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Abstract

We establish existence and uniqueness for the martingale problem associated with

a system of degenerate SDE’s representing a catalytic branching network. For example, in

the hypercyclic case:

dX
(i)
t = bi(Xt)dt +

√
2γi(Xt)X

(i+1)
t X

(i)
t dBi

t, X
(i)
t ≥ 0, i = 1, . . . , d,

where X(d+1) ≡ X(1), existence and uniqueness is proved when γ and b are continuous

on the positive orthant, γ is strictly positive, and bi > 0 on {xi = 0}. The special case

d = 2, bi = θi − xi is required in work of [DGHSS] on mean fields limits of block averages

for 2-type branching models on a hierarchical group. The proofs make use of some new

methods, including Cotlar’s lemma to establish asymptotic orthogonality of the derivatives

of an associated semigroup at different times, and a refined integration by parts technique

from [DP1]. As a by-product of the proof we obtain the strong Feller property of the

associated resolvent.
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1. Introduction. In this paper we establish well-posedness of the martingale problem

for certain degenerate second order elliptic operators. The class of operators we consider

arises from models of catalytic branching networks including catalytic branching, mutually

catalytic branching and hypercyclic catalytic branching systems (see [DF] for a survey of

these systems). For example, the hypercyclic catalytic branching model is a diffusion on

Rd
+, d ≥ 2, solving the following system of stochastic differential equations:

dX
(i)
t = (θi − X

(i)
t )dt +

√
2γi(Xt)X

(i+1)
t X

(i)
t dBi

t, i = 1, . . . , d. (1.1)

Here X(t) = (X
(1)
t , . . . , X

(d)
t ), addition of the superscripts is done cyclically so that

X
(d+1)
t = X

(1)
t , θi > 0, and γi > 0.

Uniqueness results of this type are proved in [DP1] under Hölder continuity hy-

potheses on the coefficients. Our main result here is to show the uniqueness continues to

hold if this is weakened to continuity. One motivation for this problem is that for d = 2,

(1.1) arises in [DGHSS] as the mean field limit of the block averages of a system of SDE’s

on a hierarchical group. The system of SDEs models two types of individuals interacting

through migration between sites and at each site through interactive branching, depend-

ing on the masses of the types at that particular site. The branching coefficients γi of

the resulting equation for the block averages arise from averaging the original branching

coefficients at a large time (reflecting the slower time scale of the block averages) and so

are given in terms of the equilibrium distribution of the original equation. The authors

of [DGHSS] introduce a renormalization map which gives the branching coefficients γi of

the block averages in terms of the previous SDE. They wish to iterate this map to study

higher order block averages. Continuity is preserved by this map on the interior of Rd
+,

and is conjectured to be preserved at the boundary (see Conjecture 2.7 of [DGHSS]). It is

not known whether Hölder continuity is preserved (in the interior and on the boundary),

which is why the results of [DP1] are not strong enough to carry out this program. The

weakened hypothesis also leads to some new methods.

The proofs in this paper are substantially simpler in the two-dimensional setting

required for [DGHSS] (see Section 8 below) but as higher dimensional analogues of their

results are among the “future challenges” stated there, we thought the higher-dimensional

results worth pursuing.

Further motivation for the study of such branching catalytic networks comes from

[ES] where a corresponding system of ODEs was proposed as a macromolecular precursor

to early forms of life. There also have been a number of mathematical works on mutually

catalytic branching ((1.1) with d = 2 and γi constant) in spatial settings where a special

duality argument ([M], [DP2]) allows a more detailed analysis, and even in spatial analogues

of (1.1) for general d, but now with much more restricted results due in part to the lack of
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any uniqueness result ([DFX], [FX]). See the introduction of [DP1] for more background

material on the model.

Earlier work in [ABBP] and [BP] show uniqueness in the martingale problem for

the operator A(b,γ) on C2(Rd
+) defined by

A(b,γ)f(x) =

d∑

i=1

(
bi(x)

∂f

∂xi
+ γi(x)xi

∂2f

∂x2
i

)
, x ∈ Rd

+.

Here bi, γi i = 1, . . . , d are continuous functions on Rd
+, with bi(x) ≥ 0 if xi = 0, and also

satisfy some additional regularity or non-degeneracy condition. If bi(x) =
∑

j xjqji for

some d × d Q-matrix (qji), then such diffusions arise as limit points of rescaled systems

of critical branching Markov chains in which (qji) governs the spatial motions of particles

and γi(x) is the branching rate at site i in population x = (x1, . . . , xd). In both [ABBP]

and [BP] a Stroock-Varadhan perturbation approach was used in which one views the

generator in question as a perturbation of an independent collection of squared Bessel

processes. The perturbation argument, however, is carried out on different Banach spaces;

in [ABBP] it was an appropriate L2 space, while in [BP] it was a weighted Hölder space. In

this work we again proceed by such a perturbation argument on an appropriate L2 space

(as in [ABBP]) but the methods of [ABBP] or [BP] will not apply to systems such as (1.1)

because now the branching rates γi may be zero and so the process from which we are

perturbing will be more involved. In fact the appropriate class of processes was introduced

in [DP1]. So it would appear that a combination of the ideas of [ABBP] and [DP1] is

needed, but we will see that we will in fact have to significantly extend the integration by

parts formulae of [DP1] and an invoke a new analytic ingredient, Cotlar’s Lemma, to carry

out the proof. Admittedly the choice of operator from which one perturbs and Banach

space in which to carry out the perturbation is a bit of an art at present, but we feel the

set of methods introduced to date may also handle a number of other degenerate diffusions

including higher order multiplicative catalysts.

We will formulate our results in terms of catalytic branching networks in which the

catalytic reactions are given by a finite directed graph (V, E) with vertex set V = {1, . . . , d}
and edge set E = {e1, . . . , ek}. This will include (1.1) and all of the two-dimensional

systems arising in [DGHSS]. As in [DP1] we assume throughout:

Hypothesis 1.1. (i, i) /∈ E for all i ∈ V and each vertex is the second element of at most

one edge.

The restrictive second part of this hypothesis has been removed by Kliem [K] in

the Hölder continuous setting of [DP1]. It is of course no restriction if |V | = 2 (as in

[DGHSS]), and holds in the cyclic setting of (1.1).
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Vertices denote types and an edge (i, j) ∈ E indicates that type i catalyzes the type

j branching. Let C denote the set of vertices (catalysts) which appear as the first element

of an edge and R denote the set of vertices that appear as the second element (reactants).

Let c : R → C be such that for j ∈ R, cj denotes the unique i ∈ C such that (i, j) ∈ E ,

and for i ∈ C, let Ri = {j : (i, j) ∈ E}.
Here are the hypotheses on the coefficients:

Hypothesis 1.2. For i ∈ V ,

γi : Rd
+ → (0,∞), bi : Rd

+ → R,

are continuous such that |bi(x)| ≤ c(1 + |x|) on Rd
+, and bi(x) > 0 if xi = 0.

The positivity condition on bi|xi=0 is needed to ensure the solutions remain in the first

orthant.

If D ⊂ Rd, C2
b (D) denotes the space of twice continuously differentiable bounded

functions on D whose first and second order partial derivatives are also bounded. For

f ∈ C2
b (Rd

+), and with the above interpretations, the generators we study are

Af(x) = A(b,γ)f(x) =
∑

j∈R

γj(x)xcj xjfjj(x) +
∑

j 6∈R

γj(x)xjfjj(x) +
∑

j∈V

bj(x)fj(x).

(Here and elsewhere we use fi and fij for the first and second partial derivatives of f .)

Definition. Let Ω = C(R+, Rd
+), the continuous functions from R+ to Rd

+. Let Xt(ω) =

ω(t) for ω ∈ Ω, and let (Ft) be the canonical right continuous filtration generated by X.

If ν is a probability on Rd
+, a probability P on Ω solves the martingale problem MP (A, ν)

if under P, the law of X0 is ν and for all f ∈ C2
b (Rd

+),

Mf (t) = f(Xt) − f(X0) −
∫ t

0

Af(Xs) ds

is a local martingale under P.

A natural state space for our martingale problem is

S =
{

x ∈ Rd
+ :

∏

(i,j)∈E
(xi + xj) > 0

}
.

The following result is Lemma 5 of [DP1] – the Hölder continuity assumed there plays no

role in the proof.

Lemma 1.3. If P is a solution of MP (A, ν), where ν is a probability on Rd
+, then Xt ∈ S

for all t > 0 P-a.s.

Here is our main result.
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Theorem 1.4. Assume Hypotheses 1.1 and 1.2 hold. Then for any probability ν on S,

there is exactly one solution to MP(A, ν).

The cases required in Theorem 2.2 of [DGHSS] are the three possible directed graphs

for V = {1, 2}:
(i) E = ∅;
(ii) E = {(2, 1)} or E = {(1, 2)};
(iii) E = {(1, 2), (2, 1)}.

The state space here is S = R2−{(0, 0)}. In addition, [DGHSS] takes bi(x) = θi−xi

for θi ≥ 0. As discussed in Remark 1 of [DGHSS], weak uniqueness is trivial if either θi

is 0, as that coordinate becomes absorbed at 0, so we may assume θi > 0. In this case

Hypotheses 1.1 and 1.2 hold, and Theorem 2.2, stated in [DGHSS] (the present paper is

cited for a proof), is immediate from Theorem 1.4 above. See Section 8 below for further

discussion about our proof and how it simplifies in this two-dimensional setting. In fact, in

Case (i) the result holds for any ν on all of R2
+ (as again noted in Theorem 2.2 of [DGHSS])

by Theorem A of [BP].

Our proof of Theorem 1.4 actually proves a stronger result. We do not require that

the γi be continuous, but only that their oscillation not be too large. More precisely, we

prove that there exists ε0 > 0 such that if (1.2) below holds, then there is exactly one

solution of MP (A, ν). The condition needed is

For each i = 1, . . . , d and each x ∈ Rd
+ there exists a neighborhood Nx such that

Osc Nxγi < ε0, (1.2)

where Osc A f = supA f − infA f .

As was mentioned above, the new analytic tool we use is Cotlar’s lemma, Lemma

2.13, which is also at the heart of the famous T1 theorem of harmonic analysis. For a

simple application of how Cotlar’s lemma can be used, see [Fe], pp. 103–104.

We consider certain operators Tt (defined below in (2.18)) and show that

‖Tt‖2 ≤ c/t. (1.3)

We require L2 bounds on
∫ ∞
0

e−λtTt dt, and (1.3) is not sufficient to give these. This is

where Cotlar’s lemma comes in: we prove L2 bounds on TtT
∗
s and T ∗

t Ts, and these together

with Cotlar’s lemma yield the desired bounds on
∫ t

0
e−λtTt dt. The use of Cotlar’s lemma

to operators arising from a decomposition of the time axis is perhaps noteworthy. In all

other applications of Cotlar’s lemma that we are aware of, the corresponding operators

arise from a decomposition of the space variable. The L2 bounds on TtT
∗
s and T ∗

t Ts are the

hardest and lengthiest parts of the paper. At the heart of these bounds is an integration by
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parts formula which refines a result used in [DP1] (see the proof of Proposition 17 there)

and is discussed in the next section.

Theorem 1.4 leaves open the question of uniqueness in law starting at points in the

complement of S, that is at points where the reactant and catalyst are both zero. For

such starting points the generator from which we are perturbing will be too degenerate to

have a resolvent with the required smoothing properties. In the simple two-dimensional

case, the question amounts to showing uniqueness in law starting from the origin for the

martingale problem associated with

Af(x) =
2∑

j=1

γj(x)x1x2fjj(x) + bj(x)fj(x),

or

A′f(x) = γ1(x)x1f11(x) + γ2(x)x1x2f22(x) +
2∑

j=1

bj(x)fj(x).

If γj and bj (as in Hypothesis 1.2) are Lipschitz we can use different methods to prove

pathwise uniqueness until the process hits the axes, necessarily at a strictly positive time.

Hence uniqueness in law now follows from Theorem 1.4. The question of uniqueness

starting in the complement of S, assuming only continuity of the coefficients or in higher

dimensions, remains open.

In Section 3 we give a proof of Theorem 1.4. The proofs of all the hard steps, are,

however, deferred to later sections. A brief outline of the rest of the paper is given at the

end of Section 2.

Acknowledgment. We would like to thank Frank den Hollander and Rongfeng Sun

for helpful conversations on their related work. We also thank Sandra Kliem and an

anonymous referee for a careful reading of the paper.

2. Structure of the proof.

We first reduce Theorem 1.4 to a local uniqueness result (Theorem 2.1 below).

Many details are suppressed as this argument is a minor modification of the proof of

Theorem 4 in [DP1]. By the localization argument in Section 6.6 of [SV] it suffices to fix

x0 ∈ S and show that for some r0 = r0(x
0) > 0, there are coefficients which agree with

γi, bi on B(x0, r0), the open ball of radius r0 centered at x0, and for which the associated

martingale problem has a unique solution for all initial distributions. Following [DP1], let

Z = {i ∈ V : x0
i = 0}, N1 = ∪i∈Z∩CRi, N̄1 = N1 ∪ (Z ∩ C), and N2 = V − N̄1. Note that

N1 ∩ Z = ∅ because x0 ∈ S. Define

γ̃j(x) =






xjγj(x) if j ∈ N1;
xcj γj(x) if j ∈ (Z ∩ C) ∪ (N2 ∩ R);
γj(x) if j ∈ N2 ∩ Rc,
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and note that γ0
j ≡ γ̃j(x

0) > 0 for all j because x0 ∈ S. We may now write

Ab,γf(x) =
∑

i∈Z∩C

[ ∑

j∈Ri

γ̃j(x)xifjj(x)
]

+ γ̃i(x)xifii(x)

+
∑

j∈N2

γ̃j(x)xjfjj(x) +
∑

j∈V

bj(x)fj(x).

Let δ = δ(x0) = mini∈Z bi(x
0) > 0 (set it equal to 1 if Z is empty), and define

b̃j(x) =

{
bj(x) if j ∈ N1;
bj(x) ∨ δ

2 if j /∈ N1,

and let b0
j = b̃j(x

0), so that b0
j > 0 for j /∈ N1. Although bj(x

0) ≤ 0 is possible for

j ∈ N2 ∩ Zc (and so b̃j may differ from bj here), a simple Girsanov argument will allow

us to assume that bj(x
0) ≥ δ for j ∈ N2 ∩ Zc (see the proof below) and so b̃j = bj near

x0. With this reduction we see that by Hypothesis 1.2 and the choice of δ, b̃j(x) = bj(x)

for x near x0. By changing b̃ and γ̃ outside a small ball centered at x0 we may assume

γ̃j > 0 for all j, b̃j > 0 for j /∈ N1, γ̃j , b̃j are all bounded continuous and constant outside

a compact set, and

ε0 ≡
d∑

j=1

(
‖γ̃ − γ0

j ‖∞ + ‖b̃j − b0
j‖∞

)
(2.1)

is small. For these modified coefficients introduce

Ãf(x) =
∑

i∈Z∩C

[ ∑

j∈Ri

γ̃j(x)xifjj(x)
]

+ γ̃i(x)xifii(x)

+
∑

j∈N2

γ̃j(x)xjfjj(x) +
∑

j∈V

b̃j(x)fj(x), (2.2)

and also define a constant coefficient operator

A0f(x) =
∑

i∈Z∩C

[ ∑

j∈Ri

γ0
j xifjj(x) + b0

jfj(x)
]

+ γ0
i xifii(x) + b0

i fi(x)

+
∑

j∈N2

γ0
j xjfjj(x) + b0

jfj(x) (2.3)

≡
∑

i∈Z∩C

A1
i +

∑

j∈N2

A2
j .

As b0
j ≤ 0 and b̃j |xj=0 ≤ 0 is possible for j ∈ N1 (recall we have modified b̃j), the natural

state space for the above generators is the larger

S0 ≡ S(x0) = {x ∈ Rd : xj ≥ 0 for all j /∈ N1}.
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When modifying γ̃j and b̃j it is easy to extend them to this larger space, still ensuring all of

the above properties of b̃j and γ̃j . If ν0 is a probability on S0, a solution to the martingale

problem MP (Ã, ν0) is a probability P on C(R+, S0) satisfying the obvious analogue of the

definition given for MP (A, ν). As we have Af(x) = Ãf(x) for x near x0, the localization

in [SV] shows that Theorem 1.4 follows from:

Theorem 2.1. Assume γ̃j : S(x0) → (0,∞), b̃j : S(x0) → R are bounded continuous and

constant outside a compact set with b̃j > 0 for j /∈ N1. For j ≤ d, let γ0
j > 0, b0

j ∈ R,

b0
j > 0 if j /∈ N1, and

M0 = max
j≤d

(γ0
j , (γ0

j )−1, |b0
j |) ∨ max

j /∈N1

(b0
j )

−1. (2.4)

There is an ε1(M0) > 0 so that if ε0 ≤ ε1(M0), then for any probability ν on S(x0), there

is a unique solution to MP(Ã, ν).

Proof of reduction of Theorem 1.4 to Theorem 2.1. This proceeds as in the proof

of Theorem 4 in [DP1]. The only change is that in Theorem 2.1 we are now assuming

b̃j > 0 and b0
j > 0 for all j /∈ N1, not just b̃j ≥ 0 on {xj = 0} for j /∈ N1 and b0

j > 0

for j ∈ Z ∩ (R ∪ C) with b0
j ≥ 0 for other values of j /∈ N1. If bj(x

0) > 0 for all

j ∈ N2, then the proof of Theorem 4 in [DP1] in Case 1 applies without change. The strict

positivity is needed (unlike [DP1]) to utilize Theorem 2.1. We therefore need only modify

the argument in Case 2 of the proof of Theorem 4 in [DP1] so that it applies if bj(x
0) ≤ 0

for some j ∈ N2. This means x0
j > 0 by our (stronger) Hypothesis 1.2 and the Girsanov

argument given there now allows us to locally modify bj so that bj(x
0) > 0. The rest of

the argument now goes through as before.

Turning to the proof of Theorem 2.1, existence is proved as in Theorem 1.1 of

[ABBP]–instead of the comparison argument given there, one can use Tanaka’s formula

and (2.4) to see that solutions must remain in S(x0).

We focus on uniqueness from here on.

The operator A2
j is the generator of a Feller branching diffusion with immigration.

We denote its semigroup by Qj
t . It will be easy to give an explicit representation for the

semigroup P i
t associated with A1

i (see (3.2) below). An elementary argument shows that

the martingale problem associated with A0 is well-posed and the associated diffusion has

semigroup

Pt =
∏

i∈Z∩C

P i
t

∏

j∈N2

Qj
t , (2.5)

and resolvent Rλ =
∫

e−λtPt dt. Define a reference measure µ on S0 by

µ(dx) =
∏

i∈Z∩C

[ ∏

j∈Ri

dxj

]
x

b0i /γ0
i −1

i dxi ×
∏

j∈N2

x
b0j/γ0

j −1

j dxj =
∏

i∈Z∩C

µi

∏

j∈N2

µj .
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The norm on L2 ≡ L2(S0, µ) is denoted by ‖ · ‖2.

The key analytic bound we will need to carry out the Stroock-Varadhan perturba-

tion analysis is the following:

Proposition 2.2. There is a dense subspace D0 ⊂ L2 and a K(M0) > 0 such that

Rλ : D0 → C2
b (S0) for all λ > 0 and

[ ∑

i∈Z∩C

[ ∑

j∈Ri

‖xi(Rλf)jj‖2

]
+ ‖xi(Rλf)ii‖2

]
+

[ ∑

j∈N2

‖xj(Rλf)jj‖2

]
+

[ ∑

j∈V

‖(Rλf)j‖2

]

≤ K‖f‖2 for all f ∈ D0 and λ ≥ 1. (2.6)

Here are the other two ingredients needed to complete the proof of Theorem 2.1.

Proposition 2.3. Let P be a solution of MP (Ã, ν) where dν = ρ dµ for some ρ ∈ L2 with

compact support and set Sλf = E P

(∫ ∞
0

e−λtf(Xt) dt
)
. If

ε0 ≤ (2K(M0))
−1 ∧ (48dM5

0 )−1, (2.7)

then for all λ ≥ 1,

‖Sλ‖ := sup{|Sλf | : ‖f‖2 ≤ 1} ≤ 2‖ρ‖2

λ
< ∞.

Proposition 2.4. Assume {Px : x ∈ S0} is a collection of probabilities on C(R+, S0) such

that:

(i) For each x ∈ S0, Px is a solution of MP (Ã, δx).

(ii) (Px, Xt) is a Borel strong Markov process.

Then for any bounded measurable function f on S0 and any λ > 0,

Sλf(x) = E
x
(∫ ∞

0

e−λtf(Xt) dt
)

is a continuous function in x ∈ S0.

Remark 2.5. Our proof of Proposition 2.4 will also show the strong Feller property of

the resolvent for solutions to the original MP(A, ν) in Theorem 1.4–see Remark 6.2.

Assuming Propositions 2.2–2.4 the proof of Theorem 2.1 is then standard and quite

similar to the proof of Proposition 2.1 in Section 7 of [ABBP]. Unlike [ABBP] the state

space here is not compact, so we present the proof for completeness.

Proof of Theorem 2.1. Let Qk, k = 1, 2, be solutions to MP (Ã, ν) where ν is as in

Proposition 2.3 and define Sk
λf = E k

(∫
e−λtf(Xt) dt

)
, where E k denotes expectation
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with respect to Qk. Let f ∈ C2
b (S0). The martingale problem shows that there is a local

martingale Mf satisfying

f(Xt) = f(X0) + Mf (t) +

∫ t

0

Ãf(Xs) ds. (2.8)

Note that for t > 0,

E k(sup
s≤t

|Mf (s)|) ≤ 2‖f‖∞ +

∫ t

0

E k(|Ãf(Xs)|) ds

≤ 2‖f‖∞ + c

∫ t

0

E k

( ∑

j /∈N1

Xj
s + 1

)
ds < ∞,

where the finiteness follows by considering the associated SDE for Xj and using the bound-

edness of b̃j . This shows that Mf is a martingale under Qk. Let g ∈ D0. Multiply (2.8) by

λe−λt integrate over t, take expectations (just as in (7.3) of [ABBP]), and set f = Rλg ∈ C2
b

to derive

Sk
λg =

∫
Rλg dν + Sk

λ((Ã − A0)Rλg).

Taking the difference of this equation when k = 1, 2, we obtain

|(S1
λ − S2

λ)g| ≤ ‖Sλ
1 − S2

λ‖ ‖(Ã − A0)Rλg‖2 ≤ ‖S1
λ − S2

λ‖ε0K(M0)‖g‖2,

where we have used the definition of ε0 (in (2.1)) and Proposition 2.2. Set ε1(M0) =

(2K(M0))
−1 to conclude ‖S1

λ − S2
λ‖ ≤ 1

2‖S1
λ − S2

λ‖. Proposition 2.3 implies the above

terms are finite for λ ≥ 1 and so we have

‖S1
λ − S2

λ‖ = 0 for all λ ≥ 1. (2.9)

To prove uniqueness we first use Krylov selection (Theorem 12.2.4 of [SV]) to see

that it suffices to consider Borel strong Markov processes ((Qx
k)x∈S0 , Xt), k = 1, 2, where

Qx
k solves MP (Ã, δx), and to show that Qx

1 = Qx
2 for all x ∈ S0 (see the argument in the

proof of Proposition 2.1 of [ABBP], but the situation here is a bit simpler as there is no

killing). If Sk
λ are the resolvent operators associated with (Qx

k, x ∈ S0), then (2.9) implies

that
∫

S1
λf(x)ρ(x)dµ(x) =

∫
S2

λf(x)ρ(x)dµ(x)

for all f ∈ L2, compactly supported ρ ∈ L2, and λ ≥ 1.

