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We show in the concrete example of the time evolution of rotators on the (q−1)-dimensional
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local coarse-grainings when the Hamiltonian satisfies a Lipschitz property .
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1 Introduction

The absence or presence of phase transitions lies at the heart of mathematical statistical me-
chanics of equilibrium systems. A phase transition in an order parameter that can be directly
observed is of an obvious interest for the system under investigation. Moreover sometimes also
the presence or absence of phase transitions is linked in a more subtle way to the properties of
the system under investigation. In fact, it is understood that ”hidden phase transitions” in an in-
ternal system that is not directly observable are responsible for the failure of the Gibbs property
for a variety of important measures that appear as transforms of various Gibbs measures. For
the mechanisms of how to become non-Gibbs and background on renormalization group type of
pathologies and beyond, see the reviews [11; 8; 5].

The first part of the analysis of an interacting system begins with an understanding of the ”weak
coupling regime” and proving results based on absence of phase transitions when the system
variables behave as a perturbation of independent ones. There is a variety of competing ways at
our disposition to do so, giving related but usually not equivalent results, notably Dobrushin’s
uniqueness theory [14; 1], expansion methods, and percolation and coupling methods.

When it works, Dobrushin uniqueness has a lot of advantages, being not very technical, but
very general, requiring little explicit knowledge of the system and providing explicit estimates
on decay of correlations. Moreover, it implies useful properties generalizing those of indepen-
dent variables. As an example of such a useful property we mention Gaussian concentration
estimates of functions of the system variables which are obtained as a corollary when there is an
estimate on the Dobrushin interaction matrix available [6; 7]. Especially when we are talking
about continuous spin systems a Dobrushin uniqueness approach seems favorable, since cluster
expansions are often applicable only with some technical effort [19; 12], and percolation and
coupling are not directly available.

A particular interest has been in recent times in the study of the loss and recovery of the Gibbs
property of an initial Gibbs measure under a stochastic time-evolution. The study started in [4]
where the authors focused on the evolution of a Gibbs measure of an Ising model under high-
temperature spin-flip Glauber dynamics. The main phenomenon observed therein was the loss of
the Gibbs property after a certain transition time when the system was started at an initial low
temperature state. The measure stays non-Gibbs forever when the initial external field was zero.
More complicated transition phenomena between Gibbs and non-Gibbs are possible at interme-
diate times when there is no spin-flip symmetry: The Gibbs property is recovered again at large
but finite values of time in the presence of non-vanishing external magnetic fields in the external
measure. A complete analysis of the corresponding Ising mean-field system in zero magnetic
field was given in [3] where the authors analyzed the time-temperature dynamic phase diagram
describing the Gibbs non-Gibbs transitions. In the analysis also the phenomenon of symmetry
breaking in the set of bad configurations was detected, meaning that a bad configuration whose
spatial average does not preserve the spin-flip symmetry of the model appears.

What remains of these phenomena for continuous spins? The case of site-wise independent
diffusions of continuous spins on the lattice starting from the Gibbs-measure of a special double-
well potential was considered in [10]. It was shown therein that a similar loss of Gibbsianness
will occur if the initial double-well potential is deep enough. In contrast to the Ising model, this
loss however is a loss without recovery, so the measure stays non-Gibbs for all sufficiently large
times. This is due to the unbounded nature of the spins. Short-time Gibbsianness is proved
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to hold also in this model. While these results hold for a continuous spin model, the method
of proof is nevertheless based on the investigation of a ”hidden discrete model”, exploiting the
particular form of the Gibbs-potential. In [17] the authors studied models for compact spins,
namely the planar rotator models on the circle subjected to diffusive time-evolution. It is
shown therein that starting with an initial low-temperature Gibbs measure, the time-evolved
measure obtained for infinite- or high-temperature dynamics stays Gibbs for short times and for
the corresponding initial infinite- or high- temperature Gibbs measure under infinite- or high-
temperature dynamics, the time-evolved measure stays Gibbs forever. Their analysis uses the
machinery of cluster expansions, as earlier developed in [22]. Even before it was shown that the
whole process of space-time histories can be viewed as a Gibbs measure [21]. This is interesting
in itself, but does not imply that fixed-time projections are Gibbs.

Short-time Gibbsianness in all these models follows from uniqueness of a hidden or internal
system. While this is expected to hold very generally, results that are not restricted to particular
models appear only for discrete spin systems [9]. The present paper now narrows the gap. It
provides a proof of the preservation of the Gibbs property of the time-evolved Gibbs-measures
of a general continuous spin system under site-wise independent dynamics, for short times, even
when the initial measure is in the strong coupling regime. Intuitively speaking strong couplings
offer the possibility for a phase transition not only in the initial system but also in the internal
system, which will however be suppressed for small times, but usually only for small times.
Small couplings offer no possibility for a phase and it is much easier to show the preservation of
Gibbsianness for all times.

More generally than for time-evolution, we prove our results directly for general two layer sys-
tems, consisting of (1) a Gibbs measure in the first layer, that is (2) subjected to local transition
kernels mapping the first-layer variables to second-layer variables. This generalizes the notion
of a hidden Markov model where the second layer plays the role of a noisy observation. Such
models have motivations in a variety of fields. Let us mention for example that they appear in
biology as models of gene regulatory networks where the vertices of the network are genes and
the variables model gene expression activities.

A measure is Gibbsian when the single-site conditional probabilities depend on the conditioning
in an essentially local way. Our main statement (Theorem 2.5) is an explicit upper bound
on the continuity of the single-site conditional probabilities of the second-layer system as a
function of the conditioning. This is valid when the transition kernels don’t fluctuate too much,
even when the first-layer system is in a strong coupling regime. Our result holds for discrete or
continuous compact state spaces and general interactions and is based on Dobrushin uniqueness.
To formulate the resulting continuity estimate for the conditional probabilities we don’t need
any a priori metric structure on the local-spin spaces: The natural metric on the second-layer-
single-spin space is created by the variational distance between the a-priori measures in the first
layer that are obtained by conditioning on second layer configurations (see Theorem 2.5).

On the way to this result, we exhibit a simple criterion for Dobrushin uniqueness for Gibbs-
measures (of one layer). It is easy to check and can be of use beyond the study of (non)-
Gibbsianness.

Intuitively, it demands that the sum over the interaction terms in the Hamiltonian coupling
the sites i and j should not fluctuate too much when it is viewed as a random variable at the
site i under the corresponding local a priori measure (see Definition 2.2). So even when one
has a large interaction, better concentration properties of the a priori measures can still imply
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an overall small Dobrushin constant. This is a generalization of the simple large-field criterion
ensuring Dobrushin-uniqueness in the Ising model (see p.147 example 8.13 of [1] and [20]) to
general spaces (Theorem 2.3).

The criterion we need for the study of the second-layer model is based on the description of the
interplay between the possible largeness of the initial interaction and the strength of the coupling
to the second layer found in Theorem 2.3 (when the initial a priori measures are replaced with
conditional a priori measures). To ensure Gibbsianness of the second-layer model, we thus need
small fluctuations of the initial Hamiltonian w.r.t. the a-priori measures in the first layer that are
obtained by conditioning on second-layer configurations. The estimates on the spatial memory
of the second-layer-single-site conditional probabilities follow naturally by evoking Dobrushin-
uniqueness estimates on comparison of the Gibbs measures with perturbed specifications and
chain-rule type of arguments.

To illustrate the simplicity of our approach to get explicit estimates on the spatial decay we
prove short-time Gibbsianness of a model of (q − 1)-dimensional rotators for general q ≥ 2
under diffusive time-evolution on the (q − 1)-spheres, and provide an explicit estimate on the
time-interval for which the time-evolved measure stays Gibbs. This will be supplemented by
arguments that are more specific to the rotators which give us precise continuity estimates in
terms of the Euclidean distances on the spheres. As another application of our approach we
show Gibbsianness of initial system (with Lipschitz continuous Hamiltonian) subjected to local
coarse-grainings. Here the transformed system will be Gibbs if the local coarse-graining is fine
enough.

The rest of the paper is organized as follows: In Section 2 we formulate our main results. From
Sections 3 to 5 we present the proofs of the main results and state some further results that are
also of interest in themselves.

2 Main Results

2.1 Preliminaries and definitions

Before we formulate our results we recall some generalities on Gibbs measures for spin systems
([1; 11; 14]). Let G be a countable vertex set (for example G = Z

d, d ≥ 1) and denote by S the
set of finite subsets of G. We write Λc := G \Λ for any subset Λ of G and whenever Λ = {i}, we
shall in the sequel write ic instead of Λc. We denote by σ = (σi)i∈G the spin-variables where the
σi’s are taking values in a standard Borel space S (i.e. a measurable space with a metric which
turns it into a complete separable metric space equipped with the Borel σ−algebra generated by
the metric) equipped an a-priori Borel probability measure α (single-spin space). In our general
set-up we don’t need to make a metric structure on S explicit. We further denote by Ω := SG

the configuration space of our system equipped with the product Borel σ-algebra F . We write
FΛ for the sub-σ-algebra generated by the σi’s for i ∈ Λ ⊂ G. A real-valued function defined
on the configuration space is said to be local if it is measurable w.r.t. FΛ for some finite subset
Λ ⊂ G and is said to be quasilocal if it is a uniform limit of local functions.

A specification on (Ω,F) is a family γ = {γΛ, Λ ∈ S} of probability kernels from ΩΛc to F which
are proper and consistent. Properness means that γΛ(B|ω) = 1B(ω) whenever B is measurable
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w.r.t. FΛc . Consistency means that γΛ′γΛ = γΛ′ whenever Λ ⊂ Λ′. Here the notation on the
l.h.s. indicates the composition of probability kernels.

A specification is said to be quasilocal if its application to any quasilocal function f on Ω,
denoted by γΛ(f), is again a quasilocal function. A specification is said to be uniform nonnull
if, for each Λ ∈ S there exist constants 0 < uΛ ≤ vΛ < ∞ such that uΛαΛ(A) ≤ γΛ(A|ω) ≤
vΛαΛ(A), for all ω ∈ Ω and A ∈ FΛ. Here αΛ is the free specification obtained by putting a
fixed boundary condition outside Λ and integrating over the product measure inside Λ, that
is αΛ(f |ω) =

∫
∏

i∈Λ α(dσi)f(σΛωΛc). A specification is called Gibbsian if it is quasilocal and
uniformly nonnull.

Given a Gibbsian specification γ we say that a probability measure µ on Ω is a Gibbs measure
for γ whenever, for each Λ ∈ S,

µγΛ = µ. (1)

The above equation is called the DLR-equation. We denote by G(γ) the set of Gibbs measures
for γ.

Often a specification will not just be abstractly defined, but given in terms of an interaction,
or a Hamiltonian. The interaction among the components of the systems we shall consider is a
family Φ = (ΦA)A∈S of local functions ΦA (called interaction potential) satisfying the following
summability condition:

|||Φ||| := sup
i∈G

∑

A∈S: A∋i

|A|‖ΦA‖∞ < ∞. (2)

(2) implies the most frequently found condition of absolute summability, i.e

sup
i∈G

∑

A∈S: A∋i

‖ΦA‖∞ < ∞. (3)

Given an interaction Φ and a fixed configuration ω ∈ Ω, we introduce for each Λ ∈ S

HΛ(σΛωΛc) :=
∑

A:A∩Λ6=∅
ΦA(σΛωΛc) (4)

as the finite-volume Hamiltonian with ω as boundary condition. For a given absolutely summable
interaction Φ we denote by γ ≡ γβΦ the Gibbsian specification (see [1]) given by

γΛ(dσΛ|σ̄) := exp
(

−βHΛ(σΛσ̄Λc)
)

∏

i∈Λ

α(dσi)/ZΛ(σ̄) (5)

where ZΛ(σ̄) is the normalization constant and β is the inverse temperature. In the present
paper β will always be absorbed into the interaction.

While it is important to know that a specification is quasilocal, we are aiming in this paper at
statements refining the quasilocality, which describe the dependence of the single-site conditional
probabilities γi on variations of the conditioning in more detail. To quantify the continuity of a
specification we employ the following notion.
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Definition 2.1. Assume that d is a metric on the single-spin space S, and assume that Q =
(Qi,j)i,j∈G is a non-negative matrix with supi∈G

∑

j∈G Qi,j = ‖Q‖∞ < ∞.

A specification γ is called a Gibbsian specification of goodness (Q, d) if it is quasilocal, uniformly
non-null, and the single-site kernels satisfy the continuity estimates

∥

∥

∥
γi(dηi|ηic) − γi(dηi|η̄ic)

∥

∥

∥
≤

∑

j∈G\i
Qi,jd(ηj , η̄j). (6)

Here

‖ν1 − ν2‖ := sup
f :|f |≤1

|ν1(f) − ν2(f)| =
1

2
λ(|h1 − h2|), (7)

whenever ν1 and ν2 are probability measures that are absolutely continuous with respect to the
measure λ with λ-densities h1 and h2 respectively (i.e. ‖ν1 − ν2‖ is one half of the variational
distance between ν1 and ν2) and the supremum is over observables on Ω.

