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1 Introduction

In the seminal paper [RS05], Rohde and Schramm were able to prove that the Hausdorff di-
mension of an SLE(κ) curve is almost surely less than or equal to min(1 + κ/8, 2). The scaling
properties of SLE immediately imply that the Hausdorff dimension of the curve must almost
surely be a constant, and they conjectured that their bound was in fact sharp. In general though,
proving a sharp lower bound on the dimension of a random set is a difficult task. In [Law99],
Lawler describes a widely applicable and commonly used method for doing so. The required
ingredient is a very precise estimate on the probability of two balls both intersecting the random
set. Often this is referred to as a second moment method since it can be used to get bounds on
the variance of the number of balls (of a certain radius) needed to cover the set. The second
moment estimate is difficult as it has to precisely describe how the probability decays as the
radius of the balls shrink to zero, and as the balls move closer and farther apart. In the case of
the SLE curve, Beffara was able to establish the necessary second moment estimates in [Bef07].
Lawler [Law07] has recently announced a new proof of the lower bound by using a modified ver-
sion of the second moment method that does not explicitly require an estimate on the two-ball
hitting probability.

In this paper we prove a result on the almost sure Hausdorff dimension of another random
set arising from the Schramm-Loewner Evolution, namely the set of points at which the curve
intersects the real line. Let γ be a chordal SLE(κ) curve from zero to infinity in the upper half
plane H of C. The interaction of this curve with the real line depends very strongly on the
well-known phase transitions of SLE. In the case 0 ≤ κ ≤ 4 the curve is almost surely simple
and intersects R only at zero. For κ ≥ 8 the curve is space-filling and so γ[0,∞) ∩ R = R.
For the purposes of this paper the most interesting range is 4 < κ < 8, in which the curve
intersects R on a random Cantor-like set of Hausdorff dimension less than 1. The fractal nature
of γ[0,∞)∩ R should not be surprising. When the curve does hit the real line it tends to linger
for a while and hit other real points before wandering off into the upper half plane again, which
gives the set of hit points enough irregularity to have a fractional dimension. The main result
of this paper is the following:

Theorem 1.1. For 4 < κ < 8, the Hausdorff dimension of the set γ[0,∞) ∩ R is almost surely
2 − 8/κ.

It is worth noting that the dimension in Theorem 1.1 is the unique affine function of 1/κ that
interpolates between the already known dimension values of 0 for κ ≤ 4, and 1 for κ ≥ 8.
In contrast, the Hausdorff dimension of the SLE(κ) curve itself is an affine function of κ for
0 ≤ κ ≤ 8.

We will prove Theorem 1.1 using the second moment method described in [Law99]. The asymp-
totics of certain hitting probabilities, already well established in a number of papers (see Section
2), give the upper bound on the dimension. New results of this paper, which establish the
asymptotics of the SLE curve hitting two disjoint small intervals on the real line, give the lower
bound.

An alternative (and independently obtained) proof of Theorem 1.1 was announced by Schramm
and Zhou in [SZ07]. The main differences between our work and theirs are in the details and
methods of proof, but there are two differences in the results. One one hand, Schramm and Zhou
do not obtain explicit bounds on the probability that the SLE path hits two disjoint intervals (as
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we do here). Rather, instead of working with γ[0,∞)∩R directly, they use an explicit martingale
to construct a measure (a so-called Frostman measure) on a particular subset of γ[0,∞) ∩ R,
which allows them to bound the Hausdorff dimension of both sets from below.

On the other hand, [SZ07] contains a variant of the Hausdorff dimension lower bound argument
that applies in the range κ ≤ 4 (which we do not consider). To describe the latter result, suppose
that κ ≤ 4 and let Bǫ[a, b] denote the ǫ-neighbourhood of a fixed interval [a, b] (with 0 < a < b).
If one covers this interval with ǫ−1 balls with radius of order ǫ, then a first moment estimate
(similar to the one in this paper for κ > 4, or the one in Beffara’s work [Bef07]) can be used to
show that the expected number of these balls that an SLE(κ) curve hits decays like ǫ8/κ−2 as
ǫ ↓ 0. One would then expect a second moment estimate to show that the probability that the
SLE(κ) curve hits Bǫ[a, b] at all decays like the same power of ǫ. Schramm and Zhou do not
make this point explicitly, but they use a related analysis to determine when the intersection of
the SLE(κ) curve with the graph of a certain kind of function is almost surely unbounded; in
the language above, this amounts to showing how quickly a sequence ǫn has to decay in order
for the probability that an SLE(κ) intersects only finitely many of the sets B2nǫn [2n−1, 2n] to be
one.

1.1 Preliminaries

In this paper we work exclusively with the chordal form of Loewner’s equation in the upper half
plane. Given a continuous, real-valued function t 7→ Ut, t ≥ 0, the map gt(z) is defined to be the
unique solution to the initial value problem

∂tgt(z) =
2

gt(z) − Ut
, g0(z) = z.

An important feature of the maps gt is that they satisfy the hydrodynamic normalization at
infinity, i.e. gt(z) = z + o(1) as z → ∞. Schramm-Loewner Evolution, or more precisely chordal
SLE(κ) from 0 to infinity in H, corresponds to the choice Ut =

√
κBt, where Bt is a standard 1-

dimensional Brownian motion (with filtration Ft = σ{Bs : 0 ≤ s ≤ t}). The results of this paper
hold exclusively for SLE(κ), but many of the lemmas we derive are deterministic in nature and
hold for any continuous driving function. To emphasize this point and keep the deterministic
results separate from the probabilistic ones we, for these lemmas, denote the driving function
by Ut.

