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1 Introduction

Consider a one-dimensional diffusion process defined by
dX(t) =b(X(t))dt +dB(t), X(0) =a,

where b is a Lipschitz-continuous function and B(t) is a standard Brownian motion. The gener-

ator, G, of the above diffusion is
1 d

= Saz TN

G dx

and the putative invariant density is

po(z) = exp (2 / " bw) du> |

If pp € L' (R, dz) the boundary {—o00, 00} is inaccessible. We assume this in what follows. The
transition density

pi(x,y) = P(X(t) € dy| X (0) = x)/dy,

satisfies

ope(z,y) 0 [10pi(z,y)
o 87/ (28y - b(y)pt(x,y)> )

= (G;;pt) (xvy)’
ltlfgpt(w,y) = 0.(y),

G, being the L? adjoint of Gy, and 0 being the Dirac delta function. The density of the diffusion

p'(y) = / po(z)pe(z,y) dz

therefore satisfies

opt .
S = (Ge) (v).
Evidently,
. _ Ipoly)
(Gyp()) (y) - 07 ot - Oa

so po is the invariant density.

Crucial in what follows is the operator identity for any well-behaved f

Gf = (oo P Hpy*) 1.
or

G=- (p(?l/QHpé/Z)
and

G =~ (00, ).
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where H is the one dimensional Schrodinger operator with potential
V=306%+b),
1 d?

This follows because <H p(l]/ 2) = 0, i.e. p(l)/ % is the ground state of H. For convenience, we

will assume V € C%(R), V bounded below together with V", V polynomially bounded with
derivatives.

2 Excursion Theory

The map s — X(s) is continuous and so {s > 0: X(s) 2 a} is an open subset of R. Therefore,
{s > 0: X(s) =2 a} can be decomposed into a countable union of open intervals — d;‘gﬁﬁ a4
excursion intervals. Define

L*(t) = Leb{s € [0,t] : X(s) = a},
and the local time at a

L%(t) = lliﬁr)lh_lLeb{s €[0,t]: X(s) € (a—h/2,a+ h/2)}.

L%(t) has inverse v%(t), the time required to wait until L® equals ¢. It can be seen that y*(t) is
a stopping time with X (7%(t)) = a. Moreover, as is intuitively obvious,

Jumps in y*(t) = Excursions of X from a up to L equals t.

Example 1 Lévy [1954]

Lévy proved that for b = 0, for each A > 0,

E, exp(~ )77 (£)) = exp {—t JACEY dua<s>} ,

with Poisson-Lévy excursion measure

Vals,00) = <2> v 512 5> 0. (2.1)

T
Equating powers of A in the above, we conclude that
#(s,t)= Number of excursions of duration exceeding s up to L* equals ¢

is Poisson with
P(t(s,t) = N) = exp (—tvals, 00)) (tva[s, 00))™ /N1,

for N =0,1,2,..., and so the expected number of excursions of duration exceeding s per unit
local time at a is v,4[s,0), the Poisson-Lévy excursion measure.
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Example 2 Hawkes and Truman [1991]

For the Ornstein-Uhlenbeck process b(x) = —kx, where k is a positive constant, the Hamiltonian
is just
1/ d
H=-(—5+ka2?—k
2 ( az * )

and po(z) = Cexp (—kz?). This leads to

Eg exp(—Ay*(t)) = exp {—t /000(1 —e ) dl/o(s)} ;A >0,

with

vo[s, 00) = Y5 (e — 1) . (2.2)
We discuss generalisations of the above to upward and downward excursions. Note that dgg;";ﬁ d

excursions can only be affected by values of b(z) for x = a. Therefore it is natural to define the

symmetrised potential
Ve {V(w), x> a,

VRV (2 — 1), < a.

with Vinm being defined in a similar manner. In an analogous manner we also define
1 d?
+ vE
H™ = T 9 dr2 + Voymm (2)-

We now have the result due to Truman and Williams [1991]

Proposition 1. Modulo the above assumptions

Eq exp (—AL* (14(1))) = exp {—t/ooo(l ey duff(s)}

with
1/2

= i
yZa 1/2aax

exp (—tHi) (z,y).

