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Abstract

We consider a system of nonlinear partial differential equations with stochastic dynamical
boundary conditions that arises in models of neurophysiology for the diffusion of electrical
potentials through a finite network of neurons. Motivated by the discussion in the biological
literature, we impose a general diffusion equation on each edge through a generalized version
of the FitzHugh-Nagumo model, while the noise acting on the boundary is described by a
generalized stochastic Kirchhoff law on the nodes. In the abstract framework of matrix op-
erators theory, we rewrite this stochastic boundary value problem as a stochastic evolution
equation in infinite dimensions with a power-type nonlinearity, driven by an additive Lévy
noise. We prove global well-posedness in the mild sense for such stochastic partial differential
equation by monotonicity methods.
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1 Introduction

In this paper we study a system of nonlinear diffusion equations on a finite network in the
presence of an impulsive noise acting on the nodes of the system. We allow a rather general
nonlinear drift term of polynomial type, including functions of FitzHugh-Nagumo type (i.e.
f(u) = −u(u− 1)(u− a)) arising in various models of neurophysiology (see e.g. the monograph
[19] for more details).

Electric signaling by neurons has been studied since the 50s, starting with the now classical
Hodgkin-Huxley model [16] for the diffusion of the transmembrane electrical potential in a
neuronal cell. This model consists of a system of four equations describing the diffusion of the
electrical potential and the behaviour of various ion channels. Successive simplifications of the
model, trying to capture the key phenomena of the Hodgkin-Huxley model, lead to the reduced
FitzHugh-Nagumo equation, which is a scalar equation with three stable states (see e.g. [27]).

Among other papers dealing with the case of a whole neuronal network (usually modeled as a
graph with m edges and n nodes), which is intended to be a simplified model for a large region
of the brain, let us mention a series of recent papers by Mugnolo et al. [21; 24], where the
well-posedness of the isolated system is studied.

Note that, for a diffusion on a network, other conditions must be imposed in order to define
the behaviour at the nodes. We impose a continuity condition, that is, given any node in the
network, the electrical potentials of all its incident edges are equal. Each node represents an
active soma, and in this part of the cell the potential evolves following a generalized Kirchhoff
condition that we model with dynamical boundary conditions for the internal dynamics.

Since the classical work of Walsh [28], stochastic partial differential equations have been an
important modeling tool in neurophysiology, where a random forcing is introduced to model
external perturbations acting on the system. In our neuronal network, we model the electrical
activity of background neurons with a stochastic input of impulsive type, to take into account the
stream of excitatory and inhibitory action potentials coming from the neighbors of the network.
The need to use models based on impulsive noise was already pointed out in several papers by
Kallianpur and coauthors – see e.g. [17; 18]. On the other hand, from a mathematical point
of view, the addition of a Brownian noise term does not affect the difficulty of the problem.
In fact, in section 2 below, a Wiener noise could be added taking q 6= 0, introducing an extra
term that does not modify the estimates obtained in section 3, which are the basis for the
principal results of this paper. Let us also recall that the existence and uniqueness of solutions
to reaction-diffusion equations with additive Brownian noise is well known – see e.g. [8; 10; 12].

Following the approach of [5], we use the abstract setting of stochastic PDEs by semigroup
techniques (see e.g. [10; 11]) to prove existence and uniqueness of solutions to the system of
stochastic equations on a network. In particular, the specific stochastic dynamics is rewritten
in terms of a stochastic evolution equation driven by an additive Lévy noise on a certain class
of Hilbert spaces.

The rest of the paper is organized as follows: in section 2 we introduce the problem and we
motivate our assumptions in connection with the applications to neuronal networks. Then we
provide a suitable abstract setting and we prove, following [24], that the linear operator appearing
as leading drift term in the stochastic PDE generates an analytic semigroup of contractions.
Section 3 contains our main results. First we prove existence and uniqueness of mild solution
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for the problem under Lipschitz conditions on the nonlinear drift term. This result (essentially
already known) is used to obtain existence and uniqueness in the mild sense for the SPDE with
a locally Lipschitz drift of FitzHugh-Nagumo type by monotonicity techniques.

2 Setting of the problem

Let us begin introducing some notation used throughout the paper. We shall denote by ⇀ and
∗
⇀, respectively, weak and weak* convergence of functions. All stochastic elements are defined
on a (fixed) filtered probability space (Ω,F ,Ft, P) satisfying the usual hypotheses. Given a
Banach space E, we shall denote by L

p(E) the space of E-valued random variables with finite
p-th moment.

The network is identified with the underlying graph G, described by a set of n vertices v1, . . . , vn

and m oriented edges e1, . . . , em which we assume to be normalized, i.e., ej = [0, 1]. The graph
is described by the incidence matrix Φ = Φ+ − Φ−, where Φ+ = (φ+

ij)n×m and Φ− = (φ−
ij)n×m

are given by

φ−
ij =

{

1, vi = ej(1)

0, otherwise
φ+

ij =

{

1, vi = ej(0)

0, otherwise.

