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Abstract

We study the stochastic Ising model on finite graphs with n vertices and bounded degree and

analyze the effect of boundary conditions on the mixing time. We show that for all low enough

temperatures, the spectral gap of the dynamics with (+)-boundary condition on a class of non-

amenable graphs, is strictly positive uniformly in n. This implies that the mixing time grows at

most linearly in n. The class of graphs we consider includes hyperbolic graphs with sufficiently

high degree, where the best upper bound on the mixing time of the free boundary dynamics is

polynomial in n, with exponent growing with the inverse temperature. In addition, we construct

a graph in this class, for which the mixing time in the free boundary case is exponentially large

in n. This provides a first example where the mixing time jumps from exponential to linear in

n while passing from free to (+)-boundary condition. These results extend the analysis of Mar-

tinelli, Sinclair and Weitz to a wider class of nonamenable graphs.
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1 Introduction

The goal of this paper is to analyze the effect of boundary conditions on the Glauber dynamics for the

Ising model on nonamenable graphs. We will focus on a particular class of graphs which includes,

among others, hyperbolic graphs with sufficiently high degree. Before discussing the motivation and

the formulation of the results we shall give some necessary definitions.

Given a finite graph G = (V, E), we consider spin configurations σ = {σx}x∈V which consist of an

assignment of ±1-values to each vertex of V . In the Ising model the probability of finding the system

in a configuration σ ∈ {±1}V ≡ ΩG is given by the Gibbs measure

µG(σ) = (ZG)
−1 exp


β
∑

(x y)∈E

σxσy + βh
∑

x∈V

σx


 , (1.1)

where ZG is a normalizing constant, and β and h are parameters of the model corresponding, re-

spectively, to the inverse temperature and to the external field. Boundary conditions can also be

taken into account by fixing the spin values at some specified boundary vertices of G. The term free

boundary is used to indicate that no boundary is specified.

The Glauber dynamics for the Ising model on G is a (discrete or continuous time) Markov chain on

the set of spin configurations ΩG , reversible with respect to the Gibbs measure µG . The correspond-

ing generator is given by

(L f )(σ) =
∑

x∈V

cx(σ)[ f (σ
x)− f (σ)] , (1.2)

where σx is the configuration obtained from σ by a spin flip at the vertex x , and cx(σ) is the jump

rate from σ to σx .

Beyond of being the basis of Markov chain Monte Carlo algorithms, the Glauber dynamics provides

a plausible model for the evolution of the underlying physical system toward the equilibrium. In

both contexts, a central question is to determine the mixing time, i.e. the number of steps until the

dynamics is close to its stationary measure.

In the past decades a lot of efforts have been devoted to the study of the dynamics for the classical

Ising model, namely when G = Gn is a cube of size n in the finite-dimensional lattice Zd , and a

remarkable connection between the equilibrium and the dynamical phenomena has been pointed

out. As an example, on finite n-vertex cubes with free boundary in Zd , when h= 0 and β is smaller

than the critical value βc (one-phase region), the mixing time is of order log n, while for β > βc

(phase coexistence region) it is exp(n(d−1)/d) ([31; 24; 25; 23]).

More recently, an increasing attention has been devoted to the study of spin systems on graphs other

than regular lattices. Among the various motivations which are beyond this new surge of interest,

we stress that many new phenomena only appear when one considers graphs different from the

Euclidean lattices, thus revealing the presence of an interplay between the geometry of the graph

and the behavior of statistical systems.

Here we are interested in the problem of the influence of boundary conditions on the mixing time.

It has been conjectured that in the presence of (+)-boundary condition on regular boxes of the

lattice Zd , the mixing time should remain at most polynomial in n for all temperatures rather than

exp(n(d−1)/d) [9]. But even if some results supporting this conjecture have been achieved [5], a

formal proof for the dynamics on the lattice is still missing.
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However a different scenario can appear if one replaces the classical lattice structure with different

graphs. The first rigorous result along this direction, has been obtained recently by Martinelli,

Sinclair and Weitz [26] when studying the Glauber dynamics for the Ising model on regular trees.

With this graph setting and in presence of (+)-boundary condition, they proved in fact that the

mixing time remains of order log n also at low temperatures (phase coexistence region), in contrast

to the free boundary case where it grows polynomially in n [17; 4].

In this paper we extend the above result to a class of nonamenable graphs which includes trees,

but also hyperbolic graphs with sufficiently high degree, and some suitable constructed expanders.

Specifically, we consider the dynamics on an n-vertex ball of the graph with (+)-boundary condition,

and prove that the spectral gap is Ω(1) (i.e. bounded away from zero uniformly in n) for all low

enough temperatures and zero external field. This implies, by classical argument (see, e.g., [28]),

an upper bound of order n on the mixing time. Notice that this result is in contrast with the behavior

of the free boundary dynamics on hyperbolic graphs, for which the spectral gap is decreasing in n

for all low temperatures, and bounded below by n−α(β), with exponent α(β) arbitrarily increasing

with β [17; 4]. Moreover, we give an example of an expander, in the above class of graphs, for

which we prove that the mixing time of the free boundary dynamics is at least exponentially large in

n. This provides a first rigorous example of graph where the mixing time shrinks from exponential

to linear in n while passing from free to (+)-boundary condition.

We remark that what we believe to be determinant for the result obtained in [26] for the dynamics

on trees, is in fact the nonamenability of the graph. On the other hand, the possible presence of

cycles, which are absent on trees, makes the structure of some nonamenable graphs more similar

to classical lattices. Our results show that cycles are not an obstacle for proving the influence of

boundary conditions on the mixing time.

The work is organized as follows. In section 2 we give some basic definitions and state the main

results. In section 3 we analyze the system at equilibrium and prove a mixing property of the plus

phase. Then, in section 4, we deduce from this property a lower bound for the spectral gap of the

dynamics and conclude the proof of our main result. Finally, in section 5, we give an example of a

graph satisfying the hypothesis of the main theorem, and prove for it an exponential lower bound

on the spectral gap for the free boundary dynamics.

2 The model: definitions and main result

2.1 Graph setting

Before describing the class of graphs in which we are interested, let us fix some notation and recall

a few definitions concerning the graph structure.

Let G = (V, E) be a general (finite or infinite) graph, where V denotes the vertex set and E the edge

set. We will always implicitly assume that G is connected. The graph distance between two vertices

x , y ∈ V is defined as the length of the shortest path from x to y and it is denoted by d (x , y). If x

and y are at distance one, i.e. if they are neighbors, we write x ∼ y . The set of neighbors of x is

denoted by Nx , and |Nx | is called the degree of x .

For a given subset S ⊂ V , let E(S) be the set of all edges in E which have both their end vertices in

S and define the induced subgraph on S by G(S) := (S, E(S)). When it creates no confusion, we will

identify G(S) with its vertex set S.
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For S ⊂ V let us introduce the vertex boundary of S

∂V S = {x ∈ V \ S : ∃y ∈ S s.t. x ∼ y}

and the edge boundary of S

∂ES = {e = (x , y) ∈ E s.t. x ∈ S , y ∈ V \ S} .

If G = (V, E) is an infinite, locally finite graph, we can define the edge isoperimetric constant of G

(also called Cheeger constant) by

ie(G) := inf

½
|∂E(S)|

|S|
; S ⊂ V finite

¾
. (2.1)

Definition 2.1. An infinite graph G = (V, E) is amenable if its edge isoperimetric constant is zero, i.e.

if for every ε > 0 there is a finite set of vertices S such that |∂ES|< ε|S|. Otherwise G is nonamenable.

Roughly speaking, a nonamenable graph is such that the boundary of every subgraph is of compa-

rable size to its volume. A typical example of amenable graph is the lattice Zd , while one can easily

show that regular trees, with branching number bigger than two, are nonamenable. We emphasize

that nonamenability seems to be strongly related to the qualitative behavior of models in statistical

mechanics. See, e.g., [15; 19; 20; 29] for results concerning the Ising and the Potts models, and

[6; 7; 11; 14] for percolation and random cluster models.