For f and λ as above this implies S1
λf(x) = S2

λf(x) for Lebesgue a.e. x and so for all x

by Proposition 2.4. From this one deduces Qx
1 = Qx

2 for all x (e.g., see Theorem VI.3.2 of

[B98]).
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It remains to prove Propositions 2.2–2.4. Propositions 2.3 and 2.4 follow along the

lines of Propositions 2.3 and 2.4, respectively, of [ABBP], and are proved in Sections 5 and

6, respectively. There are some additional complications in the present setting. Most of

the work, however, will go into the proof of Proposition 2.2 where a different approach than

those in [ABBP] or [DP1] is followed. In [DP1] a canonical measure formula (Proposition 14

of that work) is used to represent and bound derivatives of the semigroups P i
t f(x) in (2.5)

(see Lemma 3.8 below). This approach will be refined (see, e.g., Lemmas 3.11 and 7.1

below) to give good estimates on the derivatives of the the actual transition densities

using an integration by parts formula. The formula will convert spatial derivatives on the

semigroup or density into differences involving Poisson random variables which can be used

to represent the process with semigroup Pt from which we are perturbing. The construction

is described in Lemma 3.4 below. The integration by parts formula underlies the proof

of Lemma 7.1 and is explicitly stated in the simpler setting of first order derivatives in

Proposition 8.1.

In [ABBP] we differentiate an explicit eigenfunction expansion for the resolvent

of a killed squared Bessel process to get an asymptotically orthogonal expansion. We

have less explicit information about the semigroup Pt of A0 and so instead use Cotlar’s

Lemma (Lemma 2.13 below), to get a different asymptotically orthogonal expansion for

the derivatives of the resolvent Rλ–see the proof of Proposition 2.2 later in this section.

Notation 2.6. Set d = |Z ∩ C| + |N2| = |N c
1 | ≤ d. Here | · | denotes cardinality.

Convention 2.7. All constants appearing in statements of results concerning the semi-

group Pt and its associated process may depend on d and the constants {b0
j , γ

0
j : j ≤ d},

but, if M0 is as in (2.4), these constants will be uniformly bounded for M0 ≤ M for any

M > 0.

We state an easy result on transition densities which will be proved in Section 3.

Proposition 2.8. The semigroup (Pt, t ≥ 0), has a jointly continuous transition density

pt : S0 × S0 → [0,∞), t > 0. This density, pt(x, y) is C3 on S0 in each variable (x or y)

separately, and satisfies the following:

(a) pt(y, x) = p̂t(x, y), where p̂t is the transition density associated with Â0 with parame-

ters γ̂0 = γ0 and

b̂0
j =

{−b0
j if j ∈ N1

b0
j otherwise.

In particular
∫

pt(x, y)µ(dy) =

∫
pt(x, y)µ(dx) = 1. (2.10)
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(b) If Dn
x is any nth order partial differential operator in x ∈ S0 and 0 ≤ n ≤ 3, then

sup
x

|Dn
xpt(x, y)| ≤ c2.8t

−n−(d−d)−
∑

i/∈N1
b0i /γ0

i
∏

j∈N2

[1 + (yj/t)1/2] for all y ∈ S0, (2.11)

and

sup
y

|Dn
y pt(x, y)| ≤ c2.8t

−n−(d−d)−
∑

i/∈N1
b0i /γ0

i
∏

j∈N2

[1 + (xj/t)1/2] for all x ∈ S0. (2.12)

(c) If 0 ≤ n ≤ 3,

sup
x

∫
|Dn

y pt(x, y)|dµ(y) ≤ c2.8t
−n. (2.13)

(d) For all bounded Borel f : S0 → R, Ptf ∈ C2
b (S0), and for n ≤ 2 and Dn

x as in (b),

Dn
xPtf(x) =

∫
Dn

xpt(x, y)f(y)dµ(y) (2.14)

and

‖Dn
xPtf‖∞ ≤ c2.8t

−n‖f‖∞. (2.15)

Notation 2.9. Throughout D̃x will denote one of the following first or second order

differential operators:

Dxj , j ≤ d, xiD
2
xjxj

, i ∈ Z ∩ C, j ∈ Ri, or xjD
2
xjxj

, j /∈ N1.

A deeper result is the following bound which sharpens Proposition 2.8.

Proposition 2.10. For D̃x as above and all t > 0,

sup
x

∫
|D̃xpt(x, y)|µ(dy) ≤ c2.10t

−1. (2.16)

sup
y

∫
|D̃xpt(x, y)|µ(dx) ≤ c2.10t

−1. (2.17)

This is proved in Section 4 below. The case D̃x = xjD
2
xjxj

for j ∈ Z ∩ C will be the most

delicate.

For D̃ as in Notation 2.9 and t > 0, define an integral operator Tt = Tt(D̃) by

Ttf(x) =

∫
D̃xpt(x, y)f(y)µ(dy), for f : S0 → R for which the integral exists. (2.18)

By (d) above Tt is a bounded operator on L∞, but we will study these operators on

L2(S0, µ).
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Lemma 2.11. Assume K : S0 × S0 → R is a measurable kernel on S0.

(a) If
∥∥∥

∫
|K(·, y)|µ(dy)

∥∥∥
∞

≤ c1 and
∥∥∥

∫
|K(x, ·)|µ(dx)

∥∥∥
∞

≤ c2,

then Kf(x) =
∫

K(x, y)f(y)µ(dy) is a bounded operator on L2 with norm ‖K‖ ≤ √
c1c2.

(b) If

|K|2 :=
∥∥∥

∫ ∫
|K(x, y′)| |K(x, ·)|µ(dy′)µ(dx)

∥∥∥
∞

< ∞,

then Kf(·) =
∫

K(·, y)f(y)µ(dy) is bounded on L2(µ) and its norm satisfies ‖K‖ ≤ |K|.

Proof. (a) is well known; see [B95], Theorem IV.5.1, for example, for a proof.

(b) Let K∗K(·, ·) denote the integral kernel associated with the operator K∗K. The

hypothesis implies that ∥∥∥
∫

|K∗K(y, ·)|µ(dy)
∥∥∥
∞

≤ |K|2.

By (a) and the fact that K∗K is symmetric, we have ‖K‖2 = ‖K∗K‖ ≤ |K|2.

Corollary 2.12. (a) For f ∈ L2(µ) and t, λ > 0, ‖Ptf‖2 ≤ ‖f‖2 and ‖Rλf‖2 ≤ λ−1‖f‖2.

(b) If g ∈ C2
b (S0) ∩ L2(µ) and A0g ∈ L2(µ), then t → Ptg is continuous in L2(µ).

Proof. (a) This is immediate from Lemma 2.11(a) and (2.10).

(b) By (MP (A0, ν)), if 0 ≤ s < t, then

‖Ptg − Psg‖2 =
∥∥∥

∫ t

s

A0Prg dr
∥∥∥

2

≤
∫ t

s

‖PrA0g‖2dr

≤ (t − s)‖A0g‖2.

We have used (a) in the last line.

Proposition 2.10 allows us to apply Lemma 2.11 to Tt and conclude

Tt is a bounded operator on L2 with norm ‖Tt‖ ≤ c2.10t
−1 (2.19)

Unfortunately this is not integrable near t = 0 and so we can not integrate this bound to

prove Proposition 2.2. We must take advantage of some cancellation in the integral over t

and this is where we use Cotlar’s Lemma:
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Lemma 2.13 (Cotlar’s Lemma). Assume {Uj : j ∈ Z+} are bounded operators on

L2(µ) and {a(j) : j ∈ Z} are non-negative real numbers such that

‖UjU
∗
k‖ ∨ ‖U∗

j Uk‖ ≤ a(j − k)2 all j, k. (2.20)

Then
∥∥∥

N∑

j=0

Uj

∥∥∥ ≤ A :=

∞∑

j=−∞
a(j) for all N.

Proof. See, e.g., Lemma XI.4.1 in [T].

The subspace D0 in Proposition 2.2 will be

D0 = {P2−j g : j ∈ N, g ∈ C2
b (S0) ∩ L2(µ),A0g ∈ L2(µ)}. (2.21)

As we can take g ∈ C2 with compact support, denseness of D0 in L2 follows from Corol-

lary 2.12(b). To see that D0 is a subspace, let P2−ji gi ∈ D0 for i = 1, 2 with j2 ≥ j1. If

g̃1 = P2−j1−2−j2 g1, then g̃1 is in L2 by Corollary 2.12 (a) and also in C2
b (S0) by Proposition

2.8(d). In addition,

‖A0g̃1‖2 = ‖P2−j1−2−j2A0g1‖2 ≤ ‖A0g1‖2 < ∞,

where we have used Corollary 2.12(a) again. Hence P2−j1 g1 = P2−j2 g̃1 where g̃1 satisfies

the same conditions as g1. Therefore

P2−j1 g1 + P2−j2 g2 = P2−j2 (g̃1 + g2) ∈ D0.

We show below how Cotlar’s Lemma easily reduces Proposition 2.2 to the following result.

Proposition 2.14. There is an η > 0 and c2.14 so that if D̃x is any of the operators in

Notation 2.9, then

‖T ∗
s Ttf‖2 ≤ c2.14s

−1−η/2t−1+η/2‖f‖2 and

‖TsT
∗
t f‖2 ≤ c2.14s

−1−η/2t−1+η/2‖f‖2

for any 0 < t ≤ s ≤ 2, and any bounded Borel f ∈ L2(µ). (2.22)

Assuming this result, we can now give the

Proof of Proposition 2.2. Fix a choice of D̃x (recall Notation 2.9), let λ ≥ 1, and for

k ∈ Z+, define

Uk = Uk(D̃x) =

∫ 2−k+1

2−k

e−λsTs ds.
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By (2.19), Uk is bounded operator on L2. Moreover if k > j then

‖U∗
j Ukf‖2 =

∥∥∥
∫ 2−j+1

2−j

[∫ 2−k+1

2−k

e−λ(s+t)T ∗
s Ttfdt

]
ds

∥∥∥
2

≤
∫ 2−j+1

2−j

[∫ 2−k+1

2−k

c2.14s
−1−η/2t−1+η/2 dt

]
ds‖f‖2

≤ c2.142
−(η/2)(k−j)‖f‖2.

If k = j a similar calculation where the contributions to the integral from {s ≥ t} and

{t ≥ s} are evaluated separately shows

‖U∗
j Ujf‖2 ≤ c2.14‖f‖2.

Cotlar’s Lemma therefore shows that

∥∥∥
N∑

j=0

Uj

∥∥∥ ≤ √
c2.142(1 − 2−η/4)−1 := C(η) for all N. (2.23)

Now let f = P2−N g ∈ D0 where g is as in the definition of D0, and for M ∈ N set

h = hM = P2−N (1−2−M )g. Then

D̃xRλf = D̃x

∫ ∞

0

e−λtPt+2−M−N h dt

= exp(λ2−M−N )
[
D̃x

[∫ 2

2−N−M

e−λuPuh du
]

+ D̃x

[∫ ∞

2

e−λuPuh du
]]

= exp(λ2−M−N )
[M+N∑

j=0

Ujh +

∞∑

k=1

e−λk

∫ k+2

k+1

e−λ(u−k)Tu−k(Pkh) du
]
.

In the last line the bound (2.15) allows us to differentiate through the t integral and (2.14)

allows us to differentiate through the µ(dy) integral and conclude D̃xPuh = Tuh. A change

of variables in the above now gives

D̃xRλf = exp(λ2−M−N )
[M+N∑

j=0

Ujh +
∞∑

k=1

e−λkU0(Pkh)
]
.

So (2.23) shows that

‖D̃xRλf‖2 ≤ exp(λ2−M−N )C(η)
[
‖hM‖2 +

∞∑

k=1

e−λk‖PkhM‖2

]

≤ exp(λ2−M−N )C(η)(1 − e−λ)−1‖hM‖2. (2.24)
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Corollary 2.12(b) shows that ‖hM‖2 = ‖P2−N−2−N−M g‖2 → ‖f‖2 as M → ∞. Now let

M → ∞ in (2.24) to conclude

‖D̃xRλf‖2 ≤ C(η)(1 − e−λ)−1‖f‖2,

and the result follows.

For Proposition 2.14, an easy calculation shows that for 0 < s ≤ t,

T ∗
s Ttf(x) =

∫
K

(1)
s,t (x, y)f(y)dµ(y) and TsT

∗
t f(x) =

∫
K

(2)
s,t (x, y)f(y)dµ(y), (2.25)

where

K
(1)
s,t (y, z) =

∫
D̃xps(x, y)D̃xpt(x, z)dµ(x), (2.26)

and

K
(2)
s,t (x, y) =

∫
D̃xps(x, z)D̃ypt(y, z)dµ(z). (2.27)

Lemma 2.11(b) shows that (2.22) follows from

sup
y

∫ ∫
|K(i)

s,t(x, y′)| |K(i)
s,t(x, y)| dµ(y′) dµ(x) ≤ c2.14s

−2−ηt−2+η

for all 0 < t ≤ s ≤ 2 and i = 1, 2. (2.28)

This calculation will reduce fairly easily to the case N2 empty and Z ∩ C a singleton (see

the proof of Proposition 2.14 at the end of Section 4 below). Here there are essentially 4

distinct choices of D̃x, making our task one of bounding 8 different 4-fold integrals involving

first and second derivatives of the transition density pt(x, y). Fairly explicit formulae (see

(4.7)–(4.9)) are available for all the derivatives except those involving the unique index j

in Z∩C, and as a result Proposition 2.14 is easy to prove for all derivatives but those with

respect to j (Proposition 4.3). Even here the first order derivatives are easily handled,

leaving D̃x = xjDxjxj . This is the reason for most of the rather long calculations in

Section 7. In the special case d = 2, of paramount importance to [DGHSS], one can avoid

this case using the identity A0Rλf = λRλf − f , as is discussed in Section 8.

We give a brief outline of the rest of the paper. Section 3 studies the transition

density associated with the resolvent in Proposition 2.2 for the key special case when

Z ∩ C is a singleton and N2 = ∅. This includes the canonical measure formulae for

these densities (Lemmas 3.4 and 3.11) and the proof of Proposition 2.8. In addition some

important formulae for Feller branching processes with immigration, conditional on their

value at time t, are proved (see Lemmas 3.2, 3.14 and Corollary 3.15). In Section 4, the

proofs of Propositions 2.14 and 2.10 are reduced to a series of technical bounds on the
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derivatives of the transition densities (Lemmas 4.5, 4.6 and 4.7). Most of the work here

is in the setting of the key special case considered in Section 3, and then at the end of

Section 4 we show how the general case of Proposition 2.14 follows fairly easily thanks to

the product structure in (2.5). Propositions 2.3 and 2.4 are proved in Sections 5 and 6,

respectively. Lemmas 4.5–4.7 are finally proved in Section 7, thus completing the proof of

Theorem 2.1 (and 1.4). The key inequality in Section 7 is Lemma 7.1 which comes from

the integration by parts identity for the dominant term (see Proposition 8.1 for a simple

special case). In Section 8 we describe how all of this becomes considerably simpler in the

2-dimensional setting required in [DGHSS].

3. The basic semigroups. Unless otherwise indicated, in this section we work with the

generator in (2.3) where Z ∩ C = {d} and N2 = ∅. Taking d = m + 1 to help distinguish

this special setting, this means we work with the generator

A1 =
[ m∑

j=1

b0
j

∂

∂xj
+ γ0

j xm+1
∂2

∂x2
j

]
+ b0

m+1

∂

∂xm+1
+ γ0

m+1xm+1
∂2

∂x2
m+1

,

with semigroup Pt on the state space Sm = Rm × R+ (m ∈ N). Here we write b = b0
m+1,

γ = γ0
m+1 and assume

γ0
j > 0, b0

j ∈ R for j ≤ m, and γ > 0, b > 0.

Our Convention 2.7 on constants therefore means:

Convention 3.1. Constants appearing in statements of results may depend on m and

{b0
j , γ

0
j : j ≤ m + 1}. If

M0 = M0(γ
0, b0) := max

i≤m+1
(γ0

i ∨ (γ0
i )−1 ∨ |b0

i |) ∨ (b0
m+1)

−1 < ∞,

then these constants will be uniformly bounded for M0 ≤ M for any fixed M > 0.

Note that M0 ≥ 1.

It is easy to see that the martingale problem MP (A1, ν) is well-posed for any initial

law ν on Sm. In fact, we now give an explicit formula for Pt. Let Xt = (X
(1)
t , . . . , X

(m+1)
t )

be a solution to this martingale problem. By considering the associated SDE, we see that

X(m+1) is a Feller branching diffusion (with immigration) with generator

A′
0 = b

d

dx
+ γx

d2

dx2
, (3.1)

and is independent of the driving Brownian motions of the first m coordinates. Let Pxm+1

be the law of X(m+1) starting at xm+1 on C(R+, R+). By conditioning on Xm+1 we see

1824



that the first m coordinates are then a time-inhomogeneous Brownian motion. Therefore

if It =
∫ t

0
X

(m+1)
s ds and pt(z) = (2πt)−1/2e−z2/2t, then (see (20) in [DP1])

Ptf(x1, . . . , xm+1) = E xm+1

[∫
f(y1, . . . , ym, X

(m+1)
t )

m∏

j=1

p2γ0
j
It

(yj − xj − b0
j t) dyj

]
. (3.2)

If x = (x1, . . . , xm+1) = (x(m), xm+1) ∈ Sm, let

µ(dx) = x
b
γ −1

m+1dx = dx(m)µm+1(dxm+1).

Recall (see, e.g., (2.2) of [BP]) that X(m+1) has a symmetric density qt = qb,γ
t (x, y) (x, y ≥

0) with respect to µm+1(dy), given by

qb,γ
t (x, y) = (γt)−b/γ exp

{−x − y

γt

}[ ∞∑

m=0

1

m!Γ(m + b/γ)

( x

γt

)m( y

γt

)m]
, (3.3)

and associated semigroup Qt = Qb,γ
t . Let

r̄t(xm+1, ym+1, dw) = Pxm+1

(∫ t

0

X(m+1)
s ds ∈ dw|X(m+1)

t = ym+1

)
,

or more precisely a version of this collection of probability laws which is symmetric in

(xm+1, ym+1) and such that (xm+1, ym+1) → r̄t(xm+1, ym+1, dw) is a jointly continuous

map with respect to the weak topology on the space of probability measures. The existence

of such a version follows from Section XI.3 of [RY]. Indeed, Corollary 3.3 of the above states

that if γ = 2, then

L(λ, x, y) :=

∫
exp

{−λ2

2
w

}
r̄1(x, y, dw)

=






λ
sinh λ exp

{(
x+y

2

)
(1 − λ coth λ)

}
Iν

(
λ
√

xy

sinh λ

)
/Iν(

√
xy) if xy > 0;

(
λ

sinh λ

)b/2

exp
{(

x+y
2

)
(1 − λ coth λ)

}
if xy = 0.

(3.4)

Here ν = b
2 − 1 and Iν(z) =

∑∞
m=0

1
m!

1
Γ(m+ν+1)

(
z
2

)2m+ν

is the modified Bessel function

of the first kind of index ν > −1. The continuity and symmetry of L in (x, y) gives the

required continuous and symmetric version of r̄1(xm+1, ym+1). A scaling argument (see

the proof of Lemma 3.2 below) gives the required version of r̄t for general γ > 0.

Now define rt(xm+1, ym+1, dw) = qb,γ
t (xm+1, ym+1)r̄t(xm+1, ym+1, dw), so that

(xm+1, ym+1) → rt(xm+1, ym+1, dw) is symmetric and weakly continuous (3.5)
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and

∫ ∫
ψ(ym+1, w)rt(xm+1, ym+1, dw)µm+1(dym+1)

= E xm+1(ψ(X
(m+1)
t , It)) for all xm+1 ≥ 0 and Borel ψ : R2

+ → R+. (3.6)

(Weakly continuous means continuity with respect to the weak topology on the space of

probability measures.) Combine (3.6) and (3.2) to conclude that X has a transition density

with respect to µ(dy) given by

pt(x, y) =

∫ ∞

0

m∏

j=1

p2γ0
j
w(yj − xj − b0

j t)rt(xm+1, ym+1, dw)

= pt(x
(m), xm+1, y

(m), ym+1) = pt(x
(m) − y(m), xm+1, 0, ym+1)

≡ p0
t (x

(m) − y(m), xm+1, ym+1); (3.7)

here we write x = (x(m), xm+1) and similarly for y, we write 0 for 0(m), and we use

translation invariance to get the third equality. In particular we see that conditional on

the last component at time t, the first m components are translation invariant. Moreover

if we set b0 = (b0
1, . . . , b

0
m) ∈ Rm and write pb0

t (x, y) for pt(x, y), then (3.5) implies

pb0

t (x, y) = p−b0

t (y, x) for all x, y ∈ Sm. (3.8)

The next result is a refinement of Lemma 7(b) of [DP1].

Lemma 3.2. For any p > 0 there is a c3.2(p) such that for all x, y ≥ 0 and t > 0,

E x

((∫ t

0

X(m+1)
s ds

)−p

|X(m+1)
t = y

)
≡

∫
w−pr̄t(x, y, dw)

≤ c3.2(x + y + t)−pt−p.

Proof. Assume first γ = 2, t = 1 so that we may use (3.4) to conclude (recall ν = b
2 − 1)

L(λ, x, y)

L(λ, x, 0)
=






(
λ

sinh λ

)−ν Iν

(
λ

sinh λ

√
xy

)

Iν(
√

xy) exp{y
2 (1 − λ coth λ)} if x > 0;

exp{y
2 (1 − λ coth λ)} if x = 0.

A bit of calculus shows

λ coth λ ≥ 1, α(λ) :=
λ

sinhλ
∈ [0, 1] for all λ ≥ 0, (3.9)
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with the first inequality being strict if λ > 0. The above series expansion shows that

Iν(αz) ≤ ανIν(z) for all z ≥ 0, α ∈ [0, 1], and so using (3.9) in the above ratio bound, we

get

L(λ, x, y) ≤ L(λ, x, 0) for all λ, x, y ≥ 0. (3.10)

We have∫
w−pr̄1(x, y, dw) = 2p

∫ ∞

0

r̄1(x, y, [0, u2])u−2p−1du

≤ 2p
√

e

∫ ∞

0

L(u−1, x, y)u−2p−1du

≤ 2p
√

e

∫ ∞

0

L(u−1, x, 0)u−2p−1du (by (3.10))

= cp

∫ ∞

0

( u−1

sinhu−1

)b/2

exp{x

2
(1 − u−1 coth u−1)}u−2p−1du

= cp

∫ ∞

0

( w

sinhw

)b/2

exp{−x

2
(w coth w − 1)}w2p−1dw

≤ cp

[∫ 1

0

exp{−cxw2}w2p−1dw

+

∫ ∞

1

exp{−cxw − wb/2}2b/2wb/2+2p−1dw
]
,

where in the last line c > 0 and we have used (3.9), inf0≤w≤1
w coth w−1

w2 = c1 > 0, and

infw≥1
w coth w−1

w = c2 > 0. For x ≤ 1 we may bound the above by (recall Convention 3.1)

cp

[ ∫ 1

0

w2p−1 dw +

∫ ∞

1

(e−w2w)b/2w2p−1 dw
]
≤ c1(p),

and for x ≥ 1 we may, using (2we−w)b/2 ≤ 1 for w ≥ 1, bound it by

cp

[∫ 1

0

exp{−cxw2}w2p−1dw +

∫ ∞

1

e−cxww2p−1dw
]
≤ c2(p)x−p.

These bounds show that
∫

w−pr̄1(x, y, dw) ≤ c(p)(1 + x)−p and so by symmetry in x and

y we get ∫
w−pr̄1(x, y, dw) ≤ c(p)(1 + x + y)−p for all x, y ≥ 0.

For general γ and t, X̂s = 2
tγ Xts is as above with γ̂ = 2 and b̂ = 2b

γ . We have
∫ t

0
Xsds =

(
t2γ
2

) ∫ 1

0
X̂u du, and so, using the above case,

∫
w−pr̄b,γ

t (x, y, dw) =
( t2γ

2

)−p
∫

w−pr̄b̂,2
1

(2x

tγ
,
2y

tγ
, dw

)

≤ c(p)t−p
( tγ

2

)−p(
1 +

2x

tγ
+

2y

tγ

)−p

≤ c(p)t−p(t + x + y)−p.
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We observe that there exist c1, c2 (recall Convention 3.1 is in force) such that

c1m
b/γ−1m! ≤ Γ(m + b/γ) ≤ c2m

b/γ−1m! for all m ∈ N. (3.11)

To see this, suppose first b/γ ≡ r ≥ 1 and use Jensen’s inequality to obtain

Γ(m + r)

m!
=

∫
xrxm−1e−x dx

Γ(m)
m−1 ≥

(∫
x · xm−1e−x dx

Γ(m)

)r

m−1 = mr−1.