The degree of a vertex is the number of edges entering or leaving the node. We denote

Γ(vi) = {j ∈ {1, . . . , m} : ej(0) = vi or ej(1) = vi}

hence the degree of the vertex vi is the cardinality |Γ(vi)|.

The electrical potential in the network shall be denoted by ū(t, x) where ū ∈ (L2(0, 1))m is the
vector (u1(t, x), . . . , um(t, x)) and uj(t, ·) is the electrical potential on the edge ej . We impose a
general diffusion equation on every edge

∂

∂t
uj(t, x) =

∂

∂x

(

cj(x)
∂

∂x
uj(t, x)

)

+ fj(uj(t, x)), (1)

for all (t, x) ∈ R+ × (0, 1) and all j = 1, ..., m. The generality of the above diffusion is motivated
by the discussion in the biological literature, see for example [19], who remark, in discussing
some concrete biological models, that the basic cable properties is not constant throughout
the dendritic tree. The above equation shall be endowed with suitable boundary and initial
conditions. Initial conditions are given for simplicity at time t = 0 of the form

uj(0, x) = uj0(x) ∈ C([0, 1]), j = 1, ..., m. (2)

Since we are dealing with a diffusion in a network, we require first a continuity assumption on
every node

pi(t) := uj(t, vi) = uk(t, vi), t > 0, j, k ∈ Γ(vi), i = 1, ..., n (3)

and a stochastic generalized Kirchhoff law in the nodes

∂

∂t
pi(t) = −bipi(t) +

∑

j∈Γ(vi)

φijµjcj(vi)
∂

∂x
uj(t, vi) + σi

∂

∂t
L(t, vi), (4)
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for all t > 0 and i = 1, . . . , n. Observe that the plus sign in front of the Kirchhoff term in the
above condition is consistent with a model of purely excitatory node conditions, i.e. a model of
a neuronal tissue where all synapses depolarize the postsynaptic cell. Postsynaptic potentials
can have graded amplitudes modeled by the constants µj > 0 for all j = 1, ..., m.

Finally, L(t, vi), i = 1, ..., n, represent the stochastic perturbation acting on each node, due to
the external surrounding, and ∂

∂tL(t, vi) is the formal time derivative of the process L, which
takes a meaning only in integral sense. Biological motivations lead us to model this term by a
Lévy process. In fact, the evolution of the electrical potential on the molecular membrane can
be perturbed by different types of random terms, each modeling the influence, at different time
scale, of the surrounding medium. On a fast time scale, vesicles of neurotransmitters released by
external neurons cause electrical impulses which arrive randomly at the soma causing a sudden
change in the membrane voltage potential of an amount, either positive or negative, depending
on the composition of the vesicle and possibly even on the state of the neuron. We model this
behaviour perturbing the equation by an additive n-dimensional impulsive noise of the form

L(t) =

∫

Rn

xÑ(t, dx). (5)

See Hypothesis 2.2 below for a complete description of the process and [18] for a related model.

Although many of the above reasonings remain true also when considering the diffusion process
on the fibers, we shall not pursue such generality and assume that the random perturbation acts
only on the boundary of the system, i.e. on the nodes of the network.

Let us state the main assumptions on the data of the problem.

Hypothesis 2.1.

1. In (1), we assume that cj(·) belongs to C1([0, 1]), for j = 1, . . . , m and cj(x) > 0 for every
x ∈ [0, 1].

2. There exists constants η ∈ R, c > 0 and s ≥ 1 such that, for j = 1, . . . , m, the functions
fj(u) satisfy fj(u) + ηu is continuous and decreasing, and |fj(u)| ≤ c(1 + |u|s).

3. In (4), we assume that bi ≥ 0 for every i = 1, . . . , n and at least one of the coefficients bi

is strictly positive.

4. {µj}j=1,...,m and {σi}i=1,...,n are real positive numbers.

Given a Hilbert space H, let us define the space L2
F (Ω × [0, T ];H) of adapted processes Y :

[0, T ] → H endowed with the natural norm

|Y |2 =

(

E

∫ T

0
|Y (t)|2Hdt

)1/2

.

We shall consider a Lévy process {L(t), t ≥ 0} with values in (Rn,B(Rn)), i.e., a stochasti-
cally continuous, adapted process starting almost surely from 0, with stationary independent
increments and càdlàg trajectories. By the classical Lévy-Itô decomposition theorem, one has

L(t) = mt + qWt +

∫

|x|≤1
x[N(t, dx) − tν(dx)] +

∫

|x|>1
xN(t, dx), t ≥ 0 (6)
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where m ∈ R
n, q ∈ Mn×n(R) is a symmetric, positive defined matrix, {Wt, t ≥ 0} is an n-

dimensional centered Brownian motion, N(t, dx) is a Poisson measure and the Lévy measure
ν(dx) is σ-finite on R

n \ {0} and such that
∫

min(1, x2)ν(dx) < ∞. We denote by Ñ(dt, dx) :=
N(dt, dx) − dtν(dx) the compensated Poisson measure.