As most of the exponents in this paper usually involve terms in 1/κ rather than κ, we have
chosen to use the slightly different SLE notation that has been championed by Lawler. Instead
of κ he uses the parameter a = 2/κ, and the form of the Loewner equation defined by

∂tgt(z) =
a

gt(z) − Bt
, g0(z) = z. (1)

For any z ∈ H the function gt(z) is well-defined up to a random time Tz. It is clear from (1) that
Tz is the first time t at which gt(z) − Bt = 0. Let Kt = {z ∈ H : Tz ≤ t} which is a compact,
connected subset of H called the SLE hull. In [RS05] it was proven that for all values of κ the
hull is generated by a curve γ : [0,∞) → H, i.e. for all t, H\Kt is the unbounded connected
component of H\γ([0, t]). If 1/4 < a < 1/2 (corresponding to 4 < κ < 8) then K∞ ∩ R = R but
γ[0,∞) ∩ R is a proper subset of R. The latter fact is evident by observing that γ[0,∞) ∩ R is
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determined by the process Tx for x ∈ R. If x > y > 0 then the curve intersects R between y
and x iff Tx > Ty, and in the case 1/4 < a < 1/2 there is always a positive probability of having
Tx = Ty. In fact this last probability can be computed exactly (see [Law05, Propositions 6.8 &
6.34] for a detailed discussion), and it is from the asymptotics of this probability as x ↓ y that
we obtain the upper bound on the Hausdorff dimension.

Two well known scaling properties of SLE (to be used throughout) are that Tx is identical in
law to x2T1, and that if γ is an SLE curve then γr(t) := r−1γ(r2t) is a curve identical in law
to γ (see, e.g., [RS05]). The latter, combined with the symmetry of the SLE process about the
imaginary axis, tells us that to compute the Hausdorff dimension of γ[0,∞) ∩ R it is enough to
consider only γ[0,∞) ∩ [0, 1] = γ[0, T1] ∩ [0, 1].

Scaling properties also immediately imply the following.

Lemma 1.2. The Hausdorff dimension of γ[0, T1] ∩ [0, 1] is almost surely a constant.

Proof. The following argument is by now standard (see [Bef04], for instance). Let Ax = γ[0, Tx]∩
[0, x]. The scaling relations tell us that Ax has the same law as xA1 for all x > 0, and since
Hausdorff dimension is unchanged under linear scaling we have dimH xA1 = dimH A1. Thus
dimH Ax is equal in law to dimH A1 for all x > 0. But dimH Ax is a decreasing quantity as
x ↓ 0 so it converges almost surely, and its limit has the same distribution as dimH A1 and is
F0+-measurable. By Blumenthal 0-1 Law the limit must be a constant. Hence dimH A1 is equal
in law to a constant and therefore a constant itself.

1.2 Method of Calculating the Hausdorff Dimension

A standard procedure for calculating the Hausdorff dimension of random subsets of [0, 1] is
described in [Law99]. The main idea is to finely partition the unit interval and compute statistics
on the number of subintervals that intersect the random subset. For integer n ≥ 1 and 1 ≤ k ≤
2n, define Dn

k = {T (k2−n) > T ((k − 1)2−n)}, which is the event that the SLE curve hits in
the interval [(k − 1)2−n, k2−n]. The next lemma shows how to prove the upper bound on the
Hausdorff dimension.

Lemma 1.3 ([Law99], Lemma 1). If s ∈ (0, 1) and there exists a C < ∞ such that for all
sufficiently large n,

2n
∑

k=1

P (Dn
k ) ≤ C2sn, (2)

then almost surely dimH γ[0, T1] ∩ [0, 1] ≤ s.

Showing that the same s is in fact a lower bound is usually a more difficult task, and it is
accomplished by establishing the following estimates.

Lemma 1.4 ([Law99], Lemma 2). If s ∈ (0, 1), and there exists C1, C2 ∈ (0,∞) and δ ∈ (0, 1/2)
such that

P (Dn
k ) ≥ C12

−(1−s)n, for δ ≤ k

2n
≤ 1 − δ, (3)
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S1

S0 S∞

F (1)

F (0)F (∞)

T

Figure 1: An example of the triangle T used in Proposition 2.1.

and

P
(

Dn
j ∩ Dn

k

)

≤ C22
−(1−s)n(k − j)−(1−s), for δ ≤ j

2n
<

k

2n
≤ 1 − δ, (4)

for all n sufficiently large, then there exists a p = p(s, C1, C2, δ) > 0 such that

P (dimH (γ[0, T1] ∩ [δ, 1 − δ]) ≥ s) ≥ p.

In the present paper we take s = 2 − 8/κ = 2 − 4a. Section 2 summarizes the results that give
us (2). Establishing estimates (3) and (4) is the focus of Section 3. Combined with Lemma 1.2
these three estimates will prove Theorem 1.1.

2 The One-Interval Estimate

In this section we consider the probability of an SLE curve hitting a specified interval on the
positive real axis. An exact formula exists and was first proven in [RS05]. Also see [Law05,
Proposition 6.34] for another proof. We will make use of a more general version proven in
[Dub03].

Proposition 2.1 ([Dub03, Proposition 1]). For chordal SLE(κ) with 4 < κ < 8, define F : H →
T to be a Schwarz-Christoffel map from H into an isosceles triangle T that sends 0, 1, and ∞ to
the vertices, with interior angle (4a − 1)π at the vertex F (1) and equal angles at the other two
vertices (see Figure 1). Then

F (z) = F (0)P(Tz < T1) + F (1)P(Tz = T1) + F (∞)P(Tz > T1),

that is, the three swallowing probabilities are the weights that make F (z) a convex combination
of the three vertices F (0), F (1), and F (∞).
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The weights used in the above convex combination are commonly called the barycentric coordi-
nates of the point F (z) in the triangle T . Up to translation, scaling, and rotation of the triangle
T , the map F is determined by the condition F ′(z) ∝ z−2a(1 − z)4a−2 (here f(z) ∝ g(z) means
f(z) = ζg(z) for some ζ ∈ C\{0}). In subsequent discussion, we will use the choice of F defined
by

F (z) =
Γ(2a)

Γ(1 − 2a)Γ(4a − 1)

∫ 1−z

0

dξ

ξ2−4a(1 − ξ)2a
. (5)

This is the choice of F for which no extra scaling or translation is required to express the hitting
probability P (Tx < Ty), as in the next proposition. Note that the integral is single-valued in H

with F (1) = 0 and F (0) = 1 (the integral defining F (0) is a standard beta integral).

We now use Proposition 2.1 to establish some further results that will be useful in later com-
putations. Here and throughout this paper we will use the notation f(s) ≍ g(s) to mean there
exists constants 0 < C1 < C2 such that C1f(s) ≤ g(s) ≤ C2g(s), for all values of the parameter
s.