Next suppose r ∈ [1, 2] and again use Jensen’s inequality to see that

Γ(m + r)

m!
=

∫
xr−1xme−x dx

Γ(m + 1)

≤
(∫

x · xme−x dx

Γ(m + 1)

)r−1

= (m + 1)r−1 ≤ 2mr−1.

These two inequalities imply (3.11) by using the identity Γ(m + r + 1) = (m + r)Γ(m + r)

a finite number of times.

Lemma 3.3. There is a c3.3 so that for all t > 0, xm+1, ym+1 ≥ 0:

(a) qb,γ
t (xm+1, ym+1) ≤ c3.3[t

−b/γ + 1(b/γ<1/2)(xm+1 ∧ ym+1)
1/2−b/γt−1/2].

(b) For all t > 0, (x, y) → pt(x, y) is continuous on S2
m and

sup
x,y∈Sm

pt(x, y) ≤ c3.3t
−m−b/γ .

(c) E xm+1(exp(−λX
(m+1)
t )) = (1 + λγt)−b/γ exp(−xm+1λ/(1 + λγt)) for all λ > −(γt)−1.

(d) If 0 < p < b/γ then

E xm+1((X
(m+1)
t )−p) ≤ c3.3

( p

(b/γ) − p
+ 1

)
(xm+1 + t)−p.

(e) E xm+1((X
(m+1)
t )2) ≤ c3.3(xm+1 + t)2.

(f) For any p > 0, E xm+1

(( ∫ t

0
X

(m+1)
s ds

)−p)
≤ c3.2(p)t−p(t + xm+1)

−p.

(g) supy≥0

∣∣∣
∫ ∞
0

(x − y)xb/γD2
xqt(x, y)dx

∣∣∣ ≤ c3.3.

Proof. (a) If q(x, y) = e−x−y
∑∞

m=0
(xy)m

m!Γ(m+b/γ) , then qt(x, y) = (γt)−b/γq(x/γt, y/γt)

and it suffices to show

q(x, y) ≤ c2(1 + 1(b/γ<1/2)(x ∧ y)1/2−b/γ) for all x, y ≥ 0. (3.12)
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By (3.11) and Stirling’s formula we have

q(x, y) ≤ c−1
1 e−x−y

∞∑

m=1

(2m)!

m!m!
2−2mm1−b/γ (2

√
xy)2m

(2m)!
+ e−x−yΓ(b/γ)−1

≤ c
[
1 + e−x−y+2

√
xy

∞∑

m=1

m1/2−b/γ (2
√

xy)m

m!
e−2

√
xy

]

≤ c
[
1 + e−(

√
x−√

y)2(2
√

xy + 1)1/2−b/γ
]
,

where in the last line we used an elementary Poisson expectation calculation (for b/γ ≥ 1/2

see Lemma 3.3 of [BP] ). If b/γ ≥ 1/2, the above is bounded and (3.12) is immediate.

Assume now that p = 1/2 − b/γ > 0 and x ≥ y. Then the above is at most

c(1 + e−(
√

x−√
y)2(

√
x
√

y)p) ≤ c(1 +
√

y
p
(
√

y
p

+ (
√

x −√
y)p)e−(

√
x−√

y)2)

≤ c(1 + yp + yp/2) ≤ c(1 + yp).

This proves (3.12) and hence (a).

(b) The continuity follows easily from (3.7), the continuity of qt(·, ·), the weak continuity

of r̄t(·, ·, dw), Lemma 3.2 and dominated convergence. Using Lemma 3.2 and (a) in (3.7),

we obtain (recall Convention 3.1)

pt(x, y) ≤ c(t + xm+1 + ym+1)
−m/2qb,γ

t (xm+1, ym+1)t
−m/2

≤ c[t−m/2t−b/γt−m/2 + 1(b/γ<1/2)(xm+1 + ym+1)
b/γ−1/2t−m/2+1/2−b/γ

× (xm+1 ∧ ym+1)
1/2−b/γt−1/2t−m/2]

≤ ct−m−b/γ .

(c) This is well-known, and is easily derived from (3.3).

(d) The expectation we need to bound equals

p

∫ ∞

0

v−1−pPxm+1(X
(m+1)
t < v) dv

≤ p

∫ xm+1∨t

0

v−1−peE xm+1(e
−X

(m+1)
t /v) dv + p

∫ ∞

xm+1∨t

v−1−p dv

= ep

∫ xm+1∨t

0

v−1−p+b/γ(v + γt)−b/γe−xm+1/(v+γt) dv + (xm+1 ∨ t)−p

We have used (c) in the last line. Set cr = supx≥0 xre−x and M1 = M2
0 . If xm+1 ≥ t, use

(v + γt)−b/γe−xm+1/(v+γt) ≤ cb/γx
−b/γ
m+1 ≤ (cM1 + 1)x

−b/γ
m+1
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to bound the above expression for E xm+1((X
(m+1))−p) by

(cM1 + 1)epx
−b/γ
m+1

∫ xm+1

0

v−1−p+b/γ dv + x−p
m+1

≤
( (cM1 + 1)ep

b/γ − p
+ 1

)
x−p

m+1.

On the other hand if xm+1 < t, the above expression for E xm+1((X
(m+1))−p)is trivially at

most

ep

∫ t

0

v−1−p+b/γγ−b/γt−b/γ dv + t−p =
(epγ−b/γ

b/γ − p
+ 1

)
t−p.

The result follows from these two bounds.

(e) This is standard (e.g., see Lemma 7(a) of [DP1]).

(f) Multiply the bound in Lemma 3.2 by qt(x, y)yb/γ−1 and integrate over y.

(g) Let b′ = γ/b. Since qt(x, y) = t−b/γq1(x/t, y/t), a simple change of variables shows the

quantity we need to bound is

sup
y≥0

∣∣∣
∫ ∞

0

(x − γy)xb′D2
xq1(x, γy)dx

∣∣∣

= sup
y≥0

∣∣∣
∞∑

m=0

e−y ym

m!

∫ ∞

0

(x − y)xb′D2
x(e−xxm) dx/Γ(m + b′)

∣∣∣.

Carrying out the differentiation and resulting Gamma integrals, we see the absolute value

of the above summation equals

∣∣∣
∞∑

m=0

e−y ym

m!

[
(m + 1 + b′)(m + b′) − 2m(m + b′) + m(m − 1)

− y(m + b′) + 2my − ym(1 − b′

m + b′ − 1
)1(m≥1)

]

≤
∞∑

m=0

e−y ym

m!

[
b′(1 + b′) + yb′| − 1 + 1(m≥1)m(m + b′ − 1)−1|

]

≤ b′(1 + b′) + b′
∞∑

m=1

e−y ym+1

(m + 1)!
|1 − b′| m + 1

m + b′ − 1
+ e−yyb′ ≤ c3.3.

Now let {P0
x : x ≥ 0} denote the laws of the Feller branching process with generator

L0f(x) = γxf ′′(x). If ω ∈ C(R+, R+) let ζ(ω) = inf{t > 0 : ω(t) = 0}. There is a unique

σ-finite measure N0 on

Cex = {ω ∈ C(R+, R+) : ω(0) = 0, ζ(ω) > 0, ω(t) = 0 ∀t ≥ ζ(ω)}
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such that for each h > 0, if Ξh is a Poisson point process on Cex with intensity hN0, then

X =

∫

Cex

ν Ξh(dν) has law P0
h; (3.13)

see, e.g., Theorem II.7.3 of [P] which can be projected down to the above situation by

considering the total mass function. Moreover for each t > 0 we have (Theorems II.7.2(iii)

and II.7.3(b) of [P])

N0({ν : νt > 0}) = (γt)−1 (3.14)

and so we may define a probability on Cex by

P∗
t (A) =

N0({ν ∈ A : νt > 0})
N0({ν : νt > 0)} . (3.15)

The above references in [P] also give the well-known

P∗
t (νt > x) = e−x/γt, (3.16)

and so this together with (3.14) implies

∫

Cex

νt dN0(ν) = 1. (3.17)

The representation (3.13) leads to the following decomposition of X(m+1) from

Lemma 10 of [DP1]. As it is consistent with the above notation, we will use X(m+1) to

denote a Feller branching diffusion (with immigration) starting at xm+1 and with generator

given by (3.1), under the law Pxm+1 .

Lemma 3.4. Let 0 ≤ ρ ≤ 1.

(a) We may assume

X(m+1) = X ′
0 + X1, (3.18)

where X ′
0 is a diffusion with generator A′

0 as in (3.1), starting at ρxm+1, X1 is a diffusion

with generator γxf ′′(x) starting at (1 − ρ)xm+1 ≥ 0, and X ′
0, X1 are independent. In

addition, we may assume

X1(t) =

∫

Cex

νt Ξ(dν) =

Nρ(t)∑

j=1

ej(t), (3.19)

where Ξ is independent of X ′
0 and is a Poisson point process on Cex with intensity

(1 − ρ)xm+1N0, {ej , j ∈ N} is an i.i.d. sequence with common law P∗
t , and Nρ(t) = Ξ({ν :
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νt > 0}) is a Poisson random variable (independent of the {ej}) with mean (1−ρ)xm+1

tγ0
m+1

.

(b) We also have

∫ t

0

X1(s)ds =

∫

Cex

∫ t

0

νs ds 1(νt 6=0)Ξ(dν) +

∫

Cex

∫ t

0

νs ds 1(νt=0)Ξ(dν)

≡
Nρ(t)∑

j=1

rj(t) + I1(t), (3.20)

∫ t

0

X(m+1)
s ds =

Nρ(t)∑

j=1

rj(t) + I2(t), (3.21)

where rj(t) =
∫ t

0
ej(s)ds and I2(t) = I1(t) +

∫ t

0
X ′

0(s)ds.

Remark 3.5. A double application of the decomposition in Lemma 3.4(a), first with

general ρ and then ρ = 0 shows we may write

X
(m+1)
t = X̃ ′

0(t) +

N ′

0(t)∑

j=1

e2
j (t) +

Nρ(t)∑

j=1

e1
j (t), (3.22)

where X̃ ′
0 is as in Lemma 3.4(a) with ρ = 0, {e1

j (t), e
2
k(t), j, k} are independent exponential

variables with mean (1/γt), N ′
0(t), Nρ(t) are independent Poisson random variables with

means ρxm+1/γt and (1−ρ)xm+1/γt, respectively, and (X̃ ′
0(t), {e1

j(t), e
2
k(t)}, N ′

0(t), Nρ(t))

are jointly independent. The group of two sums of exponentials in (3.22) may correspond to

X1(t) in (3.18) and (3.19), and so we may use this as the decomposition in Lemma 3.4(a)

with ρ = 0. Therefore we may take N0 to be N ′
0 + Nρ, and hence may couple these

decompositions so that

Nρ ≤ N0. (3.23)

The decomposition in Lemma 3.4 also gives a finer interpretation of the series expan-

sion (3.3) for qb,γ
t (x, y), as we now show. Note that the decomposition (from (3.18),(3.19)),

X(m+1)(t) = X ′
0(t) +

Nρ(t)∑

j=1

ej(t),

where X ′
0, Nρ(t) and {ej(t)} satisfy the distributional assumptions in (a), uniquely deter-

mines the joint law of (X
(m+1)
t , Nρ(t)). This can be seen by conditioning on Nρ(t) = n.

Both this result and method are used in the following.
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Lemma 3.6. Assume φ : R+×Z+ → R+ is Borel measurable. If Nρ(t) is as in Lemma 3.4,

then

(a)

E x(φ(X
(m+1)
t , N0(t))) =

∫ ∞

0

∞∑

n=0

φ(y, n)(n!Γ(n + b/γ))−1

×
( x

γt

)n( y

γt

)n

exp
{
− x

γt
− y

γt

}
(γt)−b/γdµm+1(y).

(b)

E x(φ(X
(m+1)
t , N1/2(t))) =

∫ ∞

0

∞∑

n=0

n∑

k=0

(
n
k

)
2−nφ(y, k)(n!Γ(n + b/γ))−1

×
( x

γt

)n( y

γt

)n

exp
{
− x

γt
− y

γt

}
(γt)−b/γdµm+1(y).

Proof. (a) Set x = 0 in (3.3) to see that X ′
0(t) has Lebesgue density

exp{−y

γt
}(y/γt)b/γ−1(γt)−1Γ(b/γ)−1,

that is, has a gamma distribution with parameters (b/γ, γt). It follows from Lemma 3.4(a),

(3.16) and the joint independence of ({ej(t)}, X ′
0(t), N0(t)) that, conditional on N0(t) = n,

X
(m+1)
t has a gamma distribution with parameter (n + b/γ, γt). This gives (a).

(b) Apply (3.22) with ρ = 1/2 to see that the decomposition in (3.18) for ρ = 1/2 is given

by (3.22) with X ′
0(t) = X̃ ′

0(t) +
∑N ′

0(t)
j=1 e2

j (t) and ej(t) = e1
j (t). As in (a), conditional

on (N ′
0(t), N1/2(t)) = (j, k), X

(m+1)
t has a gamma distribution with parameters (j + k +

b/γ, γt). A short calculation (with n = j + k) now gives (b).

Notation 3.7 Let Dn denote any nth order partial differential operator on Sm and let

Dn
xi

denote the nth partial derivative with respect to xi.

If X ∈ C(R+, R+), νi ∈ Cex, G : R2
+ → R and t ≥ 0, let

∆tG(X, ν1) = ∆1
t G(X, ν1) = G

( ∫ t

0

Xs + ν1
s ds,Xt + ν1

t

)
− G

( ∫ t

0

Xs ds,Xt

)
,

∆2
t G(X, ν1, ν2) =G

( ∫ t

0

Xs + ν1
s + ν2

s ds,Xt + ν1
t + ν2

t

)
− G

( ∫ t

0

Xs + ν1
s ds,Xt + ν1

t

)

− G
( ∫ t

0

Xs + ν2
s ds,Xt + ν2

t

)
+ G

( ∫ t

0

Xs ds,Xt

)

=∆tG(X + ν1, ν2) − ∆tG(X, ν2),
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∆3
t G(X, ν1, ν2, ν3) =G

( ∫ t

0

Xs + ν1
s + ν2

s + ν3
s ds,Xt + ν1

t + ν2
t + ν3

t

)

−
3∑

i=1

G
( ∫ t

0

Xs + ν1
s + ν2

s + ν3
s − νi

s ds,Xt + ν1
t + ν2

t + ν3
t − νi

t

)

+

3∑

i=1

G
( ∫ t

0

Xs + νi
s, Xt + νi

t

)
− G

( ∫ t

0

Xs ds,Xt

)
.

Lemma 3.8. If f : Sm → R is a bounded Borel function and t > 0, then Ptf ∈ C3
b (Sm)

and for n ≤ 3

‖DnPtf‖∞ ≤ c3.8‖f‖∞t−n. (3.24)

Moreover if f ∈ Cb(Sm), then for n ≤ 3,

Dn
xm+1

Ptf(x) = E xm+1

[∫
∆n

t (Gt,x(m)f)(X, ν1, . . . , νn)
n∏

j=1

dN0((ν
j))

]
, (3.25)

where for x(m) ∈ Rm

Gt,x(m)f(I,X) =

∫

Rm

f(z1, . . . , zm, X)

m∏

j=1

p2γ0
j
I(zj − xj − b0

j t)dzj . (3.26)

Proof. Proposition 14 and Remark 15 of [DP1] show that Ptf ∈ C2
b (Sm) and give (3.24)

and (3.25) for n ≤ 2. The proof there shows how to derive the n = 2 case from the n = 1

case and similar reasoning, albeit with more terms to check, allows one to derive the n = 3

case from the n = 2 case.

Recall that Qt is the semigroup of X(m+1), the squared Bessel diffusion with tran-

sition density given by (3.3).

Corollary 3.9. If g : R+ → R is a bounded Borel function and t > 0, then Qtg ∈ C3
b (R+)

and for n ≤ 3,

‖DnQtg‖∞ ≤ c3.8‖g‖∞t−n. (3.27)

Proof. Apply Lemma 3.8 to f(y) = g(ym+1).

Notation 3.10. For t, δ > 0, x(m) ∈ Rm, y ∈ Sm, 1 ≤ j ≤ m, I,X ≥ 0, define

Gδ
t,x(m),y(I,X) =

m∏

i=1

pδ+2γ0
i
I(xi − yi + b0

i t)q
b,γ
δ (ym+1, X).

Note that in the above notations, G = Gt,x(m)f and G = Gδ
t,x(m),y

are real-valued

functions on R2
+ and so, according to the notation above, for such a G, ∆n

t G will be a

ral-valued function of (X, ν1, . . . , νn) ∈ C(R+, R+) × Cn
ex, n = 1, 2, 3.
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Lemma 3.11. (a) For each t > 0 and y ∈ Sm, the functions x → pt(x, y) and x → pt(y, x)

are in C3
b (Sm), and if Dn

x denotes any nth order partial differential operator in the x

variable, then

|Dn
y pt(x, y)| + |Dn

xpt(x, y)| ≤ c3.11t
−n−m−b/γ for all x, y ∈ Sm and 0 ≤ n ≤ 3. (3.28)

(b) supx

∫
|Dn

xpt(x, y)|µ(dy) ≤ c3.8t
−n for all t > 0 and 0 ≤ n ≤ 3.

(c) For n ≤ 3 and t > 0, y → Dn
xpt(x, y) and x → Dn

y pt(x, y) are in Cb(Sm).

(d) For n = 1, 2, 3,

Dn
xm+1

pt(x, y) = lim
δ↓0

E xm+1

(∫
∆n

t Gδ
t,x(m),y(X, ν1, . . . , νn)

n∏

i=1

dN0(ν
i)

)
.

Proof. (a) By the Chapman-Kolmogorov equations, pt(x, y) = E x(pt/2(Xt/2, y)). Both

the required regularity and (3.28) now follow for x → pt(x, y) from Lemma 3.3(b) and

Lemma 3.8 with f(x) = pt/2(x, y). By (3.8) it follows for y → pt(x, y).

(b) For n = 1, 2, 3, N ∈ N and x ∈ Sm, let f(y) = sgn (Dn
xpt(x, y))1(|y|≤N). Then

∫
|Dn

xpt(x, y)|1(|y|≤N)dµ(y) =
∣∣∣
∫

Dn
xpt(x, y)f(y)dµ(y)

∣∣∣

= |Dn
xPtf(x)|,

where the last line follows by dominated convergence, the uniform bound in (3.28) and the

fact that f has compact support. An application of (3.24) implies

∫
|Dn

xpt(x, y)|1(|y|≤N)dµ(y) ≤ c3.8t
−n,

and the result follows upon letting N → ∞.

(c)

Dn
xpt(x, y) = Dn

x

∫
pt/2(x, z)pt/2(z, y)dµ(z)

=

∫
Dn

xpt/2(x, z)pt/2(z, y)dµ(z) (3.29)

by dominated convergence and the uniform bounds in (a). The integrability of

Dn
xpt/2(x, z) with respect to µ(dz) (from (b)) and the fact that pt/2(z, ·) ∈ Cb(Sm) allow us

to deduce the continuity of (3.29) in y from dominated convergence. Now use symmetry,

i.e., (3.8), to complete the proof.
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(d) If y, z ∈ Sm, δ > 0, let

fy,δ(z) =

m∏

i=1

pδ(zi − yi)qδ(ym+1, zm+1).

f is bounded and continuous in z by Lemma 3.3(a) (with a bound depending on y, δ). Let

n ≤ 3. The uniform bounds in (a) and integrability of fy,δ allow us to apply dominated

convergence to differentiate through the integral and conclude

Dn
xm+1

Ptf
y,δ(x) =

∫ ∫
Dn

xm+1
pt(x, z)fy,δ(z) dµ(z)

→ Dn
xm+1

pt(x, y) as δ ↓ 0. (3.30)

In the last line we have used (c). Now note that if I,X ≥ 0, then from (3.26) and

Chapman-Kolmogorov,

Gt,x(m)fy,δ(I,X) =

∫

Rm

fy,δ(z,X)

m∏

j=1

p2γ0
j
I(zj − xj − b0

j t)dzj

=qδ(ym+1, X)

m∏

j=1

pδ+2γ0
j
I(yj − xj − b0

j t) = Gδ
t,x(m),y(I,X). (3.31)

Use this in (3.25) to conclude that

Dn
xm+1

Ptf
y,δ(x) = E xm+1

(∫ ∫
∆n

t Gδ
t,x(m),y(X, ν1, . . . , νn)

n∏

i=1

dN0(ν
i)

)
. (3.32)

Combine (3.32) and (3.30) to derive (d).

Lemma 3.12. (a) For each t > 0 and y ∈ R+, the functions x → qt(x, y) and x → qt(y, x)

are in C3
b (R+), and

|Dn
y qt(x, y)| ≤ c3.12t

−n−b/γ [1 +
√

y/t] for all x, y ≥ 0 and 0 ≤ n ≤ 3. (3.33)

(b) supx≥0

∫
|Dn

xqt(x, y)|µm+1(dy) ≤ c3.12t
−n for all t > 0 and 0 ≤ n ≤ 3.

Proof. This is a minor modification of the proofs of Lemma 3.11 (a),(b). Use the bound

(from Lemma 3.3(a))

qt/2(·, y) ≤ c3.3(t
−b/γ + 1(b/γ<1/2)y

1/2−b/γt−1/2)

≤ c3.3t
−b/γ(2 +

√
y/t)

in place of Lemma 3.3(b), and (3.27) in place of (3.24), in the above argument. Of course

this is much easier and can also be derived by direct calculation from our series expansion

for qt.

Expectation under P∗
t is denoted by E ∗

t and we let e(s), s ≥ 0, denote the canonical

excursion process under this probability.
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Lemma 3.13. If 0 < s ≤ t, then

E
∗
t (e(s)|e(t)) = (s/t)((s/t)e(t) + 2γ(t − s)) ≤ e(t) + 2γs, P∗

t − a.s.

Proof. Let P0
h denote the law of the diffusion with generator γx d2

dx2 starting at h. If

f ∈ Cb(R+) has compact support, then Proposition 9 of [DP1] and (3.14) show that

E
∗
t (e(s)f(e(t))) = lim

h↓0
h−1E

0
h(Xsf(Xt)1(Xt>0))γt

= lim
h↓0

t

s

∫ ∫
γsq0,γ

s (h, y)

h
yq0,γ

t−s(y, x)f(x) dy dx. (3.34)

Here we extend the notation in (3.3) by letting q0,γ
s denote the absolutely continuous

part of the transition kernel for E 0 (it also has an atom at 0). We have also extended

the convergence in [DP1] slightly as the functional e(s)f(e(t)) is not bounded but this

extension is justified by a uniform integrability argument–the approximating functionals

are L2 bounded. By (2.4) of [BP]

γs

h
q0,γ
s (h, y) = exp

{−h − y

γs

} ∞∑

m=0

1

(m + 1)!

( h

γs

)m 1

m!

( y

γs

)m

(γs)−1

→ exp(−y/γs)(γs)−1 as h ↓ 0,

and also γs
h q0,γ

s (h, y) ≤ (γs)−1. Dominated convergence allows us to take the limit in

(3.34) through the integral and deduce that

E
∗
t (e(s)f(e(t))) =

t

s

∫ ∫
exp(−y/γs)(γs)−1yq0,γ

t−s(y, x) dyf(x) dx.

By (3.16) we conclude that

E ∗
t (e(s)|e(t) = x) = (t/s)2ex/γt

∫
e−y/γsyq0,γ

t−s(y, x) dy.

By inserting the above series expansion for q0,γ
t−s(y, x) and calculating the resulting gamma

integrals, the result follows.

Recall the modified Bessel function, Iν , introduced prior to Lemma 3.2.

Lemma 3.14. Let ν = b/γ − 1, and κν(z) =
I′

ν

Iν
(z)z + 1 for z ≥ 0, where κν(0) ≡

limz↓0 κν(z) = ν + 1. Then

E zm+1

(∫ t

0

X(m+1)
s ds

∣∣∣X(m+1)
t = y

)
= κν

(2
√

zm+1y

tγ

) t2γ

6
+

(zm+1 + y)t

3

≤ c3.14[t
2 + t(zm+1 + y)].
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Proof. Write X for X(m+1) and z for zm+1. The scaling argument used in the proof of

Lemma 3.2 allows us to assume t = 1, γ̂ = 2 and b̂ = 2b/γ. Dominated convergence implies

that

E z

(∫ 1

0

Xs ds
∣∣∣X1 = y) = lim

λ→0+
−λ−1 d

dλ
E z

(
exp

(
(−λ2/2)

∫ 1

0

Xs ds
)∣∣∣X1 = y

)
.