Hypothesis 2.2. We suppose that the measure ν has finite second order moment, i.e.

∫

Rn

|x|2ν(dx) < ∞. (7)

Condition (7) implies that the generalized compound Poisson process
∫

|x|>1 x N(t, dx) has finite
moments of first and second order. Then, with no loss of generality, we assume that

∫

|x|>1
xν(dx) = 0. (8)

We also assume throughout that the Lévy process is a pure jump process, i.e. m ≡ 0 and q ≡ 0,
which leads to the representation (5) in view of assumptions (7) and (8).

2.1 Well-posedness of the linear deterministic problem

We consider the product space H = (L2(0, 1))m. A vector ū ∈ H is a collection of functions
{uj(x), x ∈ [0, 1], j = 1, . . . , m} which represents the electrical potential inside the network.

Remark 2.3. For any real number s ≥ 0 we define the Sobolev spaces

H
s = (Hs(0, 1))m,

where Hs(0, 1) is the fractional Sobolev space defined for instance in [22]. In particular we
have that H

1 ⊂ (C[0, 1])m. Hence we are allowed to define the boundary evaluation operator
Π : H

1 → R
n defined by

Πū =







p1
...

pn






, where pi = ū(vi) = uk(vi) for k ∈ Γ(vi), i = 1, ..., n.

On the space H we introduce the linear operator (A, D(A)) defined by

D(A) = {ū ∈ H
2 | ∃ p ∈ R

n such that Πū = p}

Aū =

(

∂

∂x

(

cj(x)
∂

∂x
uj(t, x)

))

j=1,...,m

As discussed in [24], the diffusion operator A on a network, endowed with active nodes, fits the
abstract mathematical theory of parabolic equations with dynamic boundary conditions, and in
particular it can be discussed in an efficient way by means of sesquilinear forms.

Notice that no other condition except continuity on the nodes is imposed on the elements of
D(A). This is often stated by saying that the domain is maximal.
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The so called feedback operator, denoted by C, is a linear operator from D(A) to R
n defined as

Cū =





∑

j∈Γ(vi)

φijµjcj(vi)
∂

∂x
uj(t, vi)





i=1,...,n

.

On the vector space R
n we also define the diagonal matrix

B =







−b1

. . .

−bn






.

With the above notation, problem (1)–(4) can be written as an abstract Cauchy problem on the
product space H = H × R

n endowed with the natural inner product

〈X, Y 〉H = 〈ū, v̄〉H + 〈p, q〉Rn , where X, Y ∈ H and X =

(

ū
p

)

, Y =

(

v̄
q

)

.

We introduce the matrix operator A on the space H, given in the form

A =

(

A 0
C B

)

with domain

D(A) = {X = (ū, p) ∈ H : ū ∈ D(A), uj(vi) = pi for every j ∈ Γ(vi)}.

Then the linear deterministic part of problem (1)–(4) becomes







d

dt
X(t) = AX(t)

X(0) = x0

(9)

where x0 = (uj(0, x))j=1,...,m ∈ C([0, 1])m is the vector of initial conditions. This problem is well
posed, as the following result shows.

Proposition 2.4. Under Hypotheses 2.1.1 and 2.1.2 the operator (A, D(A)) is self-adjoint,
dissipative and has compact resolvent. In particular, it generates a C0 analytic semigroup of
contractions.

Proof. For the sake of completeness, we provide a sketch of the proof following [24]. The idea is
simply to associate the operator (A, D(A)) with a suitable form a(X, Y ) having dense domain
V ⊂ H.

The space V is defined as

V =

{

X =

(

ū
p

)

| ū ∈ (H1(0, 1))m, uk(vi) = pi for i = 1, . . . , n, k ∈ Γ(vi)

}
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and the form a is defined as

a(X, Y ) =
m

∑

j=1

∫ 1

0
µjcj(x)u′

j(x)v′j(x) dx +
n

∑

l=1

blplql, X =

(

ū
p

)

, Y =

(

v̄
q

)

.

The form a is clearly positive and symmetric; furthermore it is closed and continuous. Then
a little computation shows that the operator associated with a is (A, D(A)) defined above.
Classical results in Dirichlet forms theory, see for instance [25], lead to the desired result.

The assumption that bl > 0 for some l is a dissipativity condition on A. In particular it implies
the following result (for a proof see [24]).