The faster the decay of Q is, the faster the decay of conditional probabilities on variations of the
conditioning is, and the ”better”or the ”more Gibbsian”the system of conditional probabilities is.
We are restricting our attention to single-site γi’s since all γΛ for finite Λ can be expressed by an
explicit formula in terms of the γi’s with i ∈ Λ. For the solution of this ”reconstruction-problem”
see [1; 23].

In particular we denote by C = (Cij)i,j∈G the Dobrushin interdependence matrix [1; 14], with
entries given by

Cij = sup
ζ,η∈Ω: ζjc=ηjc

‖γi(·|ζ) − γi(·|η)‖. (8)

This means that C is the matrix with smallest matrix-elements for which the specification γ
is of the goodness (C, d), where d is the discrete metric on S given by d(ηj , η

′
j) = 1ηj 6=η′

j
. The

corresponding Dobrushin constant is given as

c := sup
i∈G

∑

j∈G

Cij .

We recall that whenever c < 1 (Dobrushin uniqueness condition) and γ is quasilocal then γ
admits at most one Gibbs measure [14; 1]. However if the single-spin space S is standard Borel
(as in our case) then the above condition implies that γ admits a unique Gibbs measure (see
Theorem 8.7, [1]). It is known that for a potential Φ satisfying (2) there is a sufficiently small
β such that βΦ satisfies Dobrushin uniqueness and the measure is in a weak coupling regime,
where the measure is a small perturbation of a product measure.

2.2 A bound on the Dobrushin constant for concentrated a priori

measures

For our purposes we employ the following definition.
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Definition 2.2. For a function F : Ω 7→ R we define the α; i, j-linear deviation devα;i,j of F
to be

devα;i,j(F ) := sup
ζ,η∈SG

ζjc=ηjc

inf
b∈R

∫

α(dσi)
∣

∣

∣
F (σiηic) − F (σiζic) − b

∣

∣

∣
.

(9)

This quantity is the worst-case linear deviation of the variation of F at the site j viewed as a
random variable w.r.t. to σi under α(dσi). Note that the linear deviation is bounded by δj(F ),
the jth oscillation of F , which is bounded by the oscillation of F , i.e.

devα;i,j(F ) ≤ δj(F ) = sup
ζ,η∈Ω

ζjc=ηjc

∣

∣

∣
F (η) − F (ζ)

∣

∣

∣

≤ δ(F ) = sup
ζ,η∈Ω

∣

∣

∣
F (η) − F (ζ)

∣

∣

∣
.

(10)

Then our first result is as follows.

Theorem 2.3. The Dobrushin constant c is bounded by

c ≤ sup
i∈G

∑

j∈G

exp
(

δj(Hi)
)

devα;i,j(Hi). (11)

The use of this bound lies in the fact that, even when the interaction potential is large,
devα;i,j(Hi) can be small, when α is close to a Dirac measure. A simple example for this to
happen is an Ising model at large external field, as it was discussed in [1]. Our bound produces
the bound given there, but extends to general potentials. As a less trivial application of the our
bound to a spin model where S is not discrete we discuss the Gauss-Weierstrass kernel in the
rotator example of Section 2.4 where we use it to prove short-time Gibbsianness (see (23)).

Of course, when the potential is small to begin with, the r.h.s. of (11) will be small, independently
of α, so the theorem can be used for both strong couplings and concentrated a priori measures,
and weak coupling.

2.3 Two-layer models - Goodness of Gibbsianness

Let us now formulate our assumptions on a two-layer system over a graph G. To each vertex
will be associated two local state spaces. A particular example will be given by the site-wise
independent time-evolution of Section 2.4. So, in general let S and additionally S′ be measurable
(standard Borel) spaces. This implies in particular existence of all regular conditional probabil-
ities. Again, no a priori metric will be used explicitly. We refer to S as the initial (first-layer)
spin space and to S′ as the image (second-layer) spin space. Let us take K(dσi, dηi) (Borel
probability measure on the product space S×S′) be the joint a-priori measure for the two-layer
model. We assume that K can be written in the form K(dσi, dηi) = k(σi, ηi)α(dσi)α

′(dηi),
where α(dσi) ≡

∫

S′ K(dσi, dηi), α′(dηi) ≡
∫

S K(dσi, dηi) and ‖ log k‖∞ < ∞.

Our initial model (probability measure on Ω) is by definition a Gibbs distribution for the spec-
ification given in terms of the potential Φ according to (5) where we now put as an a-priori
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measure the marginal of K on the first layer, that is α(dσi) ≡
∫

S′ K(dσi, dηi). It is important to
note that we don’t assume uniqueness of the Gibbs measure for this specification. In practice α
might be given beforehand and K is then obtained by specifying a transition kernel K(dηi|σi)
from the first layer to the second layer. In the rest of this work we will (unless otherwise stated)
denote by σi ∈ S the local variable (spin) for the initial model and ηi ∈ S′ the local variable
(spin) for the image model.

Let µ(dσ) be a Gibbs measure for the first layer for the potential Φ and a priori measure α. Our
aim is then: Study the conditional probabilities of the second-layer measure defined by

µ′(dη) :=

∫

Ω
µ(dσ)

∏

i∈G

K(dηi|σi).

This form appears for instance in the study of a stochastic time evolution, starting from an initial
measure µ where the kernel K(dηi|σi) will be dependent on time and is applied independently
over the spins (infinite-temperature dynamics). In case studies it has been observed that the
map µ 7→ µ′ may create an image measure that is not a Gibbs measure anymore. On the other
hand, in all examples observed, Gibbsianness was preserved at short times where K(dηi|σi) is a
small perturbation of δσi

(dηi). We aim here to give a criterion that implies this in all generality,
not using any specifics of the model but only the relevant underlying structure. In particular we
are not restricting ourselves to discrete spin spaces.

Our main result Theorem 2.5 is a criterion for the Gibbs property of the second-layer measure
to hold, that is easily formulated and verified in concrete examples. Moreover, we give explicit
bounds on the dependence of the conditional probabilities of the second-layer measure on the
variation of the conditioning, in the sense of Definition 2.1.

We said that we will not use any a priori metric on the spaces S and S′; indeed the natural
metric that shall be used for continuity in this set-up shall be given by the variational distance
of the conditional a priori measures in the first layer, conditional on the second layer.

Set for each i ∈ G
αηi

(dσi) := K(dσi|ηi), (12)

the a priori measures in the first layer that are obtained by conditioning on second layer config-
urations.

Definition 2.4. We call

d′(ηi, η
′
i) := ‖αηi

− αη′
i
‖ (13)

the posterior (pseudo-)metric, associated to K on the second layer space.

d′ satisfies non-negativity and triangular inequality, but we may have d′(ηi, η
′
i) = 0 for ηi 6= η′i

(which happens e.g. if σi and ηi are independent under K).

In the language of statistics, αηi
is the ”posterior measure” depending on the observation ηi in

the second-layer-single-spin space. Stated abstractly, the metric d′ is the pull back-metric of the
map ηi 7→ αηi

(dσi) from single-site configurations in the second layer to single-site measures in
the first layer. While this metric seems to be non-explicit, we will show in the rotator example
how it can be estimated in terms of a more familiar metric (Euclidean metric).
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It is a well-known heuristics which has been made precise in special cases that an investigation
of the Gibbs property of the second layer measure must be based on an analysis of the first layer
conditioned on configurations in the second layer [4; 5; 8; 12]. So, our estimates will naturally
contain quantities that reflect this aspect. Let us put

B̄ij := sup
ηi

devαηi
;i,j(Hi), C̄ij := exp

(

∑

A⊃{i,j}
δ(ΦA)

)

B̄ij . (14)

We note that B̄ij is a uniform bound on the deviations of the initial Hamiltonian taken with a
priori measures conditioned on the image configurations. The entries C̄ij are upper bounds on
the conditional Dobrushin matrix for the corresponding constrained first-layer model. We warn
the reader not to confuse devαηi

;i,j(Hi) with devα;i,j(Hi). While the second quantity may be
big and correspondingly the unconstrained first layer system in a non-uniqueness regime, the
first one might still be small and correspondingly the constrained layer system in a uniqueness
regime. This is e.g. the case for a time-evolution started at low temperature, for small times.
Then we have the following theorem.

Theorem 2.5. Suppose that the first-layer system has an infinite-volume Gibbs measure µ =
limn µσ̄

Λn
obtained for a boundary condition σ̄ and along a suitable sequence of volumes Λn.

Suppose further that supi

∑

j C̄ij < 1.

Then the family γ′ of finite-volume conditional distributions of the transformed system is a
Gibbsian specification of goodness (Q, d′) where

Qij = 4e2
P

A∋i ‖ΦA‖∞
(

∑

k∈G\i
δk

(

∑

A⊃{i,k}
ΦA

)

D̄kj

)

e
P

A∋j δj(ΦA)
(15)

with D̄ =
∑∞

n=0 C̄n.

Remark: A formula for γ′ is given below the statement of Proposition 4.7 in (63).

Note that the first layer system may be very well in a phase transition regime. For arbitrarily
large interaction Φ, good concentration of the conditional measures αηi

can still lead to a small
B̄ij , which makes the C̄ij sufficiently small for the theorem to hold. In short: Uniform conditional
Dobrushin uniqueness of the first layer implies Gibbsianness of the second layer, with explicit
estimates.

The matrix Q describing the spatial loss of memory of the variation of the conditioning, depends
on the decay properties of the ΦA’s and of the D̄kj ’s. E.g. in the case of a finite range potential,
D̄kj dominates the decay of Qij . If we have supi

∑

j C̄ije
λs(i,j) < ∞ where s(i, j) is an arbitrary

distance on G, (15) provides us with an exponential decay estimate of the form Qij ≤ Ce−λ′s(i,j)

for some constant C.

Note that the summability property we impose on the initial potential (2) implies the finiteness
of (15). In particular we have the following bound on the entries of the Q-matrix

Qij ≤ 4 exp
(

4 sup
i∈G

∑

A∋i

||ΦA||∞
)

(

MD̄
)

ij
, (16)

where M is the matrix given by Mik =

{

δk

(
∑

A⊃{i,k} ΦA

)

if i 6= k;

0 if i = k.

All these quantities are easily made explicit in examples.
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2.4 Short-time Gibbsianness for time-evolved rotator models

We begin this subsection more generally with an introduction of the following useful property
we will impose on the initial interaction. For this purpose we now assume additionally a metric
structure.

Definition 2.6. Let (S, d) be a metric space. Denote by Lij = Lij(Φ) the smallest constants
such that the j-variation of the Hamiltonian Hi satisfies

sup
ζ,ζ̄

ζjc=ζ̄jc

∣

∣

∣
Hi(σiζic) − Hi(σiζ̄ic) −

(

Hi(aiζic) − Hi(aiζ̄ic)
)
∣

∣

∣
≤ Lijd(σi, ai). (17)

We say that Φ satisfies a Lipschitz property with constants (Lij(Φ))i,j∈G×G, if all of these
constants are finite.

Consider now the rotator model on G (a general graph with countable vertex set), with both
first-layer and second-layer local spin spaces equal to Sq−1, the sphere in q-dimensional Euclidean
space, with q ≥ 2.

Take as (formal) Hamiltonian of the first-layer system in infinite-volume

H(σ) = −
∑

i,j∈G

Jijσi · σj with sup
i

∑

j

|Jij | < ∞, (18)

where we assume that Jii = 0 for each i ∈ G. In the above we have used “·” to denote scalar
product. Our model satisfies a Lipschitz property with constants Lij(Φ) = 2|Jij |. For G = Z

d

and d ≥ 3 such a model has been proved to exhibit long-range order under suitable assumptions
on the Fourier-transform of J (see [25]).

Let K be given by

K(dσi, dηi) = Kt(dσi, dηi) = kt(σi, ηi)αo(dσi)αo(dηi), (19)

where αo is the equidistribution on Sq−1 and kt is the heat kernel on the sphere, i.e.

(

e∆tϕ
)

(ηi) =

∫

αo(dσi)kt(σi, ηi)ϕ(σi), (20)

where ∆ is the Laplace-Beltrami operator (see e.g. p. 38, eq 54 of [2]) on the sphere and ϕ is
any test function. kt is also called the Gauss-Weierstrass kernel. For more background on the
heat-kernel on Riemannian manifolds, see the introduction of [24].

The time-evolved measure is given by

µt(dη) =

∫

µ(dσ)
∏

i

kt(σi, ηi)αo(dηi). (21)

It has the product over the equidistributions on the spheres as an infinite-time local limiting
measure

lim
t↑∞

µt(dη) =
⊗

i∈G

αo(dηi). (22)

Convergence takes place exponentially fast on local observables, the decay rate given by the first
eigenvalue of the Laplacian on the sphere (see also (115)).
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Theorem 2.7. Denote by d(η, η′) the induced metric on the sphere Sq−1 (with q ≥ 2) obtained
by embedding the sphere into the Euclidean space R

q.