The right side can be calculated explicitly from the two formulae in (3.4) and after

some calculus we arrive at

E z

(∫ 1

0

Xs ds
∣∣∣X1 = y

)
=

κν(
√

zy)

3
+

(z + y)

3
,

where ν = b̂/2 − 1 = b/γ − 1. This gives the required equality.

To obtain the bound (recall Convention 3.1) it suffices to show

κν(z) ≤ c(ε)(1 + z) for all z ≥ 0 and ν + 1 ∈ [ε, ε−1].

Set α = ν + 1 and recall that

Iν(z) = (z/2)ν
∞∑

n=0

1

n!Γ(n + α)
(z/2)2n,

and

zI ′ν(z) = 2(z/2)ν
∞∑

n=1

1

(n − 1)!Γ(n + α)
(z/2)2n + νIν(z).

Taking ratios of the above and setting w = (z/2)2, we see that it suffices to show

∞∑

n=1

wn

(n − 1)!Γ(n + α)
≤ c0(ε)

[ ∞∑

n=0

wn+1/2

n!Γ(n + α)

]
for all w ≥ 0, ε ≤ α ≤ ε−1. (3.35)

We claim in fact that

wn

(n − 1)!Γ(n + α)
≤ 1

2
(α−1/2 ∨ 1)

[ wn−1/2

(n − 1)!Γ(n − 1 + α)
+

wn+1/2

n!Γ(n + α)

]

for all n ≥ 1, w ≥ 0, α ∈ [ε, ε−1]. (3.36)

Assuming this, (3.35) will follow with c0(ε) = ε−1/2 by summing (3.36) over n ≥ 1. The

proof of (3.36) is an elementary application of the quadratic formula once factors of wn−1/2

are canceled.

Corollary 3.15. If N0(t) is as in Lemma 3.4 then

E zm+1

(∫ t

0

X(m+1)
s ds

∣∣∣X(m+1)
t , N0(t)

)
≤ c3.15[t

2(1 + N0(t)) + t(X
(m+1)
t + zm+1)].
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Proof. We write X for X(m+1) and z for zm+1. Recall the decomposition (3.21):

∫ t

0

Xs ds =

∫ t

0

X ′
0(s) ds +

∫ ∫ t

0

νsds1(νt=0)Ξ(dν) +

N0(t)∑

i=1

∫ t

0

ei(s)ds,

where the second integral is independent of ({ej(t), j ∈ N}, N0(t) =
∫

1(νt>0)Ξ(dν), X ′
0)

by elementary properties of Poisson point processes and the independence of X ′
0 and Ξ.

Therefore

E z

(∫ t

0

Xsds
∣∣∣X ′

0(t), N0(t), {ej(t), j ∈ N}
)

= E z

(∫ t

0

X ′
0(s)ds

∣∣∣X ′
0(t)

)
+ E z

(∫ ∫ t

0

νsds1(νt=0)Ξ(dν)
)

+

N0(t)∑

i=1

E z

(∫ t

0

ei(s)ds
∣∣∣X ′

0(t), N0(t), {ej(t), j ∈ N}
)

= E z

(∫ t

0

X ′
0(s)ds

∣∣∣X ′
0(t)

)
+ E z

(∫ ∫ t

0

νsds1(νt = 0)Ξ(dν)
)

+

N0(t)∑

i=1

E z

(∫ t

0

ei(s)ds|ei(t)
)
.

In the last line we have used the independence of X ′
0 and Ξ, of N0(t) and {ej , j ∈ N}, and

the joint independence of the {ej} (see Lemma 3.4). Now use Lemmas 3.13 and 3.14 to

bound the last and first terms, respectively, and note the second term is bounded by the

mean of
∫ t

0
X1(s) ds, where X1 is as in (3.19). This bounds the above by

c3.14[t
2 + tz + tX ′

0(t)] + E z

(∫ t

0

X1(s)ds
)

+

N0(t)∑

i=1

(ei(t)t + γt2)

≤ c[t2 + tXt + zt] + γN0(t)t
2.

Condition the above on σ(N0(t), Xt) to complete the proof.

We now return to the general setting of Propositions 2.2 and 2.8.

Proof of Proposition 2.8. From (2.5) we may write

pt(x, y) =
∏

i∈Z∩C

pi
t(x(i), y(i))

∏

j∈N2

qj
t (xj , yj),

where pi
t are the transition densities from Lemma 3.11 and qj

t are the transition densities

from Lemma 3.12. The joint continuity and smoothness in each variable is immediate from
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these properties for each factor (from Lemma 3.11 and (3.3)). (a) is also immediate from

(3.8). The first part of (b) is also clear from the above factorization and the upper bounds

in Lemmas 3.11(a) and 3.12(a). The second part of (b) is then immediate from (a). (c)

also follows from Lemmas 3.11(b) and 3.12(b) and a short calculation.

(d) is an exercise in differentiating through the integral, but, as we will be doing

a lot of this in the future, we outline the proof here and refer to this argument for such

manipulations hereafter. Let f be a bounded Borel function on S0 and 0 ≤ n. If I(x)

denotes the right-hand side of (2.14), then I(x), is finite by (c) and also continuous in x.

To see the latter, choose a unit vector ej , set x′
i = xi if i 6= j and x′

j variable, and note

that for h > 0,

|I(x + hej) − I(x)| ≤
∫ ∫ xj+h

xj

|Dxj D
n
xpt(x

′, y)|dx′
jf(y)µ(dy)

≤ ‖f‖∞c2.8t
−n−1h.

We have used (c) in the above.

Let fN (y) = f(y)1(|y|≤N). By the integrability in (c), the left-hand side of (2.14)

equals

lim
N→∞

∫
Dn

xpt(x, y)fN (y)dµ(y) = lim
N→∞

Dn
x

∫
pt(x, y)fN (y)dµ(y),

where the differentiation through the integral over a compact set is justified by the bounds

in (b) and dominated convergence. The bound in (c) shows this convergence is uniformly

bounded (in x). For definiteness assume n = 2 and D2
x = D2

xixj
for i 6= j. By the above

convergence and dominated convergence we get

∫ x′

j

0

∫ x′

i

0

∫
D2

xpt(x, y)f(y)dµ(y)dxidxj = lim
N→∞

∫ x′

j

0

∫ x′

i

0

D2
x

∫
pt(x, y)fN (y)dµ(y)dxidxj

=

∫
[pt(x, y)|xi=x′

i
xi=0 |xj=x′

j

xj=0 ]f(y)dµ(y)

Now differentiate both sides with respect x′
j and then x′

i and use the Fundamental Theorem

of Calculus and the continuity of
∫

D2
xpt(x, y)f(y)dµ(y), noted above, to obtain (2.14).

This shows Ptf ∈ C2
b as continuity in x was established above. Finally (2.15) is now

immediate from (2.13) and (2.14).

4. Proofs of Propositions 2.14 and 2.10.

By Lemma 2.11(b), Proposition 2.14 will follow from (2.28). We restate this latter

inequality explicitly. Recall that D̃x is one of the first or second order partial differential

1840



operators listed in Notation 2.9. (2.28) then becomes

sup
y

∫ [∫ ∣∣∣
∫

D̃zps(z, x)D̃zpt(z, y′)µ(dz)
∣∣∣µ(dy′)

∣∣∣
∫

D̃zps(z, x)D̃zpt(z, y)µ(dz)
∣∣∣
]
µ(dx)

≤ c2.14s
−2−ηt−2+η for all 0 < t ≤ s ≤ 2, (4.1)

and

sup
y

∫ [∫ ∣∣∣
∫

D̃xps(x, z)D̃y′pt(y
′, z)µ(dz)

∣∣∣µ(dy′)
∣∣∣
∫

D̃xps(x, z)D̃ypt(y, z)µ(dz)
∣∣∣
]
µ(dx)

≤ c2.14s
−2−ηt−2+η for all 0 < t ≤ s ≤ 2, (4.2)

We have stated these conditions with s ≤ 2 for other potential uses; in our case we will

verify (2.28) for all 0 < t ≤ s. Recall also our Convention 3.1 for constants applies to c2.14

and η.

Until otherwise indicated, we continue to work in the setting of the last section and

use the notation introduced there. In particular, Convention 3.1 will be in force and the

differential operators in Notation 2.9 are

D̃x = Dxi , i ≤ m + 1, or D̃x = xm+1D
2
xi

, i ≤ m + 1. (4.3)

In [DP1] a number of bounds were obtained on the derivatives of the semigroup

Ptf ; (3.24) in the last section was one such bound. Propositions 16 and 17 of [DP1] state

there exists a c4.1 such that for all D̃x as in Notation 2.9, t > 0 and bounded Borel function

f ,

sup
x∈Sm

|D̃xPtf(x)| ≤ c4.1t
−1‖f‖∞. (4.4)

Although these results are stated for m = 1 in [DP1], the same argument works in m + 1

dimensions (see, for example, Proposition 20 of [DP1]). As a simple consequence of this

result we get:

Lemma 4.1. For all t > 0, and all D̃x as in (4.3)

sup
x∈Sm

∫
|D̃xpt(x, y)|µ(dy) ≤ c4.1t

−1, (4.5)

and

sup
xm+1≥0

∫
[xm+1|D2

xm+1
qt(xm+1, y)| + |Dxm+1qt(xm+1, y)| ]µm+1(dy) ≤ c4.1t

−1. (4.6)

Proof. Apply (4.4) and (2.14) to f(y) = sgn (D̃xpt(x, y)) to obtain (4.5), and to f(y) =

sgn (D̃xqt(xm+1, ym+1)) to obtain (4.6).
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One of the ingredients we will need is a bound like (4.5) but with the integral on

the left with respect to x instead of y. For derivatives with respect to xi, i ≤ m, this is

straightforward as we now show.

By differentiating through the integral in (3.7) we find for i ≤ m,

Dxipt(x, y) =

∫ ∞

0

(yi − xi − b0
i t)

2γ0
i w

m∏

j=1

p2γo
j
w(yj − xj − b0

j t)rt(xm+1, ym+1, dw), (4.7)

D2
xi

pt(x, y) =

∫ ∞

0

[ (yi − xi − b0
i t)

2

2γ0
i w

− 1
]
(2γ0

i w)−1

×
m∏

j=1

p2γ0
j
w(yj − xj − b0

j t)rt(xm+1, ym+1, dw), (4.8)

and

D3
xi

pt(x, y) =

∫ ∞

0

[ (yi − xi − b0
i t)

3

(2γ0
i w)

− 3(yi − xi − b0
i t)

]
(2γi

0w)−2

×
m∏

j=1

p2γ0
j
w(yj − xj − b0

j t)rt(xm+1, ym+1, dw). (4.9)

Integration through the integral is justified by the bounds in Lemma 3.2 and dominated

convergence.

Lemma 4.2. For all t > 0, and i ≤ m,

(a)
∫
|Dzipt(z, y)|dz(m) ≤ c4.2t

−1/2(t + zm+1 + ym+1)
−1/2qt(ym+1, zm+1).

(b) For all 0 ≤ p ≤ 2,
∫

zp
m+1|Dzipt(z, y)|µ(dz) ≤ c4.2t

−1/2(t + ym+1)
p−1/2.

(c) For D̃z = zm+1D
2
zi

or Dzi ,

sup
y

∫
|D̃zpt(z, y)|µ(dz) ≤ c4.2t

−1, (4.10)

and

sup
z

∫
|D̃zpt(z, y)|µ(dy) ≤ c4.2t

−1. (4.11)

Proof. (a) By (4.7) the integral in (a) is

∫ ∣∣∣
∫ ∞

0

[ (yi − zi − b0
i t)

2γ0
i w

] m∏

j=1

p2γ0
j
w(yj − zj − b0

j t)rt(zm+1, ym+1, dw)
∣∣∣dz(m)

≤ c

∫ ∞

0

w−1/2rt(ym+1, zm+1, dw)

≤ ct−1/2(t + zm+1 + ym+1)
−1/2qt(ym+1, zm+1).
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where in the first inequality we used the symmetry of rt (recall (3.5)) and in the last

inequality we have used Lemma 3.2.

(b) Integrate the inequality in (a) to bound the integral in (b) by

ct−1/2

∫
zp
m+1(t + zm+1 + ym+1)

−1/2qt(ym+1, zm+1)µm+1(dzm+1)

≤ ct−1/2(t + ym+1)
−1/2E ym+1((X

(m+1)
t )p)

≤ ct−1/2(t + ym)p−1/2.

In the last line we used Lemma 3.3(e).

(c) For D̃z = Dzi , (4.10) follows from (b) upon taking p = 0. The other cases are similarly

proved, now using (4.8) for the second order derivatives. ((4.11) is also immediate from

Lemma 4.1.)

Consider first (2.28) for D̃x = Dxi or xm+1D
2
xi

for some i ≤ m.

Proposition 4.3. If D̃x = Dxi or xm+1D
2
xi

for some i ≤ m, then (2.28) holds with

η = 1/2.

Proof. Consider (4.1) for D̃x = xm+1D
2
xi

. We may as well take i = 1. Assume 0 < t ≤ s

and let

J =

∫ ∣∣∣
∫

D̃zps(z, x)D̃zpt(z, y′)µ(dz)
∣∣∣µ(dy′).

Then

J ≤
∫ ∣∣∣

∫
zm+1D

2
y′

1
ps(y

′
1, z2, . . . , zm+1, x)zm+1D

2
z1

pt(z, y′)µ(dz)
∣∣∣µ(dy′)

+

∫ ∣∣∣
∫

zm+1[D
2
y′

1
ps(y

′
1, z2, . . . , zm+1, x) − D2

z1
ps(z, x)]zm+1D

2
z1

pt(z, y′)µ(dz)
∣∣∣µ(dy′)

≡J1 + J2.

To evaluate J1 do the dz1 integral first and use (4.8) to see
∫

zm+1D
2
z1

pt(z, y′) dz1 = 0,

and so J1 = 0. (Lemma 3.2 handles integrability issues.)

Let J ′
2 and J ′′

2 denote the contribution to the integral defining J2 from {z1 ≤ y′
1}

and {z1 ≥ y′
1}, respectively. Then by (4.8),

J ′
2 ≤

∫ ∫
z2
m+1

∣∣∣
∫ ∫

1(z1≤z′≤y′

1)
D3

z′ps(z
′, z2, . . . , zm+1, x)

×
(∫ ∞

0

[ (y′
1 − z1 − b0

1t)
2

2γ0
1w

− 1
]
(2γ0

1w)−1
m∏

j=1

p2γ0
j
w(y′

j − zj − b0
j t)

)

rt(zm+1, y
′
m+1, dw)dz(m)dz′

∣∣∣µm+1(dzm+1)µ(dy′).
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Do the z1 integral first in the above and if X =
−y′

1+z′+b01t√
2γ0

1w
, note the absolute value of this

integral is

∣∣∣
∫ z′

−∞

[ (y′
1 − z1 − b0

1t)
2

2γ0
1w

− 1
]
p2γ0

1w(y′
1 − z1 − b0

1t) dz1

∣∣∣

=
∣∣∣
∫ X

−∞
[v2 − 1]p1(v) dv

∣∣∣

≤ c|X|e−X2/2

≤ c|y′
1 − z′ − b0

1t|p2γ0
1w(y′

1 − z′ − b0
1t), (4.12)

where the first inequality follows by an elementary calculation–consider |X| ≥ 1 and |X| <

1 separately, note that
∫ ∞
0

(v2 − 1)p1(v) dv = 0, and in the last case use

∣∣∣
∫ X

−∞
p1(v)[v2 − 1]dv

∣∣∣ =

∫ |X|

0

p1(v)[1 − v2]dv.

Take the absolute value inside the remaining integrals, then integrate over dy′
2...dy′

m, and

use (4.9) to express the third order derivative. This and (4.12) lead to

J ′
2 ≤

∫ ∫
z2
m+1

{∫ ∫
1(z′≤y′

1)

[∫ ∞

0

[ |x1 − z′ − b0
1s|3

(2γ0
1w′)

+ |x1 − z′ − b0
1s|

]
(2γ0

1w′)−2

× p2γ0
1w′(x1 − z′ − b0

1s)

m∏

j=2

p2γ0
j
w′(xj − zj − b0

1s)dzjrs(zm+1, xm+1, dw′)
]

×
∫ ∞

0

c
| − y′

1 + z′ + b0
1t|

2γ0
1w

p2γ0
1w(y′

1 − z′ − b0
1t)rt(zm+1, y

′
m+1, dw)dy′

1dz′
}

× µm+1(dzm+1)µm+1(dy′
m+1).

Do the trivial integral over dz2 . . . dzm and then consider the dy′
1 dz′ integral of the resulting

integrand. If z′′ = z′ − x1 + b0
1s and y′′

1 = y′
1 − x1 − b0

1(t − s), this integral equals

∫ ∫
1(z′′≤y′′

1 +b01t)

[ |z′′|3
(2γ0

1w′)
+ |z′′|

]
(2γ0

1w′)−2p2γ0
1w′(z′′)

|y′′
1 − z′′|
2γ0

1w

× p2γ0
1w(y′′

1 − z′′)dy′′
1 dz′′

≤ c(2γ0
1w′)−3/2(2γ0

1w)−1/2.

Use this in the above bound on J ′
2 and the symmetry of rs(zm+1, xm+1, ·) in (zm+1, xm+1)
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(recall (3.5)), and conclude

J ′
2 ≤ c

∫ ∫ ∫ ∫
z2
m+1(w

′)−3/2w−1/2rs(xm+1, zm+1, dw′)rt(zm+1, y
′
m+1, dw)

× µm+1(dy′
m+1)µm+1(dzm+1)

= c

∫ ∫
z2
m+1(w

′)−3/2E zm+1

((∫ t

0

X(m+1)
r dr

)−1/2)
rs(xm+1, zm+1, dw′)µm+1(dzm+1)

≤ c

∫ ∫
(w′)−3/2z2

m+1t
−1/2(t + zm+1)

−1/2rs(xm+1, zm+1, dw′)µm+1(dzm+1)

(by Lemma 3.3(f))

≤ ct−1/2E xm+1

((
X(m+1)

s

)3/2(∫ s

0

X(m+1)
r dr

)−3/2)
(recall (3.6))

≤ t−1/2
(
E xm+1

(
X(m+1)

s

)2)3/4(
E xm+1

(∫ s

0

X(m+1)
r dr

)−6)1/4

.

Another application of Lemma 3.3(e,f) now shows

J ′
2 ≤ ct−1/2(xm+1 + s)3/2(xm+1 + s)−6/4s−6/4 = ct−1/2s−3/2.

Symmetry (switching z1 and y′
1 in the integral defining J ′

2 amounts to switching the sign

of b0
1) gives the same bound on J ′′

2 and hence for J . This implies that the left-hand side

of (4.1) is at most

ct−1/2s−3/2 sup
y

∫ ∫
z2
m+1|D2

z1
ps(z, x)||D2

z1
pt(z, y)|µ(dx)µ(dz)

≤ ct−1/2s−5/2 sup
y

∫
zm+1|D2

z1
pt(z, y)|µ(dz) (by Lemma 4.1)

≤ ct−3/2s−5/2,

where (4.10) is used in the last line.

This completes the proof of (4.1) with η = 1/2 for D̃x = xm+1D
2
x1

. The proof for

Dx1 is similar and a bit easier. Finally, very similar arguments (the powers change a bit

in the last part of the bound on J ′
2) will verify (4.2) for these operators.

Recall the notation p̂t from Proposition 2.8.

Lemma 4.4. If Dn
x and Dk

y are nth and kth order partial differential operators in x and

y, respectively, then for all t > 0, k, n ≤ 2, Dk
yDn

xpt(x, y) exists, is bounded, is continuous

in each variable separately, and equals

∫
Dk

y p̂t/2(y, z)Dn
xpt/2(x, z) µ(dz).
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For k ≤ 1, Dk
yDn

xpt(x, y) is jointly continuous.

Proof. From (3.29) we have

Dn
xpt(x, y) =

∫
Dn

xpt/2(x, z)p̂t/2(y, z)µ(dz).

Apply (2.14), with f(z) = Dn
xpt/2(x, z) and p̂t/2 in place of pt, to differentiate with respect

to y through the integral and derive the above identity. Uniform boundedness in (x, y),

and continuity in each variable separately follows from the boundedness in Lemma 3.11(a),

the L1-boundedness in Lemma 3.11(b) and dominated convergence. If k =≤ 1 the uniform

boundedness of the above derivatives implies continuity in y uniformly in x and hence joint

continuity.

We now turn to the verification of (2.28) and Proposition 2.10 for D̃x = Dxm+1 or

xm+1D
2
xm+1

. The argument here seems to be much harder (at least in the second order

case) and so we will reduce its proof to three technical bounds whose proofs are deferred

to Section 7. Not surprisingly these proofs will rely on the representations in Lemmas 3.4

and 3.11 as well as the other explicit expressions obtained in Section 3 such as Lemmas

3.6 and 3.14.

Lemma 4.5. There is a c4.5 such that for all t > 0:

(a) If −(2M2
0 )−1 ≤ p ≤ 1/2 then for all y ∈ Sm,

∫
zp
m+1|Dzm+1pt(z, y)|µ(dz) ≤ c4.5t

−1/2(t + ym+1)
p−1/2, (4.13)

and for all z ∈ Sm,

∫
yp

m+1|Dzm+1pt(z, y)|µ(dy) ≤ c4.5t
−1/2(t + zm+1)

p−1/2. (4.14)

(b) If 0 ≤ q ≤ 2 and −(2M2
0 )−1 ≤ p ≤ 2, then for all j ≤ m and all y ∈ Sm

∫
|yj − zj |qzp

m+1|D2
zm+1

pt(z, y)|µ(dz) ≤ c4.5t
q/2−1(t + ym+1)

p+q/2−1. (4.15)

(c) If 0 ≤ q ≤ 2, then for all j ≤ m and z ∈ Sm,

∫
|yj − zj |qzm+1|D2

zm+1
pt(z, y)|µ(dy) ≤ c4.5[t

q−1 + tq/2−1z
q/2
m+1]. (4.16)

(d)

sup
y

∫
z
3/2
m+1|D3

zm+1
pt(z, y)|µ(dz) ≤ c4.5t

−3/2. (4.17)
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(e) If 0 ≤ p ≤ 1/2, then for all (y(m), zm+1) ∈ Sm,

∫
zm+1y

p
m+1|Dym+1D

2
zm+1

pt(z, y)|dz(m)µm+1(dym+1) ≤ c4.5t
p−2, (4.18)

and for all j ≤ m,

∫
zm+1y

p
m+1|Dzj D

2
zm+1

pt(z, y)|dz(m)µm+1(dym+1) ≤ c4.5t
p−2. (4.19)

(f) If 0 ≤ p ≤ 3/2, then for all j ≤ m,

sup
y

∫
zp
m+1|Dzj D

2
zm+1

pt(z, y)|µ(dz) ≤ c4.5t
p−3. (4.20)

Lemma 4.6. There is a c4.6 such that for all 0 < t ≤ s,

tb/γ

∫ γt

0

[∫
|Dzm+1ps(z, y)|dz(m)

]
dzm+1 ≤ c4.6t/s, (4.21)

and

tb/γ

∫ γt

0

[∫
|D3

zm+1
ps(z, y)|dz(m)

]
dzm+1 ≤ c4.6ts

−3 ≤ c4.6s
−2 (4.22)

Lemma 4.7. There is a c4.7 such that if 1 ≤ p ≤ 2, then for all t > 0, w > 0 and

y(m) ∈ Rm,

∫ ∫
(1(ym+1≤w≤zm+1) + 1(zm+1≤w≤ym+1))z

p
m+1|D2

zm+1
pt(z, y)|µ(dz)µm+1(dym+1)

≤ c4.7[1(w≤γt)t
p−2+b/γ + 1(w>γt)t

−1/2wp−3/2+b/γ ]. (4.23)

Assuming these results we now verify (2.28) and Proposition 2.10 for D̃x = Dxm+1

or xm+1D
2
xm+1

. The analogue of Proposition 2.10 is immediate.