r=a

Remarks

1. L* (y%(t)) are independent with LT (v%(t)) + L™ (y*(t)) = vy*(t).

: + /. a _ upward . a
2. Jumps in L™ (7%(t)) = 4o excursions from a up to L® equals t.
3. vi[s,o0) is the expected number of "P¥4 = excursions of duration exceeding s per unit
a 1° downward

local time at a.
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Proof. (Outline) The proof uses the result of Lévy [1954]

E. exp(—)\’ya(t)) = exXp (_t/ﬁ)\(aa a)) )

where px(z,y) = [5° e ps(z,y) ds and p,(-,-) is the transition density.
We can deduce that

o0
Py (a,a) = )\/ LO(QC)IEG_)‘T’“(“) dx,
—00 pO(a)
where 7,(a) = inf{s > 0 : X(s) = a|X(0) = z}. Here the point is that for any point a
intermediate to x and y

pi(e,4) = /O " B(rala) € du)pi_u(a,y).

Since the right hand side is a convolutional product, taking Laplace transforms and letting y — a
gives
Ee () = 5y (2,a)/pr(a, a).

Now multiply both sides by po(z) and integrate with respect to x (using the fact that pg is the
invariant density) to get the desired result for ﬁ;l. Some elementary computation then leads to
the result in Proposition [Tl

3 The Poisson-Lévy Excursion Measure for Small Noise
We will now consider the dgggiﬁ 4 excursions from the equilibrium point 0 for the one-
dimensional time-homogeneous diffusion process with small noise, X¢(t), where

dXE(t) = b(XE(t)) dt + Ve dB(t).

Introducing the small noise term into the Truman-Williams Law seen in the previous section,
we get:

upward

Proposition 2. The expected number of ;. - .

per unit local time at 0 is given by

excursions from O of duration exceeding s,

Sl

0 sH*
s = [ AU LI e (—) (e, v)dy.
y20 P (O) =0

where pg is the invariant density and HT is the symmetrized Hamiltonian for
V=3 +el).

Ol

One should note the form of V', in particular the presence of € as a multiplier of &’. This rather
specific dependence originates from the Shrodinger operator mentioned earlier. Consequently,
we are unable to resort to the usual methods for resolving such a dependence.

We now give a result due to Davies and Truman Davies and Truman [1982].
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Proposition 3. Let Xmin(+) be the minimising path for the classical action

A(z) =271 ( s)ds + fo V(2 )ds) with z(0) = x, z(t) = y.

Set A(Xmin) = A(:U,y, t). Then for the self-adjoint quantum mechanical Hamiltonian H(e) =
[—% A—H/;] , where V. = Z(b* + eb/) € C®(R) and is conver (where V. = Vo +eVi € C4,

bounded below with Vi’ > —|f]), then for each finite time t > 0 ( fort < 7T/|ﬂ’%)

()
= (2me) "7 exp (_ A(:v;y, t)> { (1 +eK + 0(62))} .

K is a rather complicated expression with many terms involving sums and products of b (and
its derivatives), V' (and its dem’vatz’ves ) and the Feynman-Green function G(7,0) of the Sturm-
Liouville differential opemtor L — V" (Xmin (7)) with zero boundary conditions i.e. G(0,7) =
G(t,7) =0, and discontinuity of derivative across T = o of 1.

02 Az, y,t) |2
0x0y

For a proof of this result see Davies and Truman [1982].
Henceforth, for simplicity we assume that b?(z) is an even function of x so that v = v .

Theorem 1. Using the notation and assumptions of Proposition |3, the leading term of the
Poisson-Lévy excursion measure, for excursions away from the position of stable equilibrium 0,
where b(0) = 0, and b'(0) < 0 is given by

Viltoo) ~ (2me) /O “ exp{ v (‘72’4;2 0,%) b’(O)) - A(O’O’t)}

€
0%A
0xdy

(). oo )

with the action A(x,y,t) = ; 02 ds+f0 (2(s)) ds, where V = 1b?.