Assume that

√
2
(

sup
i

∑

j∈G

e|Jij ||Jij |
) (

1 − e−(q−1)t
)

1

2

< 1. (23)

Then µt is a Gibbs measure for some Gibbsian specification γ′
t of goodness (Q̄(t), d) where

Q̄ij(t) :=
1

2
min

{

√

π

t
Qij(t), e

4
P

l |Jjl| − 1
}

(24)

where

Qij(t) = 8e4 supi∈G

P

j∈G |Jij |
∑

k∈G\i
|Jik|D̄kj(t), (25)

D̄(t) = 1 +
∑∞

n=1

(

1− e−(q−1)t
)

n
2 An, A is the matrix whose entries are given by Aij = e|Jij ||Jij |

and 1 is the identity matrix.

For the definition of Qij(t) in (25) we have used the bound (16).

The proof of the theorem follows from three ingredients: 1) Theorem 2.5 which gives a continuity
estimate in terms of the posterior metric d′, 2) a comparison result between d′ and d, and 3) a
telescoping argument over sites in the conditioning. Here is the comparison result.

Proposition 2.8. There is an estimate of the posterior metric d′ associated to the measure Kt

of the form

d′(ηj , η̄j) ≤
√

π

2
√

t
d(ηj , η̄j). (26)

Remark: The proof of the proposition uses a coupling argument and a reflection principle for
diffusions on the sphere under reflection at the equator. A refinement of the estimates on d′ in
terms of an expansion of Legendre polynomials is found in Proposition 5.3 in the Appendix.

Let us come back to the discussion of Theorem 2.7 and explain the form of the bounds giving
an idea of the proof. It is straightforward to apply Theorem 2.5 to our model and obtain a
result formulated in d′. However, a more natural metric we would prefer to use is d, and so we
should use Proposition 2.8. What continuity estimates do we expect to gain from this? It is not
difficult to see by telescoping and using the standard interpolation trick also employed in the
proof of Theorem 2.3 that for the initial kernel

∥

∥

∥
γt=0(dηi|ηic) − γt=0(dηi|η̄ic)

∥

∥

∥
≤

∑

j∈G

e2
P

j∈G |Jij ||Jij |d(ηj , η̄j) (27)

We see that continuity can be measured in terms of d, due to the Lipschitz property of the initial
Hamiltonian, and the spatial decay is provided by the decay of the couplings.

So, at small time t, we are aiming at a similar continuity estimate to hold which is uniform in t
as t goes to zero. Now, while estimating d′ against d we have accumulated a nasty factor 1√

t
that
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blows up when time t goes to zero. We note that this is not just an artifact of Proposition 2.8,
but the posterior metric between two points on the sphere indeed blows up like 1√

t
, as can be seen

from the proof. At first sight this does not seem to be a problem in the definition of Qij(t) because
the off-diagonal entries of the matrix D̄ij(t) are suppressed by the same factor proportional to√

t that appears in (16). This suppression follows from a bound on the corresponding Dobrushin
matrix of this order. Unfortunately the diagonal terms of D̄(t) give rise to blow-up for sites
i and j that are within the range of the potential. As it is clear from the proof, this blow-
up is understandable since so far we did not employ any continuity properties of the initial
Hamiltonian w.r.t. the Euclidean metric. Let us mention without details that the blow-up of
D̄(t) really occurs in a system of two sites when the Hamiltonian is a step function. This is
shown by a computation and indicates that continuity of the Hamiltonian is needed.

Now, to disentangle these local effects from the global effects treated so far, we use in the third
step a telescoping argument over the conditioning. Exploiting the Lipschitz-property (17) we
obtain the second term in the minimum in (24) which puts a time-independent ceiling to the
blow-up for small times. This solves the blow-up problem.

2.5 Gibbsianness for local approximations

As another consequence from the general theorem we prove that any sufficiently fine local coarse
graining preserves the Gibbs property. Here the fineness of the coarse graining has to be com-
pared with the scale in the local state spaces on which the initial Hamiltonian is varying.

We thus need a bit more structure, namely let (S, d) now be a metric space. Let a decomposition
of S be given of the form S =

⋃

ηi∈S′ Sηi
. Here S′ may be a finite or infinite set. Put T (s) := ηi

for Sηi
∋ s. This defines a deterministic transformation on S, called the fuzzy map. We assume

that α(Sηi
) > 0 for all ηi. For each ηi ∈ S′ the corresponding conditional a priori measure on

Sηi
is given by

αηi
(B) =

α(B ∩ Sηi
)

α(Sηi
)

. (28)

Then our result is the following.

Theorem 2.9. Assume the interaction Φ has the Lipschitz-property (17). Suppose further that

ρ

2
sup
i∈G

∑

j∈G

exp
(1

2

∑

A⊃{i,j}
δ(ΦA)

)

Lij < 1

where ρ = supηi
diam(Sηi

) denotes the fineness of the decomposition.

Then, for any initial Gibbs measure µ of the potential Φ with an arbitrary a priori measure α,
the transformed measure T (µ) is Gibbs for a specification γ′ of goodness (Q, d0). Here d0 is the
discrete metric and Qij is given in formula (15) where we have to substitute

C̄ij =
ρ

2
exp

(1

2

∑

A⊃{i,j}
δ(ΦA)

)

Lij .
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Remark 1: Answering a question of Aernout van Enter, this provides a class of examples where
S and S′ are different (one may be continuous, the other not), the initial measure may be in
the phase transition regime, and the image measure will be Gibbs. To think of an even more
concrete example, let us take the rotator-model (18). Divide the sphere Sq−1 =

⋃

ηi
Sηi

into
”countries” Sηi

. Then the corresponding discretized model on the country-level is still Gibbs

whenever there is no country with diameter bigger than
(

supi

∑

j∈G e|Jij ||Jij |
)−1

.

Remark 2: Theorem 2.9 can be seen as a stability result for Gibbs measures. This is interesting,
since topologically speaking ”most measures are not Gibbs measures” (see section 4.5.6. [11]):
Although it is true that, on the one hand translation-invariant Gibbs measures for finite range
potentials on a compact metric local spin space on the lattice are dense in the space of translation-
invariant probability measures w.r.t. the weak topology, they form a thin set nevertheless: Israel
has proved that the set of all translation-invariant Gibbs measures is a set of first category, that
is a countable union of sets which are nowhere dense (i.e. whose closure has empty interior) in all
translation-invariant measures. Now, our result implies that, for any Φ with supi

∑

j Lij(Φ) <
∞, and any fixed µ ∈ G(Φ) the following is true. There exists a ρ0 > 0 such that the set of all
Tµ, where T runs over all local coarse-grainings with fineness not bigger than ρ0, is contained
in the Gibbs-measures. So we have shown that around any such Gibbs measure µ there is at
least a ”ball of local transforms” that lies in the Gibbs measures.

Remark 3: In fact, the theorem even holds when ρ is replaced by ρ′ < ρ given by

ρ′ = sup
ηi∈S′

inf
ai∈S

(

∫

αηi
(dσi)d

2(σi, ai)
)

1

2

(29)

which takes advantage of possible concentration of the conditional measures.

Remark 4: Let us mention that we may very well apply our method also to other well-known
examples of transforms of Gibbs measures that may potentially lead to renormalization group
pathologies. This could be investigated in a future paper. For instance, also the decimation
transformation mapping a Gibbs measure on the lattice to its restriction to a sublattice can be
cast in this framework. Theorem 2.5 then implies the statement that the projected measure
is always Gibbs if the interaction is sufficiently small in triple norm. The posterior metric for
configurations on the projected lattice then becomes the discrete metric d′(ηi, η

′
i) = 1ηi 6=η′

i
and

hence the matrix element Qij becomes a bound on the Dobrushin interdependence matrix of the
image system.

3 Proof of Theorem 2.3 and related results:

We start with the

Proof of Theorem 2.3: We begin as in the proof of Proposition 8.8 of [1], estimating
the variation of the single-site measure at a given site i ∈ G when varying the boundary
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condition at some site j ∈ ic. Fix ζ, η ∈ Ω with ζjc = ηjc and put u0(σi) = −Hi(σiζic) and
u1(σi) = −Hi(σiηic). Taking linear interpolation ut = tu1 + (1 − t)u0 of u1 and u0, it follows

δ(ut) ≤ δj(Hi). (30)

Setting ht = eut/α(eut) and λt(dσi) = ht(σi)α(dσi) we note that λ0(dσi) = γi(dσi|ζ) and
λ1(dσi) = γi(dσi|η). Furthermore, set u̇ = u1 − u0 and observe that

2‖λ0 − λ1‖ =

∫

α(dσi)|h1(σi) − h0(σi)| =

∫

α(dσi)
∣

∣

∣

∫ 1

0
dt

d

dt
ht(σi)

∣

∣

∣

≤
∫ 1

0
dtλt|u̇ − λt(u̇)| ≤ sup

0≤t≤1
λt|u̇ − λt(u̇)|.

(31)

Next we bring the deviation into play by writing

λt|u̇ − λt(u̇)| ≤ 2 inf
b

λt|u̇ − b| ≤ 2 exp
(

δ(ut)
)

inf
b

α|u̇ − b| (32)

from which it follows by resubstituting the Hamiltonian that

Cij ≤ exp
(

δj(Hi)
)

devα;i,j(Hi),

which also implies the desired estimate on the Dobrushin constant c.

2

One may criticize the use of oscillations in the exponent to compare the interpolating measures
which is done to arrive at easily computable expressions. Of course, we are free to (numeri-
cally) compute the exact Dobrushin-matrix always. Note to this end that, writing Fi for the
Boltzmann-weights at site i, i.e.

Fi(σ) =
e−Hi(σ)

∫

α(dσ̃i)e−Hi(σ̃iσic)

we can express the Dobrushin matrix simply as

Cij =
1

2
devα:i,j(Fi).

If we want to do slightly better, also the estimate

Cij ≤
(

sup
σ,σ′

σjc=σ′
jc

∫

α(dσ̃i)
(

Fi(σ̃iσic) − Fi(σ̃iσ
′
ic)

)(

Hi(σ̃iσic) − Hi(σ̃iσ
′
ic)

)

)
1

2

(33)

can be used. The r.h.s. might be favorable in some models over the original expression for
Cij involving the absolute value of a difference of densities because it might lead to explicitly
solvable integrals. To see the validity of (33) re-enter the proof, and use Schwartz to notice that

∫ 1

0
dtλt|u̇ − λt(u̇)| ≤

∫ 1

0
dt

√

varλt(u̇) ≤
√

∫ 1

0
dt

d

dt
λt(u̇) =

√

(λ1 − λ0)(u̇). (34)

Sometimes it is useful to use quadratic variation instead of the linear variation devα;i,j to obtain
an explicit bound, as we shall see in the proof of Theorem 2.7 below. To this end we introduce
the following “quadratic variation”.
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Definition 3.1. For any bounded measurable function F on Ω and for any pair i 6= j ∈ G the
α; i, j−quadratic variation of F is defined by

stdα;i,j(F ) := sup
ζ,ζ̄∈Ω

ζjc=ζ̄jc

inf
b∈R

(

∫

α(dσi)
(

F (σiζ
c
i ) − F (σiζ̄

c
i ) − b

)2
)

1

2

. (35)

Clearly devα;i,j(F ) ≤ stdα;i,j(F ) and so we could bound the inequality in Theorem 2.3 in terms
of the quadratic variation; going directly into the proof however gives us a better result as in
the following ”quadratic version” of Theorem 2.3.

Proposition 3.2. The Dobrushin constant c is also bounded by

c ≤ 1

2
sup
i∈G

∑

j∈G

exp
(1

2
δj(Hi)

)

stdα;i,j(Hi). (36)

Proof: Proceed as in the proof of Theorem 2.3 but use the Schwartz inequality on

λt|u̇ − λt(u̇)| ≤ inf
b

(

λt|u̇ − b|2
)

1

2 ≤ exp
(δ(ut)

2

)(

varα(u̇)
)

1

2

. (37)

2

Along these lines it is easy to obtain the following.

Corollary 3.3. If we equip the single-site space S with a metric d and the interaction Φ satisfies
the Lipschitz property (17), then the Dobrushin constant c has the bound

c ≤ 1

2
sup
i∈G

∑

j∈G

exp
(1

2
δj(Hi)

)

Lij inf
ai∈S

(

∫

d2(σi, ai)α(dσi)
)

1

2

.