Proposition 4.8. For D̃x as in (4.3), and all t > 0,

sup
x

∫
|D̃xpt(x, y)|µ(dy) ≤ c4.8t

−1. (4.24)

sup
y

∫
|D̃xpt(x, y)|µ(dx) ≤ c4.8t

−1. (4.25)

Proof. This is immediate from Lemma 4.1, Lemma 4.2(c), Lemma 4.5(a) (with p = 0)

and Lemma 4.5(b) (with q = 0 and p = 1).
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Proposition 4.9. (2.28) holds for D̃x = Dxm+1 and η = (2M2
0 )−1.

Proof. Define η as above and fix 0 < t ≤ s ≤ 2. We will verify (4.1) even with the

absolute values taken inside all the integrals. By (4.14) with p = 0,

∫
|Dzm+1pt(z, y′)|µ(dy′) ≤ c4.5t

−1/2(t + zm+1)
−1/2 ≤ c4.5t

−1+ηz−η
m+1.

In the last inequality we used η ≤ 1/2 (recall M0 ≥ 1). Therefore the left side of (4.1)

(even with absolute values inside all the integrals) is at most

sup
y

c4.5

∫ [∫
|Dzm+1ps(z, x)|z−η

m+1µ(dz)t−1+η

×
[∫

|Dz′

m+1
ps(z

′, x)| |Dz′

m+1
pt(z

′, y)|µ(dz′)
]]

µ(dx)

≤ c2
4.5s

−1−ηt−1+η sup
y

∫ [∫
|Dz′

m+1
ps(z

′, x)|µ(dx)
]
|Dz′

m+1
pt(z

′, y)|µ(dz′), (4.26)

where we have used (4.13) with p = −η in the last line. Now apply (4.14) to the above

integral in x and then (4.13) to the integral in z′, both with p = 0, and conclude that

(4.26) is at most

cs−2−ηt−2+η,

as required. The derivation of (4.2) (with absolute values inside the integral) is almost the

same. One starts with (4.13) with p = 0 to bound the integral in y′ as above, and then

uses (4.14) with p = −η to bound the resulting integral in z.

It remains to verify (2.28) for D̃x = xm+1D
2
xm+1

. This is the hard part of the proof

and we will not be able to take the absolute values inside the integrals in (2.28).

Lemma 4.10. For j = 1, 2,
∫
|Dj

zm+1
pt(z, y)|dz(m) < ∞ for all zm+1 > 0 and y ∈ Sm,

and
∫

Dj
zm+1

pt(z, y)dz(m) = Dj
zm+1

∫
pt(z, y)dz(m) = Dj

zm+1
qt(zm+1, ym+1)

for all zm+1 > 0 and y ∈ Sm. (4.27)

Proof. We give a proof as this differentiation is a bit delicate, and the result is used on

a number of occasions. Set j = 2 as j = 1 is slightly easier. Fix y ∈ Sm and t > 0. By

Lemma 4.5(b,d),

∫
|D2

zm+1
pt(z, y)| + 1(zm+1>ε)|D3

zm+1
pt(z, y)|µ(dz) < ∞ for all ε > 0. (4.28)
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We claim

zm+1 →
∫

D2
zm+1

pt(z, y)dz(m) ≡ F (zm+1) is continuous on {zm+1 > 0}. (4.29)

Note that F (zm+1) < ∞ for almost all zm+1 > 0 by (4.28). The Fundamental Theorem of

Calculus and Lemma 3.11(a) imply that if z′m+1 > zm+1 > 0, then
∫

|D2
zm+1

pt(z
(m), z′m+1, y) − D2

zm+1
pt(z

(m), zm+1, y)| dz(m)

≤
∫ ∫ z′

m+1

zm+1

|D3
wpt(z

(m), w, y)|dw dz(m) → 0 as z′m+1 → zm+1 or zm+1 → z′m+1,

where dominated convergence and (4.28) are used to show the convergence to 0. This

allows us to first conclude that∫
|D2

zm+1
pt(z, y)|dz(m) < ∞ for all zm+1 > 0, (4.30)

and in particular, F (zm+1) is finite for all zm+1 > 0, and also that F is continuous.

The differentiation through the integral now proceeds as in the proof of Proposi-

tion 2.8(d) given in Section 3 (using the Fundamental Theorem of Calculus). The last

equality follows from (3.7) and the definition of rt.

Lemma 4.11. There is a c4.11 so that for D̃z ≡ D̃zm+1 = Dzm+1 or zm+1D
2
zm+1

, all t > 0

and all y′ ∈ Sm, ∣∣∣
∫

D̃zpt(z, y′)µ(dz)
∣∣∣ ≤ c4.11(t + y′

m+1)
−1 (4.31)

Proof. Use (4.27) to see that
∫

D̃zpt(z, y′)µ(dz) =

∫
D̃zm+1qt(zm+1, y

′
m+1)µm+1(dzm+1).

Changing variables, we must show
∣∣∣
∫

D̃zqt(z, y)zb/γ−1dz
∣∣∣ ≤ c4.10(t + y)−1. (4.32)

The arguments are the same for either choice of D̃z so let us take D̃z = Dz for which the

algebra is slightly easier. Let w = y/γt and x = z/γt. By differentiating the power series

(3.3) the left side of (4.32) is then
∣∣∣
∫ ∞

0

(γt)−1e−w
∞∑

m=0

wm

m!Γ(m + b/γ)
e−x[mxm−1 − xm]xb/γ−1dx

∣∣∣

=
∣∣∣(γt)−1

( ∞∑

m=1

e−w wm

m!Γ(m + b/γ)
[mΓ(m − 1 + b/γ) − Γ(m + b/γ)]

)
− (γt)−1e−w

∣∣∣

=
∣∣∣(γt)−1

( ∞∑

m=1

e−w wm

m!

1 − b/γ

m + b/γ − 1

)
− (γt)−1e−w

∣∣∣

≤ c1(γt)−1[E (N(w)−11(N(w)≥1)) + e−w],
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where N(w) is a Poisson random variable with mean w, c1 satisfies Convention 3.1, and we

have used (n+b/γ−1)−1 ≤ cn−1 for all n ∈ N. An elementary calculation (e.g. Lemma 3.3

of [BP]) bounds the above by

c2t
−1(1 ∧ w−1 + e−w) ≤ 2c2t

−1[1 ∧ w−1] ≤ c3(t + y)−1.

(4.32) follows.

Proposition 4.12. (2.28) holds for D̃x = xm+1D
2
xm+1

and η = 1/2.

Proof. Consider general 0 < η < 1 for now. (4.1) and (4.2) (and hence (2.28)) will follow

from

sup
x

∫ ∣∣∣
∫

D̃zps(z, x)D̃zpt(z, y′)µ(dz)
∣∣∣µ(dy′) ≤ c4.11s

−1−ηt−1+η for 0 < t ≤ s ≤ 2, (4.33)

and

sup
x

∫ ∣∣∣
∫

D̃xps(x, z)D̃y′pt(y
′, z)µ(dz)

∣∣∣µ(dy′) ≤ c4.11s
−1−ηt−1+η for 0 < t ≤ s ≤ 2. (4.34)

To see (4.1), multiply both sides of (4.33) by

∫ ∫
|D̃zps(z, x)| |D̃zpt(z, y)|µ(dz)µ(dx).

After taking a supremum over y, the resulting left-hand side is an upper bound for the left-

hand side of (4.1). For the resulting right-hand side, use (4.24) to first bound the integral

in x, uniformly in z, by c4.8s
−1 and (4.25) to then bound the integral in z, uniformly in y

by c4.8t
−1. This gives (4.1) and similar reasoning derives (4.2) from (4.34).

Next use Lemma 4.11 to see that
∫ ∣∣∣

∫
D̃y′ps(y

′, x)D̃zpt(z, y′)µ(dz)
∣∣∣µ(dy′)

≤
∫

|D̃y′ps(y
′, x)|c4.11(t + y′

m+1)
−1µ(dy′)

≤
∫

|D2
y′

m+1
ps(y

′, x)|µ(dy′) ≤ cs−2 ≤ cs−1−ηt−1+η.

(4.35)

In the next to last inequality we have used Lemma 4.5(b) with q = p = 0. Therefore the

triangle inequality shows that (4.33) (with perhaps a different constant) will follow from

∫ ∣∣∣
∫

(D̃zps(z, x) − D̃y′ps(y
′, x))D̃zpt(z, y′)µ(dz)

∣∣∣µ(dy′) ≤ c4.12s
−1−ηt−1+η

for 0 < t ≤ s ≤ 2. (4.36)
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The analogous reduction for (4.34) is easier as (2.14) with f ≡ 1 implies

∫
D̃xps(x, y′)D̃y′pt(y

′, z)µ(dz) = 0.

Use this in place of (4.35) and again apply the triangle inequality to see that (4.34) will

follow from
∫ ∣∣∣

∫
(D̃xps(x, z) − D̃xps(x, y′))D̃y′pt(y

′, z)µ(dz)
∣∣∣µ(dy′) ≤ c4.12s

−1−ηt−1+η

for 0 < t ≤ s ≤ 2. (4.37)

Having reduced our problem to (4.36) and (4.37), we consider (4.36) first and take

η = 1/2 for the rest of the proof. The left-hand side of (4.36) is bounded by

∫ ∣∣∣
∫

(zm+1(D
2
zm+1

ps(z, x) − D2
y′

m+1
ps(z

(m), y′
m+1, x))zm+1D

2
zm+1

pt(z, y′)µ(dz)
∣∣∣µ(dy′)

+

∫ ∣∣∣
∫

(zm+1D
2
y′

m+1
ps(z

(m), y′
m+1, x) − y′

m+1D
2
y′

m+1
ps(y

′, x))

× zm+1D
2
zm+1

pt(z, y′)µ(dz)
∣∣∣µ(dy′)

:= Ta,1 + Ta,2. (4.38)

Use the Fundamental Theorem of Calculus (recall Proposition 2.8 for the required regu-

larity) to see that

Ta,1 ≤
∫ ∫ ∫

(1(zm+1<w<y′

m+1
) + 1(y′

m+1
<w<zm+1))zm+1|D3

wps(z
(m), w, x)|

× zm+1|D2
zm+1

pt(z, y′)| dw µ(dz)µ(dy′).)

Now recall from (3.7) that pt(z, y) = p0
t (z

(m) − y(m), zm+1, ym+1). First do the

µ(dy′) µm+1(dzm+1) integrals and change variables to y′′ = z(m) − y′(m) in this integral to

see that

Ta,1 ≤
∫ ∫ ∫ ∫ ∫

(1(zm+1<w<y′

m+1
) + 1(y′

m+1
<w<zm+1))

× z2
m+1|D2

zm+1
p0

t (y
′′, zm+1, y

′
m+1)|dy′′µm+1(dzm+1)µ(dym+1)

× |D3
wps(z

(m), w, x)|dz(m)dw

≤ c4.7

∫ ∞

γt

∫
t−1/2w3/2|D3

wps(z
(m), w, x)|dz(m) wb/γ−1dw

+ c4.7

∫ γt

0

∫
tb/γ |D3

wps(z
(m), w, x)|dz(m)dw. (4.39)
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In the last line we have used Lemma 4.7 with p = 2. Now use Lemma 4.5(d) to bound the

first term by ct−1/2s−3/2, and use (4.22) to bound the second term by cs−2 ≤ ct−1/2s−3/2.

We have proved

Ta,1 ≤ c1t
−1/2s−3/2. (4.40)

Note that

Ta,2 ≤
∫ ∣∣∣

∫
(zm+1(D

2
y′

m+1
ps(z

(m), y′
m+1, x) − D2

y′

m+1
ps(y

′, x))

× zm+1D
2
zm+1

pt(z, y′)µ(dz)
∣∣∣µ(dy′)

+

∫ ∣∣∣
∫

(zm+1 − y′
m+1)D

2
y′

m+1
ps(y

′, x)zm+1D
2
zm+1

pt(z, y′)µ(dz)
∣∣∣µ(dy′)

:=Ta,3 + Ta,4. (4.41)

By Lemma 4.10, ∫
D2

zm+1
pt(z, y′)dz(m) = D2

zm+1
qt(zm+1, y

′
m+1),

and so using Lemma 3.3(g) we have

Ta,4 =

∫ ∣∣
∫

(zm+1 − y′
m+1)z

b/γ
m+1D

2
zm+1

qt(zm+1, y
′
m+1)dzm+1

∣∣∣|D2
y′

m+1
ps(y

′, x))|µ(dy′)

≤ c3.3

∫
|D2

y′

m+1
ps(y

′, x))|µ(dy′) ≤ c4s
−2 ≤ c4t

−1/2s−3/2, (4.42)

where we have used Lemma 4.5(b) in the last line with p = q = 0.

For Ta,3 use the Fundamental Theorem of Calculus to write

Ta,3 =

∫ ∣∣∣
∫ [∫ 1

0

m∑

j=1

(zj − y′
j)DjD

2
y′

m+1
p0

s(y
′(m) − x(m) + r(z(m) − y′(m)), y′

m+1, xm+1) dr
]

× z2
m+1D

2
zm+1

p0
t (z

(m) − y′(m), zm+1, y
′
m+1)dz(m)µm+1(dzm+1)

∣∣∣dy′(m)µm+1(dy′
m+1).

Now take the absolute values inside the integrals and summation, do the integral in r last,

and for each r carry out the linear change of variables for the other (2m-dimensional)

Lebesgue integrals: (u,w) = (z(m) − y′(m), y′(m) − x(m) + r(z(m) − y′(m))) (noting that

|dz(m)dy′(m)| ≤ 2m|du dw| for all 0 ≤ r ≤ 1. This shows

Ta,3 ≤ c
m∑

j=1

∫ ∫ [∫ ∫
|uj |z2

m+1|D2
zm+1

p0
t (u, zm+1, y

′
m+1)|duµm+1(dzm+1)

]

× |Dwj D
2
y′

m+1
p0

s(w, y′
m+1, x)| dw µm+1(dy′

m+1) (4.43)

≤ c
m∑

j=1

t−1/2

∫ ∫
(t3/2 + (y′

m+1)
3/2)|Dwj D

2
y′

m+1
p0

s(w, y′
m+1, xm+1)| dw µm+1(dy′

m+1).
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For the last inequality we have used Lemma 4.5(b) with q = 1 and p = 2. Now use Lemma

4.5(f) with p = 0 (for the t3/2 term) and then with p = 3/2 (for the (y′
m+1)

3/2 term) to

conclude that

Ta,3 ≤ c[ts−3 + t−1/2s−3/2] ≤ c3t
−1/2s−3/2 (4.44)

Combining (4.40), (4.42) and (4.44) now gives (4.36) (with η = 1/2).

The left side of (4.37) is at most

∫ ∣∣∣
∫

xm+1(D
2
xm+1

ps(x, z) − D2
xm+1

ps(x, z(m), y′
m+1))y

′
m+1D

2
y′

m+1
pt(y

′, z)µ(dz)
∣∣∣µ(dy′)

+

∫ ∣∣∣
∫

xm+1(D
2
xm+1

ps(x, z(m), y′
m+1) − D2

xm+1
ps(x, y′))y′

m+1D
2
y′

m+1
pt(y

′, z)µ(dz)
∣∣∣µ(dy′)

:= Tb,1 + Tb,2. (4.45)

The Fundamental Theorem of Calculus gives (Lemma 4.4 gives the required regularity)

Tb,1 ≤
∫ ∫ ∫ ∫ ∫

(1(zm+1<w<y′

m+1
) + 1(y′

m+1
<w<zm+1))xm+1

× |DwD2
xm+1

ps(x, z(m), w)|y′
m+1|D2

y′

m+1
pt(y

′, z)|

dw dz(m) dy′(m)µm+1(dzm+1)µm+1(dy′
m+1).

Re-express pt in terms of p0
t and set y′′ = y′(m) − z(m) to conclude

Tb,1 ≤
∫ ∫ ∫

(1(zm+1<w<y′

m+1
) + 1(y′

m+1
<w<zm+1))

× y′
m+1|D2

y′

m+1
p0

t (y
′′, y′

m+1, zm+1))| dy′′µm+1(dy′
m+1)µm+1(dzm+1)

× xm+1|DwD2
xm+1

ps(x, z(m), w)|dw dz(m)

≤ c4.7

∫ ∞

γt

∫
t−1/2w1/2wb/γ−1xm+1|DwD2

xm+1
ps(x, z(m), w)|dz(m)dw

+ c4.7

∫ γt

0

∫
tb/γ−1xm+1|DwD2

xm+1
ps(x, z(m), w)|dz(m)dw. (4.46)

In the last line we used Lemma 4.7 with p = 1. Now use (4.18) with p = 1/2 to bound the

first term by c4.5c4.7t
−1/2s−3/2. By Lemma 4.4, the second term in (4.46) is at most

ct−1

∫ [∫ γt

0

∫
tb/γ |Dwp̂s/2(z

(m), w, z′)|dz(m)dw
]
xm+1|D2

xm+1
ps/2(x, z′)|µ(dz′)

≤ ct−1(t/s)s−1 ≤ cs−2 ≤ ct−1/2s−3/2,
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where we have used (4.21) then (4.5). (We are applying (4.21) to p̂s/2.) We have shown

Tb,1 ≤ ct−1/2s−3/2. (4.47)

For Tb,2, an argument similar to that leading to (4.43) bounds Tb,2 above by

c
m∑

j=1

∫ ∫ [∫ ∫
|uj |y′

m+1|D2
y′

m+1
p0

t (u, y′
m+1, zm+1)|duµm+1(dzm+1)

]

× xm+1|Dwj D
2
xm+1

p0
s(w, xm+1, y

′
m+1)|dw µm+1(dy′

m+1)

≤ c

∫ ∫
c4.5[1 + t−1/2(y′

m+1)
1/2]xm+1|Dwj D

2
xm+1

p0
s(w, xm+1, y

′
m+1)|dw µm+1(dy′

m+1).

In the last line we have used the identity p0
t (u, y′

m+1, zm+1) = pt(0, y′
m+1,−u, zm+1) and

then Lemma 4.5(c) with q = 1. Finally use (4.19) with p = 0 and p = 1/2 to bound the

above by c(s−2 + t−1/2s−3/2) ≤ ct−1/2s−3/2. Use this and (4.47) in (4.45) to complete the

proof of (4.37).

Having obtained (2.28) and Proposition 2.10 for the special case N2 null and Z∩C =

{d}, we now turn to the general case. In the rest of this section we work in the general

setting of Propositions 2.2 and 2.14.

Proof of Proposition 2.14. We need to establish (2.28) (thanks to Lemma 2.11(b)),

and first do this for the special case when our transition density is qt = qb,γ
t , that is Z ∩C

empty and N2 a singleton. (See the beginning of Section 2 for the definition of N2.) Let

pt be the transition density considered above with m = 1. Recall from (3.7) that

∫
pt(x, z)dz1 =

∫
pt(x, z)dx1 = qt(x2, z2). (4.48)

Let D̃y2 = Dy2 or y2Dy2y2 . We claim that we can differentiate through the above integrals

and so ∫
D̃x2pt(x, z)dz1 = D̃x2qt(x2, z2) for almost all z2 > 0 and all x, (4.49)

and ∫
D̃x2pt(x, z)dx1 = D̃x2qt(x2, z2) for all x2 > 0 and z. (4.50)

Lemma 4.10 implies (4.50). The proof of (4.49) uses
∫
|D̃x2pt(x, z)|dz1 < ∞ for a.a. z2 > 0

by Lemma 3.11(b), and then proceeds using the Fundamental Theorem of Calculus as in

the proof of Proposition 2.8(d) in Section 3. (The stronger version of (4.49) also holds but

this result will suffice.)
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Consider first (4.2) for qt. Let 0 < t ≤ s ≤ 2. By (4.49) and (4.50), we have for all

x2, y2 > 0,

∣∣∣
∫

D̃x2qs(x2, z2)D̃y2qt(y2, z2)µ2(dz2)
∣∣∣

=
∣∣∣
∫ [∫

D̃x2ps(x, z)dx1

][∫
D̃y2pt(y, z)dz1

]
µ2(dz2)

∣∣∣

≤
∫ ∣∣∣

∫
D̃x2ps(x, z)D̃y2pt(y, z)µ(dz)

∣∣∣dx1. (4.51)

Similarly, for all x2 > 0,

∫ ∣∣∣
∫

D̃x2qs(x2, z2)D̃y′

2
qt(y

′
2, z2)µ2(dz2)

∣∣∣µ2(dy′
2)

= inf
x1

∫ ∣∣∣
∫ [∫

D̃x2ps(x, z)dz1

][∫
D̃y′

2
pt(y

′, z)dy′
1

]
µ2(dz2)

∣∣∣µ2(dy′
2)

≤ inf
x1

∫ ∣∣∣
∫

D̃x2ps(x, z)D̃y′

2
pt(y

′, z)µ(dz)
∣∣∣µ(dy′). (4.52)

Integrability issues are handled by Lemma 4.10 and Proposition 4.8. The infimum in the

second line can be omitted as the expression following does not depend on x1. Multiply

(4.52) and (4.51) and integrate with respect to µ2(dx2) to see that for any y2 > 0,

∫ ∣∣∣
∫

D̃x2qs(x2, z2)D̃y′

2
qt(y

′
2, z2)µ2(dz2)

∣∣∣

×
∣∣∣
∫

D̃x2qs(x2, z2)D̃y2qt(y2, z2)µ2(dz2)
∣∣∣µ2(dy′

2)µ2(dx2)

≤
∫ ∣∣∣

∫
D̃x2ps(x, z)D̃y′

2
pt(y

′, z)µ(dz)
∣∣∣
∣∣∣
∫

D̃x2ps(x, z)D̃y2pt(y, z)µ(dz)
∣∣∣µ(dy′)µ(dx)

≤ cs−2−ηt−2+η,

the last by Proposition 4.12. This gives (4.2) for qt. A similar argument works for (4.1).

Next we consider (2.28) in the general case. Write x = ((x(i))i∈Z∩C , (xj)j∈N2) so

that (from (2.5))

pt(x, y) =
∏

j∈Z∩C

pj
t (x(j), y(j))

∏

j∈N2

qj
t (xj , yj). (4.53)

For j ∈ (Z∩C)∪N2, let xĵ denote x but with x(j) (if j ∈ Z∩C) or xj (if j ∈ N2) omitted,

µĵ =
∏

i 6=j µi, and let pĵ
t (xĵ , yĵ) denote the above product of transition densities but with

the jth factor (which may be a pj
t or a qj

t ) omitted. Consider (4.2) and let D̃x ≡ D̃x(j)
be

one of the differential operators in Notation 2.9 acting on the variable j′ ∈ {j} ∪ Rj for

some j ∈ Z ∩ C. (The case j′ = j ∈ N2 is considered below.) In this case (4.53) shows
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that the left-hand side of (4.2) equals

sup
y

∫ [∫ ∣∣∣
∫

D̃x(j)
pj

s(x(j), z(j))D̃y′

(j)
pj

t (y
′
(j), z(j))p

ĵ
s(xĵ , zĵ)p

ĵ
t (y

′
ĵ
, zĵ)

µj(dz(j))µĵ(dzĵ)
∣∣∣µj(dy′

(j))µĵ(dy′
ĵ
)

×
∣∣∣
∫

D̃x(j)
pj

s(x(j), z(j))D̃y(j)
pj

t (y(j), z(j))p
ĵ
s(xĵ , zĵ)p

ĵ
t (yĵ , zĵ)

µj(dz(j))µĵ(dzĵ)
∣∣∣
]
µj(dx(j))µĵ(dx̂j).

Take the absolute values inside the two µĵ(dzĵ) integrals (giving an upper bound) and pull

the pĵ terms out of the µj(dz(j)) integrals. Now we can integrate the pĵ integrals using

(3.8) by first integrating over y′
ĵ
, then the first zĵ integral, then the xĵ integral, and finally

the second zĵ integral. This shows that the left-hand side of (4.2) is at most

sup
y(j)

∫ ∫ ∣∣∣
∫

D̃x(j)
pj

s(x(j), z(j))D̃y′

(j)
pj

t (y
′
(j), z(j))µj(dz(j))

∣∣∣µj(dy′
(j))

×
∣∣∣
∫

D̃x(j)
pj

s(x(j), z(j))D̃y(j)
pj

t (y(j), z(j))µj(dz(j))
∣∣∣µ(j)(dx(j))

≤cs−2−ηt−2+η.

In the last line we used (4.2) for pj (i.e., Proposition 4.12). For j′ = j ∈ N2 we would use

(4.2) for qt, which was established above. This completes the proof of (4.2) and the proof

for (4.1) is similar.

