward, we specialize
to the case of −β = α ∈ (0, 1).

4.1 The basic example

In this section we study the case of

K(n) :=
Γ(n − α)

−Γ(−α)n!

n→∞∼ n−1−α

−Γ(−α)
. (4.4)

Note that
∑∞

n=1 K(n) = 1 follows from (4.1), with β = −α, as well as, with reference to (1.6),
c(b) = 1/(1 − (1 − exp(−b))α) and

K̂b(z) =
1 − (1 − z exp(−b))α

1 − (1 − exp(−b))α
. (4.5)

In defining zα for α non integer, we choose the cut line {z ∈ R : z < 0}. With this choice

(1 − z exp(−b))α, and therefore K̂b(·), has a discontinuity on the line {z ∈ R : z > exp(b)}.
We observe that, for every b > 0, K̂b(z) = 1 for |z| ≤ exp(b) only if z = 1, therefore Theorem 1.1
holds with b0 = ∞.
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Remark 4.2. In the special case under consideration, but also in all the other cases considered
in this section, one can obtain and go beyond Theorem 1.1 by direct computations. In fact if
we set q(z) := (1 − z exp(−b))α we have for |q(z)| < |q(1)|

1

1 − K̂b(z)
=

1 − q(1)

q(z) − q(1)
= −1 − q(1)

q(1)

∞∑

j=0

(
q(z)

q(1)

)j

. (4.6)

Now we set

Rm(z) := ∆b(z) +
1 − q(1)

q(1)

m∑

j=1

(
q(z)

q(1)

)j

, (4.7)

and we note that (q(z))j = (1− z exp(−b))jα and therefore once again (4.1) provides the expan-
sion for (q(z))j if jα /∈ N and the n-th term in the power series (of (q(z))j) behaves, as n → ∞,
like c exp(−nb)n−1−jα, c 6= 0. Note that if jα ∈ N the arising expression is just a polynomial
and hence does not contribute to the asymptotic behavior of the series expansion.

Finally, the series expansion
∑

n r(m)(n)zn of Rm(·) can be controlled by observing that this
function is analytic in the centered ball of radius exp(b) and by using the formula

r(m)(n) =
1

2πi

∮
Rm(z)

zn+1
dz =

exp(−bn)

2π

∫ 2π

0
Rm (exp(b + iθ)) exp (−inθ) dθ, (4.8)

where the contour in the middle term is (say) |z| = r, for r ∈ (0, exp(β)), and the last term is
obtained by letting r ր exp(b), using the fact that Rm(exp(b + iθ)) is bounded. In fact, from
the explicit expression and by construction, one readily sees that Rm (exp(b + iθ)) is smooth
except at θ = 2πk, k ∈ Z, where it is C⌊(m+1)α⌋. By using the fact that n-th Fourier coefficient
of a Ck function is o(n−k), we see that r(m)(n) = exp(−bn)o(1/n⌊(m+1)α⌋).

The chain of considerations we have just made leads to an explicit expansion to all orders for
exp(bn)(ub(n) − ub(∞)) as a sum of terms of the form cj1,j2n

−j1−αj2 , for suitable (explicit) real
coefficients cj1,j2 (j1, j2 ∈ N).

4.2 Singularities and slower decay of correlations

From the basic example one can actually build a large number of exactly solvable cases that
display the more general phenomenology hinted by Theorem 1.1: in particular that, in general,
b0 < ∞.

For example, fix m ∈ N and define

K(n) :=

{
Γ(n − m − α)/ (−Γ(−α) (n − m)!) for n = m + 1, m + 2, . . .

0 for n = 1, 2, . . . , m.
(4.9)

Note that this is nothing but the previous choice of K(·) translated to the right by m steps.
Therefore

K̂b(z) = zm (1 − (1 − z exp(−b))α)

(1 − (1 − exp(−b))α)
. (4.10)

Once again the radius of convergence is exp(b), but this time, in general, it is no longer true

that one cannot find a solution z0 to K̂b(z0) = 1 in the annulus 1 < |z0| < exp(b).