Corollary 2.2. If x, y ∈ R, x > y > 0, then P(Tx > Ty) = F (y/x), and consequently

P(Tx > Ty) ≍
(

x − y

x

)4a−1

. (6)

The constants implicit in ≍ depend only on a. Moreover, if τ is any deterministic time or
stopping time such that τ < Ty, then

P (Tx > Ty | Fτ ) = F

(

gτ (y) − Bτ

gτ (x) − Bτ

)

≍
(

gτ (x) − gτ (y)

gτ (x) − Bτ

)4a−1

.

Proof. The exact expression for P(Tx > Ty) = P(T1 > Ty/x) can be derived from Proposition
2.1 by using our choice of F to compute the barycentric coordinate of the F (0) vertex. For (6),
note that v := y/x ∈ (0, 1) and F is a decreasing function on [0, 1] with F (0) = 1 and F (1) = 0.
Therefore it is enough to show that F (v) ≍ (1 − v)4a−1 for v slightly less than 1, which follows
easily from (5). Combining the exact and approximate expressions with the Domain Markov
Property (that is, mapping back to the upper half plane via gτ ) proves the last statement.

We get (2) as an immediate result of Corollary 2.2, since

2n
∑

k=1

P (Dn
k ) ≍

2n
∑

k=1

(

1

k

)4a−1

= 2(2−4a)n
2n
∑

k=1

(

1

k2−n

)4a−1

2−n.

The summation term is a Riemann sum for
∫ 1
0 u1−4adu, which is finite for 1/4 < a < 1/2. This

completes the proof of the upper bound estimate. The next two results will only be used in
Section 3 but we mention them here as they are direct corollaries of Proposition 2.1.
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Corollary 2.3. There are fixed constants D0, D1, and D∞, depending only on a, for which the
three swallowing probabilities of Proposition 2.1 satisfy

P (Tz < T1) = D0 dist(F (z), S0),

P (Tz = T1) = D1 dist(F (z), S1),

P (Tz > T1) = D∞ dist(F (z), S∞),

where S0, S1, and S∞ are the lines that form the sides of T , opposite the vertices F (0), F (1),
and F (∞), respectively.

Proof. The statement is an example of the relationship between barycentric coordinates and
trilinear coordinates, which describe the point F (z) using the distances to the three sides of the
triangle. The relationship is clear: the distance from c0F (0) + c1F (1) + c∞F (∞) to the line
through F (0) and F (1) is a linear function of c∞ (and similarly the distances to the other lines
are linear functions of c0 and c1).

Corollary 2.4. For 0 < y < x, 0 ≤ θ ≤ π, and r ≤ (x − y)/4,

P
(

Tx+reiθ < Ty

)

≍ y1−2a

x2a
(x − y)4a−2r sin θ. (7)

Proof. Let z′ = (x + reiθ)/y. By scaling and Corollary 2.3,

P
(

Tx+reiθ < Ty

)

= P (Tz′ < T1) = D0 dist
(

F (z′), S0

)

.

A useful tool for estimating a distance to the boundary of a domain is the Koebe 1/4 Theorem
(see [Law05, Corollary 3.19]), which states that if f : D → D′ is conformal and z ∈ D then

dist (f(z), D′)

dist (z, D)
≍ |f ′(z)|,

where the left and right hand constants implicit in ≍ are 1/4 and 4, respectively. We claim that
the conditions 0 < y < x is enough so that F (z′) is closest to side S0 in T . Assuming this, it
follows that

dist
(

F (z′), S0

)

≍ |F ′(z′)|dist
(

z′, ∂H
)

∝ |z′|−2a|z′ − 1|4a−2Im(z′).

Using that r ≤ (x−y)/4, we have |z′| ≍ x/y and |z′−1| ≍ (x/y−1). Clearly Im(z′) = r sin θ/y,
from which the result follows.

Now we justify the claim that F (z′) is closest to the side S0 in T . Let α ∈ [0, π/2). We will
show that the curve φ(t) := F (1 + teiα) lies inside the subtriangle T ′ bounded by S0 and the
two angle bisectors at the vertices F (1) and F (∞), which proves that it is closest to S0 in T . In
the upper half plane the pre-image of the bisector at F (1) is locally the vertical line from 1 to
∞, and the line 1 + teiα is to the right of this (and closer to the pre-image of S0, see Figure 2).
Therefore φ(t) is in the subtriangle T ′ for t small at least. But using F ′(z) ∝ z−2a(1− z)4a−2 it
is easy to verify that

∂t arg φ′(t) = −2a ∂t arg
(

1 + teiα
)

≤ 0,
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S1

S0 S∞

F (1)

F (0)F (∞)

F

θ

10

Figure 2: The image of the sector 0 ≤ arg(z − 1) ≤ θ < π/2 is, among the three sides of the
triangle, always closest to side S0. This is seen by noting that, in the upper-half plane, the
sector begins on the side of the angle bisector at F (1) that is closest to S0, and then a curvature
argument shows that the image of the sector must be curving away from the angle bisector. A
similar argument shows the curve lies to the left of the image bisector at F (∞).
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so that φ(t) must be curving away from the angle bisector at F (1). Hence φ[0,∞) lies on the
side of the bisector closest to S0. A similar argument shows that φ[0,∞) also lies on the side
of the angle bisector at F (∞) that is closest to S0. Since Re(z′) > 1, we have z′ = 1 + teiα for
some t > 0 and α ∈ [0, π/2), which proves the claim.

The constraint r ≤ (x − y)/4 was not crucial for the above estimates and certainly could have
been improved, but it is all we will require for later use.

3 The Two-Interval Estimate

In this section we work towards establishing the estimates for Lemma 1.4. We already get (3)
for free from Corollary 2.2 since

P (Dn
k ) ≍ k1−4a ≥ 2(1−4a)n,

by k ≤ 2n. To prove the much more difficult bound (4) we require an estimate on the SLE curve
hitting two small disjoint intervals. We use various tools from the theory of conformal mapping
to accomplish this.

The case of adjacent intervals, corresponding to k = j +1 in (4), we will handle directly. In fact
in this case the desired probability can be computed exactly, as the following lemma shows.