Proof of Proposition 2.10. By Proposition 4.8 the required result holds for each pj
t

factor and then using (4.49) and (4.50), one easily verifies it for qt (as was done implicitly

in the previous proof). The general case now follows easily from the product structure

(4.53) and a short calculation which is much simpler than that given above.

5. Proof of Proposition 2.3.

Assume P is a solution of M(Ã, ν) where Ã is as in (2.2) and dν = ρ dµ is as in

Proposition 2.3, and assume (2.7) throughout this section. Without loss of generality we

may work on a probability space carrying a d-dimensional Brownian motion B and realize

P as the law of a solution X of

Xi
t = Xi

0 +

∫ t

0

√
2γ̃i(Xs)Xi

s dBi
s +

∫ t

0

b̃i(Xs) ds, i /∈ N1,

Xj
t = Xj

0 +

∫ t

0

√
2γ̃j(Xs)Xi

s dBj
s +

∫ t

0

b̃j(Xs) ds, j ∈ Ri, i ∈ Z ∩ C.
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Set [s]n = (([ns] − 1)/n) ∨ 0, define γ̃j(Xs) ≡ γ0
j , b̃j(Xs) ≡ b0

j if s < 0, and consider the

unique solution Xn to

Xn,i
t = Xi

0 +

∫ t

0

√
2γ̃i(X[s]n)Xn,i

s dBi
s +

∫ t

0

b̃i(X[s]n) ds, i /∈ N1, (5.1)

Xn,j
t = Xj

0 +

∫ t

0

√
2γ̃j(X[s]n)Xn,i

s dBj
s +

∫ t

0

b̃j(X[s]n) ds, j ∈ Ri, i ∈ Z ∩ C.

Note that

for k ≥ 0, on [ k
n , k+1

n ] and conditional on Fk/n, Xn has generator A0 but with γ0, b0

replaced with the (random) γk ≡ γ̃(X(k−1)/n), bk ≡ b̃(X(k−1)/n). (5.2)

We see in particular that pathwise uniqueness of Xn follows from the classical Yamada-

Watanabe theorem. An easy stochastic calculus argument, using Burkholder’s inequalities

and the boundedness of γ̃, b̃ and X0, shows that

E ((Xn,i
t )p) ≤ cp(1 + tp) for all t ≥ 0 and p ∈ N. (5.3)

Here cp may depend on the aforementioned bounds and is independent of n (although we

will not need the latter).

By making only minor modifications in the proof of Lemma 5.1 in [ABBP] we have:

Lemma 5.1. For any T > 0, supt≤T ‖Xn
t − Xt‖ → 0 in probability as n → ∞.

For k ∈ Z+, let

µk(dx) =
∏

i∈Z∩C

( ∏

j∈Ri

dxj

)
x

bk
i /γk

i −1
i dxi ×

∏

j∈N2

x
bk

j /γk
j −1

j dxj ,

and let pk
t (x, y) denote the (random) transition density with respect to µk of the diffusion

described in (5.2) operating on the interval [k/n, (k +1)/n]. Proposition 2.8(b) with n = 0

implies that

pk
t (x, y) ≤ c5.1t

−c5.1

∏

j∈N2

(t1/2 + y
1/2
j ) ≤ c5.1t

−c5.1

∏

j∈N2

(1 + y
1/2
j ), for x, y ∈ S0, 0 < t ≤ 1,

(5.4)

where as usual c5.1 may depend on M0, d but not on k. We are also using (2.7) here to

bound bk
i /γk

i .

Let Sn
λf = E

(∫ ∞
0

e−λtf(Xn
t ) dt

)
and define ‖Sn

λ‖ = sup{|Sn
λf | : ‖f‖2 ≤ 1}, where

as usual the L2 norm refers to the fixed measure µ.
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Lemma 5.2. If (2.7) holds, then ‖Sn
λ‖ < ∞ for all λ > 0, n ∈ N.

Proof. It suffices to consider |Sn
λf | for non-negative f ∈ L2(µ). Let

δ = sup
i/∈N1,x

∣∣∣
b̃i(x)

γ̃i(x)
− b0

i

γ0
i

∣∣∣. (5.5)

A bit of algebra using (2.7) shows that

δ ≤ ε0M
2
0

M−1
0 − ε0

≤ 2ε0M
3
0 . (5.6)

Let E k
x denote expectation starting at x with respect to the law of the diffusion with

(random) transition density pk, and let Rk
λ and rk

λ(x, y) denote the corresponding resolvent

and resolvent density with respect to µk. Then (5.2) shows that

Sn
λf =

∞∑

k=0

e−λk/nE

(
E

k
Xn

k/n

(∫ 1/n

0

e−λtf(Xt) dt
))

≤
∫

R0
λf(x)ρ(x)dµ(x) +

∞∑

k=1

e−λk/nE (E (Rk
λf(Xn

k/n)|F(k−1)/n))

≤ ‖R0
λf‖2‖ρ‖2 +

∞∑

1

e−λk/nE (

∫
Rk

λf(x)pk−1
1/n (Xn

(k−1)/n, x)µk−1(dx))

≤ λ−1‖ρ‖2‖f‖2 +
∞∑

1

e−λk/nE (In
k ), (5.7)

where

In
k =

∫ ∫
rk
λ(x, y)pk−1

1/n (Xn
(k−1)/n, x)µk−1(dx)f(y)

∏

i/∈N1

(yδ
i + y−δ

i )µ(dy)

and we have used Corollary 2.12(a) to see ‖R0
λf‖2 ≤ λ−1‖f‖2.

As usual we suppress dependence on d and M0 in our constants (which may change

from line to line) but will record dependence on n. Use (5.4) and (5.5) to see that

∫
rk
λ(x, y)pk−1

1/n (Xn
(k−1)/n, x)µk−1(dx) (5.8)

≤ cn

∫
rk
λ(x, y)

∏

j∈N2

(1 +
√

xj)
∏

i/∈N1

(x2δ
i + x−2δ

i )µk(dx)

≤ cn

∫
rk
λ(x, y)

∏

i/∈N1

(x−2δ
i + x

1/2+2δ
i )µk(dx).
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Let Ê
k

x denote expectation with respect to the diffusion with transition kernel p̂k
t (x, y) =

pk
t (y, x) (as in Proposition 2.8(a)).Then (5.8) is bounded by

cn

∫ ∞

0

e−λsÊ
k

y

( ∏

i/∈N1

((Xi
s)

−2δ + (Xi
s)

1/2+2δ)
)

ds

= cn

∫ ∞

0

e−λs
∏

i/∈N1

Ê
k

y

(
(Xi

s)
−2δ + (Xi

s)
1/2+2δ)

)
ds (by (2.5))

≤ cn

∫ ∞

0

e−λs
∏

i/∈N1

(
s−2δ + [Ê

k

y(Xi
s)]

1/2+2δ
)

ds.

In the next to last line we have used the conditional independence of {Xi : i /∈ N1} (recall

(2.5)). In the last line we have used (5.6) and (2.7) to see that 1/2+2δ ≤ 1, and also used

Lemma 3.3(d). We can apply this last result because for all i /∈ N1 and all k ∈ Z+,

bk
i /γk

i − 2δ ≥ M−1
0 − ε0

M0 + ε0
− 2δ (5.9)

≥ (4M2
0 )−1 − 4ε0M

3
0 ≥ (8M2

0 )−1,

thanks to (5.6) and (2.7). For i /∈ N1 we have E
k
y(Xi

s) ≤ yi + M0s, and by (2.7) and (5.6)

we have 2dδ ≤ 1/12. Therefore if f(s) = s−2δ + (M0s)
1/2+2δ (clearly f ≥ 1) we may now

bound (5.8) by

cn

∫ ∞

0

e−λs
∏

i/∈N1

(f(s) + y
1/2+2δ
i ) ds

≤ cn

∫ ∞

0

e−λsf(s)|N
c
1 |

∏

i/∈N1

(1 + (y
1/2+2δ
i /f(s))) ds

≤ cn

∫ ∞

0

e−λsf(s)|N
c
1 | ds

∏

i/∈N1

(1 + y
1/2+2δ
i ) ≤ cn,λ

∏

i/∈N1

(1 + y
1/2+2δ
i ).

In the definition of In
k use Hölder’s inequality and then this bound on (5.8) on one of the

resulting squared factors to see that

In
k ≤ c‖f‖2

[∫ [∫
rk
λ(x, y)pk−1

1/n (Xn
(k−1)/n, x)µk−1(dx)

]2 ∏

i/∈N1

(y2δ
i + y−2δ

i )µ(dy)
]1/2

≤ cn,λ‖f‖2

[∫ ∫
rk
λ(x, y)pk−1

1/n (Xn
(k−1)/n, x)

∏

i/∈N1

(1 + y
1/2+2δ
i )

×
∏

i/∈N1

(y2δ
i + y−2δ

i )µ(dy)µk−1(dx)
]1/2
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≤ cn,λ‖f‖2

[∫
pk−1
1/n (Xn

(k−1)/n, x)

∫
rk
λ(x, y)

∏

i/∈N1

(1 + y
1/2+2δ
i )

×
∏

i/∈N1

(y3δ
i + y−3δ

i )µk(dy)µk−1(dx)
]1/2

≤ cn,λ‖f‖2

[∫
pk−1
1/n (Xn

(k−1)/n, x)Jk,λ(x)µk−1(dx)
]1/2

. (5.10)

Here

Jk,λ(x) =

∫
rk
λ(x, y)

∏

i/∈N1

(y
1/2+5δ
i + y−3δ

i )µk(dy)

=

∫ ∞

0

e−λsE
k
x

( ∏

i/∈N1

((Xi
s)

1/2+5δ + (Xi
s)

−3δ)
)

ds

≤ c

∫ ∞

0

e−λs
∏

i/∈N1

E
k
x

(
Xi

s + (Xi
s)

−3δ
)

ds

≤ c

∫ ∞

0

e−λs
∏

i/∈N1

[xi + M0s + s−3δ] ds.

In the next to last line we have again used the independence of Xi, i /∈ N1 under E
k
x, and

the bound 1/2 + 5δ ≤ 1 which follows from (5.6) and (2.7). In the last line we have again

used Lemma 3.3(d) whose applicability can again be checked as in (5.9). An elementary

calculation on the above bound, again using (5.6) and (2.7) to see that 3δd ≤ 1/8, now

shows that

Jk,λ(x) ≤ cλ

∏

i/∈N1

(1 + xi),

and therefore by (5.10),

In
k ≤ cn,λ‖f‖2

[∫
pk−1
1/n (Xn

(k−1)/n, x)
∏

i/∈N1

(1 + xi)µk−1(dx)
]1/2

≤ cn,λ‖f‖2

∏

i/∈N1

(
1 + Xn,i

(k−1)/n +
M0

n

)
.

Take expectations in the above and use some elementary inequalities to conclude that

E (In
k ) ≤ cn,λ‖f‖2(1 + M0/n)dE

( ∏

i/∈N1

(1 + Xn,i
(k−1)/n)

)

≤ cn,λ‖f‖2

∑

i/∈N1

E ((1 + Xn,i
(k−1)/n)d)

≤ cn,λ‖f‖2(1 + (k/n)d),
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the last by (5.3). Put this bound into (5.7) to complete the proof.

Remark 5.3. The above argument is considerably longer than its counterpart (Lemma

5.3) in [ABBP]. This is in part due to the non-compact state space in the above leading

to the unboundedness of the densities on this state space (recall the bound (5.4)). More

significantly, it is also because the argument in [ABBP] is incomplete. In (5.4) of [ABBP]

the norm on f actually depends on k and is not the norm on the canonical L2 space. The

argument above, however, will also give a correct proof of Lemma 5.3 of [ABBP]–in fact

the compact state space there leads to considerable simplification.

Proof of Proposition 2.3. This now proceeds by making only minor changes in the

proof of Proposition 2.3 in Section 5 of [ABBP]. One uses the above Lemmas 5.1, 5.2 and

Proposition 2.2. We only point out the (trivial) changes required. For f ∈ C2
b (S0) one uses

Itô’s Lemma and (5.1) to obtain the semimartingale decomposition of f(Xn
t ). The local

martingale part is a martingale as in the proof of Theorem 2.1 in Section 2 (use (5.3)).

Corollary 2.12(a) is used, instead of the eigenfunction expansion in [ABBP], to conclude

that the constant coefficient resolvent Rλ has bound λ−1 as an operator on L2. The rest

of the proof proceeds as in [ABBP] where the bound ε0 ≤ (2K(M0))
−1 is used to get the

final bound, first on Sn
λ (|f |), and then on Sλ(|f |) by Fatou’s lemma.

6. Proof of Proposition 2.4. Let (Px, Xt) (x ∈ S0) be as in the statement of Proposi-

tion 2.4. Throughout this section, for any Borel set A we let TA = TA(X) = inf{t : Xt ∈ A}
and τA = τA(X) = inf{t : Xt /∈ A}, be the first entrance and exit times, respectively,

and let |A| denote the Lebesgue measure of A. We say a function h is harmonic in

D = B(x, r) ∩ S0 if h is bounded on D and h(Xt∧τD
) is a right continuous martingale

with respect to Py for each y.

The key step in the proof of Proposition 2.4 is the following.

Proposition 6.1. Let z ∈ S0. There exist positive constants r, c6.1 and α, depending on

z, such that if h is harmonic in B(z, r) ∩ S0, then

|h(x) − h(z)| ≤ c6.1

( |x − z|
r

)α(
sup

B(z,r)∩S0

|h|
)
, x ∈ B(z, r/2) ∩ S0. (6.1)

Proof. By relabeling the axes we may assume that S0 = {x ∈ Rd : xi ≥ 0 for i > J0}.
If z is in the interior of S0, the result is easy, because the generator is locally uniformly

elliptic, and (6.1) follows by the first paragraph of the proof of Theorem 6.4 of [ABBP].

So suppose z ∈ ∂S0. Then J0 < d and we may assume, again by reordering the axes, that
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there is a K ∈ {J0, . . . , d − 1} so that zi = 0 for all i > K and zi > 0 if J0 < i ≤ K.

Assume (set min ∅ = 1)

0 < r < min
J0<i≤K

zi

2
. (6.2)

Since our result only depends on the values of h in B(x, r)∩S0, we may change the diffusion

and drift coefficients of the generator of X outside B(z, r)∩ S0 as we please. By changing

the coefficients in this way and again relabeling the axes if necessary, we may suppose that

our generator is

Ãf(x) =
J∑

i=1

σi(x)fii(x) +
K∑

i=J+1

σi(x)xa(i)fii(x)

+

d∑

i=K+1

σi(x)xifii(x) +

d∑

i=1

bi(x)fi(x), (6.3)

where J ≤ K, a(i) ∈ {K+1, . . . , d} for i = J+1, . . . ,K, each σi is continuous and bounded

above and below by positive constants, each bi is continuous and bounded, and each bi

for i > K is bounded below by a positive constant. We have extended our coefficients to

the possibly larger space S1 = {x ∈ Rd : xi ≥ 0 for all i > K} as this is the natural state

space for Ã. As B(z, r) ∩ S0 = B(z, r) ∩ S1 (by (6.2)) this will not affect the harmonic

functions we are dealing with. For 0 ≤ δ < 1 let

Qn(δ) =
J∏

i=1

[zi − 2−n/2, zi + 2−n/2] ×
K∏

i=J+1

[zi − 2−n, zi + 2−n] ×
d∏

i=K+1

[δ2−n, 2−n]

Rn(δ) =
J∏

i=1

[zi − 3
2 · 2−n/2, zi + 3

2 · 2−n/2] ×
K∏

i=J+1

[zi − 3
2 · 2−n, zi + 3

2 · 2−n]

×
d∏

i=K+1

[δ2−n, 2−n].

Take n ≥ 1 large enough so that Qn(0) ⊂ B(z, r/2) ∩ S1.

We will first show there exist c2, δ > 0 independent of n such that

Px(TRn+1(δ) < τQn(0)) ≥ c2, x ∈ Qn+1(0). (6.4)

We may assume there exist independent one-dimensional Brownian motions Bi
t such that

Xi
t = Xi

0 + M i
t + Ai

t,

where dAi
t = bi(Xt) dt and

dM i
t = (2σi(Xt))

1/2 dBi
t, i ≤ J,

dM i
t = (2σi(Xt)X

a(i)
t )1/2 dBi

t, J + 1 ≤ i ≤ K,

dM i
t = (2σi(Xt)X

i
t)

1/2 dBi
t, K + 1 ≤ i ≤ d.
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Since the bi and σi are bounded, there exists t0 small such that for all x ∈ Qn+1(0)

Px( sup
s≤t02−n

|M i
s| > 1

4 · 2−n/2) ≤ 1
8d , i ≤ J,

Px( sup
s≤t02−n

|M i
s| > 1

4 · 2−n) ≤ 1
8d , J + 1 ≤ i ≤ d,

and

sup
s≤t02−n

|Ai
s| ≤ 1

4 · 2−n, 1 ≤ i ≤ d.

The first and last bounds are trivial, and the second inequality is easily proved by first

noting

sup
x∈Qn+1(0)

E x

( d∑

i=1

∫ t02
−n

0

Xi
s ds

)
≤ c2−2n,

and then using the Dubins-Schwarz Theorem and Markov’s inequality. Hence

sup
x∈Qn+1(0)

Px(τRn+1(0) < t02
−n) ≤ 1

4 . (6.5)

By Lemma 6.2 of [ABBP] there exists δ such that if U is uniformly distributed on

[t0/2, t0], then

sup
x∈S1

P(Xi
U ≤ δ) ≤ 1/4d, K + 1 ≤ i ≤ d.

Scaling shows that

sup
x∈S1

Px(Xi
U2−n ≤ δ2−n) ≤ 1/4d, K + 1 ≤ i ≤ d.

Therefore by (6.5), for any x ∈ Qn+1(0) with Px-probability at least 1/2, XU2−n ∈ Rn+1(δ).

Since Rn+1(0) ⊂ Qn(0) and U2−n ≤ t02
−n, this and (6.5) proves (6.4).

Take δ even smaller if necessary so that |Qn(0) − Qn(δ)| < 1
4 |Qn(0)| and δ ≤ σi ≤

δ−1, |bi| ≤ δ−1 for all i. Next we show that if G ⊂ Qn(0) and |G| ≥ |Qn(0)|/3, then there

is a c3(δ) > 0, independent of n, so that

Px(TG < τQn(δ/2)) ≥ c3, x ∈ Rn+1(δ). (6.6)

Let

Y i
t =

{
2nXi

2−nt, i > J ,

2n/2Xi
2−nt, i ≤ J .

It is straightforward (cf. [ABBP], Proof of Theorem 6.4) to see that for t ≤ τQ0(δ/2),

Y0 ∈ Q0(δ/2), Yt solves

dY i
t = σ̂i(Yt) dB̂i

t + b̂i(Yt) dt,
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where the B̂i are independent one-dimensional Brownian motions, the b̂i are bounded

above, and the σ̂i are bounded above and below by positive constants depending on δ but

not n. (6.6) now follows by Proposition 6.1 of [ABBP] (with a minor change to account

for the fact that |G ∩ Qn(δ/2)|/|Qn(δ/2)| is greater than 1
12 rather than 1

2 ).

Combining (6.4) and (6.6) and using the strong Markov property, we see that if

c4 = c2c3, then

Px(TG < τQn(0)) ≥ c4 > 0, x ∈ Qn+1(0).

Suppose h is harmonic on Qn0 for some n0. Our conclusion will follow by setting α

= log(1/ρ)/ log 2 if we show there exists ρ < 1 such that

Osc Qn+1(0) h ≤ ρOsc Qn(0) h, n ≥ n0, (6.7)

where Osc A h = supA h− infA h. Take n ≥ n0 and by looking at c5h+ c6, we may suppose

supQn(0) h = 1 and infQn(0) h = 0. By looking at 1 − h if necessary, we may suppose

|G| ≥ 1
2 |Qn(0)|, where G = {x ∈ Qn(0) : h(x) ≥ 1/2}. By Doob’s optional stopping

theorem

h(x) ≥ E x[h(XTG
);TG < τQn(0)] ≥ 1

2Px(TG < τQn(0)) ≥ c4/2, x ∈ Qn+1(0).

Hence Osc Qn+1(0) h ≤ 1 − c4/2, and (6.7) follows with ρ = 1 − c4/2.

Proof of Proposition 2.4. We can now proceed as in the proof of Theorem 6.4 of

[ABBP]. To obtain the analogue of (6.14) in [ABBP], we note from (2.2) that if x ∈ ∂S0,

at least one coordinate can be bounded below by a squared Bessel process with positive

drift starting at zero.

Remark 6.2. Essentially the same argument shows that if for each x ∈ S, Px is a solution

of MP(A, δx) as in Theorem 1.4 (it will be Borel strong Markov by Theorem 1.4), then

the resolvent Sλ maps bounded Borel measurable functions to continuous functions. After

localizing the problem, one is left with a generator in the same form as (6.3) and so the

proof proceeds as above.

7. Proofs of Lemmas 4.5, 4.6 and 4.7.

We work in the setting and with the notation from Sections 3 and 4. Recall, in

particular, the Poisson random variables Nρ(t) from Lemma 3.4.

Lemma 7.1. There is a c7.1 such that for all 0 ≤ q ≤ 2, 1 ≤ j ≤ m, y ∈ Sm, 0 < t, and

z′ = zm+1/γt > 0:

(a) If for x ≥ 0 and n ∈ Z+,

ψ1(z
′, n) ≡ (z′ + 1)q/2−1

[
1(n≤1) + 1(n=1)z

′−1
+ 1(n≥2)z

′−2
(
n +

(
n − z′

2

)2)]
,
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and

ψ2(z
′, x, n) ≡1(n≤2)(1 + z′

−n
)(1 + z′

q/2
+ xq/2)

+ 1(n≥3)z
′−3

(|n − z′|3 + 3n|n − z′| + n)(z′
q/2

+ nq/2 + xq/2),

then∫
|yj − zj |q|D3

zm+1
pt(z, y)|dz(m) (7.1)

≤ c7.1t
q−3 lim inf

δ→0
E zm+1(qδ(ym+1, X

(m+1)
t )[ψ1(z

′, N1/2(t)) + ψ2(z
′, X(m+1)

t /t,N0(t))]).

(b) If for x, n as in (a),

φ(z′, x, n) ≡ 1(n≤1)(1 + xq/2 + (z′)q/2) + 1(n=1)(z
′)−1(1 + (z′)q/2 + xq/2)

+ 1(n≥2)(z
′)−2(n + (n − z′)2)((z′)q/2 + nq/2 + xq/2),

then ∫
|yj − zj |q|D2

zm+1
pt(z, y)|dz(m)

≤ c7.1t
q−2 lim inf

δ→0
E zm+1(qδ(ym+1, X

(m+1)
t )φ(z′, X(m+1)

t /t,N0(t))). (7.2)

(c)
∫
|Dzm+1pt(z, y)|dz(m)

≤ c7.1t
−1 lim inf

δ→0
E zm+1

(
qδ(ym+1, X

(m+1)
t )

(
(1 + z′)−1 +

|N0 − z′|
z′

))
. (7.3)

In addition for all z ∈ Sm,
∫
|Dzm+1pt(z, y)|dy(m)

≤ c7.1t
−1 lim inf

δ→0
E zm+1

(
qδ(ym+1, X

(m+1)
t )

(
(1 + z′)−1 +

|N0 − z′|
z′

))
. (7.4)

Proof. The proof of (a) is lengthy and the reader may want to first take a look at the

simpler proof of (c) given in Section 8.