4 The proof of Theorem 2.5 and related results

The purpose of this section is to give the proof of Theorem 2.5 outlined in Section 2.3 of
the introduction. The main ingredient to the proof is to show the lack of phase transitions
in some intermediate system and exploit the consequences for the decay of spatial memory.
Recall from Section 2.3 that our initial system was given by the Gibbs measure µ admitted by
the specification γ obtained from the interaction Φ and an a-priori measure α(·) =

∫

K(·, dηi)
described above. Thus for a given boundary condition σ̄ and any finite volume Λ ⊂ G we write
γΛ(·|σ̄) ∈ γ as

γΛ(dσΛ|σ̄) =
exp

(

−HΛ(σΛσ̄Λc)
)

∏

j∈Λ α(dσj)

∫

SΛ exp
(

−HΛ(σ̃Λσ̄Λc)
)

∏

j∈Λ α(dσ̃j)
. (38)

We now introduce a double-layer system or joint system by coupling the initial system to a
second system (with single-spin space S′) through the site-wise joint measures K(dσi, dηi) on

1321



S × S′. Denote by γ̃ the specification of our new double-layer system, i.e. for a fixed boundary
condition σ̄ ∈ Ω and a finite volume Λ ⊂ G, γ̃Λ(·|σ̄) ∈ γ̃ is given by

γ̃Λ(dσΛ, dηΛ|σ̄) =
exp

(

−HΛ(σΛσ̄Λc)
)

∏

j∈Λ K(dσj , dηj)

∫

(S×S′)Λ exp
(

−HΛ(σ̃Λσ̄Λc)
)

∏

j∈Λ K(dσ̃j , dη̃j)
(39)

= γΛ(dσΛ|σ̄)
∏

j∈Λ

K(dηj |σj),

where K(dηi|σi) denotes the K conditional distribution of the second spin given the value of
the first. This specification is in general not Gibbs but in our case where we only have site-wise
dependence between the two layers it is known for instance from [8] and references therein that
γ̃ is Gibbs.

For each non-empty subset Λ of G we denote by SΛ the collection of all non-empty finite subsets
of Λ. We will write S instead of SG. For any fixed configuration σ ∈ Ω and any Λ ∈ S we define
the finite-volume transformed distribution γ′

Λ,σ̄ as

γ′
Λ;σ̄(dηΛ) :=

∫

SΛ

γ̃(dσΛ, dηΛ|σ̄Λc). (40)

It is important to note that in the joint system considered above, conditionally on the σ’s the
η’s are independent. But taking the σ-average of the joint system creates dependence among
the η’s. Due to this dependence we now introduce finite-volume η conditional distributions by
freezing the η configuration in the definition of γ′

Λ;σ̄ except at some region ∆ ∈ SΛ. That is for
any Λ ∈ S with |Λ| ≥ 2 and ∆ ∈ SΛ we have

γ′
∆,Λ;σ̄(dη∆|η̄Λ\∆) =

∫

SΛ exp
(

−HΛ(σΛσ̄Λc)
)

∏

j∈Λ\∆ K(dσj |η̄j)
∏

i∈∆ K(dσi, dηi)

∫

SΛ exp
(

−HΛ(σΛσ̄Λc)
)

∏

j∈Λ\∆ K(dσj |η̄j)
∏

i∈∆ α(dσi)
.

(41)

The natural question that comes to mind is whether limΛ↑G γ′
∆,Λ;σ̄(dη∆|η̄Λ\∆) exists for any fixed

∆ ∈ SΛ, σ̄ ∈ Ω and η̄∆c ∈ (S′)∆
c
? If this limit exists we will denote it by γ′

∆(dη∆|η̄∆c) (whose
explicit form is given in (63)) and γ′ by the class of all the conditional distributions for finite ∆.
We shall show under some regularity conditions that γ′ is a Gibbs specification. For the sake of
simplicity we will always restrict our analysis to the case where ∆ is a singleton. The analysis
for general (but finite) ∆ can be implemented by appropriately decomposing the Hamiltonian
HΛ (as given in (42)) and using the same arguments used in the singleton case. Generally, it is
known for instance [1; 23] and references therein that one can construct finite-volume conditional
distributions of a specification from their corresponding single-site ones. It is our aim to provide
a sufficient condition for the conditional probabilities γ′

i,Λ;σ̄(dηi|ηΛ\i) to have an infinite-volume
limit. For this we introduce the decomposition of the Hamiltonian HΛ in the finite window Λ
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into its contributions coming from the sites in Λ \ i and site i for any i ∈ Λ as follows;

HΛ(σΛσ̄Λc) = Hi(σΛσ̄Λc) + HΛ\i(σΛ\iσ̄Λc), where

Hi(σΛσ̄Λc) =
∑

A∋i

ΦA(σΛσ̄Λc) and (42)

HΛ\i(σΛ\iσ̄Λc) =
∑

A∩Λ\i6=∅; i/∈A

ΦA(σΛ\iσ̄Λc).

We clearly see from the definition of an interaction that the Hamiltonian HΛ\i is a function

on the configuration space Sic . For the infinite-volume transformed conditional distributions
γ′

i(dηi|ηic) to exist, it is sufficient that some intermediate system living on the sublattice ic must
admit a unique infinite-volume Gibbs measure. This intermediate model is what we referred to
as the restricted constrained first layer model (defined below w.r.t HΛ\i ).

Definition 4.1. The restricted constrained first layer model (RCFLM) in any Λ ∈ S
with |Λ| ≥ 2 and i ∈ Λ is defined as the measure

µσ̄
Λ\i[ηΛ\i](dσΛ\i) =

exp
(

−HΛ\i(σΛ\iσ̄Λc)
)

∏

j∈Λ\i K(dσj |ηj)

∫

SΛ\i exp
(

−HΛ\i(σ̃Λ\iσ̄Λc)
)

∏

j∈Λ\i K(dσ̃j |ηj)
, (43)

for some σ̄ = Sic and ηΛ ∈ (S′)Λ.

It is restricted because we only consider the spins in the sublattice ic and constrained since
we have frozen the configuration in the second layer. The RCFLM (as we will see from the
lemma below) will provide us with a sufficient condition for the existence of an infinite-volume
limit γ′

i(dηi|ηic) for the conditional probabilities γ′
i,Λ;σ̄(dηi|ηΛ\i).

Remark: Note that the RCFLM µσ̄
Λ\i[ηΛ\i] is the model on the sublattice ic corresponding to

the a-priori measure α and finite-volume Hamiltonians H̄Λ\i given by

H̄Λ\i(σΛ\iσ̄Λc , ηΛ\i) := HΛ\i(σΛ\iσ̄Λc) −
∑

j∈Λ\i
log k(σj , ηj). (44)

The conditions imposed on k implies that for any given η ∈ Ω′ the RCFLM results from an
absolutely summable interaction guaranteeing the Gibbsianness of the RCFLM.

We state a result concerning a representation of the finite-volume conditional distributions for
the transformed system in terms of the RCFLM.

Lemma 4.2. Let Λ ∈ S with |Λ| ≥ 2, then for any i ∈ Λ and any σ̄ ∈ Ω we have

γ′
i,Λ;σ̄(dηi|ηΛ\i) =

∫

SΛ\i µσ̄
Λ\i[ηΛ\i](dσΛ\i)

∫

S exp
(

− Hi(σΛσ̄Λc)
)

K(dσi, dηi)

∫

SΛ\i µσ̄
Λ\i[ηΛ\i](dσΛ\i)

∫

S exp
(

− Hi(σΛσ̄Λc)
)

α(dσi)
. (45)
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Proof: By using the decomposition of HΛ in (42) we can write γ′
i,Λ;σ̄(dηi|ηΛ\i) as;

γ′
i,Λ;σ̄(dηi|ηΛ\i) =
∫

SΛ\i exp
(

−HΛ\i(σΛ\iσ̄Λc)
)

∏

j∈Λ\i K(dσj |ηj)
∫

S exp
(

− Hi(σΛσ̄Λc)
)

K(dσi, dηi)

∫

SΛ\i exp
(

−HΛ\i(σΛ\iσ̄Λc)
)

∏

j∈Λ\i K(dσj |ηj)
∫

S×S′ exp
(

− Hi(σΛσ̄Λc)
)

K(dσi, dη̃i)
.

(46)

The claim of the lemma follows by multiplying the expression for γ′
i,Λ;σ̄(dηi|ηΛ\i) above by

∫

SΛ\i exp
(

−HΛ\i(σ̃Λ\iσ̄Λc)
)

∏

j∈Λ\i K(dσ̃j |ηj)

∫

SΛ\i exp
(

−HΛ\i(σ̃Λσ̄Λc)
)

∏

j∈Λ\i K(dσ̃j |ηj)
and simplifying the resulting expression.

2

The above lemma can easily be extended to any finite subset Γ ∈ SΛ to obtain

γ′
Γ,Λ;σ̄(dηΓ|ηΛ\Γ) =

∫

SΛ\Γ µσ̄
Λ\Γ[ηΛ\Γ](dσΛ\Γ)

∫

SΓ exp
(

− HΓ(σΛσ̄Λc)
)

∏

i∈Γ K(dσi, dηi)

∫

SΛ\Γ µσ̄
Λ\Γ[ηΛ\Γ](dσΛ\Γ)

∫

SΓ exp
(

− HΓ(σΛσ̄Λc)
)

∏

i∈Γ α(dσi)
. (47)

As an immediate consequence of the above lemma we fix the following infinite-volume result
concerning the existence of the infinite-volume kernel γ′

i(dηi|ηic).

Proposition 4.3. Suppose Λn is a sequence of finite subsets of G with Λn → G as n tends to
infinity, σ̄ ∈ Sic and η ∈ S′ic are such that RCFLM µσ̄

Λn\i[ηΛn\i] has an infinite-volume limit

µσ̄
ic [ηic ] (in the quasilocal topology, i.e. on uniform limits of local functions). Then the single-

site finite-volume conditional distribution γ′
i,Λn;σ̄(dηi|ηΛn\i) for the transformed system has an

infinite-volume limit γ′
i,σ̄(dηi|ηic) given by

γ′
i,σ̄(dηi|ηic) =

∫

Sic µσ̄
ic [ηic ](dσic)

∫

S exp
(

− Hi(σ)
)

K(dσi, dηi)

∫

Sic µσ̄
ic [ηic ](dσic)

∫

S exp
(

− Hi(σ)
)

dα(σi)
. (48)

For each η configuration the family of finite-volume conditional distributions µσ̄
Λ\i[ηΛ\i] con-

stitutes a quasilocal specification guaranteeing the hypothesis of the above proposition. The
assertion of the proposition follows immediately from Lemma 4.2 and the choice of topology.

A similar statement is observed in the corresponding general mean-field set-up in [18] where also
a sufficient condition for the existence of infinite-volume transformed kernels is given in terms
of the uniqueness of global minimizers for a (constrained) rate function. We now state a result
concerning an upper bound on Dobrushin’s constant for the RCFLM.

Proposition 4.4. Let the Dobrushin’s interdependence matrix for the RCFLM on ico for some
fixed site io ∈ G be the matrix whose entries are given by

Cio
ij [ηi] = sup

ζ,ζ̄∈Sico ; ζjc=ζ̄jc

∥

∥

∥
µζ

i [ηi] − µζ̄
i [ηi]

∥

∥

∥
, (49)
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for any pair i, j ∈ ico where we have denoted µζ̄
i by the single-site part of µζ̄

Λ\io .
Then we have;

Cio
ij [ηi] ≤ exp

(

∑

A⊃{i,j}; io /∈A

δ(ΦA)
)

devαηi
;i,j(Hi), (50)

where αηi
(dσi) = K(dσi|ηi).

Furthermore, defining the Dobrushin constant c′[η] for the RCFLM as

c′[η] := sup
io∈G

cio [η], with cio [η] = sup
i∈ico

∑

j∈ico

Cio
ij [ηi], (51)

we also have

c′[η] ≤ sup
io∈G

sup
i∈ico

∑

j∈ico

exp
(

∑

A⊃{i,j}; io /∈A

δ(ΦA)
)

devαηi
;i,j(Hi)

≤ sup
i∈G

∑

j∈G

exp
(

∑

A⊃{i,j}
δ(ΦA)

)

devαηi
;i,j(Hi)). (52)

Additionally, if a notion of translation can be defined on G and the initial interaction is
translation-invariant, then the last inequality is an equality.

Proof: The proof follows the same lines as the proof of Theorem 2.3 but here we use αηi
=

K(·|ηi) instead of α .

2

It is also not hard to deduce from Proposition 3.2 that;

c′[η] ≤ 1

2
sup
io∈G

sup
i∈ico

∑

j∈ico

exp
(1

2

∑

A⊃{i,j}; io /∈A

δ(ΦA)
)

stdαηi
;i,j(Hi) (53)

≤ 1

2
sup
i∈G

∑

j∈G

exp
(1

2

∑

A⊃{i,j}
δ(ΦA)

)

stdαηi
;i,j(Hi).