Proof. As usual, the classical path X,,;,,(t) = X (z,y,t) satisfies, correct to first order in

For Vp = $b? (assumed to be convex with V5(0) = 0, V/(0) = 0, and V"(0) > 0, for example
Vol(x) = %xQ, b(r) = —x),and V] = 1 Y, then to leading order X, = Vi (Xomin)-

The contribution to the action A(z,y,t) = 5 fo 32 ds+ fo ( ) ds from Vi is to leading order

5/0tV1(Xmm(s))ds - E/tb’( Xomin(s)) ds



introducing | - | for convenience. Therefore, from Proposition 3,

exp <—tH€(E)> (z,y) ~ (2m€)"2 exp <_A(:v,y,t)>

3

1
2

P A(z,y,1)
0xdy

)

and so, the contribution to term exp (—%) from Vj is

1 [t
exp (2/ ‘b'(Xmm(s))’ ds> , the Zero Point Energy term.
0

Therefore, we have using Proposition 2| the leading order term in the Poisson-Lévy excursion
measure, for upward excursions from stable equilibrium point 0 given by

vy [t, 00)
1 [° 1 /Y
~ (27‘(’6)_2/ dy exp </ b(u)du)
0 €Jo
1
0 1 [t A(z,y,t)\ | 924 |2
X € 635';50 [exp <2/0 |V (Xmin(s))] ds) exp <— . ) 900y

Hence, for small €, the leading order term is

viltoo) ~ (2me) 3 /Ooo dy exp C (/Oy b(u)du — A(O,y,t))) (3.1)

241 () o [ erirt )

0xdy
Comparing this to the Laplace Integral

+ O(e).
=0

b
I(¢) :/ =& 0(z) dz,

where the main contribution comes from the asymptotic behaviour at points x; € [a,b] with

¢'(z;) = 0, we can see that the main contribution to the integral in equation [3.1 comes from

those y(t,0) satisfying

0A(0,y,t)
dy

If we expand ¢(y) = [¢ b(u)du — A(0,y,t) in a Taylor series about y(t,z) = 0 we get

bly) =

By) = 6(0)+ (y— y(t.2)P(0) + 3y = y(t, ) (0) + -
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Hence,

ee 1
vy [s,00) ~ (27&5)_% / dy exp {5 < — A(0,0,s)
0

+ %(y —y(s, x))Q(f; on ) du = A 8)} >y—y(s,x)—0}

1
1 [t , 0%A |2 0A
X {(exp <2/0 |b (Xmm(s))‘ dS) axay 0 (_61‘>m:0> } )
giving,
vy [s, 00)
_1 ee _A(070’ 5) aQA(Ovyv S) / 2
~ (2me) "2 / dy exp{ 5 26[ 9y° b'(y) y:Oy
0%A 0A
{(eXp< J; WCkmnton] a5 <axay> L5 0> }
and so the result follows. ]

4 Poisson-Lévy Excursion Measure — leading order behaviour

We have seen in the previous section that in order to calculate the Poisson-Lévy excursion
measure v [t, 00) for a general process X (t) = X[z, y, t], we require expressions for the following
derivatives of the action A(x,y,t).

0A(z,y,t) where o4
Ox 2—0 Po= "5z
0?A |2 0X(t) 0?A
h = h leck i i
900y . where 0 ( o 6y) (the Van Vleck identity),
0?A 0A
— h = = .
G| e )= GG

These expressions are evaluated in the following propositions :-
Proposition 4. For p(0) = b(0) =0, [b'(0)] # 0,

0A b'(0)] y

——(0,y,t ~ 0.
oz (091 smh (o)t “ YT

Proof.  Observe that p,(y,t) = —%

t, satisfies
/y du
t= T
" (B, t) + B2(w) — 12(@))

= initial momentum at x needed to reach y in time
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Therefore, po(y,t) satisfies

t:/j( du - (4.1)

Changing integration variable u = y v,

y+y2

/1 dv
= 1
0 (p%(zé,t) b2(yv)> 2

since to first order V = %bQ and V(0) = 0 by assumption,

— Do as y—0
Y
Therefore,
1 dv
t= / T» asy — 0.
O (05 0.0 +0207(0))
Letting v = 1;@((8)) ’ sinh w we get
1 b'(0)
t= sinh~* , 4.2
pon " v 2
giving, for v'(0) # 0,
b'(0)]
' (0.1)] = |7 4.
O

Note that for b'(0) = 0, we get py(0,¢t) = £1/t and so equation [4.2 has the correct limiting
behaviour.

Proposition 5. For |b'(0)| # 0,

%A sinh [b/(0)[¢)

Proof. Using the fact that py(y) = —0A/Jx and equation we quickly get

=) (ot 000 [
Poly u)?)?