Proposition 2.5. Under Hypotheses 2.1.1 and 2.1.3, the operator A is invertible and the semi-
group {T (t), t ≥ 0} generated by A is exponentially bounded, with growth bound given by the
strictly negative spectral bound of the operator A.

3 The stochastic Cauchy problem

We can now solve the system of stochastic differential equations (1)– (4). The functions fj(u)
which appear in (1) are assumed to have a polynomial growth. We remark that the classical
FitzHugh-Nagumo problem requires

fj(u) = u(u − 1)(aj − u) j = 1, ..., m

for some aj ∈ (0, 1), and satisfies Hypothesis 2.1.2 with

η ≤ −max
j

(a3
j + 1)

3(aj + 1)
, s = 3.

We set

F (ū) =
(

fj(uj)
)

j=1,...,m
and F(X) =

(

−F (ū)
0

)

for X =

(

ū
p

)

, (10)

and we write our problem in abstract form

{

dX(t) = [AX(t) −F(X(t))] dt + Σ dL(t)

X(0) = x0,
(11)

where Σ is the matrix defined by

Σ =

(

0 0
0 σ

)

=

(

0 0
0 diag(σ1, . . . , σn)

)

,

and L(t) is the natural embedding in H of the n-dimensional Lévy process L(t), i.e.

L(t) =

(

0
L(t)

)

.
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Remark 3.1. Note that in general F is only defined on its domain D(F), which is strictly smaller
than H.

Let us recall the definition of mild solution for the stochastic Cauchy problem (11).

Definition 3.2. An H-valued predictable process X(t), t ∈ [0, T ], is said to be a mild solution
of (11) if

∫ T

0
|F(X(s))|ds < +∞ (12)

and

X(t) = T (t)x0 −

∫ t

0
T (t − s)F(X(s)) ds +

∫ t

0
T (t − s)Σ dL(s) (13)

P-a.s. for all t ∈ [0, T ], where T (t) is the semigroup generated by A.

Condition (12) implies that the first integral in (13) is well defined. The second integral, which
we shall refer to as stochastic convolution, is well defined as will be shown in the following
subsection.

3.1 The stochastic convolution process

In our case the stochastic convolution can be written as

Z(t) =

∫ t

0

∫

Rn

T (t − s)

(

0
σx

)

Ñ(ds,dx).

The definition of stochastic integral with respect to a compensated Poisson measure has been
discussed by many authors, see for instance [1; 2; 3; 9; 14; 15]. Here we limit ourselves to briefly
recalling some conditions for the existence of such integrals. In particular, in this paper we
only integrate deterministic functions, such as T (·)Σ, taking values in (a subspace of) L(H), the
space of linear operators from H to H. In order to define the stochastic integral of this class of
processes with respect to the Lévy martingale-valued measure

M(t, B) =

∫

B
x Ñ(t, dx), (14)

one requires that the mapping T (·)Σ : [0, T ] × R
n ∋ (t, x) 7→ T (t)(0, σx) belongs to the space

L2((0, T ) × B; 〈M(dt, dx)〉) for every B ∈ B(Rn), i.e. that

∫ T

0

∫

B

∣

∣

∣

∣

T (s)

(

0
σx

)∣

∣

∣

∣

2

H

ν(dx) ds < ∞. (15)

Thanks to (7), one has

∫ T

0

∫

B

∣

∣

∣

∣

T (s)

(

0
σx

)∣

∣

∣

∣

2

H

ν(dx) ds

≤ |σ|2
(∫ T

0
|T (s)|2L(H) ds

) (∫

B
|x|2 ν(dx)

)

< ∞,
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thus the stochastic convolution Z(t) is well defined for all t ∈ [0, T ].

We shall now prove a regularity property (in space) of the stochastic convolution. Below we will
also see that the stochastic convolution has càdlàg paths.

Let us define the product spaces E := (C[0, 1])m × R
n and CF ([0, T ];L2(Ω; E)), the space of

E-valued, adapted mean square continuous processes Y on the time interval [0, T ] such that

|Y |2CF
:= sup

t∈[0,T ]
E|Y (t)|2E < ∞.

Lemma 3.3. For all t ∈ [0, T ], the stochastic convolution {Z(t), t ∈ [0, T ]} belongs to the space
CF ([0, T ];L2(Ω; E)). In particular, Z(t) is predictable.

Proof. Let us recall that the (unbounded) matrix operator A on H is defined by

A =

(

∂2
x 0

−∂ν B

)

with domain D(A) = {X = (ū, p) ∈ H : ū ∈ D(A), ul(vi) = pi for every l ∈ Γ(vi)}, and, by
proposition 2.4, it generates a C0-analytic semigroup of contractions on H.