Lemma 3.1. Let 0 < x1 < x2 < x3 be real numbers. Then

P (Tx1
< Tx2

< Tx3
) = P (Tx1

< Tx2
) + P (Tx2

< Tx3
) −P (Tx1

< Tx3
) .

Proof. The curve hitting in either interval [x1, x2] or [x2, x3] is equivalent to it hitting in [x1, x3],
from which the result follows.

From Lemma 3.1, the assumption k2−n > δ, and the approximation in (6), we have the existence
of a constant C such that

P
(

Dn
k ∩ Dn

k+1

)

≤ C

(

(

2−n

k2−n

)4a−1

+

(

2−n

(k + 1)2−n

)4a−1

−
(

2 · 2−n

(k + 1)2−n

)4a−1
)

≤
(

1

δ

)4a−1

(2 − 24a−1)2−(4a−1)n

= Cδ2
−(4a−1)n.

This is exactly (4) for k − j = 1.

The rest of this section deals with k− j ≥ 2. It is actually easier to discuss our proof of (4) if we
use a notation involving continuous variables rather than discrete, so assume the two intervals
are (y, y + ǫ) and (x, x + ǫ) with 0 < δ < y < x < 1 − δ and ǫ > 0. Implicitly though we mean
x = k2−n, y = j2−n, and ǫ = 2−n. In this notation, proving (4) is the same as showing that

P (Ty < Ty+ǫ, Tx < Tx+ǫ) ≤ C
ǫ2(4a−1)

(x − y)4a−1
. (8)
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Since we are now assuming that k − j ≥ 2, we have that x − y = (k − j)2−n ≥ 2ǫ. The bound
ǫ ≤ (x − y)/2 will be used later on.

We make a brief note about constants here. In moving from line to line we do not always
explicitly indicate when the constants involved in a bound may change, usually preferring to
fold the new constants into the generic value C. It is important to note that, in accordance with
Lemma 1.4, any new constants depend only on a and δ and never x, y, or ǫ.

For the two-interval hitting probability we already know the probability of the curve hitting the
first interval (y, y + ǫ), so we are clearly interested in the conditional probability of hitting the
second interval (x, x + ǫ) at the time y is swallowed. Therefore we condition on FTy and arrive
at

P (Ty < Ty+ǫ, Tx < Tx+ǫ) = E
[

1 {Ty < Ty+ǫ}E
[

1 {Tx < Tx+ǫ} | FTy

]]

≍ E

[

1 {Ty < Ty+ǫ}
(

gTy(x + ǫ) − gTy(x)

gTy(x + ǫ) − BTy

)4a−1
]

, (9)

the last expression being a result of Corollary 2.2. This reduces the two-interval hitting proba-
bility to computing a certain moment, but only on the event {Ty < Ty+ǫ} rather than the full
space. Needless to say this is a complicated calculation. Moreover, it is not a priori clear how
the estimate (9) is related to the desired bound (8). The following two lemmas provide the link.
We note here that these lemmas are deterministic in nature and apply to any continuous driving
function Ut.

Lemma 3.2. Suppose that Ut is the driving function for the Loewner equation. Fix a point x > 0,
and let dt(x) = dist(x, ∂Kt). Define st = supKt∩R, and let ηt := gt(st+) := limx↓st

gt(x). Then
for t < Tx,

gt(x) − ηt

4g′t(x)
≤ dt(x) ≤ 4

gt(x) − ηt

g′t(x)
.

In particular, if Ty < Tx, then

gTy(x) − UTy

4g′Ty
(x)

≤ dTy(x) ≤ 4
gTy(x) − UTy

g′Ty
(x)

.

Proof. Let K̃t be the reflection of the hull Kt across the real axis. Using the Schwarz reflection
principle, the map gt can be analytically extended as a map on C\(Kt ∪ K̃t), which we then
restrict to C\(Kt∪ K̃t∪ (−∞, 0]) so the domain is simply connected. The image of the extended
gt is C\(−∞, ηt]. Noting that dt(x) = dist(x, ∂(Kt ∪ K̃t)) by symmetry, a direct application of
the Koebe 1/4 Theorem gives that

Dt(x)

4dt(x)
≤ g′t(x) ≤ 4Dt(x)

dt(x)

where Dt(x) = dist(gt(x), (−∞, ηt]) = gt(x) − ηt. This gives the first statement, and for the
special case one only has to note that ηTy = UTy since the tip of the SLE curve is on the positive
real line at time Ty.
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Lemma 3.3. Let Ut, x, and dt(x) be as in Lemma 3.2. Then

gTy(x + ǫ) − gTy(x)

gTy(x + ǫ) − UTy

≤ 4
ǫ

dTy(x)
.

Moreover, if dTy(x) > 4ǫ, then

gTy(x + ǫ) − gTy(x)

gTy(x + ǫ) − UTy

≍ ǫ

dTy(x)
.

Proof. Since UTy ≤ gTy(x) ≤ gTy(x + ǫ), we have

gTy(x + ǫ) − gTy(x)

gTy(x + ǫ) − UTy

≤ 1,

and hence the claim is trivial if dTy(x) ≤ 4ǫ. In the case dTy(x) > 4ǫ note that

gTy(x + ǫ) − UTy

gTy(x + ǫ) − gTy(x)
= 1 +

gTy(x) − UTy

gTy(x + ǫ) − gTy(x)
(10)

and by Lemma 3.2,

gTy(x) − UTy

gTy(x + ǫ) − gTy(x)
≍

dTy(x)g′Ty
(x)

gTy(x + ǫ) − gTy(x)
, (11)

where that the left and right constants implicit in ≍ are 1/4 and 4, respectively. The last term
can be approximated using the Growth Theorem (see [Law05, Theorem 3.23]), which says that
if f : {|z| < 1} → C with f(0) = 0 and f ′(0) = 1 then

|z|
(1 + |z|)2 ≤ |f(z)| ≤ |z|

(1 − |z|)2 .

The map

g̃t(z) =
gt(z0 + dt(z0)z) − gt(z0)

dt(z0)g′t(z0)

satisfies these conditions, where gt is extended onto C\(Kt ∪ K̃t ∪ (−∞, 0]) as in Lemma 3.2.
Setting z0 = x, t = Ty, z = ǫ/dTy(x), and using the assumption that 4ǫ < dTy(x) gives

(1 − ǫ/dTy(x))2

ǫ/dTy(x)
≤

dTy(x)g′Ty
(x)

gTy(x + ǫ) − gTy(x)
≤ (1 + ǫ/dTy(x))2

ǫ/dTy(x)
.