Again Lipschitzness of the initial Hamiltonian carries over nicely to yield;

Corollary 4.5. Suppose that Hi satisfies the Lipschitz-condition (17). Then we have

c′[η] = sup
io∈G

sup
i∈ico

∑

j∈ico

Cio
ij [ηi]

≤ 1

2
sup
io∈G

sup
i∈ico

∑

j∈ico

exp
(1

2

∑

A⊃{i,j}; io /∈A

δ(ΦA)
)

Lij inf
ai∈S

(

∫

S
d2(σi, ai)αηi

(dσi)
)

1

2

≤ 1

2
sup
i∈G

∑

j∈G

exp
(1

2

∑

A⊃{i,j}
δ(ΦA)

)

Lij inf
ai∈S

(

∫

S
d2(σi, ai)αηi

(dσi)
)

1

2

.

(54)
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The claim of the corollary follows from Corollary 3.3.

We now proceed to prove Theorem 2.5, but before we do this we still need some results from which
the proof will follow. As a first step we recall some known results about Dobrushin’s uniqueness
concerning an estimate of the distance between the unique Gibbs measure admitted by a Gibbs
specification satisfying Dobrushin’s condition and another Gibbs measure corresponding to some
other specification. This estimate tells us the local variation between the two infinite-volume
probability measures. This result which we state in the proposition below can be found for
example in [1] as Theorem 8.20. Before we state this result let us fix some notations. Suppose
C(γ) is the Dobrushin interdependence matrix of a specification γ and Cn(γ), n ≥ 0, the n‘th
power of C(γ), then we define the matrix

D(γ) = (Dij)i,j∈G :=
∑

n≥0

Cn(γ). (55)

Proposition 4.6. Let γ and γ̄ be any two specifications with γ satisfying Dobrushin’s condition.
Suppose that for each i ∈ G we have a measurable function bi on the standard Borel space Ω
with the property that

||γi(·|σic) − γ̄i(·|σic)|| ≤ bi(σ) (56)

for all σ ∈ Ω. Then for µ ∈ G(γ) and µ̄ ∈ G(γ̄) we have

|µ(f) − µ̄(f)| ≤
∑

i,j∈G

δi(f)Dij(γ)µ̄(bj) (57)

for all quasilocal functions f .

Observe from Proposition 4.3 that if the RCFLM satisfies Dobrushin’s condition uniformly in
η the infinite-volume single-site kernels γ′

i(·|ηc
i ) exist for every η independent of the boundary

conditions used for the initial system. We will adapt the result in Proposition 4.6 to our present
set-up to compare γ′

i(·|ηic) and γ′
i(·|η̄ic) for any pair of configurations η, η̄ ∈ Ω′ = (S′)G. Further

we denote by γ[ηic ] the specification of the RCFLM with full ηic configuration. Again we assume
for the first-layer model that µ = limn µσ̄

Λn
as in the hypothesis of Theorem 2.5.

Proposition 4.7. Suppose the RCFLM on the sublattice ic (for some i ∈ G) satisfies Dobrushin’s
condition uniformly in η with unique infinite-volume limit µic [ηic ]. Then

1. The second-layer system (the transformed model) has infinite-volume single-site conditional
distributions γ′

i(dηi|ηic) given by

γ′
i(dηi|ηic) =

∫

Sic µic [ηic ](dσic)
∫

S exp
(

− Hi(σiσic)
)

K(dσi, dηi)

∫

Sic µic [ηic ](dσic)
∫

S exp
(

− Hi(σiσic)
)

α(dσi)
. (58)

2. For any pair ηic , η̄ic ∈ (S′)ic we have for any j 6= i that
∥

∥

∥
γj [ηj ](·|σ̄ic) − γj [η̄j ](·|σ̄ic)

∥

∥

∥
≤ 2 exp

(

∑

A∋j

δj(ΦA)
)∥

∥

∥
K(·|ηj) − K(·|η̄j)

∥

∥

∥
, (59)

where the γj [ηj ](·|σ̄ic)’s are the single-site parts of the specification for the RCFLM for
i ∈ G and ηic .
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3. Given

h2(σic) =

∫

S
α(dσi) exp

(

Hi(σiσic)
)

it follows that
∣

∣

∣
µic [ηic ](h2) − µic [η̄ic ](h2)

∣

∣

∣
≤ 2e

P

A∋i ‖ΦA‖∞

×
∑

k,j∈ic

δk

(

∑

A⊃{i,k}
ΦA

)

D̄kj exp
(

∑

A∋j

δj(ΦA)
)∥

∥

∥
K(·|ηj) − K(·|η̄j)

∥

∥

∥
.

(60)

4. Furthermore, for any k 6= i it is the case that

δk

(

h2(σic)
)

≤ δk

(

∑

A∋i,k

ΦA

)

e
P

A∋i ‖ΦA‖∞ . (61)

5. And finally

∥

∥

∥
γ′

i(dηi|ηic) − γ′
i(dηi|η̄ic)

∥

∥

∥
≤ 2

∣

∣

∣
µic [ηic ](h2) − µic [η̄ic ](h2)

∣

∣

∣

µic [η̄ic ](h2)
. (62)

Remark: In particular, we can write for any finite volume the corresponding relation for the
finite-volume conditional distribution for the transformed system with full η-conditioning as in
(58), i.e. if ∆ ∈ S then we have

γ′
∆(dη∆|η∆c) =

∫

S∆c µ∆c [η∆c ](dσ∆c)
∫

S∆ exp
(

− H∆(σ∆σ∆c)
)

∏

i∈∆ K(dσi, dηi)

∫

S∆c µ∆c [η∆c ](dσ∆c)
∫

S∆ exp
(

− H∆(σ∆σ∆c)
)

∏

i∈∆ α(dσi)
. (63)

This form follows by starting from a finite-volume say Λ which contains ∆ and decompose
the Hamiltonian HΛ as in (42) but this time i has to be replaced with ∆. Generally one can
construct non-singleton parts of a specification from their single-site ones [1; 23].

Proof of Proposition 4.7: We will prove the assertions of the proposition in the following
order: 4, 5, 1, 2 and 3.

4. Recalling that

h2(σic) =

∫

S
α(dσi) exp

(

−Hi(σiσic)
)

,

we estimate for any pair of configurations σ and σ̄ that coincide except at site k that
∣

∣

∣
exp

(

−Hi(σiσic)
)

− exp
(

−Hi(σiσ̄ic)
)∣

∣

∣

=
∣

∣

∣
exp

(

−
∑

A∋i,k

ΦA(σiσic)
)

− exp
(

−
∑

A∋i,k

ΦA(σiσ̄ic)
)
∣

∣

∣
exp

(

−
∑

A∋i,A6∋k

ΦA(σiσic)
)

≤ δk

(

∑

A∋i,k

ΦA

)

e
P

A∋i ‖ΦA‖∞ ,

(64)
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where we have used the fact that |ex − ey| ≤ |x − y|emax{x,y}.

5. Take a measurable function ϕ : S′ → R, with |ϕ| ≤ 1 and consider
∫

S′
ϕ(ηi)

(

γ′
i(dηi|ηic) − γ′

i(dηi|η̄ic)
)

=

∫

Sic µic [ηic ](dσic)h1(σic)
∫

Sic µic [ηic ](dσic)h2(σic)
−

∫

Sic µic [η̄ic ](dσic)h1(σic)
∫

Sic µic [η̄ic ](dσic)h2(σic)
,

(65)

where we have set

h1(σic) =

∫

S×S′
K(dσi, dηi)ϕ(ηi) exp

(

−Hi(σiσic)
)

.

By adding and subtracting
µic [ηic ](h1)µic [ηic ](h2)

µic [ηic ](h2)µic [η̄ic ](h2)

to the right hand side of (65) and making use of the fact that ||ϕ||∞ ≤ 1 (after an application
of the triangle inequality and Fubini’s theorem) yield

∣

∣

∣

∫

S′
ϕ(ηi)

(

γ′
i(dηi|ηic) − γ′

i(dηi|η̄ic)
)∣

∣

∣
≤ 2

∣

∣

∣
µic [ηic ](h2) − µic [η̄ic ](h2)

∣

∣

∣

µic [η̄ic ](h2)
. (66)

Note that we made no use of the item 2 of the proposition to arrive at this bound.

1. The proof follows from a two-step limiting procedure. We fix an η-conditioning only in a
finite volume Γ and construct the infinite-volume measure of the RCFLM by fixing a boundary
condition on the first layer outside Λ (which we assume for simplicity to contain Γ) and let Λ
tend to infinity. Then we let Γ also tend to infinity, and recover the conditional probabilities
by Martingale convergence and uniform approximation of the infinite-volume RCFLM, with
conditionings only in volume Γ.

More precisely, it follows as in Lemma 4.2 that we have for finite-volume conditionings the
representation

γ′
i,Γ,Λ,σ̄(dηi|ηΓ\i) =

µσ̄
Λ\i[ηΓ\i]

[

∫

S e−Hi(σiσ̄Λc ·Λ\i)K(dσi, dηi)
]

µσ̄
Λ\i[ηΓ\i]

[

∫

S e−Hi(σiσ̄Λc ·Λ\i)α(dσi)
] . (67)

On the r.h.s. we see a RCFLM µσ̄
Λ\i[ηΓ\i] appearing with constrained measure αηi

only in the

volume Γ \ i, i.e.

µσ̄
Λ\i[ηΓ\i](dσΛ) =

e−HΛ\i(σΛ\iσ̄Λc ) ∏

j∈Γ\i K(dσj |ηj)
∏

k∈Λ\Γ α(dσk)
∫

SΛ\i e−HΛ\i(σ̃Λ\iσ̄Λc ) ∏

j∈Γ\i K(dσ̃j |ηj)
∏

k∈Λ\Γ α(dσ̃k)
. (68)

As was shown above the RCFLM has an infinite-volume limit even when there is full η condi-
tioning, so in this case where we have conditioning only in a finite region there is no issue with
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the existence of an infinite-volume limit. Hence, the conditional distribution γ′
i,Λ,σ̄(dηi|ηΓ\i) has

an infinite-volume limit γ′
i,σ̄(dηi|ηΓ\i), for any arbitrary conditioning ηΓ\i, since

h(σΛ\iσ̄Λc , ηi) :=

∫

S
e−Hi(σΛσ̄Λc )k(σi, ηi)α(dσi)

is a bounded quasilocal function in σ for each ηi. Note that this conditional distribution still
depends on the boundary condition σ̄ when the initial specification is in the phase transition
regime. Let us denote the corresponding specification of the RCFLM with η-conditioning only
in Γ \ i by γ[ηΓ\i]. It follows from the arguments leading to the proof of (62) that

∥

∥

∥
γ′

i,σ̄(dηi|ηΓ\i) − γ′
i(dηi|ηic)

∥

∥

∥

≤ 2

∣

∣

∣
µic [ηΓ\i]

[

∫

S′ h(·, ηi)α
′(dηi)

]

− µic [ηic ]
[

∫

S′ h(·, ηi)α
′(dηi)

]
∣

∣

∣

µic [ηic ]
[

∫

S′ h(·, ηi)α′(dηi)
] .

(69)

Observe further that

‖γj [ηΓ\i] − γj [ηic ]‖
{

= 0 if j ∈ Γ \ i;
≤ 2 if j ∈ Γc.

(70)

By using the above inequality and the following facts: (1) for each η configuration the family
of finite-volume conditional distributions for the RCFLM is a quasilocal specification, (2) the
assumption that the RCFLM with full η-conditioning satisfies Dobrushin’s condition uniformly
in η and (3) the comparison criterion in Proposition 4.6 we obtain

∣

∣

∣
µic [ηΓ\i]

[

∫

S′
h(·, ηi)α

′(dηi)
]

− µic [ηic ]
[

∫

S′
h(·, ηi)α

′(dηi)
]
∣

∣

∣

≤ 2
∑

i∈G

∑

j∈Γc

δi

(

∫

S′
h(·, ηi)α

′(dηi)
)

D̄ij .
(71)

Note that in the above we have taken µic [ηΓ\i] and µic [ηic ] to be the infinite-volume Gibbs
measures for the RCFLM with η-conditioning in Γ \ i and ic respectively.

Taking now the limit Γ ↑ G we get (58), by local convergence of the RCFLM in Γ to the full
one, and by the backwards martingale convergence theorem (see p.472 [26]).

2. The proof of assertion 2 uses the definition of the single-site part of the RCFLM and arbitrary
measurable function g : Ω → R, with |g| ≤ 1 to define

∣

∣

∣

∣

∣

∫

g(σj)
(

γj [ηj ](dσj |σ̄ic) − γj [η̄j ](dσj |σ̄ic)
)

∣

∣

∣

∣

∣

. (72)

The rest of the proof follows by adding and subtracting the following quantity

∫

g(σj) exp
(

−Hj(σj σ̄{i,j}c)
)

K(dσj |ηj)
∫

exp
(

−Hj(σ̃j σ̄{i,j}c)
)

K(dσ̃j |ηj)

∫

exp
(

−Hj(σ̃j σ̄{i,j}c)
)

K(dσ̃j |η̄j)
∫

exp
(

−Hj(σ̃j σ̄{i,j}c)
)

K(dσ̃j |ηj)
(73)
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to the expression under the absolute value sign in (72), rearranging terms and simplifying
appropriately.