Again, changing the variable of integration u = yv, we get

— % 1 v
A ) [t
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Now, following the previous argument, as y — 0,

- / / 2 | /(M2 3 ! dv
— 5h(0.0) (0.7 + ¥(0)* [ -
i OO "l or rvor e
Letting v = ‘Zé,)((g)) ’ sinh w in the above equation gives
1 . _ /
-1 (p6(0)2 4 b/(0)2)§ sinh~! ';’6(—(%))‘ 1
/ - / / 2 2 dw
Po(y) |t/ (0)] p5(0) 0 cosh® w
sinh |0/ (0)|¢
LA
using
b'(0)|
0(0)] = | :
Pl = Gk o)l
Proposition 6. For b'(0) <0, we have
9%2A(0,0,t
b(0) - gyz) — _Y(0)[(1 + coth |(0)] ).
% is the momentum at y given that y is reached from x in time t.)
Proof. From
1
PA_D oy ) +1*(y))”
0, b
/ 9*A / pgéy) - po(EJy)) v (y)
by)— 55 = by - T
Iy (1 N ( b(y) \?) 2
Po(y)
b/(O) /
P6(0) + 5r;t'(0)
— V(0) - ° Po(0 as y— 0,

WO ()2 sinb b Ot

i 5'(0

_ ) v 0)
(1 + sinh? ]b’(O)\t) 2

cosh [b/(0) [t

sink |0/(0)]¢

— V(0) - ()
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Therefore

— —[6'(0)] (1 + coth ['(0)]t) ,

and result follows. O

We now come to our main result for excursions from an equilibrium point 0.

Theorem 2. For the diffusion X with small noise satisfying
dX®(t) = b(X°(t)) dt + Ve dB(t),

denote the Poisson-Lévy measure for excursions from 0 by I/(:)t.

Assuming b is continuous, b having right and left derivatives at 0, with b(0%) < 0 and b(0) = 0,
then if VOjE = %62 satisfies

" T
‘/O:t 2_|/8:t|7 fOT’ tS 1
B+

1
3 _1
y()i[s,oo) ~ (Eki> (e%it— 1) 2
T

with ky = |b'(0%)]. When |V (0%)| = 0 the limiting behaviour is correct and yields

1
viE[t, 00) ~ (%)2 2,

Proof. Using Theorem|1, and the expressions obtained in Propositions|4,[5/and 6} for the deriva-
tives of the action as y — 0, we get as the leading order term for excursions from the stable
equilibrium position 0, (dropping + again for convenience),

()

X /000 dy y exp ( — ggb'(O)(l + coth ]b’(O)\t))

vy [, 00)

1 slb(0)]

~ (2me)-b e sinh [b'(0) ¢

/(0]

_ 1 tb(0)]

= (2me)"ze 2 |0/(0)]2 (sinh [b'(0)|t) "= (cosh|b’(0)tisinh|b/(0)’t>

_1
Lt o) _ 6—tb'<0)|)> :
2

—em bk ok e 5 (
O

These results correspond to the Poisson-Lévy excursion measures for the examples seen earlier.
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5 Poisson-Lévy Excursion Measure — higher order behaviour

In calculating higher order terms in the Poisson-Lévy excursion measure V(T [s,00), we obtain
the slurprising result that the next order term is identically zero. We now write the leading term

as €2 V—f.

2
Once again we must emphasise the particular dependence of V; on € and how this requires us
to follow a rather complicated route in determining the higher order dependencies on . This
arises due to our study originating from stochastic mechanics where the Schrodinger equation
and operator hold sway.

Theorem 3. For the diffusion process with small noise, assuming b(x) < 0 for all x, the
Poisson-Lévy excursion measure is given by

1
v 2ezvf +0(e
2
1. e. the second order term is identically zero.

Proof - First part. For the derivation of the next order term of the Poisson- Levy excursion
measure v [s,00) about x = 0, we must include the second order term in the expression for

tH(e)

£

) (x,y) given in Proposition 3. Hence, from Propositions 2 and [3

ol ()

1 [t %A
X exp (2/0 |b/(Xmm(5))|ds> 'axay

where K, recall, is a very complicated expression involving the Feynman-Green function.

kernel exp (—

ilsoe) ~ (2ne)h [ L
y<

1
2

[1+eK]| dy,
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Therefore, up to order ¢, we have assuming - 54 #0

vy [s, 00)

~ Gneyt [ " dy exp (1 /Oy b(u)du> ;
ARl ) 5
(oo (A8 (5 [t o

-

0%A
0xdy

1 58
2 8x6yz08

1
10 , A 0%A |2 A(O y,t (
3% 0/0 b (Xmin(s)) ds 920y xzoexp( ) ( /|b min(S))| ds
824 |2 A(0,y,1) 1t DA
gy, (0 o (5 [ Wtmntonlas) (-57) |

We now use the result Olver [1974].