In this paper we focus on a class of nonamenable graphs, that we call growing graphs, defined as

follows. Given an infinite graph G = (V, E) and a vertex o ∈ V , let Br(o) denote the ball centered in

o and with radius r ∈ N with respect to the graph distance, namely the finite subgraph induced on

{x ∈ V : d (o, x)≤ r}, and let Lr(o) := {x ∈ V : d(x , o) = r}= ∂V Br−1(o).

Definition 2.2. An infinite graph G = (V, E) is growing with parameter g > 0 and root o ∈ V , if

min
x∈Lr (o), r∈N

¦¯̄
Nx ∩ Lr+1(o)
¯̄
−
¯̄
Nx ∩ Br(o)
¯̄©
= g . (2.2)

We call G a (g, o)-growing graph.

It is easy to prove that a growing graph in the sense of Definition 2.2 is also nonamenable. The

simplest example of growing graph with parameter g, is an infinite tree with minimal vertex degree

equal to g + 2, where the growing property is satisfied for every choice of the root on the vertex

set. On the other hand, there are many examples of growing graphs which are not cycle-free.

Between them we mention hyperbolic graphs, that we will prove to be growing provided that the

vertex-degree is sufficiently high.

Hyperbolic graphs are a family of infinite planar graphs characterized by a cycle periodic structure.

They can be briefly described as follows (for their detailed construction see, e.g., [22], or Section

2 of ref. [27]). Consider a planar graph in which each vertex has the same degree, denoted by v,

and each face (or tile) is equilateral with constant number of sides denoted by s. If the parameters

v and s satisfy the relation (v − 2)(s − 2) > 4, then the graph can be embedded in the hyperbolic

plane H2 and it is called hyperbolic graph with parameters v and s. It will be denoted by H(v, s).
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Figure 2.1: The hyperbolic graph H(4,5) in the Poincaré disc representation.

The typical representation of hyperbolic graphs make use of the Poincaré disc that is in bi-univocal

correspondence with H2 (see Fig. 2.1).

Hyperbolic graphs are nonamenable, with edge isoperimetric constant explicitly computed in [11]

as a function of v and s. Moreover, the following holds:

Lemma 2.3. For all couples (v, s) such that s ≥ 4 and v ≥ 5, or s = 3 and v ≥ 9, H(v, s) is a

(g, o)-growing graph for every vertex o ∈ V and with parameter g = g(v, s).

The proof of this Lemma is postponed to Section 5, where we will also construct a growing graph

that will serve us as further example of influence of boundary conditions on the mixing time.

Let us stress, that due to the possible presence of cycles in a growing graph, a careful analysis of the

correlations between spins will be required. This is actually the main distinction between our proof

and the similar work on trees [26].

2.2 Ising model on nonamenable graphs

The Ising model on nonamenable graphs has been investigated in many papers (see, e.g, [20] for a

survey). A general result, concerning the uniqueness/non-uniqueness phase transition of the model,

is the following [15]:

Theorem 2.4 (Jonasson and Steif). If G is a connected nonamenable graph with bounded degree, then

there exists an inverse temperature β0 > 0, depending on the graph, such that for all β ≥ β0 there exists

an interval of h where G exhibits a phase transition.

Thus, contrary to what happens on the Euclidian lattice, the Ising model on nonamenable graphs

undergoes a phase transition also at non zero value of the external field.

Though some properties of the Ising model are common to all nonamenable graphs, the particular

behavior of the system may differ from one family to another one, also depending on other geometric

parameters. Since we will be especially interested in hyperbolic graphs, we recall briefly the main
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results concerning the Ising model on these graphs, and stress which are the main differences from

the model on classical lattices.

It has been proved (see [30; 33; 34]) that the Ising model on H(v, s) exhibits two different phase

transitions appearing at inverse temperatures βc ≤ β
′
c . The first one, βc , corresponds to the occur-

rence of a uniqueness/non-uniqueness phase transition, while the second critical temperature refers

to a change in the properties of the free boundary condition measure µ f . Specifically, it is defined

as

β ′c := inf{β ≥ βc : µ f = (µ++µ−)/2} , (2.3)

where µ+ and µ− denote the extremal measures obtained by imposing, respectively, (+)- and (−)-

boundary condition. As is well explained in [34] (see also [8] for more details), using the Fortuin-

Kasteleyn representation it is possible to show that β ′c < ∞ for all hyperbolic graphs, in contrast

to the behavior of the model on regular trees where µ f 6= (µ+ + µ−)/2 for all finite β ≥ βc . From

Definition 2.3 it turns out that for βc ≤ β < β
′
c , when this interval is not empty (see [34]), the

measure µ f is not a convex combination of µ+ and µ−. This implies the existence of a translation

invariant Gibbs state different from µ+ and µ−, in contrast to what happens on Zd [2].

Another interesting result concerning the Ising model on hyperbolic graphs, is due to Sinai and

Series [30]. For low enough temperatures and h = 0, they proved the existence of uncountably

many mutually singular Gibbs states which they conjectured to be extremal. This points out, once

more, the difference between the system on hyperbolic graphs and on classical lattices, where it is

known that the extremal measures are at most a countable number.

In this paper we are interested in the region of the phase diagram where the dynamics is highly

sensitive to the boundary condition, namely when the temperature is low and the magnetic field is

zero (phase coexistence region). Let us explain the model in detail and give the necessary definitions

and notation.

Let G = (V, E) be an infinite (g, o)-growing graph with maximal degree∆. For any r ∈ N, we denote

by Br = (Vr , Er) ⊂ G the ball with radius r centered in o. When it does not create confusion, we

identify the subgraphs of G with their vertex sets. Given a finite ball B ≡ Bm and an Ising spin

configuration τ ∈ ΩG , let ΩτB ⊂ {±1}B∪∂V B be the set of configurations that agree with τ on ∂V B.

Analogously, for any subset A ⊆ Vm and any η ∈ ΩτB, we denote by Ω
η
A ⊂ {±1}A∪∂V A the set of

configurations that agree with η on ∂V A. The Ising model on A with η-boundary condition (b.c.)

and zero external field is thus specified by the Gibbs probability measure µ
η
A , with support on Ω

η
A ,

defined as

µ
η
A(σ) =

1

Z(β)
exp(β
∑

(x ,y)∈E(A)

σxσy ) , (2.4)

where Z(β) is a normalizing constant and the sum runs over all pairs of nearest neighbors in the

induced subgraph on A= A∪ ∂V A.

Similarly, the Ising model on A with free boundary condition is specified by the Gibbs measure µA

supported on the set of configurations ΩA := {±1}A. This is defined as in (2.4) by replacing the sum

over E(A) in a sum over E(A), namely cutting away the influence of the boundary ∂V A. Notice that

when A= Vm, µ
η
Vm

is simply the Gibbs measure on B with boundary condition τ (η agrees with τ on

∂V Vm ≡ ∂V B) and µVm
is the Gibbs measure on B with free boundary condition.

We denote by FA the σ-algebra generated by the set of projections {πx}x∈A from {±1}A to {±1},

where πx : σ 7→ σx , and write f ∈ FA to indicate that f is FA-measurable. Finally, we recall
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that if f : ΩτB → R is a measurable function, the expectation of f w.r.t. µ
η
A is given by µ

η
A( f ) =∑

σ∈Ωµ
η
A(σ) f (σ) and the variance of f w.r.t. µ

η
A is given by Var

η
A = µ

η
A( f

2)− µ
η
A( f )

2. We usually

think of them as functions of η, that is µA( f )(η) = µ
η
A( f ) and VarA( f )(η) = Var

η
A( f ). In particular

µA( f ) , VarA( f ) ∈ FAc .

In the following discussion we will be concerned with the Ising model on B with (+)-b.c. and we

will use the abbreviations Ω+,F and µ instead of Ω+B ,FB and µ+B , and thus µ( f ) and Var( f ) instead

of µ+B ( f ) and Var+B ( f ).

2.3 Glauber dynamics and mixing time

The Glauber dynamics on B with (+)-boundary condition is a continuous time Markov chain

(σ(t))t≥0 on Ω+ with Markov generator L given by

(L f )(σ) =
∑

x∈B

cx(σ)
�

f (σx)− f (σ)
�

, (2.5)

where σx denotes the configuration obtained from σ by flipping the spin at the site x and cx(σ) is

the jump rate from σ to σx . We sometimes prefer the short notation ∇x f (σ) = [ f (σx)− f (σ)].