3. It follows from (56) and (57) of Proposition 4.6 that

∣

∣

∣
µic [ηic ](h2) − µic [η̄ic ](h2)

∣

∣

∣
≤ 2

∑

k,j∈ic

δk(h2)D̄kj exp
(

∑

A∋j

δj(ΦA)
)
∥

∥

∥
K(·|ηj) − K(·|η̄j)

∥

∥

∥
, (74)

since by definition of Hi, h2 is a quasilocal function on Sic . The rest of the proof of 3 follows
from the bound on δk(h2) given in statement 4 of the Proposition.

2

Note from the proof of statement 5 of the above Proposition that the denominator in
(66) can as well be µic [ηic ](h2) if one adds and subtracts from the right hand side of (65)
µic [η̄ic ](h1)µic [η̄ic ](h2)

µic [ηic ](h2)µic [η̄ic ](h2)
instead of

µic [ηic ](h1)µic [ηic ](h2)

µic [ηic ](h2)µic [η̄ic ](h2)
, as was the case in the above proof.

But any of the two makes no difference since in our estimate we don’t make use of the actual
integral of h2 but instead we utilize its uniform norm. Having disposed of the results above, we
now return to the

Proof of Theorem 2.5: We divide the proof into two steps; namely, (1) we proof that the
class γ′ is a Gibbsian specification and (2) justify the form of the goodness of γ′ as given in the
theorem. We start with the proof of the latter.

2. Using the arguments leading to the proofs (62) and (60) of Proposition 4.7 we get

∥

∥

∥
γ′

i(dηi|ηic) − γ′
i(dηi|η̄ic)

∥

∥

∥
≤ 2

∣

∣

∣
µic [ηic ](h2) − µic [η̄ic ](h2)

∣

∣

∣

µic [η̄ic ](h2)

≤ 4e2
P

A∋i ‖ΦA‖∞
∑

k,j∈ic

δk

(

∑

A⊃{i,k}
ΦA

)

D̄kje
P

A∋j δj(ΦA)
∥

∥

∥
K(·|ηj) − K(·|η̄j)

∥

∥

∥
.

(75)

The 2 in front of
∑

A∋i ‖ΦA‖∞ in the exponential is obtained by observing that
1

µic [η̄ic ](h2) ≤ 1

e−
P

A∋i ‖ΦA‖∞
.

1. We now show that γ′ is a Gibbsian specification, i.e. we have to show that
(i) for each finite-volume Λ and measurable set A ∈ Ω′, γ′

Λ(A|·) is F ′
Λc-measurable (F ′

Λc is the
σ-algebra of events in Ω′ determined by spins outside Λ),
(ii) for each η ∈ S′Λc

γ′
Λ(·|η) is a probability measure on (Ω′,F ′),

(iii) for each η ∈ S′Λc

and B ∈ F ′
Λc , γ′

Λ(B|η) = 1B(η) (properness),
(iv) for any finite volumes Λ and ∆ such that Λ ⊂ ∆, γ′

∆γ′
Λ = γ′

∆ (consistency),
(v) for any bounded measurable quasilocal function f : Ω′ → R, γ′

Λ(f |·) is quasilocal for all
finite-volumes Λ and
(vi) for each finite volume Λ there are constants 0 < vΛ ≤ uΛ < ∞ such that
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vΛα′Λ(A) ≤ γ′
Λ(A|η) ≤ uΛα′Λ(A), for all η ∈ Ω′ and measurable subsets A ∈ F ′

Λ, (uniform
non-nullness).

Note that for Γ ⊂ Λ, γ′
Γ is obtained by taking Λ ↑ G limit of the conditional distribution

γ′
Γ,Λ;σ̄(dηΓ|ηΛ\Γ) (47). It follows from the conditions imposed on the joint a-priori measure K

that the class of conditional distributions γ′
Γ,Λ;σ̄, satisfies (i) to (iv) and consequently γ′ also

satisfies (i) to (iv). Thus γ′ is a specification.

(v) We are now show that γ′ is quasilocal, i.e. we need to show that for any bounded quasilocal
observable f and any configuration η ∈ Ω′

lim
Λ↑G

sup
η̄∈Ω′

∣

∣

∣
γ′

Γ(f |ηΛη̄) − γ′
Γ(f |η)

∣

∣

∣
= 0 (76)

for all finite-volumes Γ. So for any bounded quasilocal observable f observe from (7) that

∣

∣

∣
γ′

Γ(f |ηΛη̄) − γ′
Γ(f |η)

∣

∣

∣
≤ δ(f)‖γ′

Γ(·|ηΛη̄) − γ′
Γ(·|η)‖. (77)

But for any of such Γ observe from the proof of (62) and (60) of Proposition 4.7 and the proof
of assertion 2 of this theorem that

∥

∥

∥
γ′

Γ(·|ηΛη̄Λc) − γ′
Γ(·|η)

∥

∥

∥
≤ 2

∣

∣

∣
µΓc [ηΛ\Γη̄Λc ](ĥ2) − µΓc [ηΓc ](ĥ2)

∣

∣

∣

µΓc [η̄Γc ](ĥ2)

≤ 4e2
P

A∩Γ6=∅ ‖ΦA‖∞
∑

k,j∈Λc

δk

(

∑

A; A∩Γ6=∅, A∋k

ΦA

)

D̄kje
P

A∋j δj(ΦA)
∥

∥

∥
K(·|η̄j) − K(·|ηj)

∥

∥

∥
,

where ĥ2(σΓc) =

∫

SΓ

∏

i∈Γ

α(dσi) exp
(

− HΓ

(

σΓσΓc

)

)

.

(78)

(vi) It follows from (63) that for any finite volume ∆, γ′
∆ is given by

γ′
∆(dη∆|η∆c) =

∫

S∆c µ∆c [η∆c ](dσ∆c)
∫

S∆ exp
(

− H∆(σ∆σ∆c)
)

∏

i∈∆ K(dσi, dηi)

∫

S∆c µ∆c [η∆c ](dσ∆c)
∫

S∆ exp
(

− H∆(σ∆σ∆c)
)

∏

i∈∆ α(dσi)
. (79)

It follows from the hypothesis on the joint a-priori measure K that for any A ∈ F ′
∆ and any

η ∈ Ω′ that

γ′
∆(A|η∆c) ≤ exp

(

δ(H∆)
)

α′∆(A) and

γ′
∆(A|η∆c) ≥ exp

(

− δ(H∆)
)

α′∆(A).
(80)

This proves the uniform non-nullness of γ′ since the interactions defining the Hamiltonian H∆

is quasilocal.

2
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It follows from the proof of Theorem 2.5 that for any finite-volume Γ, whenever the RCFLM
satisfies Dobrushin’s condition uniformly in η then we have the following continuity estimates
for γ′

Γ
∥

∥

∥
γ′

Γ(dηΓ|ηΓc) − γ′
Γ(dηΓ|η̄Γc)

∥

∥

∥

≤ 4e2
P

A∩Γ6=∅ ‖ΦA‖∞
∑

k,j∈Γc

δk

(

∑

A; A∩Γ6=∅, A∋k

ΦA

)

D̄kje
P

A∋j δj(ΦA)
∥

∥

∥
K(·|ηj) − K(·|η̄j)

∥

∥

∥
.

(81)

Thus under the conditions of the joint a-priori measure K, γ′ is a specification and the RCFLM
satisfying Dobrushin’s condition uniformly in η is sufficient for γ′ to be Gibbsian.

Next we present the proof of Theorem 2.9

Proof of Theorem 2.9: This Theorem is an application of Theorem 2.5. The only quantities
we have to worry about are the entries of the Dobrushin interdependence matrix C̄. It follows
from the hypothesis of the Theorem; namely the continuity property of the interaction and the
terms in the bound on c′[η] in Corollary 4.5 that

1

2
exp

(1

2

∑

A⊃{i,j}
δ(ΦA)

)

Lij inf
ai∈Sηi

(

∫

Sηi

d2(σi, ai)αηi
(dσi)

)
1

2

≤ sup
ηi∈S′

ρηi

2
exp

(1

2

∑

A⊃{i,j}
δ(ΦA)

)

Lij = C̄ij ,

(82)

where ρηi
:= diam(Sηi

).

2

5 Proof of results on short-time Gibbsianness for time-evolved

rotator models

Proof of Theorem 2.7: We begin the proof by establishing a uniform bound on the Dobrushin
constants c[η] for the RCFLM associated with the rotator model under site-wise independent
diffusive time-evolution. As discussed in Subsection 2.4, the rotator interaction satisfies the
Lipschitz-condition (17) with constants Lij = 2|Jij | hence we can use the estimates on c[η] given
by Corollary 4.5, i.e.

c′[η] ≤ 1

2
sup
i∈G

∑

j∈G

exp
(1

2

∑

A⊃{i,j}
δ(ΦA)

)

Lij inf
ai∈S

(

∫

S
d2(σi, ai)αηi

(dσi)
)

1

2

. (83)

To obtain the desired bound we have to evaluate all the quantities appearing in the above
estimate on c[η]. We start with the evaluation of the quantity

∫

S
d2(σi, ai)αηi

(dσi) =

∫

Sq−1

d2(σi, ai)kt(σi, ηi)αo(dσi). (84)

Observe that in this set-up S = S′ = Sq−1. Take ai = eq = (0, · · · , 0, 1), the qth canonical basis
element for the q-dimensional Euclidean space. Then it is elementary to see that

d2(σi, ai) = (σi)
2 + (ai)

2 − 2σiai = 2(1 − σq
i ),
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where we have set σi = (σ1
i , · · · , σq

i ). To compute the above integral we denote by Zq
t the q-th

coordinate of a diffusion on the sphere started at Zq
t=0 = 1 ( the ”north-pole”) and denote the

corresponding expectation by E. Thus for any ηi we have;
∫

αo(dσi)kt(σi, ηi)d
2(σi, ηi) = 2(1 − EZq

t ) = 2(1 − e−(q−1)t). (85)

The first equality uses the idea that Brownian motion on the sphere is rotation invariant and
consequently choosing ηi = ai. To see the last equality use either an explicit form of the qth
component of the transition kernel kt (115) in polar coordinates and orthogonality of Legendre
polynomials as in [2]. Or use that the generator of the diffusion Zq

t given by the u-dependent
parts of the Laplace-Beltrami operator on the sphere (see e.g. p. 38, eq 54 of [2]) which reads

(1 − u2)
( d

du

)2 − (q − 1)u
d

du
. (86)

Then it follows from stochastic differential equations (SDE) theory (see e.g. chp5 of [15]) that

dZq
t = −(q − 1)Zq

t dt +
√

2
(

1 − (Zq
t )2

)

dBt, (87)

where Bt is a one-dimensional standard Brownian motion. The solutions of this SDE satisfy the
equation

d

dt
EZq

t = −(q − 1)EZq
t .

Solving the above differential equation with the initial condition Zq
t=0 = 1 yields

EZq
t = e−(q−1)t.

This concludes the justification of the second equality in (85).

The last quantity we want to evaluate is
∑

A⊃{i,j} δ(ΦA). But with the rotator model we are
considering this quantity is equals to 2|Jij |. So putting all the above together we get

c′[η] ≤
√

2 sup
i∈G

∑

j∈G

e|Jij ||Jij |
(

1 − e−(q−1)t
)

1

2

. (88)

The above estimate on c′[η] is uniform in η. We denote by C̄(t) the matrix with entries

C̄ij(t) =
√

2e|Jij ||Jij |
(

1 − e−(q−1)t
)

1

2

.

We will in our analysis with the abuse of notation refer to this matrix as the Dobrushin
interdependence matrix for the RCFLM of our current situation.

1. As we saw in the proof of Theorem 2.5, γ′
t is a specification and a sufficient condi-

tion for it to be Gibbsian is
sup
i∈G

∑

j∈G

C̄ij(t) < 1,

i.e. the RCFLM satisfies Dobrushin’s condition uniformly in η. This concludes the proof of (1).
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2. The proof follows from two-step estimation procedures. The first uses the continuity
estimate on γ′

i as given by Theorem 2.5 and the second uses a telescoping argument.

As our first step we adapt the continuity estimate on γ′
i in Theorem 2.5 to the current set-up to

obtain a continuity estimate for γ′
i,t. We only have to worry about the goodness matrix Q(t) and

the posterior metric d′. Here we take the entries of the goodness matrix Q(t) to be the bounds
on Qij given in (16), i.e.