Proposition 7.

/OOO exp <—f(6y)> 9(y) dy

00 f y 82
— [T e (<) b+ cn) + Gy )+ (5.2
/ 7 I
Bl r3y 3 (% 3% Lo 1
I'(1l)e 5 T +F(2)€2 1 34ﬂ90 - %+F(2)52 5 %—i- . (5.3)
T )
2 2
Proof. For a proof of this standard result on asymptotic approximations see Olver [1974] . [

Comparing equation with our expression for 1 [s,00) to second order in equation we

get
( [ wexnas) (y)}

) = re+[PAOBD o (11 )

2 T ! 2 T T
x{;fi/ O P e e R e ’y”f)} :

82A(:c y,t
0xdy

go(y) = (2me) 2 {

and

[

oxdy oz oxdy
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Since we know for z = 0

%‘ z=0 = —po(y), so _?9% 20 =po(y) (> 0), and g;‘%"xzo — _Bpg?gy)7
giving
9*A _ Opo(y) (> 0) ﬂ %A B 82p0(y)
axay N ay ’ or axay - axay 5

we can write the expressions for go(y) and g;(y) as

go<y>=<2m>%{(ap§ ) (5 [ wexenlas) o <y>>} ,

=0
nly) = (o)} (apgf)fexp(l [ wecas)
u s (50) () -]

If we now expand each term in the expression for go(y) in a Taylor series we get

( [ wosspias

+"'>(p0(0)+yp6(0)+"')}-

and

-
I\J\H

go(y) = (27r8)_2{ (p6(0) + ypp(0) + -

1
/ /(X (s))] ds

Therefore, we can now see that in order to obtain the first order expressions for go(y) and g1 (y),
the following terms need to be evaluated :

y=0

y=0

0xdy

/|b’ )| ds (%/ V(X (s))| ds 8y/ V(X (s)| ds.

Let us be very thankful that an evaluation of K is not needed in this rather complicated com-
putation.

(3190( y) > - 02po(y) 8*po(y)

Each of these terms is evaluated in the following Propositions. Recall that we have already seen
in equation [4.3
Ipoly) _  [V(0)]

/ _
(Ol = =5~ = S )
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Proposition 8. For pp(0) =b(0) =0, asy — 0,

0*po(y) _ b"(0) (cosh [p'(0)[t — 1)*
oy? sinh® |b/(0) |t ' (5:4)

2
Proof. In order to calculate Bgizéy) we return to the identity,

Y du
t= -
/0 (P5(y) + b2 (u))?

Differentiating the equation above w.r.t. y, and then using the change of variable u = yv, gives
dropping some inessential modulus signs for ease of presentation

po0) (3(0) + 220)* [ ——— (5.5)
0 (p2(y) + b2(u))}

po(y) (<p0(9)>2+ (b(y)>2> /1 dv 5
y Y y O ()2, (b)) 2)*
1o (<Z'U( ’ ) +< ye ) 2)

— pu(0) (pp(0)* +'(0)%)> /0 (py(0)

3 as y - 05
2 + b’(0)2 02)5

using the same argument as seen in Proposition 4|

Expanding the r.h.s. of equation[5.5 in a Taylor Series, using for simplicity the notation p = py(0)
and b = b(0), gives

(v + 50" +-) <(p’+‘gp”+~->2+(b’+'§l>”+...>2>é
x/l dv
’ ( "')2+(b’+%b”+...)2vz>

1 Y, L
3 +b'b 2
—>(p/+g2/p//+'”><p/2+b/2)2<1+ypp >

3
1 _3 I~/ AN/} —3
b'b 2
x/ dv (p'2+b'21)2) 2(1—i—ypp + Y >
0

Njw

:<p'+%p”+-~) (p’2+b'2)é % P YY"

+ =+
(p’2+b’2)§
1 _3 W/ 1101,.3
3 b'b
x/ o (p/2+b/2v2) POy i A I
0

(" + b’sz)%
zero order term + f.y + higher order terms(y2 )
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The zero order term is

3

1 _
P (]9/2 + b/Z)% / dv (p/2 + v v2) 2.
0

Now the integral term in the equation above can be written as

Using the change of variable v =

1
v?