The jump rates are required to be of finite-range, uniformly positive, bounded, and they should

satisfy the detailed balance condition w.r.t. the Gibbs measure µ. Although all our results apply

to any choice of jump rates satisfying these hypothesis, for simplicity we will work with a specific

choice called heat-bath dynamics:

cx(σ) := µσx (σ
x) =

1

1+ωx(σ)
where ωx(σ) := exp(2βσx

∑

y∼x

σy ). (2.6)

It is easy to check that the Glauber dynamics is ergodic and reversible w.r.t. the Gibbs measure µ,

and so converges to µ by the Perron-Frobenius Theorem. The key point is now to determine the rate

of convergence of the dynamics.

A useful tool to approach this problem is the spectral gap of the generator L , that can be defined as

the inverse of the first nonzero eigenvalue of L .

Remark 2.5. Notice that the generator L is a non-positive self-adjoint operator on ℓ2(Ω+,µ). Its

spectrum thus consists of discrete eigenvalues of finite multiplicity that can be arranged as 0 = λ0 ≥

−λ1 ≥−λ2 ≥ . . . ,≥−λN−1, if |Ω+|= N, with λi ≥ 0.

An equivalent definition of spectral gap is given through the so called Poincaré inequality for the

measure µ. For a function f : Ω+ 7→ R, define the Dirichlet form of f associated to L by

D( f ) :=
1

2

∑

x∈B

µ
�

cx[∇x f ]2
�
=
∑

x∈B

µ(Varx( f )) , (2.7)

where the second equality holds under our specific choice of jump rates. The spectral gap of the

generator, cgap(µ), is then defined as the inverse of the best constant c in the Poincaré inequality

Var( f ) ≤ cD( f ) , ∀ f ∈ ℓ2(Ω+, µ), (2.8)
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or equivalently

cgap(µ) := inf

½
D( f )

Var( f )
;Var( f ) 6= 0

¾
. (2.9)

Denoting by Pt the Markov semigroup associated to L , with transition kernel Pt(σ,η) = e tL (σ,η),

it easy to show that

Var(Pt f ) ≤ e−2cgap(µ)t Var( f ) . (2.10)

The last inequality shows that the spectral gap gives a measure of the exponential decay of the

variance, and justifies the name relaxation time for the inverse of the spectral gap.

Moreover, let hσt denote the density of the distribution at time t of the process starting at σ w.r.t. µ,

i.e. hσt (η) =
Pt (σ,η)

µ(η)
. For 1 ≤ p ≤∞ and a function f ∈ ℓp(Ω+, µ), let ‖ f ‖p denote the ℓp norm of

f and define the time of convergence

τp =min

½
t > 0 : sup

σ
‖hσt − 1‖p ≤ e−1

¾
, (2.11)

that for p = 1 is called mixing time. A well known and useful result relating τp to the spectral gap

(see, e.g., [28]), when specializing to the Glauber dynamics yields the following:

Theorem 2.6. On an n-vertex ball B ⊂ G with (τ)-boundary condition,

cgap(µ)
−1 ≤ τ1 ≤ cgap(µ)

−1× cn , (2.12)

where µ= µτB and c is a positive constant independent of n. �

We stress that a different choice of jump rates (here we considered the heat-bath dynamics) only

affects the spectral gap by at most a constant factor. The bound stated in Theorem 2.6 is thus

equivalent, apart for a multiplicative constant, for any choice of the Glauber dynamics.

Before presenting our main result, we recall that the Glauber dynamics for the Ising model on

regular trees and hyperbolic graphs has been recently investigated by Peres et al. [17; 4]. In

particular, they consider the free boundary dynamics on a finite ball B ⊂ G, G hyperbolic graph or

regular tree, and prove that at all temperatures, the inverse spectral gap (relaxation time) scales at

most polynomially in the size of B, with exponent α(β) ↑ ∞ as β → ∞. Let us stress again that

under the same conditions, the dynamics on a cube of size n in the d-dimensional lattice, relaxes in

a time exponentially large in the surface area n(d−1)/d .

2.4 Main results

We are finally in position to state our main results.

Theorem 2.7. Let G be an infinite (o, g)-growing graph with maximal degree ∆. Then, for all β ≫ 1,

the Glauber dynamics on the n-vertex ball B with (+)-boundary condition and zero external field has

spectral gap Ω(1).

As a corollary we obtain that, under the same hypothesis of the theorem above, the mixing time of

the dynamics is bounded linearly in n (see Theorem 2.6).
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This result, applied to hyperbolic graphs with sufficiently high degree, provides a convincing exam-

ple of the influence of the boundary condition on the mixing time. Indeed, for all β ≫ 1, due to the

fact that the free boundary measure on H(v, s) is a convex combination of µ+ and µ− (see section

2.2), it is not hard to prove that the spectral gap for an n-vertex ball in the hyperbolic graph with

free boundary condition, is decreasing with n. Most likely it will be of order n−α(β), with α(β) ↑ ∞

as β → ∞, as in the lower bound given in [17; 4]. The presence of (+)-boundary condition thus

gives rise to a jump of the spectral gap, and consequently it speeds up the dynamics.

Remarks.

(i) We recall that on Zd not much is known about the mixing time when β > βc , h = 0 and the

boundary condition is (+), though it has been conjectured that the it should be polynomial in n

(see [9] and [5]).

(ii) A result similar to Theorem 2.7 has been obtained for the spectral gap, and thus for the mixing

time, of the dynamics on a regular b-ary tree (see [26]). In particular it has been proved that

while under free-boundary condition the mixing time on a tree of size n jumps from log n to

nΘ(β) when passing a certain critical temperature, it remains of order log n at all temperatures

and at all values of the magnetic field under (+)-boundary condition. However we stress that

while trees do not have any cycle, growing graphs, and in general nonamenable graphs, can have

many cycles, as well as the Euclidean lattices. The theorem above can thus be looked upon as an

extension of this result to a class of graphs which in some respects are similar to Euclidean lattices.

(iii) At high enough temperatures (one phase region) the spectral gap of the dynamics on a ball B ⊂ G,

where G is an infinite graph with bounded degree, is Ω(1) for all boundary conditions, as can

be proved by path coupling techniques [32]. This suggests that the result of Theorem 2.7 should

hold for all temperatures, as for the dynamics on regular trees, and not only for β ≫ 1. At the

moment, what happens in the intermediate region of temperature, still remains an open question.

The following result provides a further example of influence of boundary conditions on the dynam-

ics.

Theorem 2.8. For all finite g ∈ N, there exists an infinite (g, o)-growing graph G with bounded degree,

such that, for all β ≫ 1, the Glauber dynamics on the n-vertex ball B with free boundary condition and

zero external field has spectral gap O
�

e−θn
�

, with θ = θ(g,β)> 0.

Combining this with Theorem 2.6 and Theorem 2.7, we get a first rigorous example where the mix-

ing time jumps abruptly from exponential to linear in n while passing from one boundary condition

to another.

We now proceed to sketch briefly the ideas and techniques used along the paper.

The proof of our main result, Theorem 2.7, is based on the variational definition of the spectral gap

and it is aimed to show that the Gibbs measure relative to the system satisfies a Poincaré inequality

with constant c independent of the size of B. We will first analyze the equilibrium properties of the

system conditioned on having (+)-boundary, and under this condition we will deduce a special kind

of correlation decay between spins. The proof of this spatial mixing property rests on a disagreement

argument and on a Peierls type argument.
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The second main step to prove Theorem 2.7, is deriving a Poincaré inequality for the Gibbs measure

from the obtained notion of spatial mixing. This will be achieved by first deducing, via coupling tech-

niques, a like-Poincaré inequality for the marginal Gibbs measure with support on suitable subsets,

and then iterating the argument to recover the required estimate on the variance.

The proof of Theorem 2.8 is given by the explicit construction of a growing graph with the property

of remaining "expander" even when the boundary of a finite ball is erased, as in the free measure.

Using a suitable test function, we will prove the stated exponentially small upper bound on the

spectral gap.