Qij(t) = 4 exp
(

4 sup
i∈G

∑

A∋i

||ΦA||∞
)

∑

k∈ic

δk

(

∑

A⊃{i,k}
ΦA

)

D̄kj(t)

= 8 exp
(

4 sup
i∈G

∑

j∈G

|Jij |
)

∑

k∈ic

|Jik|D̄kj(t), with

D̄kj(t) =
(

∞
∑

n=0

C̄(t)n
)

kj
=

(

1 +
∞

∑

n=1

(

1 − e−(q−1)t
)

n
2 An

)

kj
,

(89)

where Aij = e|Jij ||Jij |.
Observe further from Proposition 2.8 that the posterior metric d′ has an estimate

d′(ηi, η̄i) ≤
√

π

4t
d(ηi, η̄i),

where d is the Euclidean metric. Therefore putting all the above together we arrive at the
following continuity estimate for γ′

i,t;

∥

∥γ′
i,t(·|ηic) − γ′

i,t(·|η̄ic)
∥

∥ ≤
√

π

4t

∑

j∈ic

Qij(t)d(ηj , η̄j). (90)

The next estimation follows from a telescoping argument involving the sites in ic. The main
result in this direction that we will employ in our proof is formulated in the lemma below.

Lemma 5.1. For each non-empty finite subset V1 ⊂ ic we have the following estimate

∥

∥γ′
i,t(·|ηic) − γ′

i,t(·|η̄ic)
∥

∥ ≤ 1

2

∑

j∈V1

min

{
√

π

t
Qij(t), e

4
P

k∈G |Jjk| − 1

}

d(ηj , η̄j)

+
∥

∥γ′
i,t(·|ηV c

1
\iη̄V1

) − γ′
i,t(·|η̄ic)

∥

∥.

(91)

Note from the second term in the above bound that the conditionings coincides in the cho-
sen finite volume V1. We proceed by applying the Lemma 5.1 to obtain a similar bound for
∥

∥γ′
i,t(·|ηV c

1
\iη̄V1

) − γ′
i,t(·|η̄ic)

∥

∥ this time for any non-empty finite subset V2 ⊂ G \ V1 ∪ {i}. Thus
we have

∥

∥γ′
i,t(·|ηic) − γ′

i,t(·|η̄ic)
∥

∥ ≤ 1

2

∑

j∈V1∪V2

min

{
√

π

t
Qij(t), e

4
P

k∈G |Jjk| − 1

}

d(ηj , η̄j)

+
∥

∥γ′
i,t(·|η(V1∪V2)c\iη̄V1∪V2

) − γ′
i,t(·|η̄ic)

∥

∥.

(92)

Successive application of Lemma 5.1 along such sequence of pair-wise disjoint non-empty finite
subsets Vn such that ∪nVn = ic yields the desired result.

1334



2

Proof of Lemma 5.1:
For any non-empty finite subset Λ ⊂ ic we let nΛ : Λ −→ {1, 2, · · · , |Λ|} be a bijection between Λ
and {1, 2, · · · , |Λ|} and denote by η̄l≤η the configuration that coincides with η̄ on n−1

Λ

(

{1, · · · , l}
)

and η on G \ n−1
Λ

(

{1, · · · , l}
)

∪ {i}. The map nΛ orders the elements in Λ. For G = Z2

this map can be a spiral ordering of the sites in Λ. Recall that the joint a priori measure
Kt(dσi, dηi) = kt(σi, ηi)αo(dσi)αo(dηi) where as before αo(·) =

∫

Kt(·, dσi). In this way it
follows from (58) that we can write the single-site part of γ′

t as

γ′
i,t(dηi|ηic) = f(ηi|ηic)αo(dηi), where

f(ηi|ηic) =

∫

Sic µic [ηic ](dσ̃ic)
∫

S exp
(

− Hi(σiσ̃ic)
)

kt(σi, ηi)αo(dσi)

∫

Sic µic [ηic ](dσ̃ic)
∫

S exp
(

− Hi(σiσ̃ic)
)

αo(dσi)
.

(93)

With the order on Λ we can now write for any pair of conditionings η, η̄ ∈ Ω′ = (S′)G

f(ηi|ηic) − f(ηi|η̄ic) =

|Λ|+1
∑

l=1

∇lf(ηi|ηic , η̄ic) with

∇lf(ηi|ηic , η̄ic) =







f(ηi|η̄l−1≤η) − f(ηi|η̄l≤η) if 1 ≤ l ≤ |Λ|;

f(ηi|η̄|Λ|≤η) − f(ηi|η̄ic) if l = |Λ| + 1,

(94)

where we assume {1, · · · , l−1} = ∅ for l = 1. In this spirit it follows from the triangle inequality
that

∥

∥γ′
i,t(·|ηic) − γ′

i,t(·|η̄ic)
∥

∥ =

∫

αo(dηi)

∣

∣

∣

∣

|Λ|+1
∑

l=1

∇lf(ηi|ηic , η̄ic)

∣

∣

∣

∣

≤
|Λ|
∑

l=1

∫

S′
αo(dηi)

∣

∣∇lf(ηi|ηic , η̄ic)
∣

∣ +
∥

∥γ′
i,t(·|η̄ΛηG\({i}∪Λ)) − γ′

i,t(·|ηic)
∥

∥.

(95)

To get the desired bound for the first term in the above inequality we use two estimation
procedures which provide bounds for the terms in the sum that are multiples of d(ηj , η̄j).

First of all, note that for any 1 ≤ l ≤ |Λ| the conditionings in the definition of ∇lf(·|ηic , η̄ic)
coincide except at the site j = n−1

Λ (l). Thus for any 1 ≤ l ≤ |Λ| it follows form (90) that

∥

∥γ′
i,t(·|η̄l−1≤η) − γ′

i,t(·|η̄l≤η)
∥

∥ =

∫

S′
αo(dηi)

∣

∣∇lf(ηi|ηic , η̄ic)
∣

∣ ≤
√

π

4t
Qij(t)d(ηj , η̄j), (96)

since ηk = η̄k for all k ∈ {i, j}c.

Next we apply the following estimation technique to obtain a second bound on
∥

∥γ′
i,t(·|η̄l−1≤η) − γ′

i,t(·|η̄l≤η)
∥

∥ for 1 ≤ l ≤ |Λ|. First we set j = n−1
Λ (l) and note that

f(ηi|η̄l−1≤η)

f(ηi|η̄l≤η)
=

f(ηj |ηiη̄l−1≤ηl>)

f(η̄j |ηiη̄l−1≤ηl>)
×

∫

S′ f(ηi, η̄j |η̄l−1≤ηl>)αo(dηi)
∫

S′ f(ηi, ηj |η̄l−1≤ηl>)αo(dηi)
, (97)
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where η̄l−1≤ηl> is the configuration that coincides with η̄ on n−1
Λ

(

{1, · · · , l − 1}
)

and η on
G \

(

n−1
Λ

(

{1, · · · , l − 1}
)

∪ {i, j}
)

and f(ηi, ηj |η̄l−1≤ηl>) is given by (93) if we appropriately
replace i in (93) with {i, j}. The validity of (97) follows for the following considerations;

f(ηi, ηj | · · · ) = f(ηi|ηj · · · )
∫

αo(dηi)f(ηi, ηj | · · · ) = f(ηj |ηi · · · )
∫

αo(dηj)f(ηi, ηj | · · · )

thus f(ηi|ηj · · · ) = f(ηj |ηi · · · )
∫

αo(dηj)f(ηi, ηj | · · · )
∫

αo(dηi)f(ηi, ηj | · · · )
and similarly

f(ηi|η̄j · · · ) = f(η̄j |ηi · · · )
∫

αo(dηj)f(ηi, ηj | · · · )
∫

αo(dηi)f(ηi, η̄j | · · · )
.

Therefore by setting

h2(σjc , ηj) =

∫

S
exp(−Hj(σjσjc))kt(dσj , ηj)αo(dσi)

we obtain

f(ηj |ηiη̄l−1≤ηl>)

f(η̄j |ηiη̄l−1≤ηl>)
=

µjc [ηiη̄l−1≤ηl>]
[

h2(σjc , ηj)
]

µjc [ηiη̄l−1≤ηl>]
[

h2(σjc , η̄j)
] . (98)

Let R be a rotation such that Rη̄j = ηj and set σ′
j = Rσj . Then it follows from

|Hj(σjσjc) − Hj(σ
′
jσjc)| ≤

(

∑

k∈G

|Jjk|
)

d(ηj , η̄j)

that

h2(σjc , ηj) =
∫

S

{
∫

S
exp

(

−
(

Hj(σjσjc) − Hj(σ
′
jσjc)

)

− Hj(σ
′
jσjc)

)

Kt(dσ′
j |ηj)

}

Kt(dσj |ηj)

≤ exp
(

cj d(ηj , η̄j)
)

∫

S
exp

(

− Hj(σ
′
jσjc)

)

Kt(dσ′
j |ηj)

(99)

and similarly

h2(σjc , η̄j) ≤ exp
(

cj d(ηj , η̄j)
)

∫

S
exp

(

− Hj(σjσjc)
)

Kt(dσj |ηj)

where cj =
∑

k∈G |Jjk|. It follows from (98) and the rotation invariance of Kt that

f(ηj |ηiη̄l−1≤ηl>)

f(η̄j |ηiη̄l−1≤ηl>)
≤

ecjd(ηj ,η̄j)µjc [ηiη̄l−1≤ηl>]
[

∫

S exp
(

− Hj(σ
′
jσjc)

)

Kt(dσ′
j |ηj)

]

µjc [ηiη̄l−1≤ηl>]
[

∫

S exp(−Hj(σ′
jσjc))kt(dσ′

j , ηj)αo(dσi)
]

= ecjd(ηj ,η̄j).

(100)

The above estimate follows by applying the rotation R to the η̄j in the r.h.s. of (98). Further-
more, it is not hard to deduce that

∫

S′ f(ηi, η̄j |η̄l−1≤ηl>)αo(dηi)
∫

S′ f(ηi, ηj |η̄l−1≤ηl>)αo(dηi)
≤ sup

ηi

f(η̄j |ηiη̄l−1≤ηl>)

f(ηj |ηiη̄l−1≤ηl>)
≤ ecjd(ηj ,η̄j). (101)
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Therefore it follows from (97) that

f(ηi|η̄l−1≤η)

f(ηi|η̄l≤η)
≤ e2cjd(ηj ,η̄j). (102)

Hence for any 1 ≤ l ≤ |Λ| we have

∫

S
αo(dηi)

∣

∣

∣

∣

∇lf(ηi|ηic , η̄ic)

∣

∣

∣

∣

=

∫

S
αo(dηi)

∣

∣

∣

∣

(f(ηi|η̄l−1≤η)

f(ηi|η̄l≤η)
− 1

)

f(ηi|η̄l≤η)

∣

∣

∣

∣

≤ e2cjd(ηj ,η̄j) − 1 ≤ e4cj − 1

2
d(ηj , η̄j).

(103)

Comparing (96) and (103) it is clearly seen for any 1 ≤ l ≤ |Λ| with j = n−1
Λ (l) that

∥

∥γ′
i,t(·|η̄l−1≤η) − γ′

i,t(·|η̄l≤η)
∥

∥ ≤ 1

2
min

{

√

π

t
Qij(t), e

4
P

k∈G |Jjk| − 1
}

d(ηj , η̄j), (104)

which proves the lemma. 2

Lemma 5.1 has an extension for interactions for which Hj(·σjc) is not Lipschitz continuous. In
this set-up we have for any non-empty finite subset V ⊂ ic

∥

∥γ′
i,t(·|ηic) − γ′

i,t(·|η̄ic)
∥

∥ ≤
∑

j∈V

(

e
4δj

(

P

A∋j ΦA

)

− 1

)

+
∥

∥γ′
i,t(·|ηV c\iη̄V ) − γ′

i,t(·|η̄ic)
∥

∥. (105)

To obtain the desired bound on the posterior metric as given in Proposition 2.8 we need to solve
the diffusion equation on the sphere Sq−1 generated by the Laplace-Beltrami operator. This
bound is further used in Theorem 2.7 to replace the posterior metric d′ in the goodness for the
Gibbs specification of the corresponding transformed system (as provided by Theorem 2.5) with
the Euclidean metric d. We employ stochastic differential equation (SDE) technique to arrive at
the bound of interest. It turns out that we only need the qth component of the diffusion to get
the desired bound. We employ coupling of reflected diffusions on the sphere with the equator
as the mirror as our main tool. To obtain the desired bound we make use of the coupling time
which is the first time the qth component of the diffusion visits zero. This necessitates focusing
attention on only the qth component. We start with the following lemma.

Lemma 5.2. 1. Denote by Zt the qth-component of the diffusion on the sphere Sq−1 for
q ≥ 2, started at a value y:=sinϕ0 with ϕ0 ∈ (0, π

2 ). Then there is a coupling of Zt to a
Brownian motion on the line, Bt, such that the first passage time of Zt at zero, denoted by
T0(Z

q
· ), is dominated from above by the first passage time T0(ϕ0 +

√
2Bt) of ϕ0 +

√
2Bt.