:b/

[ ][9]

1 1 dv
b? 0 2 )
(7 +2%)

% sinhw in the equation above gives
sinh—1] 2 v ’ cosh w
dw 3
0 (pfz + L b’2 sinh2 w> ?
1 /smh1 b—l, 1 1 1
w = .
»* Jo cosh?w  |p/|> cosh|b/(0)]¢.

Therefore, the zero order term is (because of equation [4.3)

;o2 12\ 1 o
P +b)z - B cosh (O

1 1 1

p

The coefficient of y is given by

/)

11 1 1 _3 by 1 _
f= % (p’z + b’Q) 2 / dv (p’2 + b’2v2> g i PP toy - / dv (p'2 + b'21)2>
0 2 Jo

2 +b°)?
3 1 1 / 1" b/b// 3
_2p/(p/2+b/2)2/d %
0 (p' Y 02)2
Therefore, we have that
ap 1 Y / /
e — — /(1 — ).
oy = vt dwgpfro o pUTwio)
Now, by letting |p| = —' giving a = —sinh |b/(0)[t, we can write
/ /! b/b// _
. +%+ ST

P+ a2t

/1
1) pp 2 1
(14 a®)2 +

b/b// B 2+ 3a2
P 3a2 3at(1+ az)% 7
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which simplifies to

// Z //
pp o P lpmdbt 3,02 0 L
p s 2 T2 ara 2Y B3T30+a
3 )y 2(1+a%)2 2+ 3d2
— —(-a — :
2 3at 3a*(1 + a?)
Hence, from equation 5.6
v P N 1p"—abt” P’ N 3ab” [ 2(1+ aQ)% 2+ 3a®
2 2(1+a?) 2(1 + a?) 2 3at 3at(1+a?) |’
giving
1
Y ar paeadt 14l
2 2(1+a? a3 a3(1 + a?)
Now since a = —;Z—:l‘ and |p/| = Sinfﬁ%, and again using the obvious notation
s =sinh [b'(0)|t and ¢ = cosh [b'(0)|t,
we can write the equation above as
Y s c 24382
0 = b <_02+253 s3¢?
/" 4 2
" s 24 3s
= p + = (—02 + 2¢c — 2 >
_ ,,+b7” (=22 41) 28 243(P - 1)
Prs c? c? c?
Y = 04 ) 03 02
- rtg c?
Hence, we get the result
"(0) = b"(0) (cosh ¥/ (0) [t — 1)°
0 - .

Proposition 9. Asy — 0,

32290

sinh? |/ (0)|¢

0xdy sinh? |b/(0)|¢

Proof. We begin with
du

_ V'(0) (cosh ['(0)]¢ — 1)* o

- (v2(z,y)

Differentiating both sides w.r.t. x gives,

pE — b(z)

+02(u) — B2(x))7

ab()
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Therefore, as x — 0

1 dp

] T Var

Hence,
dp

Ox =0

+ 0% (u ))_3/2 du’

fo (po

(5.7)

If we consider the quotient term on the r.h.s. of equation (5.7, with a change of variable u = yv

and again letting y — 0, we get

r.h.s. =

(0) Jg' (v

Expanding the denominator of equation [5.7 in a Taylor
P’ (0) # 0], using the same notation as in the previous Proposition

0) + b (0)v?)

(' +yp”+

/I

1
)?
/0 ((p/+%p//+,,.)2_|_

= +ypp" +-

1
1
= +yp "+ )/ —
0 (/2+b’202)§

Therefore,

ox

where f is the coefficient of the y term as shown below
817)_1 /2/1 dv / ///1
= =0 | s ty\PY |
<8x =0 0 ( /2 + b? 212)% 0 (

3 o+
o *p ﬁdv
2 0 (p* +V*0v2)2

Inverting this equation gives

op
ox

//IJ‘0

1
)/ 2 2
0 (p” +b* 02+ y(

p/ p// + 1)3 b b”) +

2V T 107 ?)