Combining this with (10) and (11) we have

1 +
(1 − ǫ/dTy(x))2

4ǫ/dTy(x)
≤ gTy(x + ǫ) − UTy

gTy(x + ǫ) − gTy(x)
≤ 1 + 4

(1 + ǫ/dTy(x))2

ǫ/dTy(x)
,

or, what is equivalent,

ǫ/dTy(x)

(1 + ǫ/dTy(x))2 + 4ǫ/dTy(x)
≤ gTy(x + ǫ) − gTy(x)

gTy(x + ǫ) − UTy

≤ 4ǫ/dTy(x)

(1 + ǫ/dTy(x))2
.
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Maximizing (minimizing) the denominator of the left (right) hand side produces

16

41

ǫ

dTy(x)
≤ gTy(x + ǫ) − gTy(x)

gTy(x + ǫ) − UTy

≤ 4
ǫ

dTy(x)
.

With Lemma 3.3 in hand the relation between (8) and (9) becomes more evident. By (9) and
Lemma 3.3,

P (Ty < Ty+ǫ, Tx < Tx+ǫ) ≤ Cǫ4a−1E
[

1 {Ty < Ty+ǫ} dTy(x)1−4a
]

. (12)

On the event {Ty < Ty+ǫ}, it is important to note that dTy(x) satisfies 0 ≤ dTy(x) ≤ x− y. The
upper bound comes from the simple observation that γ(Ty) lies somewhere on the real line to
the right of y. In fact, on {Ty < Ty+ǫ} it is even true that γ(Ty) ∈ [y, y + ǫ]. The latter suggests
that dTy(x) should not be much less than x − y either, since otherwise the SLE curve would
have to touch somewhere on the real line before y, and then make an excursion in the upper
half-plane that gets very close to x but then returns all the way back to the interval [y, y + ǫ].
One expects such excursions to be rare. If it is true that dTy(x) is roughly on the order of x−y,
then (12) gives

P (Ty < Ty+ǫ, Tx < Tx+ǫ) ≤ CP (Ty < Ty+ǫ) ǫ4a−1(x − y)1−4a

≤ C

(

ǫ

y + ǫ

)4a−1

ǫ4a−1(x − y)1−4a

≤ Cδǫ
2(4a−1)(x − y)1−4a,

where the last inequality uses y > δ. This is exactly (8). The rest of the paper proceeds with
this line of attack in mind, and the crux of the remaining argument is showing that dTy(x) is
rarely small on the event {Ty < Ty+ǫ}.
Consider the distribution function

G(r) = P
(

Ty < Ty+ǫ, dTy(x) ≤ r
)

.

We use G to write the expectation in (12) as

E
[

1 {Ty < Ty+ǫ} dTy(x)1−4a
]

=

∫ x−y

0
r1−4adG(r)

=

∫ x−y

0

∫ ∞

r
(4a − 1)v−4adv dG(r)

=

∫ x−y

0
(4a − 1)v−4aG(v)dv +

∫ ∞

x−y
(4a − 1)v−4aG(x − y)dv,

(13)

the last equality being an application of Fubini’s Theorem. Consider the second integral first.
For it we have

G(x − y) = P (Ty < Ty+ǫ) ≍
(

ǫ

y + ǫ

)4a−1

≤ Cδǫ
4a−1,
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and again the last inequality uses y > δ. Consequently

∫ ∞

x−y
(4a − 1)v−4aG(x − y)dv ≤ C

ǫ4a−1

(x − y)4a−1
(14)

for some constant C depending only on a and δ.

We need the same upper bound for the first integral in (13), which requires an upper bound on
G(r). By definition, G(r) is the probability of an SLE curve coming within a specified distance
r of the point x before continuing on to hit the interval (y, y + ǫ). To estimate G(r) our strategy
will be to decompose any such curve into the path from zero to where it first hits the semi-circle
of radius r centered at x, and then from the semi-circle to the interval (y, y + ǫ) (see Figure
3). The probability of the curve hitting the semi-circle (before swallowing y) will be estimated
directly, and the probability of the curve going from the semi-circle to (y, y+ǫ) will be estimated
using the conformal invariance property and some considerations of harmonic measure.

We split the first integral in (13) into two parts:

∫ x−y

0
(4a − 1)v−4aG(v)dv =

∫ x−y

4

0
(4a − 1)v−4aG(v)dv +

∫ x−y

x−y

4

(4a − 1)v−4aG(v)dv. (15)

Using that G(r) is an increasing function of r,

∫ x−y

x−y

4

(4a − 1)v−4aG(v)dv ≤
∫ x−y

x−y

4

(4a − 1)

(

x − y

4

)−4a

G(x − y)dv

≤ C
ǫ4a−1

(x − y)4a−1
, (16)

which is the same upper bound in (14). For the integral from zero to (x − y)/4 we therefore
only need an upper bound on G(r) for r small, namely r ≤ (x − y)/4. Again the condition
r ≤ (x − y)/4 is arbitrary, but it is all we will require later on.

Now we show how to estimate the probability of the SLE curve going from the semi-circle to
the interval (y, y + ǫ). Define the stopping time τr = inf{t ≥ 0 : |γ(t) − x| = r}. The event
{dTy(x) ≤ r} is the same as the event {τr < Ty}, and both are clearly Fτr -measurable. We
condition on Fτr to compute the probability of the curve going from the semi-circle to (y, y + ǫ),
so that

G(r) = P
(

Ty < Ty+ǫ, dTy(x) ≤ r
)

≍ E

[

1
{

dTy(x) ≤ r
}

(

gτr(y + ǫ) − gτr(y)

gτr(y + ǫ) − Bτr

)4a−1
]

. (17)

The following lemma gives an upper bound on (17). Again we should note that the lemma is
essentially deterministic in nature and holds for any continuous driving function Ut.