525



Let us choose α = 1/2 and let us first look at the case of m = 1. One can directly verify that

z0 = −1

2

(
1 +

√
8 exp(b)

(
1 −

√
1 − exp(−b)

)
− 3

)
< −1, (4.11)

solves K̂b(z0) = 1, that it is the unique solution (except the trivial solution z0 = 1), and
|z0| < exp(b) for b > b0 with

b0 := log

(
3/2 +

√
2 −

√√
2 + 5/4

)
= 0.248399... (4.12)

So, if b > b0, since z0 is a (simple) pole singularity of ∆b(·) we can write

∆b(z) =
1

z0K ′
b(z0) (1 − (z/z0))

+ f(z), (4.13)

with f(·) a function which is analytic on the centered ball of radius exp(b). Therefore

ub(n) − ub(∞) =
1

z0K ′
b(z0)

z−n
0 + ε(n), (4.14)

and lim supn→∞(1/n) log |ε(n)| = −b.

Remark 4.3. Note that z0 = −1 − exp(−b)/4 + O(exp(−2b)) for b large, so that the rate of
convergence of ub(n) − u∞(n) becomes smaller and smaller as b becomes large. This is not a
general phenomenon, for example if one chooses δ ∈ (0, 1) and defines an inter-arrival distribution
taking value δ for n = 1 and value (1 − δ)K(n) for n ≥ 2, K(·) as in (4.9) with m = 1 and
α = 1/2, then for δ ∈ (0,

√
2 − 1) there exists z0, simple pole singularity of the corresponding

∆b(·) function, for b sufficiently large. But we have z0
b→∞∼ −δ(2 + δ) exp(b).

Going back to (4.9), for m larger than 3 one can no longer explicitly find all the solutions z to

K̂b(z) = 1. However we have the following:

Proposition 4.4. For every b > 0 and α ∈ (0, 1) one can find m ∈ N such that if K(·) is given

by (4.9) then there exists a solution z0 to K̂b(z0) = 1 with 1 < |z0| < exp(b).

Remark 4.5. In general, once the solutions to K̂b(·) = 1 of minimal absolute value (in the
annulus {z : 1 < |z| < exp(b)}) are known, it is straightforward to write the sharp asymptotic
behavior of ub(n) − ub(∞). For example if z0 is a complex solution, then also its conjugate is
a solution. If these have minimal absolute value among the solutions and if they are simple
solutions, for a suitable (and computable) real constants c1 and c2 (|c1| + |c2| > 0) we have

ub(n) − ub(∞)
n→∞∼ |z0|−n (c1 cos (n arg (z0)) + c2 sin (n arg (z0))) . (4.15)

An analogous formula is easily written in the general case.
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Proof of Proposition 4.4. In reality, we are going to do something rather cheap, but we are
actually proving more than what is stated: we are going to show that for every b > 0 and
every r ∈ (0, exp(b)) we can find an m such that there are m zeros of K̂b(·) − 1 in the annulus
{z : 1 < |z| < r}.
Given b > 0, since the only solution z to 1 − (1 − z exp(−b))α) = 0 is z = 0, then for every
r ∈ (1, exp(b)) we have

xr := inf
θ

∣∣∣∣
1 − (1 − r exp(−b + iθ))α)

1 − (1 − exp(−b))α)

∣∣∣∣ > 0. (4.16)

Therefore (recall (4.10)) |K̂b(z)| ≥ rmxr, if |z| = r. Therefore for m sufficiently large we have

|K̂b(z)| > 1 for |z| = r: let us fix such a couple (m, r). Rouché’s Theorem (e.g. [3, p. 153])
guarantees that if f and g are analytic in a simply connected domain containing the simple
closed curve γ and if |f(z) − g(z)| < |f(z)| for z ∈ γ, then f and g have the same number of

zeros enclosed by γ. Let us apply Rouché’s Theorem with f(z) := K̂b(z) and g(z) := 1 − K̂b(z)
and γ := {z : |z| = r}, so that |f(z) − g(z)| = 1 < |f(z)| for z ∈ γ, by the choice of m. But

K̂b(·) has precisely m + 1 zeros (they are all in 0) and therefore also 1 − K̂b(·) has m + 1 zeros

enclosed by γ. Of course 1− K̂b(·) has a zero in 1 and all the other zeros have absolute value in
(1, r).
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