6 —1
<p> = zero order term + fy+---,

L —1
B ,2/ dv 1
20 (p o (b2 + b v2)% 4
/2

B / //+b/b// 3 d
’2+b’2 2)%

2
p T2 o3
fO (p’2+ N 3
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Now since

op(z,y)|  _ Op(x,0) y Pp,0)|
or |, or |, 0x0y |,_,
Comparing y-terms yields
1ol dv 3, /2 p' p"’+b' b’ 3
P g g o B s dv
9%p(x,0) O (raprer)? ] e
8$8y =0 p/2 1 dv 2
O (2112 02)}
i - _|¥
Letting a = o
L// 1 dv _ §i / //+b/ b 3
82]) o P’ f[) (14+a? vQ)% 2p° f() (14+a2 v2)g dv
00y | ,_q f 2
0 1+a2v2 g
1p’ 1 16y (1+a2)2 160 1

29 (1+a?) 2 PP a? *3 p? a?(1+a?)
Now, substituting for p’ and p” gives the result.

Remark. A by product of the above is

Ipo(y)

i —p; cosh |V (0)|t.

Proposition 10. As y — 0,

/0 1V (Xmin(5))] ds — t[0/(0)]

with Xpin satisfying

Xmm(s) = b(Xmin(8)V (Xinin(s))  and Xpmin(0) = 2, Xpnin(t) = v.

Proof. For u = Xpin(s), du = Xmm(s) ds, and considering

/ IV (Xmin(s))] ds
0

s |b’(Xmm(s))|‘; + /0 SH (Xomin(5)) Xonin (5) ds
— )+ [ s (wdu

—_— u b (u)
Hly |+/d/d 2(z,y) + b2(v) — b2(z))?

since,

Y du
t(u) = T
() /w (P*(z,y) +0%(u) — b*(z))?

Therefore, the integral term on the r.h.s. of equation[5.8 — 0 as y — 0, and so the result

follows (recall y > z > 0).
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Proposition 11.

52| WCmnelds — 10)3400) 2

=0
~ b"(0) cosh |b(0)]t —1
= WO smhpopr 0 ® YT (5:9)

Proof. Using equations/5.7 and[5.8] a calculation along the lines of the proof of Theorem 4] using
integration by parts, yields

3 ) u d
/ ¥ i) ds = [ m% / vy
—o 70 0 —0 70 (p§(y) +b%(v))>
— =b"(0) pj, / du/ - as y—0
/2 b,2 O) )§
and result follows. O

Proposition 12.

1
/|b’ Nds — "0 2/ du
Ay 0 0 b’2 (0)v2)

b"(0) cosh [/ (0)|t — 1
|b/(0)] sinh|V/(0)|t

(SIS

as y— 0. (5.10)

Proof. The proof of this is similar to that of Proposition [11} O

Proof - Second part. Therefore, by substituting equations 4.3, (5.4, 5.9,(5.10 and Proposition
9linto the expressions obtained for go(y) and ¢1(y), and using Proposition [7, we can complete
the proof of Theorem [3.

(o) ~ (2r9) 5 (6 + 9"y +) o (KON

1 "(0) cosh|b/(0)|t — 1 , v,
2V W(0) smhp O ')(p(0)+yp(0)+2p O)+), s g0

tb/ /l 5
— re) bt e (150 (14 2y )
+pl 2_ b"(0) cosh ['(0)t =1 o  "(0)p" cosh|V'(0)[t —1 4
Y 2[/(0)] sinh|V(0)t 7 4Y(0)]p/ sinh|V(0)[t
t

_ (m)—é(p')%eXP( |b’(0)|> { R (2p" b'(0) cosh|b’(0)|t—1> .

2 2 \"p ~ W(0)] sinh |V (0)[t

_l’_

D=

T2W(0)] sinh|P(0)t | 2]Y(0)] (sinh|b/(0)[f)2

"(0) cosh [b - i cosh [b/ —1)?
) <1b(0) LY ()t —1  1b"(0) (cosh |o'(0)]¢ — 1) (,._)+...>-

1302



Therefore,

D=
njw

)

9h(0) = (2m2)

o (t\b’2(0)|> |

%«n=<zmr%uﬂiem(”ﬂf”)(gﬂ' ”“mcwhw“”“—1>.

and

p' p'(0)]  sinh [b/(0)]¢

Now, in our case, the expression for f(y) in Proposition (7] is

ﬂsz&%w—A%wm%

SO

0
F(0) = A(0,0,1) — /0 b(u) du = 0.
Also, since p(t) = /p3(y) + b*(y),

_9A(0,y,t) D

7o) = 2G0T = pole) = o) = o) + G0) ~ 000,

'(0) = \/p5(0) +b2(0) — b(0) =0,

since pp(0) = 0, (the momentum required to go from z =0 to y = 0).