Lemma 3.4. Suppose τr < Ty. Then there exists a constant C > 0, depending only on a and δ,
such that

gτr(y + ǫ) − gτr(y)

gτr(y + ǫ) − Uτr

≤ C
ǫr

(x − y)2
. (18)
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y y + ǫ x x + ǫ0

γ(τr)

r

AL,r

sτr

Figure 3: The SLE hull at time τr. The right hand side of the hull is highlighted with tick
marks.

The proof first gives a way of exactly computing the left hand side of (18) using the harmonic
measure of certain boundary segments of the hull H\Kτr , and then the upper bound is arrived
at by estimating the harmonic measure terms. Throughout the rest of the paper we let β denote
a standard complex Brownian motion (independent of the driving function for the Loewner
equation), and for z ∈ C let Pz and Ez denote probabilities and expectations for Brownian
motion assuming β0 = z. Moreover, given a domain D ⊂ C we define τD = inf{t ≥ 0 : βt 6∈ D}.

Proof of Lemma 3.4. Let x1 < x2 be real numbers. If L > 0, then in the upper half-plane

PiL (β(τH) ∈ [x1, x2]) =

∫ x2

x1

L

π(x2 + L2)
dx

=
x2 − x1

πL
+ O(L−2),

which implies

x2 − x1 = lim
L↑∞

πL · PiL (β(τH) ∈ [x1, x2]) .

Consequently,

gτr(y + ǫ) − gτr(y)

gτr(y + ǫ) − Uτr

= lim
L↑∞

PiL (β(τH) ∈ [gτr(y), gτr(y + ǫ)])

PiL (β(τH) ∈ [Uτr , gτr(y + ǫ)])
(19)

Using the conformal invariance of Brownian motion, we can compute the above harmonic mea-
sures in the domain H\Kτr rather than H. Define

A1 = {β(τH\Kτr
) ∈ [y, y + ǫ]}, A2 = {β(τH\Kτr

) ∈ [sτr , y + ǫ] ∪ {right side of Kτr}},

where st is as in Lemma 3.2. Note sτr < y since τr < Ty. By conformal invariance,

PiL (β(τH) ∈ [gτr(y), gτr(y + ǫ)]) = Pg−1
τr (iL)(A1),

PiL (β(τH) ∈ [Uτr , gτr(y + ǫ)]) = Pg−1
τr (iL)(A2).

Since gt is normalized so that gt(z) = z + o(1) as z → ∞, it follows from (19) that

gτr(y + ǫ) − gτr(y)

gτr(y + ǫ) − Uτr

= lim
L↑∞

PiL(A1)

PiL(A2)
. (20)
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At time τr it is clear that the semi-circle |z − x| = r is naturally divided into a left arc and a
right arc by the point γ(τr) (see Figure 3). The left arc we will refer to as AL,r and the right
one as AR,r. In the domain H\Kτr it is clear that the left arc AL,r naturally “shields” the right
side of Kτr and the segment [sτr , y + ǫ], since any Brownian motion started near infinity that
hits these boundaries must have passed through AL,r first. Hence define the stopping time

σr = τH\Kτr
∧ inf{t ≥ 0 : βt ∈ AL,r}.

Using the Strong Markov Property, the Brownian path from iL to [y, y + ǫ] can be decomposed
into the path from iL to β(σr) ∈ AL,r plus an independent Brownian path from β(σr) to [y, y+ǫ].
Hence

PiL (A1) = EiL

[

Pβ(σr)(A1)
]

.

Likewise a similar expression can be derived for the denominator of (20), and upon taking the
ratio of the two we have

gτr(y + ǫ) − gτr(y)

gτr(y + ǫ) − Uτr

= lim
L↑∞

EiL

[

Pβ(σr)(A1)
]

EiL

[

Pβ(σr)(A2)
] .

Note Pβ(σr)(A1) = Pβ(σr)(A2) = 0 if β(σr) 6∈ AL,r.

Now we take an arbitrary point z ∈ AL,r and find an upper bound on Pz(A1) and a lower
bound on Pz(A2). The upper bound on Pz(A1) is easy, since any Brownian path going from z
to [y, y + ǫ] in H\Kτr is also a Brownian path going from z to [y, y + ǫ] in H. Hence

πPz(A1) ≤ πPz(β(τH) ∈ [y, y + ǫ])

= arg(z − y − ǫ) − arg(z − y)

= arg

(

1 − ǫ

z − y

)

Figure 4 provides a geometric proof, using only ǫ ≤ (x− y)/2 and r ≤ (x− y)/4, that for some
constant C > 0

arg

(

1 − ǫ

z − y

)

≤ C
ǫImz

(x − y)2
.

Hence for all z ∈ AL,r

Pz (A1) ≤ C
ǫImz

(x − y)2
. (21)

For z ∈ AL,r we need a lower bound on Pz(A2). Let

A3 = A2 ∩ {β[0, τ(H\Kτr)] ∩ AR,r = ∅}.

Then A3 consists of paths in H\Kτr that exit the domain in [sτr , y + ǫ] or the right side of Kτr

but don’t pass through the right arc AR,r of the semi-circle. Let V1 = (−∞, y + ǫ)∪ (x+ r,∞)∪
{right side of AR,r}, and

A4 = {β(τ(H\AR,r)) ∈ V1}.
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y y + ǫ x x + ǫ0

z
z − y

0 1

1 − ǫ
z−y

−ǫ
z−yǫImz

|z−y|2

D = Re
(

1 − ǫ
z−y

)

θ

Figure 4: Using r ≤ (x− y)/4 it follows that |z − y| ≥ 3
4(x− y). Then by ǫ ≤ (x− y)/2 we have

ǫ
|z−y| ≤ 2

3 . Thus D ≥ 1/3. But then arg
(

1 − ǫ
z−y

)

= θ ≤ tan θ = 1
D

ǫImz
|z−y|2

≤ 16
3

ǫImz
(x−y)2

.