Let us introduce the interpolation spaces Hθ = (H, D(A))θ,2 for θ ∈ (0, 1). By classical interpo-
lation theory (see e.g. [23]) it results that, for θ < 1/4, Hθ = H

2θ × R
n while for θ > 1/4 the

definition of Hθ involves boundary conditions, that is

Hθ =

{(

ū
p

)

∈ H2θ × R
n : Πū = p

}

.

Therefore, one has (0, σx) ∈ Hθ for θ < 1/4. Furthermore, for θ > 1/2, one also has Hθ ⊂
H

1 × R
n ⊂ (C[0, 1])m × R

n by Sobolev embedding theorem. Moreover, for all x ∈ Hθ and
θ + γ ∈ (0, 1), it holds

|T (t)x|θ+γ ≤ t−γ |x|θe
ωAt,

where ωA is the spectral bound of the operator A.

Let θ, γ be real numbers such that θ ∈ (0, 1/4), γ ∈ (0, 1/2) and θ + γ ∈ (1/2, 1). Then for all
t ∈ [0, T ]

|Z(t)|θ+γ ≤

∫ t

0

∫

Rn

∣

∣

∣

∣

T (t − s)

(

0
σx

)∣

∣

∣

∣

θ+γ

Ñ(dx,ds) P-a.s.

The right hand side of the above inequality is well defined if and only if

E

∣

∣

∣

∣

∣

∫ T

0

∫

Rn

∣

∣

∣

∣

T (s)

(

0
σx

)∣

∣

∣

∣

θ+γ

Ñ(dx,ds)

∣

∣

∣

∣

∣

2

=

∫ T

0

∫

Rn

∣

∣

∣

∣

T (s)

(

0
σx

)∣

∣

∣

∣

2

θ+γ

ν(dx)ds < ∞,

where the identity follows by the classical isometry for Poisson integrals. On the other hand,
one has

∫ T

0

∫

Rn

∣

∣

∣

∣

T (s)

(

0
σx

)∣

∣

∣

∣

2

θ+γ

ν(dx)ds ≤

∫ T

0

∫

Rn

s−2γ

∣

∣

∣

∣

(

0
σx

)∣

∣

∣

∣

2

θ

e2ωAsν(dx)ds

≤ |σ|2
∫ T

0
s−2γe2ωAsds

∫

Rn

|x|2ν(dx) < ∞

1371



using γ ∈ (0, 1/2) and assumption (7). So Z(t) ∈ Hθ+γ for θ + γ > 1/2 and then Z(t) ∈
(C[0, 1])m × R

n = E . It remains to prove that Z(t) is mean square continuous as E-valued
process. For 0 ≤ s < t ≤ T we can write

E|Z(t) − Z(s)|2E = E

∣

∣

∣

∣

∫ t

0
T (t − r)Σ dL(r) −

∫ s

0
T (s − r)ΣdL(r)

∣

∣

∣

∣

2

E

≤ 2E

∣

∣

∣

∣

∫ s

0

∫

Rn

[T (t − r) − T (s − r)]

(

0
σx

)

Ñ(dx,dr)

∣

∣

∣

∣

2

E

+2E

∣

∣

∣

∣

∫ t

s

∫

Rn

T (t − r)

(

0
σx

)

Ñ(dx,dr)

∣

∣

∣

∣

2

E

= 2

∫ s

0

∫

Rn

∣

∣

∣

∣

[T (t − r) − T (s − r)]

(

0
σx

)∣

∣

∣

∣

2

E

ν(dx)dr

+2

∫ t

s

∫

Rn

∣

∣

∣

∣

T (t − r)

(

0
σx

)∣

∣

∣

∣

2

E

ν(dx)dr −→ 0

by the strong continuity of the semigroup T (t). Since the stochastic convolution Z(t) is adapted
and mean square continuous, it is predictable.

3.2 Existence and uniqueness in the Lipschitz case

We consider as a preliminary step the case of Lipschitz continuous nonlinear term and we
prove existence and uniqueness of solutions in the space CF of adapted mean square continuous
processes taking values in H. We would like to mention that this result is included only for the
sake of completeness and for the simplicity of its proof (which is essentially based only on the
isometry defining the stochastic integral). In fact, a much more general existence and uniqueness
result was proved by Kotelenez in [20].

Theorem 3.4. Assume that Hypothesis 2.2 holds, and let x0 be an F0-measurable H-valued
random variable such that E|x0|

2 < ∞. Let G : H → H be a function satisfying Lipschitz and
linear growth conditions:

|G(x)| ≤ c0(1 + |x|), |G(x) − G(y)| ≤ c0|x − y|, x, y ∈ H. (16)

for some constant c0 > 0. Then there exists a unique mild solution X ∈ C0([0, T ];L2(Ω,H))
to equation (11) with −F replaced by G. Moreover, the solution map x0 7→ X(t) is Lipschitz
continuous.