Now, f"(y) = (%p(o, y,t) — b'(y), so differentiating p(t) = \/pé(y) + b%(y) twice with respect to
y, and using the fact that b(0) = 0 and p(¢t) — 0 as y — 0, we get

d 2 o2
{(20)" o Z20)

= o)’ +poW)po(y) + V(W) + by ' (y).  (5.11)

=0
Asy — 0,
Apo(t)\”
(O~ 02 + v
since po(0) = b(0) = 0, and po(t) 825%;2('5) — 0, as y — 0. Hence,
2
(TOY ] = or+vor
y =0
(t'(0))? 12
IO
1 + sinh? \b'(0)|t>
= (¥'(0))? (
(') sinh? |¥/(0)|¢
= |¥'(0)]? coth? |/ (0) ¢
Therefore,

"(y) = V' (0) coth [V'(0)[t = ¥'(0) = [/(0)| (coth [V'(0)[¢ + 1),
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since we are dealing with b(x) < 0.

Similarly,
0%p
m _ 0.u.t) — b ().
17w =55 Y, t) =07 (y)

Differentiating equation |5.11 again w.r.t. y gives,

= 3ph() Pily) + poy) " ()

{83p(t) (1) +3 Ip(t) 8219@)}

o3 oy 0y?

=0
+ 3V ()b (y) +b(y) " ().

And again, since po(0) = b(0) =0, and po(t) — 0 as y — 0, we get

{ Apo(t) 8*po(t) }
Oy 0y?

= p6(0) p6(0) + 5'(0) "(0),
y=0

giving, after a little calculation

{8%0@) } | _ 2b(0) p4(0) + ' (0)[ b (0)
2 b/(0)[ coth [V/(0)[¢

Therefore, as y — 0,
f///(y) _ P&pg +['(0)[6"(0) - b//(o)
|6/(0)| coth |b(0)]¢
/ 1)2 : /
b (0) ( (cosh [/ (0)]t — 1) sinh [b'(0)[t 1> .

cosh |/ (0)[¢t(sinh [/ (0)[t)2  cosh|V/(0)]t

Finally, we conclude the proof of Theorem [3 by substituting into equation to get

vy [t, 00) = /OOO dy exp <i /Oy b(u) du — A(O,y,t)) (g0(y) +eg1(y) +---)dy

(21e) "% (1) % exp <t|b/2(0)|> fi

T af(@re)z L) (204  b"(0) cosh|b(0)]t — 1
! \/2f”5{ o0 e (N5 (B - o s )

a

1,8 t|b'(0 1
- (2ne 0 e (15) 1

=\ fgmetem )] e (-5
(

_107(0) cosh [p'(0)]t — 1 b"(0) (cosh |b'(0)[t — 1)?
< (ol )

~

Do ™

m“”

\
o
[~

|

1
sinh [0'(0)[t ' 2[6/(0)] (sinh [b/(0)[¢)2
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Substituting for p’ and p” eventually gives, using an obvious shorthand notation

o (21)

o on (2 (zf,,)%{r"w;;;g SR

2
oV ((e=1)2 =5t ACERY) N V' (c—1)2
4 bes?(c+ s) b(c+s) 2p'b's 2p'b 52
0

N . <t!b'2( )‘) fl” +e7 (2me) 7 (p)7 exp <t|b’2(0)|>

" ([ b"(0) c—l_(c—1)2+ 1 c—1_2(c—1)2

21" 2|0/(0)] s s? L+ \ 82 s3
N 1 <(c —1)2 s >

sarg e
t|o'(0 1

= 5(27&6)_% (p')% exp < b( )‘> —

t|b'(0 1 b (0
o () L (O[]

2 (f7)2 2|b'(0)]

A tedious calculation shows that the terms within the { . } cancel leaving the result,

exp <t|b2(0)|> fl” + O(g%)7

= (5|b,(0)|>é (62|b’(0)|t _ 1)‘% " 0(5%).

NI

vy [t,00) ~ e(2me)”

(NI

N
[NIE

N|=

+

(»")

DN ™

[SIY

vy [t,00) = & (2me) 2 (p})

™
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