γ(τr)

r

y y + ǫ x x + ǫ0

z
θ

sτr

Figure 5: The domain H\AR,r indicated by solid black boundaries, with the curve γ([0, τr])
sitting inside it. The boundary segment V1 is highlighted by tick marks. Any Brownian path
started at z that exits H\AR,r on V1 is also a Brownian path in H\Kτr that exits H\Kτr on
[sτr , y + ǫ] or the right side of Kτr .
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Topological considerations show that any path in A4, started at z ∈ AL,r, must have exited the
domain H\Kτr on [sτr , y + ǫ] or the right side of Kτr (see Figures 3 and 5), so that A4 ⊂ A3.
Therefore Pz(A2) ≥ Pz(A3) ≥ Pz(A4). Using basic conformal mappings the probability Pz(A4)
can be computed explicitly, but for our purposes a lower bound is sufficient. Map the domain
H\AR,r into a strip with a slit via z 7→ log((z − x)/r), as shown in Figure 6(a). Call the image
domain D and let V2 be the image of V1. Let θ = arg(z − x), φ = arg(γ(τr) − x), so that

Pz(A4) = Piθ (β(τD) ∈ V2) ≥ Piθ (β(τD) ∈ [0,∞) ∪ {right side of [0, iφ]})

=
1

2
Piθ (β(τD) ∈ R ∪ [0, iφ]) .

The last equality is by symmetry. Any Brownian path in the strip S = R × [0, πi] that exits S
on R is also a Brownian path in D that exits D on R ∪ [0, iφ], so that

Piθ(β(τD) ∈ R ∪ [0, iφ]) ≥ Piθ(β(τS) ∈ R)

=
π − θ

π

≥ sin(π − θ)

π

=
sin θ

π

≥ C
Imz

r
.

Therefore there is a constant C > 0 such that

Pz(A2) ≥ C
Imz

r
. (22)

Finally by (21) and (22),

Pβ(σr)(A1) ≤ C
ǫImβ(σr)

(x − y)2
, Pβ(σr)(A2) ≥ C

Imβ(σr)

r
,

so that

EiL

[

Pβ(σr)(A1)
]

EiL

[

Pβ(σr)(A2)
] ≤ C

ǫr

(x − y)2
.

This proves the lemma.

Lemma 3.4 gives us half of the bound on G(r). Indeed, combining Lemma 3.4 with (17) gives

G(r) ≤ C

(

ǫr

(x − y)2

)4a−1

P
(

dTy(x) ≤ r
)

. (23)

Now we are only left to estimate the term P(dTy(x) ≤ r) = P(τr < Ty). A lower bound is easy,
since if the curve swallows any point on the semi-circle |z − x| = r before y is swallowed then
τr < Ty. The probability of z being swallowed before y is known exactly by Proposition 2.1, and
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0

πi

0

iθ

log
(

x−y−ǫ
r

)

+ πi

0

πi

0

iθ

0

πi

0

iθ

0

πi

0

iθ

(a) (b)

(c) (d)

Figure 6: (a) The image of the domain H\AR,r and the point z under the map w 7→ log
(

w−x
r

)

.
The point z goes to iθ, from which we measure all the harmonic measure terms. The tick marks
highlight the boundary segment referred to as V2. (b) Removing some of the tick marks from
(a) only makes the harmonic measure smaller. (c) By symmetry, the harmonic measure in (c) is
twice the harmonic measure in (b). (d) Removing the slit from (c) only decreases the harmonic
measure.
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is well approximated by Corollary 2.4. In fact, choosing θ = π/2 in Corollary 2.4 gives a lower
bound

c′
y1−2a

x2a
(x − y)4a−2r ≤ P (τr < Ty)

for some constant c′ > 0. We claim that there is a C > 0, independent of x, y, and r, such that

P (τr < Ty) ≤ C
y1−2a

x2a
(x − y)4a−2r, (24)

at least for r ≤ (x − y)/4. First we suppose that this is true and show how to get the upper
bound estimate (8). From (24) and (23)

G(r) ≤ C
y1−2a

x2a

ǫ4a−1r4a

(x − y)4a
≤ Cδ

ǫ4a−1r4a

(x − y)4a
,

the last inequality coming from 0 < δ < y < x < 1 − δ. Substituting this into the first integral
of (15) gives

∫ x−y

4

0
v−4aG(v)dv ≤ C

ǫ4a−1

(x − y)4a−1
. (25)

As discussed in (13) and (15), the term E
[

1 {Ty < Ty+ǫ} dTy(x)1−4a
]

can be broken into three
parts, and then, by (14), (16), and (25), each part is bounded above by Cǫ4a−1(x − y)1−4a.
Hence E

[

1 {Ty < Ty+ǫ} dTy(x)1−4a
]

≤ Cǫ4a−1(x− y)1−4a, and substituting this into (12) we get
that

P (Ty < Ty+ǫ, Tx < Tx+ǫ) ≤ C
ǫ2(4a−1)

(x − y)4a−1
.

This last bound is exactly (8).

The rest of this section is dedicated to proving (24).

Lemma 3.5. Let wk = −2−k−1 + (1 − 3 · 2−k−1)π
2 i for k = 1, 2, . . ., and for k = −1,−2, . . . let

wk = w−k. Let zk = x + r exp{wk + π
2 i}. Then

P





⋃

|k|≥1

Tzk
< Ty



 ≤
∑

|k|≥1

P (Tzk
< Ty) ≍

y1−2a

x2a
(x − y)4a−2r

Proof. The first inequality is trivial, and using Corollary 2.4

∑

|k|≥1

P (Tzk
< Ty) ≍

y1−2a

x2a
(x − y)4a−2

∑

|k|≥1

r exp{−2−|k|−1} sin(π − 3 · 2−|k|−2π)

≍ y1−2a

x2a
(x − y)4a−2

∑

|k|≥1

r sin(3 · 2−|k|−2π)

≍ y1−2a

x2a
(x − y)4a−2r.
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x

z1 z−1

z2 z−2

z3 z−3

z4 z−4

z5 z−5

Figure 7: The semi-circle of radius r centered at x with the points zk inside.

Notice that the points zk sit inside the semi-circle |z − x| = r (see Figure 7), and so if Tzk
< Ty

for some k then τr < Ty. Conversely, the zk have been chosen in such a way that if τr < Ty then
it’s likely that Tzk

< Ty for some k. We prove this last statement shortly, but to do so we first
require a small lemma on harmonic measure.