Proof. We follow the semigroup approach of [11, Theorem 7.4] where the case of Wiener noise
is treated. We emphasize only the main differences in the proof.

The uniqueness of solutions reduces to a simple application of Gronwall’s inequality. To prove
existence we use the classical Banach’s fixed point theorem in the space CF ([0, T ];L2(Ω;H)).
Let K be the mapping

K(Y )(t) = T (t)x0 +

∫ t

0
T (t − s)G(Y (s)) ds + Z(t)
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where Y ∈ CF ([0, T ];L2(Ω;H)) and Z(t) is the stochastic convolution. Z(·) and T (·)x0 belong
to CF ([0, T ];L2(Ω;H)) respectively in view of Lemma 3.3 and the assumption on x0. Moreover,
setting

K1(Y )(t) =

∫ t

0
T (t − s)G(Y (s)) ds,

it is sufficient to note that
|K1(Y )|2CF

≤ (Tc0)
2(1 + |Y |2CF

)

by the linear growth of G and the contractivity of T (t). Then we obtain that K maps the space
CF ([0, T ];L2(Ω;H)) to itself. Furthermore, using the Lipschitz continuity of G, it follows that
for arbitrary processes Y1 and Y2 in CF ([0, T ];L2(Ω;H)) we have

|K(Y1) −K(Y2)|
2
CF

= |K1(Y1) −K1(Y2)|
2
CF

≤ (c0T )2|Y1 − Y2|
2
CF

.

If we choose an interval [0, T̃ ] such that T̃ < c−1
0 , it follows that the mapping K has a unique

fixed point X ∈ CF ([0, T̃ ];L2(Ω;H)). The extension to an arbitrary interval [0, T ] follows by
patching together the solutions in successive time intervals of length T̃ .

The Lipschitz continuity of the solution map x0 7→ X is again a consequence of Banach’s fixed
point theorem, and the proof is exactly as in the case of Wiener noise.

It remains to prove the mean square continuity of X. Observe that T (·)x0 is a deterministic
continuous function and it follows, again from Lemma 3.3, that the stochastic convolution Z(t)
is mean square continuous. Hence it is sufficient to note that the same holds for the term
∫ t
0 T (t − s)G(X(s)) ds, that is P-a.s. a continuous Bochner integral and then continuous as the

composition of continuous functions on [0, T ].

Remark 3.5. By standard stopping time arguments one can actually show existence and unique-
ness of a mild solution assuming only that x0 is F0-measurable.

In order to prove that the solution constructed above has càdlàg paths, unfortunately one cannot
adapt the factorization technique developed for Wiener integrals (see e.g. [11]). However, the
càdlàg property of the solution was proved by Kotelenez [20], under the assumption that A
is dissipative. Therefore, thanks to proposition 2.4, the solution constructed above has càdlàg
paths. One could also obtain this property proving the following a priori estimate, which might
be interesting in its own right.

Theorem 3.6. Under the assumptions of theorem 3.4 the unique mild solution of problem (11)
verifies

E sup
t∈[0,T ]

|X(t)|2H < ∞.

Proof. Let us consider the Itô formula for the function | · |2H, applied to the process X. Although
our computations are only formal, they can be justified using a classical approximation argument.
We obtain

d|X(t)|2H = 2〈X(t−), dX(t)〉H + d[X](t).

By the dissipativity of the operator A and the Lipschitz continuity of G, we obtain

〈X(t−), dX(t)〉H = 〈AX(t), X(t)〉Hdt + 〈G(X(t)), X(t)〉Hdt + 〈X(t−), ΣdL(t)〉H

≤ c0|X(t)|2H + 〈X(t−), ΣdL(t)〉H.
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Therefore

|X(t)|2H ≤ |x0|
2
H + 2c0

∫ t

0
|X(s)|2Hds + 2

∫ t

0
〈X(s−), ΣdL(s)〉H +

∫ t

0
|Σ|2d[L](s)

and

E sup
t≤T

|X(t)|2H ≤E|x0|
2
H + 2c0TE sup

t≤T
|X(t)|2H

+ 2E sup
t≤T

∣

∣

∣

∫ t

0
〈X(s−), ΣdL(s)〉H

∣

∣

∣
+ T

∫

Rn

|Σ|2|x|2 ν(dx), (17)

where we have used the relation

E sup
t≤T

[X](t) ≤ E

∫ T

0
|Σ|2 d[L](t) = E

∫ T

0
|Σ|2 d〈L〉(t) = T

∫

Rn

∣

∣

∣

∣

Σ

(

0
x

)∣

∣

∣

∣

2

ν(dx).