3 Mixing properties of the plus phase

In this section we analyze the effect of the (+)-boundary condition on the equilibrium properties of

the system. In particular, we prove that the Gibbs measure µ ≡ µ+B satisfies a kind of spatial mixing

property, i.e. a form of weak dependence between spins placed at distant sites.

Before presenting the main result of this section, we need some more notation and definitions.

Recall that for every integer i, we denoted by Bi = (Vi, Ei) the ball of radius i centered in o, and by

B = Bm the ball of radius m such that |Vm|= n. Let us define the following objects:

(i) the i-th level Li = {x ∈ V : d(x , o) = i} ≡ ∂V Bi−1;

(ii) the vertex-set Fi ⊆ B given by Fi := {x ∈ Bc
i−1
∩ B} ;

(iii) the σ-algebra Fi generated by the functions πx for x ∈ F c
i
= Bi−1.

We will be mainly concerned with the Gibbs distribution on Fi with boundary condition η ∈ Ω+,

which we will shortly denote by µ
η

i
= µ

η
Fi
= µ(· |η ∈ Fi); analogously we will denote by Var

η

i
the

variance w.r.t. µ
η

i
.

Notice that {Fi}
m+1
i=0

is a decreasing sequence of subsets such that Vm = F0 ⊃ F1 ⊃ . . . ⊃ Fm+1 = ;,

and in particular µi(µi+1( f )) = µi( f ), for all finite i, and µm+1( f ) = f . The set of variables

{µi( f )}i≥0 is a Martingale with respect to the filtration {Fi}i≥0.

For a given i ∈ {0, . . . , m} and a given subset S ⊂ Li , we set U = Fi+1 ∪ S and consider the Gibbs

measure conditioned on the configuration outside U being τ ∈ Ω+, which as usually will be denoted

by µτU .

We are now able to state the following:

Proposition 3.1. Let G a (g, o)-growing graph with maximal degree ∆. Then there exists a constant

δ = δ(∆) > 0 such that, for every β > δ

2g
, every τ ∈ Ω+, and every pair of vertices x ∈ S ⊂ Li and

y ∈ Li \ S, i ∈ {0, . . . , m},

|µτU(σx =+)−µ
τy

U (σx =+)| ≤ ce−β
′d(x ,y) , (3.1)

with β ′ := 2gβ −δ > 0 and for some constant c > 0.

Let us briefly justify the above result. Since the boundary of B is proportional to its volume, the

(+)-b.c. on B is strong enough to influence spins at arbitrary distance. In particular, as we will
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prove, the effect of the (+)-boundary on a given spin σx , weakens the influence on σx coming from

other spins (placed in vertices arbitrary near to x) and gives rise to the decay correlation stated in

Proposition 3.1. Notice that the correlation decay increases with β .

The proof of Proposition 3.1 is divided in two parts. First, we define a suitable event and show that

the correlation between two spins is controlled by the probability of this event. Then, in the second

part, we estimate this probability using a Peierls type argument. Throughout the discussion c will

denote a constant which is independent of |B| = n, but may depend on the parameters ∆ and g

of the graph, and on β . The particular value of c may change from line to line as the discussion

progresses.

3.1 Proof of Proposition 3.1

Let us consider two vertices x ∈ S ⊂ Li and y ∈ Li \ S, such that d(x , y) = ℓ, and a configuration

τ ∈ Ω+. Let τy,+ be the configuration that agrees with τ in all sites but y and has a (+)-spin

on y; define analogously τy,− and denote by µ
y,+

U and µ
y,−

U the measures conditioned on having

respectively τy,+- and τy,−-b.c.. With this notation and from the obvious fact that the event {σ :

σx =+} is increasing, we get that

|µτU(σx =+)−µ
τy

U (σx =+)| = µ
y,+

U (σx = +)−µ
y,−

U (σx = +) . (3.2)

In the rest of the proof we will focus on the correlation in the r.h.s. of (3.2).

In order to introduce and have a better understanding of the ideas and techniques that we will use

along the proof, we first consider the case ℓ= 1, which is simpler but with a similar structure to the

general case ℓ > 1.

3.1.1 Correlation decay: the case ℓ= 1

Assume that ℓ = 1, namely that x and y are neighbors. Denoting by µ−U the measure with (−)-b.c.

on U c = Bi \ {S} and (+)-b.c. on ∂V B, we get

µ
y,+

U (σx = +)−µ
y,−

U (σx = +) = µ
y,−

U (σx =−)−µ
y,+

U (σx =−)

≤ µ
y,−

U (σx =−)

≤ µ−U (σx = −) , (3.3)

where the last inequality follows by monotonicity. The problem is thus reduced to estimate the

probability of the event {σ : σx =−} w.r.t. µ−U .

Let K be the set of connected subsets of U containing x and write

K =
⊔

p≥1

Kp with Kp = {C ∈K s.t. |C |= p} .

For any configuration σ ∈ Ω+, we denote by K(σ) the maximal negative component in K admitted

by σ, i.e.

K(σ) ∈K s.t.

¨
σz =− ∀ z ∈ K (σ)

σz =+ ∀ z ∈ ∂V K(σ) ∩ U
(3.4)
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With this notation the event {σ : σx = −} can be expressed by means of disjoint events as

{σ : σx =−} =
⊔

p≥1

⊔

C∈Kp

{σ : K (σ) = C} , (3.5)

and then

µ−U (σx =−) =
∑

p≥1

∑

C∈Kp

µ−U(K
(σ) = C) . (3.6)

Let us introduce the symbol σ ∼ C for a configuration σ such that σC = − and σ∂V C∩U = +. The

main step in the proof is to show the following claim:

Claim 3.2. If G is a (g, o)-growing graph with maximal degree ∆, then, for any subset C ⊂ U,

µ−U (σ ∼ C)≤ e−2g β |C | . (3.7)

The proof of Claim 3.2 is postponed to subsection 3.2. Let us assume for the moment its validity

and complete the proof of the case ℓ= 1. By Claim 3.2 and from the definition of K(σ), we get

µ−U(K
(σ) = C)≤ e−2g β |C | . (3.8)

We now recall the following Lemma due to Kesten (see [16]).

Lemma 3.3. Let G an infinite graph with maximum degree ∆ and let Cp be the set of connected sets

with p vertices containing a fixed vertex v. Then |Cp| ≤ (e(∆+ 1))p.

Applying Lemma 3.3 to the set Kp, we obtain the bound |Kp| ≤ eδp, with δ = 1 + log(∆ + 1).

Continuing from (3.6), we finally get that for all β ′ = 2gβ −δ > 0, i.e. for all β > δ

2g
,

µ−U(σx =−) ≤
∑

p≥1

∑

C∈Kp

e−2g βp

≤
∑

p≥1

e−2gβpeδp

≤ ce−β
′

(3.9)

which concludes the proof of (3.1) in the case ℓ= 1.

Notice that the argument above only involves the spin at x , and thus applies for all pairs of x , y ∈ Li ,

independently of their distance. Anyway, when d(x , y) > 1 this method does not provide the decay

with the distance stated in Proposition 3.1, and a different approach is required.

3.1.2 Correlation decay: the case ℓ > 1

Let us now consider two vertices x ∈ S ⊂ Li and y ∈ Li \ S, such that d(x , y) = ℓ > 1. Before

defining new objects, we want to clarify the main idea beyond the proof. Since the measure µτU fixes

the configuration on all sites in U c ≡ Bi \S, the vertex y can communicate with x only through paths

going from x to y and crossing vertices in U . However, the effect of this communication can be very

small compared to the information arriving to x from the (+)-boundary. In particular, if every path
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starting from y crosses a (+)-spin before arriving to x , then the communication between them is

interrupted. Let us formalize this assertion.

We denote by C the set of connected subsets C ⊆ U ∪ {y} such that y ∈ C , and call an element

C ∈ C a component of y . For every configuration σ ∈ Ω+, we define C (σ) as the maximal component

of y which is negative on C (σ) ∩ U , i.e

C (σ) ∈ C s.t.