2. Consequently, independently of the dimension q − 1, there is the estimate

1

2
Fq,t(2y) := P

y(T0(Z
q
· ) > t) ≤ P

ϕ0(T0(ϕ0 +
√

2B·) > t) ≤ 2P

(

0 ≤ G ≤ ϕ0√
2t

)

(106)

where G is a standard normal variable.
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Proof: Consider the case q ≥ 3 first. Recall from (86) and (87) that the SDE for the q-th
component of the diffusion on the sphere reads,

dZq
t = −(q − 1)Zq

t dt +
√

2
(

1 − (Zq
t )2

)

dBt. (107)

Consider the transformation

Zq
t = sin(ϕ̄t) (108)

to an unknown function ϕ̄t describing the elevation above the equator. We apply this transfor-
mation only for 0 ≤ Zq

t < 1, and so there is a one-to-one map to 0 ≤ ϕ̄t < π
2 . In this range the

SDE is equivalent to

dϕ̄t = −(q − 2) tan ϕ̄tdt +
√

2 dBt. (109)

Indeed, for q ≥ 3 the diffusion ϕ̄t does not leave the interval (−π
2 , π

2 ), meaning that, with
probability one the north-pole is never reached by Zq

t . Integrating from zero to t we obtain from
(109)

ϕ̄t = −(q − 2)

∫ t

0
tan ϕ̄sds +

√
2 Bt + ϕ0. (110)

From this equality we see that as long as ϕ̄s ≥ 0 for all s ∈ [0, t] we have the bound ϕ̄t ≤√
2 Bt + ϕ0. This shows that the first passage time of ϕ̄t is not bigger than that of

√
2 Bt + ϕ0.

The proof of the inequality follows from bounding P(T0(Z
q) ≥ t) from above by the first

passage time of the Brownian motion on a line, P(T0(
√

2 B· + ϕ0) ≥ t). The latter can
be computed exactly by the reflection principle applied to standard Brownian motion, as
it is well-known (see e.g. [15; 16]). (We will use the reflection principle also in the proof
of Lemma 5.5, applied to the diffusion on the sphere.) This gives rise to the estimate on the r.h.s.

That the inequality holds also in the case q = 2 (and is a strict inequality then) can be seen
directly without making reference to the SDE. We note that the paths of a diffusion on the circle
are given by Brownian motions on the angular variable, i.e. ϕ̄t =

√
2 Bt + ϕ0. Then ϕ̄t = 0

implies that Z2
t = sin(ϕ̄t) = 0, but the converse is not true.

It is interesting to realize that this construction provides a coupling such that Zq
t ≤

√
2 Bt + ϕ0,

for q ≥ 3, Z2
t ≤

√
2 Bt + ϕ0 but not Zq

t ≤ Z2
t . The latter relation is guaranteed to hold only as

long as 0 ≤
√

2 Bt + ϕ0 ≤ π
2 .

2

Proof of the Proposition 2.8: First of all we know from coupling theory (see eq.1 of [13])
and arguments used in the proof of Lemma 5.5 that

d′(ηj , η̄j) ≤ 2P
x
2 (T0 > t) = Fq,t(x),
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where x = d(ηj , η̄j) is the Euclidean distance between ηj and η̄j . It follows from Lemma 5.2
that, for any q ≥ 2,

Fq,t(x) = 2P
x
2

(

T0 > t
)

≤ 4P

(

0 ≤ G ≤ arcsin x
2√

2t

)

. (111)

Using P

(

0 ≤ G ≤ u
)

≤ u√
2π

by concavity and arcsin y ≤ π
2 y for 0 ≤ y ≤ 1 we obtain

Fq,t(x) ≤
√

πx

2
√

t
. Note that in both of the last estimates the constants were sharp.

2

Appendix A: Estimates on the Posterior metric on the spheres

We saw in the proof of Proposition 2.8 that the posterior metric d′ is dominated by the function
Fq,t. This function was defined in terms of first passage time to level zero of the qth component
of the diffusion on the sphere Sq−1. We give an analytical representation of this functions in
terms of eigenfunctions of the Laplace-Beltrami operator [2] on the sphere.

Proposition 5.3. Recall the situation of Proposition 2.8. In general dimensions q ≥ 2 the
function Fq,t has the representation

Fq,t(x) =

∞
∑

m=0

aq,m(t)P2m+1

(

q,
x

2

)

with

aq,m(t) = e−(2m+1)(2m+q−1)t (−1)m4N(q, m)Γ
( q

2

)

√
πΓ

(

q−1
2

)

m
∏

i=0

(

2i − 1

q + 2i − 1

) (112)

in terms of Legendre polynomials Pn(q, s) of degree n in dimension q (see Definition 5.4)and
N(q, m) is also the dimension of the space of spherical harmonics of degree n in dimension q
(see (115)).

Before we prove Proposition 5.3 let us fix the following notations starting with the definition of
q-dimensional Legendre polynomials (see [2]).

Definition 5.4. The Legendre polynomial Pn(q, ·) of degree n in dimension q ≥ 2 is given by
the Rodrigues formula

Pn(q, s) :=
(−1)nΓ

( q−1
2

)

2nΓ
(

n + q−1
2

)

(

1 − s2
)

3−q
2

( d

ds

)n(

1 − s2
)

q−3

2
+n

, (113)

where −1 ≤ s ≤ 1.

These Legendre polynomials are known (see [2] for example) to be orthogonal and satisfy the
second order differential equations

[

(1 − s2)
d2

ds2
− (q − 1)s

d

ds
+ n(n + q − 2)

]

Pn(q, s) = 0. (114)
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The last equation indicates that the Legendre polynomials are eigenfunctions for the eigenvalue
problem for the qth component of the Laplace-Beltrami operator on the sphere Sq−1. Using the
above fact and the separation of variables method we can write the transition (heat) kernel kt

of the qth component Zq
t of the diffusion on the sphere Sq−1 as

kt(s, u) :=
Γ
( q

2

)

√

(π)Γ
( q−1

2

)

∞
∑

n=0

e−n(n+q−2)tN(q, n)Pn(q, s)Pn(q, u), where

N(q, n) :=

{

(2n+q−2)Γ(n+q−2)
Γ(n+1)Γ(q−1) if n ≥ 1;

1 if n = 0

(115)

is the dimension of spherical harmonics of degree n in dimension q. Further we have set Zq
0 = s

and Zq
t = u, and we have also chosen the constant

Γ
(

q
2

)

√
(π)Γ

(

q−1

2

) so that for any initial s the

integral of kt(s, u) with respect to the invariant measure (1−u2)
q−3

2 du (which is the q-coordinate
projection of the invariant surface measure on the sphere) over the interval [-1,1] is equal to one.
We collect the following two lemmas from which the proof of Proposition 5.3 will follow.

Lemma 5.5. For the diffusion on a sphere there is an estimate of the posterior-metric d′(ηj , η̄j)
at fixed t in terms of d(ηj , η̄j), the induced metric on the sphere Sq−1 obtained by embedding the
sphere into the Euclidean space, given by

d′(ηj , η̄j) ≤ Fq,t(d(ηj , η̄j)) (116)

with the function

Fq,t(x) = 2
(

1 − 2P
x
2 (Zq

t ≤ 0)
)

=
−4Γ

( q
2

)

√
πΓ

(

q−1
2

)

∑

n=1,3,5,...

e−n(n+q−2)tN(q, n)Pn

(

q,
x

2

)

∫ 0

−1
Pn(q, s)(1 − s2)

q−3

2 ds
(117)

Proof:
The idea of the proof is to construct a coupling of two diffusions on the sphere starting at the
points ηj and η̄j . By rotation invariance of such diffusions we assume that ηj and η̄j are mirror
images of each other under reflection at the equatorial plane. Then we construct a coupling by
reflection [13] of the path started at ηj with the equator as the mirror line, up to the time when
the diffusion hits the equator. After that the two diffusions move on together. In this way the
coupling time for the two diffusions is the same as the first time Zq

t = 0 (the first passage time
T0 to level 0 given by T0 := inf{t ≥ 0, Zt = 0}) for either Zq

0 = z or Zq
0 = −z where z = εq · ηj

(here ε1, · · · , εq constitute the canonical orthonormal basis for R
q and ” · ” is the usual scalar

product ). We know from coupling theory [13] that

d′(ηj , η̄j) ≤ 2P
x
2 (T0 > t) = Fq,t(x),

where x = d(ηj , η̄j) is the Euclidean distance between ηj and η̄j . Further it follows from the
reflection principle of Désiré André ([15],pp.79-81 and [16],p.293) that

P
x
2 (T0 ≤ t) = 2P

x
2 (Zq

t ≤ 0) = 2

∫ 0

−1
kt

(x

2
, s

)

(1 − s2)
q−3

2 ds.
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The heuristic argument for the first equality in the above equation is as follows; the probability
that the first passage time T0 (to a level 0 for a 1-dimensional diffusion starting at some initial
point y > 0) is less or equal to t is the sum of the probabilities of the events that T0 ≤ t
and Zq

t < 0, and T0 ≤ t and Zq
t > 0. The probability for the first event is the same as the

probability for the event that the 1-dimensional diffusion Zq
t starting at y is below the level 0.

For the probability of the second event observe that after the diffusion reached level 0, it has
equal probability to reach level −c below 0 or level c above 0 since the diffusion in our set-up
is symmetric about 0. Hence the probability of the second event is the same as the first due to
the symmetry of Zq

t about 0. From here follows the first equality of the expression for Fq,t in
the lemma.

It follows from the orthogonality property of the Legendre polynomials that for each positive
even integer n the integral

∫ 0

−1
Pn(q, s)(1 − s2)

q−3

2 ds =
1

2

∫ 1

−1
Pn(q, s)P0(q, s)(1 − s2)

q−3

2 ds = 0

(since P0(q, s) = 1) for all q ≥ 2. Therefore the rest of the proof follows from (115) and the
value of the integral

∫ 1

−1
P0(q, s)

2(1 − s2)
q−3

2 ds =

√
πΓ

( q−1
2

)

Γ
( q

2

) .

2

We have seen from the above proof that for positive even integers n the integral (over [-1,0] and

w.r.t to the invariant measure (1 − s2)
q−3

2 ds) of the Legendre polynomial of degree n is always
equal to zero, as long as the dimension q ≥ 2. The integral for the corresponding odd degree
case can also be computed explicitly and we formulate this explicit value of the integral as our
next lemma.

Lemma 5.6. For any odd integer 2m+1 (m=0,1,2,....) the integral of the Legendre polynomials
P2m+1(q, ·) over the interval [-1,0] is given by

∫ 0

−1
P2m+1(q, s)(1 − s2)

q−3

2 ds = (−1)m
m
∏

i=0

(

2i − 1

q + 2i − 1

)

. (118)

Proof: We obtain from definition of P2m+1(q, s) in Definition 5.4 that the integral

∫ 0

−1
P2m+1(q, s)(1 − s2)

q−3

2 ds

=
−1

22m+1
2m
∏

i=0

(

2m +
q − 1

2
− i

)

( d

ds

)2m(

1 − s2
)2m+ q−1

2

∣

∣

∣

0

s=−1
. (119)

Note that for each m the above differentiation(s) will always involve terms which are multiples
of (1 − s2). This implies that evaluating the above expression at s = −1 will always yield zero.
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However, it follows from Binomial expansion of
(

1 − s2
)r

(where r = 2m + q−1
2 ) that

−1

22m+1
2m
∏

i=0

(

2m +
q − 1

2
− i

)

( d

ds

)2m(

1 − s2
)2m+ q−1

2

∣

∣

∣

s=0

=
(−1)m+1(2m)!r(r − 1) · · · (r − (m − 1))

m!22m+1
2m
∏

i=0

(

2m +
q − 1

2
− i

)

.

(120)

The rest of the proof follows from the observations that (2m)! = 2mm!
∏m

i=1(2i − 1) and

r(r − 1) · · · (r − (m − 1))
∏2m

i=0

(

2m + q−1
2 − i

) =
2m+1

∏m
i=0(2i + q − 1)

.

2

Proof of Proposition 5.3: The proof follows from Lemma 5.5 and 5.6.
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[5] R. Fernàndez: Gibbsianness and non-Gibbsianness in lattice random fields, Les Houches,
LXXXIII, (2005)

[6] C. Külske: Concentration Inequalities for Functions of Gibbs Fields with Applications
to Diffraction and Random Gibbs Measures, Commun. Math. Phys. 239, 29-51 (2003)
MR1997114

1342

http://www.ams.org/mathscinet-getitem?mr=0956646
http://www.ams.org/mathscinet-getitem?mr=0199449
http://www.ams.org/mathscinet-getitem?mr=2287911
http://www.ams.org/mathscinet-getitem?mr=1889994
http://www.ams.org/mathscinet-getitem?mr=1997114
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