By the Burkholder-Davis-Gundy inequality applied to Mt =
∫ t
0 〈X(s−), ΣdL(s)〉H, there exists

a constant c1 such that

E sup
t≤T

∣

∣

∣

∫ t

0
〈X(s−), ΣdL(s)〉H

∣

∣

∣
≤ c1E

([∫ ·

0
〈X(s−), ΣdL(s)〉H

]

(T )

)1/2

≤ c1E

(

sup
t≤T

|X(t)|2H

∫ T

0
|Σ|2d[L](s)

)1/2

≤ c1

(

εE sup
t≤T

|X(t)|2H +
1

4ε
E

∫ T

0
|Σ|2d[L](s)

)

= c1εE sup
t≤T

|X(t)|2H +
c1T

4ε

∫

Rn

|Σ|2|x|2ν(dx), (18)

where we have used the elementary inequality ab ≤ εa2 + 1
4εb

2. Then by (17) and (18) we have

E sup
t≤T

|X(t)|2H ≤ E|x0|
2
H + 2c0TE sup

t≤T
|X(t)|2H + 2c1εE sup

t≤T
|X(t)|2H

+
( c1

2ε
+ 1

)

T

∫

Rn

|Σ|2|x|2 ν(dx),

hence
E sup

t≤T
|X(t)|2H ≤ N

[

E|x0|
2
H + T

(

1 +
c1

2ε

)]

< +∞,

where

N = N(c0, c1, T, ε) =
1

1 − 2c0T − 2c1ε
.

Choosing ε > 0 and T > 0 such that N < 1, one obtains the claim for a small time interval.
The extension to arbitrary time interval follows by classical extension arguments.
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3.3 FitzHugh-Nagumo type nonlinearity

Let us now consider the general case of a nonlinear quasi-dissipative drift term F .

Theorem 3.7. Let F : D(F) ⊂ H → H be defined as in (10). Then the equation

{

dX(t) = [AX(t) −F(X(t))] dt + Σ dL(t), t ∈ [0, T ],

X(0) = x0
(19)

admits a unique mild solution, denoted by X(t, x0), which satisfies the estimate

E|X(t, x) − X(t, y)|2 ≤ e2ηt
E|x − y|2.

for all x, y ∈ H.

Proof. As observed in section 3 above, there exists η > 0 such that F + ηI is accretive. By a
standard argument one can reduce to the case of η = 0 (see e.g. [4]), which we shall assume
from now on, without loss of generality. Let us set, for λ > 0, Fλ(u) = F ((1+λF )−1(u)) (Yosida
regularization). Fλ is then defined in the obvious way.

Let Gy = −Ay + F(y). Then G is maximal monotone on H. In fact, since A is self-adjoint,
setting

ϕ(u) =

{

|A1/2u|2, u ∈ D(A1/2)

+∞, otherwise,

one has A = ∂ϕ. Let us also set F = ∂g, where g : R
m → R is a convex function, the construction

of which is straightforward. Well-known results on convex integrals (see e.g. [4, sec. 2.2]) imply
that F on H is equivalently defined as F = ∂Ig, where

Ig(u) =







∫

[0,1]m
g(u(x)) dx, if g(u) ∈ L1([0, 1]m),

+∞, otherwise.

Let us recall that

F =

(

−F
0

)

.

Since D(F) ∩ D(A) is not empty, G is maximal monotone if ϕ((I + λF)−1(u)) ≤ ϕ(u) (see e.g.
[6, Thm. 9]), which is verified by a direct (but tedious) calculation using the explicit form of A,
since (I + λfj)

−1 is a contraction on R for each j = 1, . . . , m.

Let us consider the regularized equation

dXλ(t) + GλXλ(t) dt = Σ dL(t).

Appealing to Itô’s formula for the square of the norm one obtains

|Xλ(t)|2 + 2

∫ t

0
〈GλXλ(s), Xλ(s)〉 ds = |x0|

2 + 2

∫ t

0
〈Xλ(s−), Σ dL(s)〉 + [Xλ](t)
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for all t ∈ [0, T ]. Taking expectation on both sides yields

E|Xλ(t)|2 + 2E

∫ t

0
〈GλXλ(s), Xλ(s)〉 ds = |x0|

2 + t

∫

Rn

|Σ|2 |z|2 ν(dz), (20)

where we have used the identity

E[Xλ](t) = E

[

∫ ·

0
Σ dL(s)

]

(t) = t

∫

Rn

|Σ|2 |z|2 ν(dz).

Since by (20) we have that {Xλ} is a bounded subset of L∞([0, T ], L2(H)), and L
2(H) is sepa-

rable, Banach-Alaoglu’s theorem implies that

Xλ
∗
⇀ X in L∞([0, T ], L2(H)),

on a subsequence still denoted by λ. Thanks to the assumptions on fj , one can easily prove that
〈F (u), u〉 ≥ c|u|p+1 for some c > 0 and p ≥ 1, hence (20) also gives

E

∫ T

0
|Xλ(s)|p+1

p+1 ds < C,

which implies that

Xλ ⇀ X in Lp+1(Ω × [0, T ] × D, P × dt × dξ), (21)

where D = [0, 1]m × R
n. Furthermore, (20) and (21) also imply

GλXλ ⇀ η in L
p+1

p (Ω × [0, T ] × D, P × dt × dξ).