Lemma 3.6. Let S denote the strip R× [0, πi] and let the wk be as in Lemma 3.5. There exists
a universal constant l > 0 such that if φ : [0, 1] → S is a non-self-crossing curve (possibly having
multiple points) with Re φ(t) > 0 for t ∈ [0, 1), Im φ(0) = π, and Re φ(1) = 0 (see Figure 9),
and H is the hull that φ generates (i.e. the complement of the unbounded connected component of
S\φ[0,∞)), then Pwk

(

β(τS\H) ∈ {right side of φ}
)

≥ l and Pwk

(

β(τS\H) ∈ {left side of φ}
)

≥
l, for some k.

Proof. First consider the sets

R1 =

{

x + iy : |x| ≤ 1

5
+

1

10
, |y| ≤ π

8
+

1

10

}

,

R2 =

{

x + iy : |x| ≤ 1

5
, |y| ≤ π

8

}

,

and R = R1\R2. A sketch of R is given in Figure 8. Note that w0 := −1/4 ∈ R. Let L be the
line segment from −πi/8 to −πi/8− i/10, and L′ be the complex conjugate of the set of points
in L. Consider a Brownian particle started at w0 and killed when it hits the boundary of R.
There is a positive probability that the particle arrives at L in the clockwise direction before it
arrives there in the counterclockwise direction, call this probability l. By symmetry this is also
the probability that the particle first reaches L′ in the counterclockwise direction. An important
feature of this probability l is that it is invariant under scalings and translations of the rectangle
R. We now cover the imaginary axis from 0 to πi with scaled and translated versions of R that
send w0 to the various wk, as in Figure 9. The idea is that the tip of the curve φ(1) lies inside
one of the rectangles in Figure 9, and then for this rectangle if the Brownian particle travels
from wk to L in the clockwise direction before reaching it in the counterclockwise direction then
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L

L′R1

R2

w0
0

Figure 8: The set R (the shaded region). We let l be the probability that a Brownian particle
started at w0 hits L in the clockwise direction before hitting it in the counterclockwise direction.

it must have hit the right hand side of the curve φ. The next paragraph provides the details of
this argument.

Let θ = Im φ(1) ∈ [0, π]. Choose the integer k as follows: if θ ≥ π/2 then let k ≥ 1 be
such that (1 − 2−k+1)π/2 ≤ θ − π/2 ≤ (1 − 2−k)π/2, otherwise let k ≤ −1 be such that
(1 − 2k+1)π/2 ≤ π/2 − θ ≤ (1 − 2k)π/2. Then take the rectangle R and the point w0, scale
them by a factor of 2−|k|+1, and translate both so that the point w0 coincides with point wk. By
construction the point φ(1) lies somewhere on the vertical line subdividing the inner rectangle
R2, and the curve φ(t) divides the set R. An example with θ ∈ [π/2, 3π/4] and k = 1 is shown in
Figure 9. For topological reasons, a Brownian particle started at wk that hits the line segment
L in the clockwise direction must have intersected the right side of φ along the way. This
shows that Pwk

(

β(τS\H ∈ {right side of φ}
)

≥ l. A completely symmetrical argument proves
the lemma for the left hand side of φ.

Lemma 3.7. Let zk be as in Lemma 3.5. There exists a c > 0 such that

P





⋃

|k|≥1

Tzk
< Ty

∣

∣

∣

∣

∣

∣

τr < Ty



 ≥ c,

for all r ≤ x−y
4 . The constant c is independent of x, y, and r.

Proof. We will actually prove the stronger statement

P (Tzk
< Ty for some k | Fτr) ≥ c1 {τr < Ty} .

Let

ĝt(z) =
gt(z) − Ut

gt(y) − Ut
, (26)
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w1

0

πi φ(0)

Figure 9: The imaginary axis is covered by scaled and shifted versions of the rectangle R2. The
point φ(1) must lie inside one of them, in this case it’s the rectangle corresponding to k = 1.
From the point w1 the harmonic measure of each side of the curve must be at least l.

which is well-defined for t < Ty, maps from H\Kt → H and sends γ(t) → 0, y → 1, and ∞ → ∞.
Also let Ht = F ◦ ĝt : H\Kt → T , where F is the Schwarz-Christoffel map from Lemma 2.1 and
T is the triangle that F maps into. By the Domain Markov Property and Corollary 2.3,

P (Tz < Ty | Ft) = D0 dist(Ht(z), S0), for t < Ty ∧ Tz.

Since |zk − x| ≤ r we know Tzk
≥ τr, so that

P (Tzk
< Ty | Fτr) = D0 dist(Hτr(zk), S0), for τr < Ty.

Clearly then it is enough to find a c > 0 such that dist(Hτr(zk), S0) ≥ c for some k. Again
we turn to harmonic measure estimates. Let l be the universal constant from Lemma 3.6 and
consider a point w ∈ T such that a Brownian particle in T , started at w, has at least probability
l of hitting the side S1 before any other, and also probability l of hitting S∞ before any other
side of T . Then w cannot be arbitrarily close to S0, otherwise the probability of hitting one
of the sides S1 or S∞ would have to be small, so there exists a constant c = c(l, a) such that
dist(w, S0) ≥ c. Hence it is enough to show that for some k, a Brownian particle in T , started
at Hτr(zk), has at least probability l of hitting side S1 first, and also probabilty l of hitting side
S∞ first. Using the conformal invariance of Brownian motion, and noting that the map H−1

τr

identifies the sides S1, S∞ of T with the boundaries U1 = (−∞, 0) ∪ {left side of Kτr}, U∞ =
[0, y] ∪ {right side of Kτr} of H\Kτr (respectively), this is equivalent to showing a Brownian
particle in H\Kτr , started at zk, has probability at least l of hitting the boundary segment U1

first, and probability at least l of hitting the boundary segment U∞ first. But Lemma 3.6 already
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proves this last statement; all that is left to do is to map H to the strip U via z 7→ log((z−x)/r)
and note that the points zk go to the points wk.

Lemmas 3.7 and 3.5 now combine to show

P(τr < Ty) ≤
1

c
P





⋃

|k|≥1

Tzk
< Ty



 ≤ C ′ y
1−2a

x2a
(x − y)4a−2r.

This completes the proof of (24), and also of the two-interval estimate (8).

Acknowledgements: We thank Greg Lawler for some very helpful ideas in coming up with
the proof presented in Section 3.
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