(a) By Lemma 3.11(d), Fatou’s lemma and symmetry we have
∫

|yj − zj |q|D3
zm+1

pt(z, y)|dz(m)

≤ lim inf
δ→0

∫
|yj − zj |q

∣∣∣E zm+1

(
∆3

t G
δ
t,z(m),y(X, ν1, ν2, ν3)[1

(νi
t=0 for i=1,2,3)

+ 3 · 1(ν1
t >0,ν2

t =ν3
t =0) + 3 · 1(ν1

t >0,ν2
t >0,ν3

t =0) + 1
(νi

t>0 for i=1,2,3)
]

×
3∏

i+1

N0(dνi)
)∣∣∣ dz(m)

:= lim inf
δ→0

Eδ
1 + 3Eδ

2 + 3Eδ
3 + Eδ

4 . (7.5)
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Consider Eδ
1 first. An explicit differentiation shows

|Dk
upu(w)| ≤ cp2u(w)u−k for k = 1, 2, 3, (7.6)

which implies

|Dk
I Gδ

t,z(m),y(I,X)| ≤ c2qδ(ym+1, X)I−k
m∏

i+1

p2δ+4γ0
i
I(zi − yi + b0

i t), for k = 1, 2, 3. (7.7)

Use this (with k = 3) with the Fundamental Theorem of Calculus to see that on {νi
t >

0 for i = 1, 2, 3},
∫

|yj − zj |q|∆3
t G

δ
t,z(m),y(X, ν1, ν2, ν3)|dz(m)

≤ c2

∫ ∫
|yj − zj |q1(uk≤

∫ t

0
νk

s ds,k=1,2,3)
I−3
t qδ(ym+1, X

(m+1)
t )

×
m∏

i=1

[p
2δ+4γ0

i
(It+

∑3

k=1
uk)

(zi − yi + b0
i t)dzi]

3∏

k=1

duk

≤ cI−3
t qδ(ym+1, X

(m+1)
t )

(
tq +

(
δ + It +

3∑

k=1

∫ t

0

νk
s ds

)q/2) 3∏

k=1

∫ t

0

νk
s ds. (7.8)

(3.14) and (3.16) imply

∫
νp

s N0(dν) = (γs)p−1Γ(p + 1) for p ≥ 0, (7.9)

and so by Jensen

∫ (∫ t

0

νsds
)q/2+1

N0(dν) ≤ tq/2+1

∫ ∫
νq/2+1

s N0(dν)
ds

t

= Γ(2 + q/2)tq/2

∫ t

0

(γs)q/2ds ≤ ctq+1. (7.10)

This bound, (7.9) with p = 1, and (7.8), together with the expression for Eδ
1 , shows that

Eδ
1 ≤ cE zm+1(I

−3
t qδ(ym+1, X

(m+1)
t )(tq + δq/2 + I

q/2
t )t3)

≤ cE zm+1

(
qδ(ym+1, X

(m+1)
t )[(tq+3 + δq/2t3)E zm+1(I

−3
t |X(m+1)

t )

+ t3E zm+1(I
q/2−3
t |X(m+1)

t )]
)

≤ cE zm+1

(
qδ(ym+1, X

(m+1)
t )

)
[(tq + δq/2)(zm+1 + t)−3 + tq/2(t + zm+1)

q/2−3]

≤ ctq−3E zm+1

(
qδ(ym+1, X

(m+1)
t )

)
(1 + (δ1/2/t)q)(1 + z′)q/2−3, (7.11)
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where Lemma 3.2 is used in the next to last inequality.

Let us jump ahead to Eδ
4 which will be the dominant (and most interesting) term.

We use the decomposition and notation from Lemma 3.4 with ρ = 0. Let Sn =
∑n

i=1 ei(t),

Rn =
∑n

i=1 ri(t), pk(z′) = e−z′ (z′)k

k! = P (N0(t) = k), and N (k) = N(N −1) . . . (N −k+1).

What follows is an integration by parts formula on function space. Recalling that N0(νt >

0) = (γt)−1 from (3.14), we have from Lemma 3.4 and the exponential law of µt under P ∗
t

(recall (3.16)) that

∣∣∣E zm+1

(∫
∆3

t G
δ
t,zm),y(X, ν1, ν2, ν3)

3∏

i=1

(1(νi
t>0)N0(dνi))

)∣∣∣

= (γt)−3
∣∣∣E zm+1

(
Gδ

t,z(m),y(RN0+3 + I2(t), SN0+3 + X ′
0(t))

− 3Gδ
t,z(m),y(RN0+2 + I2(t), SN0+2 + X ′

0(t))

+ 3Gδ
t,z(m),y(RN0+1 + I2(t), SN0+1 + X ′

0(t))

− Gδ
t,z(m),y(RN0 + I2(t), SN0 + X ′

0(t))
)∣∣∣

= (γt)−3
∣∣∣
∞∑

n=0

(pn−3(z
′) − 3pn−2(z

′) + 3pn−1(z
′) − pn(z′))

× E zm+1(G
δ
t,z(m),y(Rn + I2(t), Sn + X ′

0(t)))
∣∣∣

= (γt)−3
∣∣∣
∞∑

n=0

pn(z′)(z′)−3[n(3) − 3n(2)z′ + 3n(z′)2 − (z′)3]

× E zm+1(G
δ
t,z(m),y(Rn + I2(t), Sn + X ′

0(t)))
∣∣∣

= z−3
m+1

∣∣∣E zm+1

(
[N

(3)
0 − 3N

(2)
0 z′ + 3N0(z

′)2 − (z′)3]Gδ
t,z(m),y(It, X

(m+1)
t )

)∣∣∣. (7.12)

In the last line we have again used Lemma 3.4 to reconstruct (It, X
(m+1)
t ).

We also have∫
|yj − zj |qGδ

t,z(m),y(It, X
(m+1)
t )dz(m)

= qδ(ym+1, X
(m+1)
t )

∫
|yj − zj |qpδ+2γ0

j
It

(zj − yj + b0
j t)dzj

≤ cqδ(ym+1, X
(m+1)
t )[tq + δq/2 + I

q/2
t ]. (7.13)

Combine (7.12) and (7.13) to derive

Eδ
4 ≤ cz−3

m+1E zm+1

(
|N (3)

0 − 3N
(2)
0 z′ + 3N0(z

′)2 − (z′)3|

× qδ(ym+1, X
(m+1)
t )[tq + δq/2 + I

q/2
t ]

)
. (7.14)
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Apply Jensen’s inequality (as q/2 ≤ 1) in Corollary 3.15 to see that

E zm+1(I
q/2
t |N0, X

(m+1)
t ) ≤ c[tq + tqN

q/2
0 + tq/2(X

(m+1)
t )q/2 + tq/2z

q/2
m+1], (7.15)

and so

Eδ
4 ≤ ctq−3z′−3E zm+1

(
|N (3)

0 − 3N
(2)
0 z′ + 3N0(z

′)2 − (z′)3|qδ(ym+1X
(m+1)
t )

× [1 + (δ1/2/t)q + (X
(m+1)
t /t)q/2 + (z′)q/2 + N

q/2
0 ]

)
(7.16)

Next consider Eδ
2 . Not surprisingly the argument is a combination of the ideas used

to bound Eδ
1 and Eδ

4 . Define

Hδ
t,z(m),y(I,X, ν2, ν3) =Gδ

t,z(m),y

(
I +

∫ t

0

ν2
s + ν3

s ds,X
)
− Gδ

t,z(m),y

(
I +

∫ t

0

ν2
s ds,X

)

− Gδ
t,z(m),y

(
I +

∫ t

0

ν3
s ds,X

)
+ Gδ

t,z(m),y(I,X).

Now apply the decomposition in Lemma 3.4 with ρ = 1/2 so that N1/2(t) is Poisson

with mean z′/2. Arguing as in the derivation of (7.12), but now with a simpler first order

summation by parts (which we leave for the reader), we obtain

∣∣∣E zm+1

(∫
∆3

t G
δ
t,z(m),y(X, ν1, ν2, ν3)1(ν1

t >0,ν2
t =ν3

t =0)

3∏

k=1

N0(dνk)
)∣∣∣

= (γt)−1
∣∣∣E zm+1

(∫ ∫
Hδ

t,z(m),y

( ∫ t

0

X(m+1)
s + ν1

sds,X
(m+1)
t + ν1

t , ν2, ν3
)

− Hδ
t,z(m),y

( ∫ t

0

X(m+1)
s ds,X

(m+1)
t , ν2, ν3

)
P ∗

t (dν1)1(ν2
t =ν3

t =0)

3∏

k=2

N0(dνk)
)∣∣∣

= (γt)−1
∣∣∣E zm+1

(∫ ∫
Hδ

t,z(m),y(I2(t) + RN1/2+1, X
′
0(t) + SN1/2+1, ν

2, ν3)

− Hδ
t,z(m),y(I2(t) + RN1/2

, X ′
0(t) + SN1/2

, ν2, ν3)
3∏

k=2

N0(dνk)
)∣∣∣

=
2

zm+1

∣∣∣
∫

E zm+1

(
(N1/2 − z′/2)Hδ

t,z(m),y(I(t), X
(m+1)
t , ν2, ν3)

) 3∏

k=2

N0(dνk)
∣∣∣. (7.17)

Now use (7.7) (with k = 2) and argue as in (7.8) to see that

∫ ∫
|yj − zj |q|Hδ

t,z(m),y(I,X, ν2, ν3)|dz(m)
3∏

k=2

N0(dνk)

≤ cI−2qδ(ym+1X)

∫
(tq + (δ + I +

3∑

2

∫ t

0

νk
s ds)q/2)

3∏

k=2

[∫ t

0

νk
s dsN0(dνk)

]

≤ cI−2qδ(ym+1, X)[tq + δq/2 + Iq/2]t2, (7.18)
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where the last line uses (7.10).

Take the absolute values inside the inside the integral in (7.17), multiply by |yj−zj |q,
integrate with respect to z(m), and use the above bound to conclude that

Eδ
2 ≤ cz−1

m+1t
2E zm+1

(
|N1/2 − z′/2|qδ(ym+1, X

(m+1)
t )

×
[
(tq + δq/2)I(t)−2 + I(t)q/2−2

])
. (7.19)

If r ≥ 0, the independence of X ′
0 from (N1/2, {ej}) and Lemma 3.2, applied to X ′

0, imply

that

E zm+1(I(t)−r|X(m+1)
t , N1/2)

≤ E

(
E

((∫ t

0

X ′
0(s)ds

)−r

|X ′
0(t), N1/2, {ej}

)∣∣∣X(m+1)
t , N1/2)

= E

(
E

((∫ t

0

X ′
0(s)ds

)−r∣∣∣X ′
0(t)

)∣∣∣X(m+1)
t , N1/2

)

≤ c(t + zm+1/2)−rt−r. (7.20)

The last line is where it is convenient that ρ = 1/2 > 0.

Use (7.20) in (7.19) with r = 2 and 2 − q/2. After a bit of algebra this leads to

Eδ
2 ≤ ctq−3(z′)−1E zm+1(|N1/2 − z′/2|qδ(ym+1, X

(m+1)
t ))

×
[(√

δ

t

)q

(1 + z′)−2 + (1 + z′)q/2−2
]
. (7.21)

The argument for Eδ
3 is similar to the above. One works with

H̃δ
t,z(m),y(I,X, ν3) = Gδ

t,z(m),y

(
I +

∫ t

0

ν3
sds,X

)
− Gδ

t,z(m),y(I,X).

The required third order difference of Gδ
t,z(m),y

on {ν1
t > 0, ν2

t > 0, ν3
t = 0} is now a second

order difference of H̃δ
t,z(m),y

. Minor modifications of the derivation of (7.21) lead to

Eδ
3 ≤ ctq−3(z′)−2E zm+1(|N (2)

1/2 − N1/2z
′ + (z′/2)2|qδ(ym+1, X

(m+1)
t ))

× [(
√

δ/t)q(1 + z′)−1 + (1 + z′)q/2−1]. (7.22)

The above bounds in Eδ
i i = 1, . . . 4 may be used in (7.5) and after the terms

involving
√

δ/t are neglected (for q = 0 these terms are bounded by their neighbours, and

for q > 0, if they do not approach 0, the right side below must be infinite) we find
∫
|yj − zj |q|D2

zm+1
pt(z, y)|dz(m)

≤ ctq−3 lim inf
δ→0

E zm+1

(
qδ(ym+1, X

(m+1)
t )

[
(1 + z′)q/2−1 (7.23)

×
(
(1 + z′)−2 + |N1/2 − z′/2|(1 + z′)−1(z′)−1 + |N (2)

1/2 − N1/2z
′ + (z′/2)2|(z′)−2

)

+ |N (3)
0 − 3N

(2)
0 z′ + 3N0(z

′)2 − (z′)3|(z′)−3[1 + (X
(m+1)
t /t)q/2 + (z′)q/2 + N

q/2
0 ]

])
.
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The required bound follows from the above by a bit of algebra but as the reader

may be fatigued at this point we point out the way. Trivial considerations show it suffices

to show the following inequalities for n0, n1/2 ∈ Z+ and z′ ≥ 0:

|n(3)
0 − 3n

(2)
0 z′ − 3n0(z

′)2 − (z′)3|(z′)−3

≤ c[1(n0≤2)(1 + (z′)−n0) + 1(n0≥3)(z
′)−3(|n0 − z′|3 + 3n0|n0 − z′| + n0), (7.24)

and

[(1 + z′)−2 + |n1/2 − z′/2|(1 + z′)−1(z′)−1 + |n(2)
1/2 − n1/2z

′ + (z′/2)2|(z′)−2

≤ c[1(n1/2≤1) + 1(n1/2=1)z
′−1

+ 1(n1/2≥2)z
′−2

(n1/2 + (n1/2 −
z′

2
)2)]. (7.25)

(7.24) is easy. (7.25) reduces fairly directly to showing that for n1/2 ≥ 2,

(1 + z′)−1 ≤ c(n1/2 + (n1/2 − z′/2)2)(z′)−2.

If z′ ≤ 1 this is trivial and for z′ > 1 consider n1/2 ≤ z′/4 and n1/2 > z′/4 separately.

This completes the proof of (a).

(b) The proof of this second order version of (a) is very similar to, but simpler than

that of (a). One now only has a second order difference and three Eδ
i terms to consider.

In fact we will not actually need q > 0 in (a) but included it so that the reader will not

complain about the missing details in the proof of (b) (where q > 0 has been used in

Proposition 4.12). We do comment on the lack of N1/2 in this bound.

An argument similar to that leading to (7.23) shows that∫
|zj − yj |q|D2

zm+1
pt(z, y)|dz(m) is bounded by

ctq−2 lim inf
δ→0

E zm+1

(
qδ(ym+1, X

(m+1)
t )

[
(1 + z′)−1+q/2

(
(1 + z′)−1 + |N1/2 − z′/2|(z′)−1

)

+ |N (2)
0 − 2N0z

′ + (z′)2|(z′)−2(1 + (X
(m+1)
t /t)q/2 + (z′)q/2 + N

q/2
0 )

])

≡ ctq−2 lim inf
δ→0

E zm+1

(
qδ(ym+1, X

(m+1)
t )[T1/2 + T0]

)
.

It is easy to check that

T0 ≤ cφ(z′, X(m+1)
t /t,N0),

and, using N1/2 ≤ N0 from (3.23), that

T1/2 ≤ 2(1 + z′)−1+q/2(1 + N0(z
′)−1 + 1) ≡ T̄1/2.

Hence to prove (b), it remains to verify

T̄1/2 ≤ cφ(z′, X(m+1)
t /t,N0).
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Trivial considerations reduce this to showing that (1 + z′)−1+q/2 ≤ cφ(z′, X(m+1)
t /t,N0)

for N0 ≥ 2. This is easily verified by considering N0 < z′/2 and N0 ≥ z′/2 separately.

(c) Note that (7.3) is the first order version of (a) and (b) with q = 0. The proof

is substantially simpler, but, as it plays the pivotal role in the proof for the important

2-dimensional case, we give the proof in Section 8. (7.4) then follows immediately since

the spatial homogeneity in the first m variables, (3.7), implies

pt(z, y) = pt(−y(m), zm+1,−z(m), ym+1). (7.26)

Proof of Lemma 4.5(b). Let J denote the integral to be bounded in the statement of

(b), and pn(w) = e−wwn/n! be the Poisson probabilities. Let Γn be a Gamma random

variable with density

gn(x) = xn+b/γ−1e−xΓ(n + b/γ)−1, (7.27)

and recall z′ = zm+1/γt. By integrating the bound from Lemma 7.1(b) in zm+1 (using

Fatou’s Lemma) we see that

J ≤ c7.1t
q−2 lim inf

δ→0

∫
zp
m+1E zm+1

(
qδ(ym+1, X

(m+1)
t )φ(z′, X(m+1)

t /t,N0)
)

z
b/γ−1
m+1 dzm+1.

Our formula for the joint distribution of (X
(m+1)
t , N0) (Lemma 3.6(a)) allows us to evaluate

the above and after changing variables and the order of integration we see that if y′ = y/γt,

then

J ≤ c7.1t
q−2+p lim inf

δ→0

∫
(qδ(ym+1, y)

∞∑

n=0

pn(y′)

×
[∫ ∞

0

gn(z′)[(1(n≤1) + 1(n=1)(z
′)−1)(1 + (y′)q/2 + (z′)q/2)

+ 1(n≥2)(z
′)−2[(n − z′)2 + n][(y′)q/2 + (z′)q/2 + nq/2](z′)pdz′

]
yb/γ−1dy

= c7.1t
q−2+p lim inf

δ→0

∫
qδ(ym+1, y)

∞∑

n=0

pn(y′)

×
[
1(n≤1)E ((1 + (y′)q/2 + Γq/2

n )Γp
n) + 1(n=1)E ((1 + (y′)q/2 + Γq/2

n )Γ−1+p
n )

+ 1(n≥2)E (((n − Γn)2 + n)Γ−2+p
n ((y′)q/2 + Γq/2

n + nq/2))
]
yb/γ−1dy. (7.28)

There is a constant c0 (as in Convention 3.1) so that

E (Γr
n) ≤ c0(n ∨ 1)r for all |r| ≤ 4 and n ∈ Z+ satisfying r + n ≥ −3

4M2
0

. (7.29)
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Indeed the above expectation is Γ(n + b/γ + r)/Γ(n + b/γ), where

r + n + b/γ ≥ −3

4M2
0

+ M−2
0 = (2M0)

−2.

The result now follows by an elementary, and easily proved, property of the Gamma

function.

Assume now the slightly stronger condition

|r| ≤ 3, n ∈ Z+ and r + n ≥ −1

2M2
0

. (7.30)

Then Γn = Γ0 + Sn, where Sn is a sum of n i.i.d. mean one exponential random variables.

If s and s′ are Hölder dual exponents, where s is taken close enough to 1 so that the

conditions of (7.29) remain valid with rs in place of r, then

E ((Γn − n)2Γr
n) ≤ E ((Γn − n)2s′

)1/s′

E (Γsr
n )1/s

≤ cn(n ∨ 1)r, (7.31)

where we have used an elementary martingale estimate for |Sn − n| and (7.29). Here c

again is as in Convention 3.1.

We now use (7.31) and (7.29) to bound the Gamma expectations in (7.28). It is

easy to check that our bounds on p and q imply the powers we will be bounding satisfy

(7.30). This leads to

J ≤ ctq−2+p lim inf
δ→0

∫
qδ(ym+1, y)

∞∑

n+0

pn(y′)

×
[
1(n≤1)(1 + (y′)q/2) + 1(n≥2)n

−1+p((y′)q/2 + nq/2)
]
yb/γ−1 dy

≤ ctq−2+p lim inf
δ→0

∫
qδ(ym+1, y)

[
e−y′

(1 + y′)(1 + (y′)q/2)

+ E (1(N(y′)≥2)((y
′)q/2N(y′)p−1 + N(y′)q/2−1+p))

]
yb/γ−1dy. (7.32)

In the last line N(y′) is a Poisson random variable with mean y′. Well-known properties

of the Poisson distribution show that for a universal constant c2

E (N(y′)r1(N(y′)≥2)) ≤ hr(y
′) ≡ c2(1 + y′)r for all y′ ≥ 0, |r| ≤ 2. (7.33)

For negative values of r see Lemma 4.3(a) of [BP] where the constant depends on r but

the argument there easily shows for r bounded one gets a uniform constant. If

h(y′) = e−y′

(1 + y′)(1 + (y′)q/2) + hq/2−1+p(y
′) + y′q/2hp−1(y

′),
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then clearly

h(y′) ≤ c3(1 + y′)q/2−1+p.

As all of the powers appearing in (7.32) satisfy the bounds in (7.33), we may use (7.33) to

bound the left-hand side of (7.32) and arrive at

J ≤ ctq−2+p lim inf
δ→0

E ym+1(h(X
(m+1)
δ /γt))

≤ ctq−2+p lim inf
δ→0

E ym+1((1 + (X
(m+1)
δ /γt)q/2−1+p)

= ctq−2+p(1 + y′)q/2−1+p (Dominated Convergence)

= ctq/2−1(t + ym+1)
q/2−1+p.

Proof of Lemma 4.5(c). The spatial homogeneity (7.26) shows the integral to be

bounded equals

∫
|yj − (−zj)|qzm+1|D2

zm+1
pt(y

(m), zm+1,−z(m), ym+1)|dy(m)µm+1(dym+1).

This shows we can again use the upper bound in Lemma 7.1(b) to bound the integral over

y(m) in the above. One then must integrate the resulting bound in ym+1 instead of zm+1.

This actually greatly simplifies the calculation just given as one can integrate ym+1 at the

beginning and hence the qδ term conveniently disappears (see the proof of (4.14) below).

For example, if we neglect the insignificant n ≤ 1 contribution to φ in Lemma 7.1, the

resulting integral is bounded by

ctq−1(z′)−1E (1(N0≥2)(N0 + (N0 − z′)2)((z′)q/2 + N
q/2
0 + (X

(m+1)
t /t)q/2)).

This can be bounded using elementary estimates of the Poisson and Hölder’s inequality,

the latter being much simpler than invoking Lemma 3.6. We omit the details.

Proof of Lemma 4.5(a). (4.13) is the first order version of Lemma 4.5 (b) and we omit

the proof which is much simpler. (4.14) is a bit different from (c). Integrate (7.4) over

ym+1 to see that

∫
yp

m+1|Dzm+1pt(z, y)|µ(dy)

≤ c7.1t
−1 lim inf

δ→0

∫
yp

m+1E zm+1

(
qδ(ym+1, X

(m+1)
t )[(1 + z′)−1 + |N0 − z′|/z′]

)
µm+1(dym+1)

= c7.1t
−1 lim inf

δ→0
E zm+1

(
[(1 + z′)−1 + |N0 − z′|/z′]E

X
(m+1)
t

((X
(m+1)
δ )p)

)
.
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Now use the moment bounds in Lemma 3.3(d,e) to bound the above by

ct−1E zm+1

(
[(1 + z′)−1 + |N0 − z′|/z′](X(m+1)

t )p
)
. (7.34)

The first term is trivially bounded by the required expression using Lemma 3.3 again. Using

the joint density formula (Lemma 3.6), the Gamma power bounds (7.29), and arguing as

in the proof of (b) above, the term in (7.34) involving N0 is at most

ctp−1(z′)−1E (|N − z′|(N ∨ 1)p), (7.35)

where N = N(z′) is a Poisson random variable with mean z′. We have

E (|N − z′|Np1(N>0)) ≤ c0(z
′ ∧ (z′)1/2+p) for all z′ > 0 and − 1 ≤ p ≤ 1/2. (7.36)

For p ≤ 0 Lemma 3.3 of [BP] shows this (the uniformity for bounded p is again clear). For

1/2 ≥ p > 0 use Cauchy-Schwarz to prove (7.36). Separating out the contribution from

N = 0, we see from (7.36) that (7.35) is at most

ctp−1(z′)−1[e−z′

z′ + (z′ ∧ (z′)1/2+p)] ≤ ctp−1(e−z′

+ 1 ∧ (z′)p−1/2) ≤ ctp−1(z′ + 1)p−1/2.

The result follows.

Proof of Lemma 4.5(f). By the spatial homogeneity in the first m variables (7.26) we

may use Lemma 4.4 to conclude

|Dzj D
2
zm+1

pt(z, y)| =
∣∣∣
∫

Dzj pt/2(x,−z(m), ym+1)D
2
zm+1

pt/2(−y(m), zm+1, x)µ(dx)
∣∣∣.

Therefore
∫

zp
m+1|Dzj D

2
zm+1

pt(z, y)|µ(dz)

≤
∫ ∫ [∫

|Dzj pt/2(x,−z(m), ym+1)|dz(m)
]

× zp
m+1|D2

zm+1
pt/2(−y(m), zm+1, x)|µ(dx)µm+1(dzm+1).