The above convergences immediately imply that X and η are predictable, then in order to
complete the proof of existence, we have to show that η(ω, t, ξ) = G(X(ω, t, ξ)), P× dt× dξ-a.e..
For this it is enough to show that

lim sup
λ→0

E

∫ T

0
〈GλXλ(s), Xλ(s)〉 ds ≤ E

∫ T

0
〈η(s), X(s)〉 ds.

Using again Itô’s formula we get

E|X(T )|2 + 2E

∫ T

0
〈η(s), X(s)〉 ds = |x0|

2 + T

∫

Rn

|Σ|2 |z|2 ν(dz). (22)

However, (21) implies that
lim inf

λ→0
E|Xλ(T )|2 ≥ E|X(T )|2

(see e.g. [7, Prop. 3.5]), from which the claim follows comparing (20) and (22).

The Lipschitz dependence on the initial datum as well as (as a consequence) uniqueness of the
solution is proved by observing that X(t, x)−X(t, y) satisfies P-a.s. the deterministic equation

d

dt
(X(t, x) − X(t, y)) = A(X(t, x) − X(t, y)) −F(X(t, x)) + F(X(t, y)),
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hence

1

2

d

dt
|X(t, x) − X(t, y)|2 =

〈

A(X(t, x) − X(t, y)), X(t, x) − X(t, y)
〉

−
〈

F(X(t, x) −F(X(t, y)), X(t, x) − X(t, y)
〉

≤ η|X(t, x) − X(t, y)|2,

where X(·, x) stands for the mild solution with initial datum x. By Gronwall’s lemma we have

E|X(t, x) − X(t, y)|2 ≤ e2ηt
E|x − y|2,

which concludes the proof of the theorem.

Remark 3.8. An alternative method to solve stochastic evolution equations with a dissipative
nonlinear drift term is developed in [11; 12], for the case of Wiener noise, and in the recent
book [26] for the case of Lévy noise. This approach consists essentially in the reduction of the
stochastic PDE to a deterministic PDE with random coefficients, by “subtracting the stochastic
convolution”. To carry out this plan one has to find a reflexive Banach space V, continuously
embedded in H, which is large enough to contain the paths of the stochastic convolution, and
at the same time not too large so that it is contained in the domain of the nonlinearity F . In
particular, in the case of equation (19), theorem 10.14 in [26] yields existence and uniqueness of
a mild solution provided, among other conditions, that

∫ T

0
|Z(t)|18 dt < ∞ P-a.s.

The result could also be obtained applying theorem 10.15 of op. cit., provided one can prove that
L has càdlàg trajectories in the domain of a fractional power of a certain operator defined in
terms of A. In some specific cases, such condition is implied by suitable integrability conditions
of the Lévy measure. Unfortunately it seems to us rather difficult to verify such conditions, a
task that we have not been able to accomplish. On the other hand, our approach, while perhaps
less general, yields the well-posedness result under seemingly natural assumptions.

Remark 3.9. By arguments similar to those used in the proof of theorem 3.6 one can also obtain
that

E sup
t≤T

|Xλ(t)|2 < C,

i.e. that {Xλ} is bounded in L
2(L∞([0, T ];H)). By means of Banach-Alaoglu’s theorem, one

can only conclude that Xλ
∗
⇀ X in L

2(L1([0, T ];H))′, which is larger than L
2(L∞([0, T ];H)). In

fact, from [13, Thm. 8.20.3], being L1([0, T ];H) a separable Banach space, one can only prove
that if F is a continuous linear form on L

2(L1([0, T ];H)), then there exists a function f mapping
Ω into L∞([0, T ];H) that is weakly measurable and such that

F (g) = E〈f, g〉

for each g ∈ L
2(L1([0, T ];H)).
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[6] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial
differential equations, Contributions to nonlinear functional analysis (Proc. Sympos., Math.
Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press, New York, 1971,
pp. 101–156. MR0394323

[7] , Analyse fonctionnelle, Masson, Paris, 1983. MR0697382

[8] S. Cerrai, Second order PDE’s in finite and infinite dimension, Lecture Notes in Mathe-
matics, vol. 1762, Springer-Verlag, Berlin, 2001. MR1840644

[9] A. Chojnowska-Michalik, On processes of Ornstein-Uhlenbeck type in Hilbert space, Stochas-
tics 21 (1987), no. 3, 251–286. MR0900115

[10] G. Da Prato, Kolmogorov equations for stochastic PDEs, Birkhäuser Verlag, Basel, 2004.
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