¨
σz =− ∀ z ∈ C (σ) ∩ U

σz =+ ∀ z ∈ ∂V C (σ) ∩ U
. (3.10)

Observe that the spin on y is not fixed under the event {σ : C (σ) = C}. Finally, let C ; := {C ∈

C s.t. x 6∈ C} and define the event

A := {σ : C (σ) ∈ C ;} =
⊔

C∈C ;

{σ : C (σ) = C} . (3.11)

Then we have

µ
y,−

U (σx =+ |A) =
∑

C∈C ;

µ
y,−

U (σx =+, C (σ) = C |A)

=

∑
C∈C ; µ

y,−

U (σx =+, C (σ) = C )
∑

C∈C ; µ
y,−

U (C (σ) = C )

=

∑
C∈C ; µ

y,−

U (σx =+ |C
(σ) = C )µ

y,−

U (C (σ) = C )
∑

C∈C ; µ
y,−

U (C (σ) = C )

≥ min
C∈C ;

µ
y,−

U (σx =+ |C
(σ) = C) . (3.12)

Notice that when the measure µ
y,−

U is conditioned on the event {σ : C (σ) = C}, the spin configu-

ration on ∂V C is completely determined by the boundary condition: on ∂V C ∩ U it is given by all

(+)-spins and on ∂V C∩U c it corresponds to τy,−. Hence, spins on U\(C∪∂V C) become independent

of spins on C , and we get

µ
y,−

U ( · |C (σ) = C) = µ
y,−

Kx
( · |σz =+ , z ∈ ∂V C ∩ U)

= µ
y,+

U ( · |σz =+ , z ∈ (C ∪ ∂V C)∩ U)

≥ µ
y,+

U ( · ) , (3.13)

where the last inequality follows by stochastic domination. Being {σ : σx =+} an increasing event,

and from (3.12) and (3.13), we get

µ
y,−

U (σx = + |A)≥ µ
y,+

U (σx =+) ,

which with the obvious fact that µ
y,−

U (σx =+) ≥ µ
y,−

U (σx =+ |A)µ
y,−

U (A) , implies

µ
y,+

U (σx = +)−µ
y,−

U (σx =+) ≤ µ
y,−

U (Ac) . (3.14)

By monotonicity and being Ac a decreasing event, we get the inequality µ
y,−

U (Ac) ≤ µ−U (A
c) , where,

we recall, µ−U denotes the measure on U conditioned on having all (−)-spins on U c . We now focus

on µ−U (A
c).
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Let C 6=; denote the set of components of y containing x , and for every p ∈ N, let Cp be the set of

components in C 6=; with p vertices, i.e

Cp := {C ∈ C 6=; s.t. |C |= p} C 6=; :=
⊔

p>0

Cp.

Notice that if C ∈ C 6=;, then |C | ≥ ℓ+ 1, since d(x , y) = ℓ. Thus, Ac can be expressed by means of

disjoint events as

Ac =
⊔

p≥ℓ+1

⊔

C∈Cp

{σ : C (σ) = C} , (3.15)

and we get

µ−U(A
c) =
∑

p≥ℓ+1

∑

C∈Cp

µ−U (C
(σ) = C) . (3.16)

Since ∂V (C \ {y}) ∩ U ⊆ ∂V C ∩ U , we observe that the event {σ : C (σ) = C} ≡ {σ : σC\{y} =

− , σ∂V C∩U = +} is a subset of {σ : σC\{y} = − , σ∂V (C\{y})∩U = +} ≡ {σ : σ ∼ C \ {y}}. Applying

the result stated in Claim 3.2 to the set C \ {y}, we obtain the bound

µ−U (C
(σ) = C)≤ e−2g β(|C |−1) , (3.17)

which holds under the same hypothesis of the claim. Continuing from (3.16), we then have that for

all β ′ = 2gβ −δ > 0, i.e. for all β > δ

2g
,

µ−U (A
c) ≤
∑

p≥ℓ+1

∑

C∈Cp

e−2g β(p−1)

≤ eδ
∑

p≥ℓ

e−(2gβ−δ)p

≤ ce−β
′ℓ, (3.18)

where in the second line we used the bound |Cp| ≤ eδp due to Lemma 3.3. This concludes the proof

of Proposition 3.1. In the next subsection we will go back and prove Claim 3.2.

3.2 Proof of Claim 3.2

To estimate the probability µ−U(σ ∼ C), we now appeal to a kind of Peierls argument that runs as

follows (see also [15]). Given a subset C ⊆ U , we consider the edge boundary ∂EC and define

∂+C := {e = (z, w) ∈ ∂EC : z, w ∈ U}

∂−C := {e = (z, w) ∈ ∂EC : z or w ∈ U c}
. (3.19)

The meaning of this notation can be better understood if we consider a configuration σ ∈ Ω−U such

that C (σ) = C (see (3.10)). In this case σ has (−)-spins on both the end-vertices of every edge in

∂−C and a (+)-spin in one end-vertex of every edge in ∂+C . Similarly if we consider σ such that

K(σ) = C (see (3.4)).

For every σ ∈ Ω−U such that σ ∼ C , let σ∗ ∈ Ω−U denote the configuration obtained by a global spin

flip of σ on the subset C , and observe that the map σ→ σ∗ is injective. This flipping changes the
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Hamiltonian contribute of the interactions just along the edges in ∂EC . In particular σ∗ loses the

positive contribute of the edges in ∂+C and gains the contribute of the edges in ∂−C , and then we

get

H−U (σ
∗) = H−U (σ)− 2(|∂+C | − |∂−C |) . (3.20)

From this, we have

µ−U(σ ∼ C) =
∑

{σ:σ∼C}

e−βH−U (σ)

Z−U

≤

∑
{σ:σ∼C} e

−βH−U (σ)

∑
{σ:σ∼C} e

−βH−U (σ
∗)

= e−2β(|∂+C |−|∂−C |) , (3.21)

where in the first inequality we reduced the partition function to a summation over {σ : σ ∼ C} and

then we applied (3.20).

The following Lemma concludes the proof of Claim 3.2.

Lemma 3.4. Let G a (g, o)-growing graph with maximal degree ∆. Then, for every subset C ⊆ U,

|∂+C | − |∂−C | ≥ g|C | . (3.22)

Proof. For a subset C ⊆ U , we define the downward boundary of C , ∂↓C , as the edges of ∂EC such

that the endpoint in C is in a higher level (strictly small index) than the endpoint not in C , i.e.

∂↓C = {(u, v) ∈ ∂EC : ∃ j s.t. u ∈ L j ∩ C , v ∈ L j+1} .

We then define the not-downward boundary of C , ∂�C , as the edges in ∂EC which are not-downward

edges, i.e. ∂�C = ∂EC \ ∂↓C .

Notice that ∂↓C ⊆ ∂+C , while ∂�C ⊇ ∂−C . In particular, inequality (3.22) follows from the bound

|∂↓C | − |∂�C | ≥ g|C | . (3.23)

For all j ≥ 0, define C j = C ∩ L j and notice that, by the growing property of G,

|∂↓C j | − |∂�C j| ≥ g|C j | . (3.24)

Moreover, one can easily realize that

|∂↓C | − |∂�C |=
∑

j≥0

|∂↓C j | − |∂�C j| . (3.25)

In fact, all edges belonging to ∂EC j , for some j, but not belonging to ∂EC , are summed once as down-

ward edges and subtracted once as non-downward edges. In conclusion, the last two inequalities

imply bound (3.23) and conclude the proof of the lemma.
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4 Fast mixing inside the plus phase

In this section we will prove that the spectral gap of the Glauber dynamics, in the situation described

by Theorem 2.7, is bounded from zero uniformly in the size of the system. From Definition 2.9 of

spectral gap, this is equivalent to showing that for all inverse temperature β ≫ 1, the Poincaré

inequality

Var( f )≤ cD( f ) , ∀ f ∈ L2(Ω+,F ,µ)

holds with constant c independent of the size of B.

First, we give a brief sketch of the proof. The rest of the section is divided into two parts. In the

first part, from the mixing property deduced in section 3 and by means of coupling techniques, we

derive a Poincaré inequality for some suitable marginal Gibbs measures. Then, in the second part,

we will run a recursive argument that together with some estimates, also derived from Proposition

3.1, will yield the Poincaré inequality for the global Gibbs measure µ.