Use Lemma 4.2(a) to bound the first integral in square brackets and so bound the above

by

ct−1/2

∫
zp
m+1|D2

zm+1
pt/2(−y(m), zm+1, x)|dx(m) µm+1(dzm+1)

× (t + xm+1 + ym+1)
−1/2qt/2(xm+1, ym+1)µm+1(dxm+1).
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The spatial homogeneity (7.26) implies

pt/2(−y(m), zm+1, x) = pt/2(−x(m), zm+1, y
(m), xm+1),

and so we conclude from the above that
∫

zp
m+1|Dzj D

2
zm+1

pt(z, y)|µ(dz)

≤ ct−1/2

∫ [∫
zp
m+1|D2

zm+1
pt/2(−x(m), zm+1, y

(m), xm+1)|dx(m)µm+1(dzm+1)
]

× (t + xm+1 + ym+1)
−1/2qt/2(xm+1, ym+1)µm+1(dxm+1)

≤ ct−3/2

∫
(t + xm+1)

p−1(t + xm+1 + ym+1)
−1/2qt/2(xm+1, ym+1)µm+1(dxm+1)

≤ ct−3/2E ym+1

(
(t + X

(m+1)
t )p−3/2

)
≤ ctp−3.

We have used Lemma 4.5(b) with q = 0 in the next to last inequality and p ≤ 3/2 in the

last line.

Proof of Lemma 4.5(e). For (4.18), use Lemma 4.4 and the spatial homogeneity (7.26)

to bound the left-hand side of (4.18) by

∫ ∫ [∫
yp

m+1|Dym+1 p̂t/2(−x(m), ym+1,−y(m), xm+1)|

× zm+1|D2
zm+1

pt/2(0, zm+1, x
(m) − z(m), xm+1)|µ(dx)

]
dz(m)µm+1(dym+1).

Use the substitution (for z(m)) w = x(m) − z(m) and do the dx(m)µm+1(dym+1) integral

first, using (4.13) to bound this integral by c4.5t
p−1 (as p ≤ 1/2). Now use (4.5) to bound

the remaining dwµm+1(dxm+1) integral by c4.5t
−1.

The derivation of (4.19) is almost the same as above. One uses Lemma 4.2(b) now

to bound the first integral.

Proof of Lemma 4.5(d). The approach is similar to that in (b) as we integrate the

bound in Lemma 7.1(a). There is some simplification now even with the higher derivative

as q = 0. We use the notation from that proof, so that gn is the Gamma density in (7.27),

pn(w) are the Poisson probabilities with mean w, and Γn is a random variable with density

gn. Also let Bn be a Binomial (n, 1/2) random variable independent of Γn. To ease the

transition to Lemma 4.6 we replace t with s in this calculation. We also keep the notation

z′ = zm+1/γs, y′ = y/γs. If

φ1(z
′, k) = (z′ + 1)−1[1(k≤1)(1 + (z′)−k) + 1(k≥2)(z

′)−2[k + (k − z′/2)2]],
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and

φ2(z
′, k) = 1(k≤2)(1 + (z′)−k) + 1(k≥3)(z

′)−3[|k − z′|3 + 3k|k − z′| + k],

then by Lemma 7.1(a) and Fatou’s lemma, the integral we need to bound is at most

lim inf
δ→0

cs−3
(∫

E zm+1

(
qδ(ym+1, X

(m+1)
s )φ1(z

′, N1/2)
)
z
3/2
m+1µm+1(dzm+1)

+

∫
E zm+1

(
qδ(ym+1, X

(m+1)
s )φ2(z

′, N0)
)
z
3/2
m+1µm+1(dzm+1)

)

:= lim inf
δ→0

cs−3[J1(δ) + J2(δ)]. (7.37)

By Lemma 3.6(b),

J1(δ) ≤ cs3/2

∫ ∞

0

qδ(ym+1, y)
∞∑

n=0

pn(y′)

∫ ∞

0

n∑

k=0

(
n
k

)
2−ngn(z′)φ1(z

′, k)(z′)3/2dz′yb/γ−1dy

= cs3/2

∫ ∞

0

qδ(ym+1, y)

∞∑

n=0

pn(y′)E (φ1(Γn, Bn)Γ3/2
n )yb/γ−1dy. (7.38)

The moment bounds (7.29) (the conditions there will be trivially satisfied now) give

us

E (φ1(Γn, Bn)Γ3/2
n ) ≤ c

(
P (Bn = 0)E (Γ3/2

n ) + P (Bn = 1)E (Γ1/2
n + Γ3/2

n )

+ E (1(Bn≥2)Bn)E (Γ−3/2
n ) + E (1(Bn≥2)(Bn − Γn/2)2Γ−3/2

n )
)

≤ c
(
2−n(1 + n)(n1/2 + n3/2) + 1(n≥2)n

−1/2

+ 1(n≥2)E (E ((Bn − Γn/2)2|Γn)Γ−3/2
n )

)
. (7.39)

The conditional expectation in the last term is [(Γn − n)2 + Γn]/4. Therefore we may

now use (7.31) and also (7.29) (as n ≥ 2 and r = −1/2 or −3/2 the conditions there are

satisfied) to see that for n ≥ 2

E (E ((Bn − Γn/2)2|Γn)Γ−3/2
n ) ≤ (E ((Γn − n)2Γ−3/2

n ) + E (Γ−1/2
n ))/4 ≤ cn−1/2.

Insert this bound into (7.39) and conclude that

E (φ1(Γn, Bn)Γ3/2
n ) ≤ c(2−n(1 + n5/2) + 1(n≥2)n

−1/2) ≤ c.

Therefore we can sum over n and integrate over y in (7.38) and obtain

J1(δ) ≤ c1s
3/2, (7.40)

1876



where as always c1 satisfies Convention 3.1.

Lemma 3.6(a) and the argument leading to (7.38) shows that

J2(δ) ≤ cs3/2

∫ ∞

0

qδ(ym+1, y)
∞∑

n=0

pn(y′)E (φ2(Γn, n)Γ3/2
n )yb/γ−1dy. (7.41)

We have

E (φ2(Γn, n)Γ3/2
n )

= 1(n≤2)E ((1 + Γ−n
n )Γ3/2

n ) + 1(n≥3)E (Γ−3/2
n (|n − Γn|3 + 3n|n − Γn| + n)).

Some simple Gamma distribution calculations like those in the proof of (b), and which the

reader can easily provide (recall Convention 3.1), show that the above is bounded by a

constant depending only on M0. As before by using this bound in (7.41) and integrating

out n and y we arrive at

J2(δ) ≤ c2s
3/2. (7.42)

Insert the above bounds on Ji(δ) into (7.37) to complete the proof.

Proof of Lemma 4.6. Consider (4.22). The functions φ1 and φ2 are as in the previous

argument. Argue just as in the derivation of (7.37) to bound the left-hand side of (4.22)

by

lim inf
δ→0

cs−3
[
tb/γ

∫ γt

0

E zm+1

(
qδ(ym+1, X

(m+1)
s )φ1(z

′, N1/2)
)
dzm+1

+ tb/γ

∫ γt

0

E zm+1

(
qδ(ym+1, X

(m+1)
s )φ2(z

′, N0)
)
dzm+1

]

:= lim inf
δ→0

cs−3[K1(δ) + K2(δ)]. (7.43)

Note we are integrating with respect to zm+1 and not µm+1(dzm+1) as in the previous

calculation. Lemma 3.6(b) implies that

K1(δ) ≤ cs

∫ ∞

0

qδ(ym+1, y)

∞∑

n=0

pn(y′)

× (t/s)b/γ

∫ t/s

0

E (φ1(z
′, Bn))e−z′ (z′)n

Γ(n + b/γ)
dz′yb/γ−1dy

≤ cs

∫ ∞

0

qδ(ym+1, y)
∞∑

n=0

pn(y′)

∫ t/s

0

E (φ1(z
′, Bn))

(z′)n

(n + 1)2
dz′yb/γ−1dy.(7.44)

We have bounded Γ(n + b/γ)−1 in a rather crude manner in the last line.
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For 0 < z′ ≤ t/s ≤ 1 we have

E (φ1(z
′, Bn))(z′)n(n + 1)−2

≤ c
[
P(Bn = 0) + P(Bn = 1)(1 + (z′)−1)

+ 1(n≥2)(z
′ + 1)−1(z′)−2E (Bn + (Bn − z′/2)2)

]
(z′)n(n + 1)−2

≤ c
[
2−n((z′)n + n(1 + (z′)n−1) + 1(n≥2)(z

′)n−2(n + (n − z′)2)(n + 1)−2
]
≤ c.

This, together with (7.44), shows that

K1(δ) ≤ ct.

Next use Lemma 3.6(a) to see that

K2(δ) ≤ cs

∫ ∞

0

qδ(ym+1, y)
∞∑

n=0

pn(y′)

× (t/s)b/γ

∫ t/s

0

φ2(z
′, n)e−z′ (z′)n

Γ(n + b/γ)
dz′yb/γ−1dy

≤ cs

∫ ∞

0

qδ(ym+1, y)
∞∑

n=0

pn(y′)

∫ t/s

0

φ2(z
′, n)

(z′)n

(n + 1)3
dz′yb/γ−1dy.

As above, an elementary argument shows that for 0 < z′ ≤ 1, φ2(z
′, n)(z′)n(n + 1)−3 is

uniformly bounded in n, z′ and also (b, γ) as in Convention 3.1. Hence, we may infer

K2(δ) ≤ ct.

Put the bounds on Ki(δ) into (7.43) to complete the proof of (4.22).

We omit the proof of (4.21) which is the first order analogue of (4.22) and is con-

siderably easier.

We need a probability estimate for Lemma 4.7. As usual X(m+1) is the Feller

branching diffusion with generator (3.1).

Lemma 7.2. (a) Pz(X
(m+1)
t ≥ w) ≤ (w/z)b/2γ exp

{
−(

√
z−√

w)2

γt

}
for all w > z ≥ 0.

(b) Pz(X
(m+1)
t ≤ w) ≤ (w/z)b/2γ exp

{
−(

√
z−√

w)2

γt

}
for all 0 ≤ w ≤ z.

Proof. This is a simple estimate using the Laplace transform in Lemma 3.3(c). Write Xt

for X
(m+1)
t . If −(γt)−1 < λ ≤ 0, then

Pz(Xt ≥ w) ≤ eλwE z(e
−λXt) = eλw(1 + λtγ)−b/γ exp

{ −zλ

1 + λγt

}
.
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If λ ≥ 0, then

Pz(Xt ≤ w) ≤ eλwE z(e
−λXt) = eλw(1 + λtγ)−b/γ exp

{ −zλ

1 + λγt

}
.

Now set λ =

√
z/w−1

γt in both cases. This is in (−(γt)−1, 0) if 0 ≤ z < w and in [0,∞) if

0 ≤ z ≥ w. A bit of algebra gives the bounds.

Proof of Lemma 4.7. We will again integrate the bound in Lemma 7.2(b) over zm+1

but as q = 0 we will use the function

ψ(z′, n) = 1(n≤1) + 1(n=1)(z
′)−1 + 1(n≥2)(z

′)−2[(n − z′)2 + n].

We then have from Lemma 7.2(b), that for each z′ > 0,

J(zm+1)

≡
∫ ∫

(1(ym+1≤w≤zm+1) + 1(zm+1≤w≤ym+1))z
p
m+1

× |D2
zm+1

pt(z, y)|dz(m)µm+1(dym+1)

≤ ct−2zp
m+1 lim inf

δ→0
E zm+1

(
ψ(z′, N0)

∫
qδ(ym+1, X

(m+1)
t )(1(ym+1≤w≤zm+1)

+ 1(zm+1≤w≤ym+1))µm+1(dym+1)

= ct−2zp
m+1E zm+1

(
ψ(z′, N0)[1(w≤zm+1)1(X

(m+1)
t ≤w)

+ 1(w≥zm+1)1(X
(m+1)
t ≥w)

]
)

≤ ct−2zp
m+1E zm+1(ψ(z′, N0)

2)1/2[1(w≤zm+1)Pzm+1(X
(m+1)
t ≤ w)1/2

+ 1(w≥zm+1)Pzm+1(X
(m+1)
t ≥ w)1/2]. (7.45)

In the third line we have used the a.s. and, hence weak, convergence of X
(m+1)
δ to X

(m+1)
0

as δ → 0 and the fact that X
(m+1)
t 6= w a.s.

We have

E (ψ(z′, N0)
2) ≤ c

(
(1 + z′)e−z′

+ (z′)−1e−z′

+ (z′)−4[E (1(N0≥2)(N0 − z′)4) + E (1(N0≥2)N
2
0 )]

)
.

An elementary calculation (consider small z′ and large z′ separately) shows that the term

in square brackets is at most c(z′)2. Therefore we deduce that

E (ψ(z′, N0)
2)1/2 ≤ c(z′)−1. (7.46)
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If we set w′ = w/γt, then this, together with (7.45) and Lemma 7.2 allows us to conclude

that

∫
J(zm+1)µm+1(dzm+1)

≤ ct−2

∫
z

p−1+b/γ
m+1 (z′)−1(w/zm+1)

b/4γ exp
(−(

√
zm+1 −

√
w)2

2γt

)
dzm+1

= ctp−2+b/γ(w′)b/4γ

∫
(z′)p−2+3b/4γ exp

(−(
√

z′ −√
w

′
)2

2

)
dz′

≡ ctp−2+b/γ(w′)b/4γKp−2+3b/4γ(w′). (7.47)

A simple calculation using the obvious substitution x = (
√

z′ −√
w

′
)2 shows that for any

ε > 0 there is a c0(ε) such that

Kr(w
′) ≤ c0[1(w′≤1) + (w′)r+1/21(w′>1)] for all w′ ≥ 0 and − 1 + ε ≤ r ≤ ε−1.

Our bounds on p and Convention 3.1 imply that r = p−2+3b/4γ ∈ [−1+3(4M2
0 )−1,M2

0 ].

Therefore the left-hand side of (7.47) is at most

ctp−2+b/γ(w′)b/4γ(1(w′≤1) + 1(w′>1)(w
′)p−3/2+3b/4γ)

≤ c(1(w≤γt)t
p−2+b/γ + 1(w>γt)t

−1/2wp−3/2+b/γ).

8. A Remark on the Two-dimensional Case.

As has already been noted, the proof of Proposition 2.2 (by far the most challenging

step) simplifies substantially if d = 2. As this is the case required in [DGHSS], we now

describe this simplification in a bit more detail.

Recall the three cases (i)–(iii) for d = 2 listed following Theorem 1.4. As noted there,

the case E = ∅ is covered by Theorem A of [BP] (with d = 2) without removing (0, 0) from

the state space, so we will focus mainly on the other two cases here (but see the last

paragraph below). In these cases the localization in Theorem 2.1 reduces the problem to

the study of the martingale problem for a perturbation of the constant coefficient operator

A0 =

2∑

i=1

b0
i Dxi + γ0

i x2D
2
xi

, (8.1)

with resolvent Rλ and semigroup Pt. Our job is to establish Proposition 2.2 for this

resolvent.
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For f ∈ D0 (D0 as in (2.21)), we have

‖A0Rλf‖2 = ‖λRλf − f‖2 ≤ 2‖f‖2, (8.2)

the latter by Corollary 2.12. We may therefore remove the term x2(Rλf)22 from the

summation in (2.6) because L2-boundedness of this term will follow from the other three

and (8.2). Recall the required boundedness of any of the terms was reduced to (2.28) by

Cotlar’s Lemma. (Proposition 2.10 was only used to ensure the operator Tt was bounded

on L2 so that Cotlar’s Lemma may be employed in the proof of Proposition 2.2. This

boundedness, as well as the bound of ct−1, is also implied by (2.28) with s = t and

the elementary Lemma 2.11(b). So we only need consider (2.28).) For the two derivatives

involving x1, (2.28) was fairly easily checked in Lemma 4.3 thanks to the “explicit” formulae

(4.7) and (4.8), and the bound in Lemma 3.3(f).

It remains only to check (2.28) for Dx2 . This was done in Proposition 4.9, using

only Lemma 4.5(a) and in fact only used (4.14) for p = 0 and (4.13) for p ≤ 0. These proofs

in turn were fairly simple consequences of part (c) of the key Lemma 7.1. (Admittedly the

proof of (4.13) was omitted, being much simpler than that of (4.15).) As (7.4) was a trivial

consequence of (7.3) (recall (7.26)), we have essentially reduced the two-dimensional case

to the proof of (7.3). To justify our earlier statements, that this really is much simpler

than that of (7.1), we give the proof. At the risk of slightly lengthening the argument we

will take this opportunity to explicitly write an integration by parts formula which was

implicit (and hidden) in the more complicated setting of Lemma 7.1. Recall that m = 1

(the proofs below are the same for general m), It =
∫ t

0
X

(2)
s ds, γ = γ0

2 , and (see (3.26))

Gt,z1f(I,X) =

∫
f(x1, X)p2γ0

1I(x1 − z1 − b0
1t) dx1.

N0 = N0(t) is the Poisson variable in Lemma 3.4.

Proposition 8.1 (Integration by Parts Formula). If f : R+×R → R is bounded and

Borel, then

Dz2Ptf(z) = (γt)−1E z2

( (N0 − (z2/γt))

z2/γt
Gt,z1f(It, X

(2)
t )

)
+ E1(t, z, f), (8.3)

where E1 is given by (8.6) below and satisfies

|E1(t, z, f)| ≤ E z2

(∫ ∫ ∫
|f(x1, X

(2)
t )|4I−1

t p4γ0
1 (u+It)(x1 − z1 − b0

1t)

× 1
(u≤

∫ t

0
νsds)

dx1 du dN0(ν)
)
. (8.4)
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Proof. By (3.25)

Dz2Ptf(z) = E z2

(∫
[Gt,z1f

(∫
X(2)

s + νsds,X
(2)
t

)
− Gt,z1f

(∫
X(2)

s , X
(2)
t

)
]1(νt=0)N0(dν)

)

+ E z2

(∫
[Gt,z1f

(∫
X(2)

s + νsds,X
(2)
t + νt

)

− Gt,z1f
(∫

X(2)
s ds,X

(2)
t

)
]1(νt>0)N0(dν)

)

≡ E1(t, z, f) + E2(t, z, f). (8.5)

Now use
∂pt

∂t
(z) = (z2t−1 − 1)(2t)−1pt(z),

and (by some calculus) ∣∣∣
∂pt

∂t
(z)

∣∣∣ ≤ 4

t
p2t(z),

together with the Fundamental Theorem of Calculus, to obtain

E1(t, z, f) =E z2

(∫ ∫ ∫
f(x1, X

(2)
t )

[ (x1 − z1 − b0
1t)

2

2γ0
1(u + It)

− 1
]
(2(u + It))

−1

× p2γ0
1(u+It)(x1 − z1 − b0

1t)1(u≤
∫ t

0
νsds)

dx1 du1(νt=0)dN0(ν)
)
, (8.6)

and

|E1(t, z, f)| ≤ E z2

(∫ ∫ ∫
|f(x1, X

(2)
t )|4(u + It)

−1p4γ0
1(u+It)(x1 − z1 − b0

1t)

× 1
(u≤

∫ t

0
νsds)

dx1 du dN0(ν).

The latter inequality gives (8.4).

For E2 we use the decomposition in Lemma 3.4 with ρ = 0. Sn and Rn are the sum

of the first n of the ei and ri, respectively, and we continue to write pn(w) = e−wwn/n!

and z′ = z2/γt. Then Lemma 3.4 allows us to write

E2(t, z, f) = N0(νt > 0)E z2

(
Gt,z1f(I2(t) + RN0+1, X

′
0(t) + SN0+1)

− Gt,z1f(I2(t) + RN0 , X
′
0(t) + SN0)

)

= (γt)−1
∞∑

n=0

(pn−1(z
′) − pn(z′))E z2(Gt,z1f(I2(t) + Rn, X ′

0(t) + Sn))

= (γt)−1
∞∑

n=0

pn(z′)(n − z′)(z′)−1E z2(Gt,z1f(I2(t) + Rn, X ′
0(t) + Sn))

= (γt)−1E z2((N0 − z′)(z′)−1Gt,z1f(It, X
(2)
t )). (8.7)
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In the last line we have again used Lemma 3.4 to reconstruct X(2). (8.7) and (8.5) complete

the proof.

Remark 8.2. Since |Gt,z1f | ≤ ‖f‖∞, the above implies the sup norm bound

|Dz2Ptf(z)|

≤ (γt)−1E z2

( |N0 − z′|
z′

)
‖f‖∞ + 4‖f‖∞E z2(I

−1
t )

∫ ∫ t

0

νs ds dN0(ν)
)

≤ (γt)−12‖f‖∞ + 4t−1‖f‖∞.

We have used Lemma 3.3(f) and (3.17) in the last. This gives a derivation of (4.4). More

importantly we can use the above to derive an L1 bound which will allow us to take f = δy.

Recall that qt(x, y) is the transition density of X(2) with respect to yb/γ−1dy.

Corollary 8.3. If f : R+ × R → R is bounded and Borel, then
∫

|Dz2Ptf(z)|dz1

≤ c8.3t
−1E z2

(∫
|f(z1, X

(2)
t )|dz1

[ |N0 − z2/γt|
z2/γt

+
(z2

γt
+ 1

)−1])
.

Proof. Note first that
∫
|Gt,z1f(I,X)|dz1 ≤

∫
|f(x1, X)|dx1, and then integrate over z1

in Proposition 8.1 to see that the above integral is at most (z′ = z2/γt as usual)

(γt)−1E z2

( |N0 − z′|
z′

∫
|f(x1, X

(2)
t )|dx1

)

+ E z2

(∫ ∫
|f(x1, X

(2)
t )|dx14I−1

t

)(∫ ∫ t

0

νs ds dN0(ν)
)
. (8.8)

Use Lemma 3.3(f) and (3.17) again to bound the last term by

4c3.2(t + z2)
−1E z2

(∫
|f(x1, X

(2)
t )|dx1

)
.

Use this in (8.8) to derive the required bound.

Proof of (7.3). Let fy,δ(z1, z2) = pδ(z1 − y1)qδ(y2, z2) (bounded in z by Lemma 3.3(a)).

Then (3.30) shows that limδ→0 Dz2Ptf
y,δ(z) = Dz2pt(z, y). Apply Fatou’s Lemma and

Corollary 8.3 to conclude
∫

|Dz2pt(z, y)|dz1

≤ lim inf
δ→0

c7.3t
−1E z2

(∫
|fy,δ(z1, X

(2)
t )|dz1

[ |N0 − z2/γt|
z2/γt

+
(z2

γt
+ 1

)−1])

≤ lim inf
δ→0

c7.3t
−1E z2

(
qδ(y2, X

(2)
t )

[ |N0 − z2/γt|
z2/γt

+
(z2

γt
+ 1

)−1])
.
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The required result follows.

If we wanted to include the case E = ∅ to make the above “short proof” self-

contained, then we need to consider Proposition 2.2 and hence (4.1) and (4.2) for the

case

A′0 =

2∑

i=1

b0
i Dxi + γ0

i xiD
2
xi

.

The associated semigroup Pt =
∏2

j=1 Qj
t is a product of one-dimensional Feller branching

(with immigration) semigroups with transition densities given by (3.3). As in the the last

part of the proof of Proposition 2.14 at the end of Section 4, (4.1) and (4.2) reduce easily

to checking (4.1) and (4.2) for each one dimensional Qi
t. In the first part of the proof

of Proposition 2.14 (in Section 4) we saw that these easily followed for each differential

operator by projecting down the corresponding result for A0 (as in (8.1)) to the second

coordinate. This was checked in the “short” proof above for the the first order operators. It

therefore only remains to check (4.1) and (4.2) for D̃x = xD2
x and qt in place of pt. As in the

proof of Proposition 4.12, we must verify (4.33), (4.34), (4.24), and (4.25) for this operator

and one-dimensional density. These, however, can be done by direct calculation using the

series expansion (3.3)–the arguments are much simpler and involve direct summation by

parts with Poisson probabilities and elementary Poisson bounds.
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[DP1] D.A. Dawson and E.A. Perkins, On the uniqueness problem for catalytic branching

networks and other singular diffusions. Illinois J. Math. 50 (2006) 323–383.

[DP2] D.A. Dawson and E. A. Perkins, Long-time behaviour and coexistence in a mutually

catalytic branching model. Ann. Probab. 26 (1998) 1088–1138.

[ES] M. Eigen and P. Schuster, The Hypercycle: a Principle of Natural Self-organization,

Springer, Berlin, 1979.

[Fe] C. Fefferman, Recent progress in classical Fourier analysis. Proceedings of the In-

ternational Congress of Mathematicians, Vol. 1, pp. 95–118. Montréal, Canadian
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