4.1 Plan of the Proof

Let us first recall the following decomposition property of the variance which holds for all subsets

D ⊆ C ⊆ B,

Var
η
C( f ) = µ

η
C[VarD( f )] + Var

η
C[µD( f )] . (4.1)

Applying recursively (4.1) to subsets B ≡ F0 ⊃ F1 ⊃ . . . ⊃ Fm+1 = ; and recalling the relations

µi(µi+1( f )) = µi( f ) and µm+1( f ) = f , we obtain

Var( f ) = µ[Varm( f )] + Var[µm( f )]

= µ[Varm(µm+1( f ))] +µ[Varm−1(µm( f ))] + Var[µm−1(µm( f ))]

=
...

=

m∑

i=0

µ[Vari(µi+1( f ))] . (4.2)

Notice that (4.2) can also be seen as a decomposition of the Martingale given by the set of variables

{µi( f )}i≥0 respect to the filtration {Fi}i≥0.

To simplify the notation we define gi := µi( f ) for all i = 0, . . . , m+1. Notice that gi ∈ Fi . Inserting

gi in (4.2), we then have that

Var( f ) =

m∑

i=0

µ[Vari(gi+1)] . (4.3)

The proof of the Poincaré inequality for µ, with constant independent of the size of the system, is

given in the following two steps:

1. Proving that ∀τ ∈ Ω+ and i ∈ {0, . . . , m}, there exist suitable vertex-subsets {Kx}x∈Li
, Kx ∋ x ,

such that the like-Poincaré inequality

Varτi (gi+1)≤ c
∑

x∈Li

µτi (VarKx
(gi+1)) (4.4)

holds with constant c uniformly bounded in the size of Li;
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2. Relating the variance of gi = µi( f ) to the variance of f in order to get an inequality of the

kind
m∑

i=0

∑

x∈Li

µ(VarKx
(gi+1))≤ cD( f ) + ǫ

m∑

i=0

∑

x∈Li

µ(VarKx
(gi+1)) (4.5)

with ǫ a small quantity for β ≫ 1.

Notice that from (4.5) the inequality

m∑

i=0

∑

x∈Li

µ(VarKx
(gi+1))≤ c(1− ǫ)−1D( f )

follows with c(1− ǫ)−1 = Ω(1) for all β ≫ 1. Together with Eqs. (4.3) and (4.4), this will establish

the required Poincaré inequality for µ and therefore will conclude the proof of Theorem 2.7.

4.2 Step 1: From correlation decay to Poincaré inequality

In this section we prove that under the same hypothesis of Proposition 3.1, the marginal of the

conditioned Gibbs measure on some suitable subsets, satisfies a Poincaré inequality with constant

independent of the size of these subsets.

To state the result, let us fix a subset S ⊆ Li and a configuration τ ∈ Ω+. We then define the measure

ντS (σ) :=
∑

η:ηS=σS

µ(η |τ ∈ FBi\S
) , (4.6)

which is the marginal of the Gibbs measure µτFi+1∪S on S, and denote by Varντ
S

the variance w.r.t. ντS .

We state the following:

Theorem 4.1. For all β ≫ 1 and for every subset S ⊆ Li , τ ∈ Ω
+ and f ∈ L2(Ω,FS ,ντS ), the measure

ντS satisfies the Poincaré inequality

Varντ
S
( f )≤ c0

∑

x∈S

ντS (Varx( f )) . (4.7)

with c0 = c0(β ,∆, g) = 1+O(e−cβ ).

Remark 4.2. Before proceeding with the proof of Theorem 4.1, we point out that this result includes,

as a particular case, inequality (4.4) for subsets Kx = Fi+1 ∪ {x}. To see that, choose S = Li so that

µ(· |FBi\S
) ≡ µi . An easy computation shows that, for every function f ∈ Fi+1, ντLi

( f ) ≡ µτi ( f ) and

ντLi
(Varx( f )) = µ

τ
i (VarKx

( f )). Inequality (4.7) then corresponds to the like-Poincaré inequality

Varτi (gi+1)≤ c0

∑

x∈Li

µτi (VarKx
(gi+1)) ,

which concludes the first step of the proof of Theorem 2.7.
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4.2.1 Proof of Theorem 4.1

The proof of Theorem 4.1 rests on the so called coupling technique. This is a useful method to

bound from above the mixing time of Markov processes, introduced for the first time in this setting

by Aldous [1] and subsequently refined to the path coupling [3; 21]. See also [18] for a wider

discussion on the coupling method.

A coupling of two measure µ1 and µ2 on Ω is any joint distribution ρ on Ω×Ω whose marginal are

µ1 and µ2 respectively. Here, we want to construct a coupling of two Glauber dynamics on ΩS with

same reversible measure ντS but different initial configurations. We denote by LS the generator of

this dynamics. We also recall that for all η ∈ ΩτS , x ∈ S and a ∈ {±1}, the jump rates of the heat

bath version of the dynamics (see Def. 2.6 ) are given by

cx(η, a) = ντS (σx = a |η ∈ FS\x)

= µ(σx = a |η ∈ FS\x ,τ ∈ FBi\S
)

= µ
η
Kx
(σx = a) , (4.8)

where in the second line we applied the definition of ντS and used that {σx = a} ∈ FS , and in the

last line we adopt the notation Kx := Fi+1 ∪ {x}.

We now consider the coupled process (η(t),ξ(t))t≥0 on ΩS×ΩS defined as follows. Given the initial

configurations (η,ξ), we let the two dynamics evolve at the same time and update the configurations

at the same vertex. We then chose the coupling jump rates c̃x((η, a), (ξ, b)) to go from (η,ξ) to

(ηx ,a,ξx ,b), with a, b ∈ {±1}, as the optimal coupling (see [18]) between the jump rates µ
η
Kx
(σx =

a) and µ
ξ
Kx
(σx = b). More explicitly, for a ∈ {±1}, they are given by

(
c̃x((η, a), (ξ, a)) =min{µ

η
Kx
(σx = a) ; µ

ξ
Kx
(σx = a)}

c̃x((η, a), (ξ,−a)) =max{0 ; µ
η
Kx
(σx = a)−µ

ξ
Kx
(σx = a)}

(4.9)

We denote by fL the generator of the coupled process, and by ePt the correspondent Markov semi-

group. Notice that from our choice of coupling jump rates, we get that the probability of disagree-

ment in x , after one update in x of (η,ξ), is given by

P
x

dis(η,ξ) := |µ
η
Kx
(σx =+)−µ

ξ
Kx
(σx = +)| . (4.10)

Let us now consider the subset H ⊂ ΩS ×ΩS given by all couples of configurations which differ by

a single spin flip in some vertex of S. One can easily verify that the graph (ΩS , H) is connected and

that the induced graph distance between configurations (η,ξ) ∈ ΩS ×ΩS , D(η,ξ), just corresponds

to their Hamming distance. Let us also denote by Eη,ξ[D(η(t),ξ(t))] the average distance at time t

between two coupled configurations of the process starting at (η,ξ). We claim the following:

Claim 4.3. For all β ≫ 1, there exists a positive constant α ≡ α(β , g,∆) such that, for every initial

configurations (η,ξ) ∈ H, the process (η(t),ξ(t))t≥0 satisfies the inequality

d

d t
Eη,ξ[D(η(t),ξ(t))]

¯̄
t=0 ≤−α . (4.11)
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Proof of Claim 4.3. The derivative in t of the average distance, computed for t = 0, can be written

as

d

d t
Eη,ξ[D(η(t),ξ(t))]

¯̄
t=0 =

d

d t

�ePt D
�
(η,ξ)
¯̄
t=0 = ( fL D)(η,ξ)

=
∑

x∈S

∑

a,b∈{±1}

c̃x((η, a)(ξ, b))[D(ηx ,a,ξx ,b)− D(η,ξ)] . (4.12)

Since (η,ξ) ∈ H, there exists a vertex y ∈ S such that ξ = ηy . If x = y , then P
x

dis
(η,ηx) = 0 and

the distance between the updated configurations decreases of one. While if x 6= y , with probability

P
x

dis
(η,ηy) the updated configurations have different spin at x and their distance increases by one.

Continuing from (4.12) we get, for all β ≫ 1,

d

d t
Eη,ξ[D(η(t),ξ(t))]

¯̄
t=0 = −1+

∑

x∈S

x 6=y

P
x

dis(η,ηy)

≤ −1+ c
∑

ℓ≥1

e−β
′ℓ∆ℓ

≤ −(1− ce−β
′

) , (4.13)

where in the second line we used the bound

P
x

dis(η,ηy) = |µ
η
Kx
(σx =+)−µ

ηy

Kx
(σx = +)| ≤ ce−β

′d(x ,y) , (4.14)

which holds for all β ′ = δβ − 2g > 0 as stated in Proposition 3.1. Claim 4.3 follows taking α =

(1− ce−β
′

) and β sufficiently large.

Using the path coupling technique (see [3]) we can extend the result of Claim 4.3 to arbitrary initial

configurations (η,ξ) ∈ ΩS ×ΩS , and obtain

d

d t
Eη,ξ[D(η(t),ξ(t))]

¯̄
t=0 ≤−αD(η,ξ) . (4.15)

From (4.15) it now follows straightforwardly that Eη,ξ[D(η(t),ξ(t))] ≤ e−α t D(η,ξ), and then we

get

P(η(t) 6= ξ(t))≤ Eη,ξ(D(η(t),ξ(t)))≤ e−α t D(η,ξ) . (4.16)

To bound the spectral gap cgap(ν
τ
S ) of the dynamics on S, we consider an eigenfunction f of LS

with eigenvalue −cgap(ν
τ
S ), so that

Eσ f (η(t)) = etLS f (η) = e−cgap(ν
τ
S ) t f (η) .

Since the identity function has eigenvalue zero, and therefore it is orthogonal to f , it follows that

ντS ( f ) = 0 and ντS (Eξ f (ξ(t))) = 0, where ντS is the invariant measure for LS . From these consider-

ations and inequality (4.16), we have

etLS f (σ) = Eη f (η(t))− ντS (Eξ f (ξ(t)))

=
∑

ξ

ντS (ξ)[ Eη f (η(t))− Eξ f (ξ(t)) ]

≤ 2‖ f ‖∞ sup
η,ξ

P(η(t) 6= ξ(t))

≤ 2‖ f ‖∞|S|e
−α t . (4.17)
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From the last computation, which holds for all η ∈ ΩτS and for all t, we finally obtain that cgap(ν
τ
S )≥

α independently of the size of S, which implies the Poincaré inequality (4.7) with constant c0 =

α−1 = 1+O(e−cβ ). This concludes the proof of Theorem 4.1. �

4.3 Step 2: Poincaré inequality for the global Gibbs measure

With the previous analysis we obtained a like-Poincaré inequality for the marginal of the measure

µi on the level Li (see Remark 4.2), which inserted in formula (4.3) provides the bound

Var( f ) ≤ c0

m∑

i=0

∑

x∈Li

µ
�
µi(VarKx

(gi+1))
�

. (4.18)

Using the same notation as in [26], let us denote the sum in the r.h.s. of (4.18) by Pvar( f ). The

aim of the following analysis is to study Pvar( f ) in order to find an inequality of the kind Pvar( f )≤

cD( f ) + ǫPvar( f ), with ǫ = ǫ(β , g,∆) < 1 independent of the size of the system. This would imply

that

Var( f )≤ c0 · Pvar( f )≤ c0

c

1− ǫ
D( f ) ,

and then would conclude the proof of Theorem 2.7.

In this last part of the section, we will first relate the local variance of gi = µi( f ) with the local

variance of f . This will produce a covariance term that will be analyzed using a recursive argument.

4.3.1 Reduction to covariance

In order to reconstruct the Dirichlet form of f from (4.18), we want to extract the local variance of

f from the local variance of gi+1. Notice that w.r.t. the measure µKx
, the function gi+1 just depends

on x . Fixing x ∈ Li and τ ∈ Ω+, and defining p(τ) := µτKx
(σx = +) and q(τ) := µτKx

(σx = −), we

can write

µi

�
VarKx

(gi+1)
�
=
∑

τ

µi(τ)p(τ)q(τ) (∇x gi+1(τ))
2 . (4.19)

Using the martingale property gi+1 = µi+1(gi+2), the variance VarKx
(gi+1) can be split in two terms,

stressing the dependence on x of gi+2 and of the conditioned measure µi+1. Let us formalize this

idea.

For a given configuration τ ∈ Ω+ we introduce the symbols

τ+ :=

¨
τ+y = τy if y 6= x

τ+y =+ if y = x
τ− :=

¨
τ−y = τy if y 6= x

τ−y = − if y = x

and define the density

hx(σ) :=
µτ

+

i+1(σ)

µτ
−

i+1
(σ)

, with µτ
−

i+1(hx) = 1 . (4.20)
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Whit this notation and continuing from (4.19), we get

µi(VarKx
(gi+1)) =
∑

τ

µi(τ)p(τ)q(τ)
�
∇x µi+1(gi+2)(τ)

�2

=
∑

τ

µi(τ)p(τ)q(τ)
h
µτ
−

i+1(gi+2)−µ
τ+

i+1(gi+2)
i2

=
∑

τ

µi(τ)p(τ)q(τ)
h
µτ

+

i+1(∇x gi+2)−µ
τ−

i+1(hx , gi+2)
i2

≤ 2
∑

τ

µi(τ)p(τ)q(τ)

��
µτ

+

i+1(∇x gi+2)
�2
+
�
µτ
−

i+1(hx , gi+2)
�2�

(4.21)

Consider the first term of (4.21) and notice that µτ
+

i+1(∇x gi+2) = µ
τ+

i+1(∇x f ). To understand this

fact, it is enough to observe that the dependence on x of gi+2 = µi+2( f ) comes only from f , since

the b.c. on Bi+1 is fixed equal to τ+. Replacing ∇x gi+2 by ∇x f and applying the Jensen inequality,

we get

∑

τ

µi(τ)p(τ)q(τ)
�
µτ

+

i+1(∇x gi+2)
�2
≤
∑

τ

µi(τ)p(τ)q(τ)
�
µτ

+

i+1

�
∇x f
�2�

. (4.22)

Now, notice that p(τ)µτ
+

i+1(σ
+) = µτKx

(σ+) = µσx (σx = +)
�
µτKx
(σ+) +µτKx

(σ−)
�

. This, together

with the fact that ∇x f does not depend on x , means that the expression on the r.h.s. of (4.22)

equals to

∑

τ

µi(τ)q(τ)
∑

σ

µτKx
(σ)µσx (σx =+)

�
∇x f (σ)
�2
≤
∑

τ

µi(τ) inf
σ∈ΩτKx

¨
q(τ)

µσx (σx = −)

«
. (4.23)

Since σ agrees with τ on K c
x , then

q(τ)

µσx (σx = −)
=
µτKx
(σx = −)

µτKx
(σx =−|σ)

=
µτKx
(σ)

µτKx
(σ|σx =−)

≤ hx(σ) , (4.24)

and hence, infσ

§
q(τ)

µσx (σx=−)

ª
≤ ‖hx‖∞.

To bound ‖hx‖∞, we first write

hx(σ) =
µτ

kx
(σ|σx = +)

µτ
kx
(σ|σx = −)

=
µτ

kx
(σx = +|σ)

µτ
kx
(σx = −|σ)

·
µτ

kx
(σx = −)

µτ
kx
(σx = +)

. (4.25)

Taking the supremum over σ of hx , we then have

‖hx‖∞ ≤
1

µτ
−

i+1
(σy =+;∀y ∈ Nx ∩ Li+1)

≤
1

1−
∑

y∈Nx∩Li+1
µ−

i+1
(σy =−)

, (4.26)

where we denoted by µ−
i+1

the measure conditioned on having all minus spins in Bi and plus spins

in ∂V B. Inequality (3.9), applied to U = Fi+1, implies that

µ−i+1(σy = −)≤ ce−β
′

, (4.27)
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with β ′ = 2gβ −δ as in Proposition 3.1. Combining (4.26) and (4.27), we get that for all β ≥ δ

2g
,

‖hx‖∞ ≤ 1+ ce−β
′

. (4.28)

Altogether, inequalities (4.22)-(4.28) imply that

∑

τ

µi(τ)p(τ)q(τ)
�
µτ

+

i+1(∇x gi+2)
�2
≤ c1µi

�
Varx( f )
�

, (4.29)

with c1 = c1(β ,∆, g) = 1 + O(e−cβ ). Thus, summing both sides of (4.21) over x ∈ Li and i ∈

{0, . . . , m}, and applying inequality (4.29), we obtain

Pvar( f ) ≤ 2c1D( f ) + 2

m∑

i=0

∑

x∈Li

µ

�∑

τ

µi(τ)p(τ)q(τ)
�
µτ
−

i+1(hx , gi+2)
�2�

. (4.30)

Notice that since gm+2 ≡ f is constant w.r.t. µm+1, then µτ
−

m+1(hx , gm+2)≡ 0 and the value m can be

removed from the summation over i in the r.h.s. of (4.30).

It now remains to analyze the covariance µτ
−

i+1(hx , gi+2).

4.3.2 Recursive argument

Before going on with the proof, we need some more definitions and notation. For every x ∈ Li , let

Dx denote the set of nearest neighbors of x in the level Li+1 (descendants of x). Given x ∈ Li and

ℓ ∈ N, let us define the following objects:

(i) Dx ,ℓ := {y ∈ Li+1 : d(y, Dx)≤ ℓ} is the ℓ-neighborhood of Dx in Li+1;

(ii) Fx ,ℓ := σ
�
σy : y ∈ Bi+1 \ Dx ,ℓ

�
is the σ-algebra generated by the spins on Bi+1 \ Dx ,ℓ;

(iii) µx ,ℓ( · ) := µ (· |Fx ,ℓ) is the Gibbs measure conditioned on the σ-algebra Fx ,ℓ.

We remark that Dx ,0 = Dx , and that there exists some ℓ0 ≤ 2(i+1) such that, for all integers ℓ≥ ℓ0,

Dx ,ℓ = Li+1 and µx ,ℓ = µi+1.

We also remark that for any function f ∈ L1(Ω,Fi+1,µ), the set of variables {µx ,ℓ( f )}ℓ∈N is a

Martingale with respect to the filtration {Fx ,ℓ}ℓ=0,1,...,ℓ0
.

Let us now come back to our proof and recall the following property of the covariance. For all

subsets D ⊆ C ⊆ B,

µ
η
C( f , g) = µ

η
C(µD( f , g)) +µ

η
C(µD( f ),µD(g)) . (4.31)

Since the support of µi+1 strictly contains the support of µx ,0, we can apply the property (4.31) to

the square covariance (µτ
−

i+1(hx , gi+2))
2 appearing in (4.30), in order to get

(µτ
−

i+1(hx , gi+2))
2 ≤ 2(µτ

−

i+1(µx ,0(hx , gi+2)))
2+ 2(µτ

−

i+1(µx ,0(hx),µx ,0(gi+2)))
2 . (4.32)

The first term in the r.h.s. of (4.32) can be bounded, by the Schwartz inequality, as

(µτ
−

i+1(µx ,0(hx , gi+2)))
2 ≤ µτ

−

i+1(Varx ,0(hx)) ·µ
τ−

i+1(Varx ,0(gi+2)) . (4.33)
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The second term can be rearranged and bounded as follows:

[µτ
−

i+1(µx ,0(hx),µx ,0(gi+2))]
2 =
h
µτ
−

i+1

�
µx ,0(hx)−µi+1(hx), gi+2

�i2

=


µτ−i+1



ℓ0∑

ℓ=1

�
µx ,ℓ−1(hx)−µx ,ℓ(hx)

�
, gi+2






2

≤

ℓ0∑

ℓ=1

ℓ2
h
µτ
−

i+1(µx ,ℓ−1(hx)−µx ,ℓ(hx), gi+2)
i2

=

ℓ0∑

ℓ=1

ℓ2
h
µτ
−

i+1

�
µx ,ℓ(µx ,ℓ−1(hx), gi+2)

�i2
, (4.34)

where in the second line, due to the fact that µx ,ℓ0
= µi+1 for some ℓ0, we substituted µx ,0(hx)−

µi+1(hx) by the telescopic sum
∑ℓ0
ℓ=1
(µx ,ℓ−1(hx)− µx ,ℓ(hx)) . Applying again the Cauchy-Schwartz

inequality to the last term in (4.34), we get

[µτ
−

i+1(µx ,0(hx),µx ,0(gi+2))]
2 ≤

≤

ℓ0∑

ℓ=1

ℓ2µτ
−

i+1

�
Varx ,ℓ(µx ,ℓ−1(hx))

�
·µτ

−

i+1

�
Varx ,ℓ(gi+2)
�

(4.35)

To conclude the estimate on the covariance, it remains to analyze the three quantities appearing in

(4.33) and (4.35):

(i) µτ
−

i+1

�
Varx ,ℓ(gi+2)
�

, for all ℓ= 0,1, . . . ,ℓ0;

(ii) µτ
−

i+1(Varx ,0(hx));

(iii) µτ
−

i+1

�
Varx ,ℓ(µx ,ℓ−1(hx))

�
, for all ℓ= 1, . . . ,ℓ0 ,

We proceed estimating separately these three terms.

First term: Poincaré inequality for the marginal measure on Dx ,ℓ.

Let us consider the variance Varx ,ℓ(gi+2) appearing in (i). By definition, the function gi+2 depends

on the spin configuration on Bi+1. Since the measure µ
η

x ,ℓ
fixes the configuration on Bi+1 \ Dx ,ℓ, it

follows that

µ
η

x ,ℓ
(gi+2) = µ

η

x ,ℓ|Dx ,ℓ

(gi+2) .

Thus, for every configuration η ∈ Ω+, we can apply the Poincaré inequality stated in Theorem (4.1)

to Var
η

x ,ℓ
(gi+2), and obtain the inequality

µτ
−

i+1

�
Varx ,ℓ(gi+2)
�
≤ c0

∑

y∈Dx ,ℓ

µτ
−

i+1(VarKy
(gi+2)), (4.36)

with c0 = 1+O(e−cβ ) independent of the size of system.
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Second term: computation of the variance of hx .

Notice that, from definition (4.20), it turns out that hx only depends on the spin configuration on

Dx . In particular, for all η which agrees with τ− on Bi , µ
η
x ,0(hx) = 0 and

Var
η
x ,0(hx)≤ ‖hx‖

2
∞ − 1 . (4.37)

Together with inequality (4.28), this yields the bound:

Var
η
x ,0(hx)≤ ce−β

′

=: kβ . (4.38)

Third term: the variance of µx ,ℓ−1(hx).

We now consider the variance Var
η

x ,ℓ
(µx ,ℓ−1(hx)), with η ∈ Ω+ and ℓ ≥ 1. Applying the result of

Theorem 4.1, we obtain

Var
η

x ,ℓ
(µx ,ℓ−1(hx)) ≤ c0

∑

z∈Dx ,ℓ

µ
η

x ,ℓ
(VarKz

(µx ,ℓ−1(hx)))

= c0

∑

z∈Dx ,ℓ\Dx ,ℓ−1

µ
η

x ,ℓ
(VarKz

(µx ,ℓ−1(hx))) , (4.39)

where in the last line we used that the function µx ,ℓ−1(hx) does not depend on the spin configuration

on Dx ,ℓ−1.

Let z ∈ Dx ,ℓ \ Dx ,ℓ−1, and for any configuration ζ ∈ Ω
η
Dx ,ℓ

, let us denote by ζ+ and ζ− the configura-

tions that agree with ζ in all sites but z, and have respectively a (+)-spin and a (−)-spin on z. The

summand in (4.39) can be trivially bounded as

µ
η

x ,ℓ
(VarKz

(µx ,ℓ−1(hx))) ≤
1

2
sup
ζ∈Ω

η

x ,ℓ

(µ
ζ+

x ,ℓ−1
(hx)−µ

ζ−

x ,ℓ−1
(hx))

2 . (4.40)

Moreover, by stochastic domination, the inequality µ
ζ+

x ,ℓ−1
(hx) ≥ µ

ζ−

x ,ℓ−1
(hx) holds. Let ν(σ,σ′)

denote a monotone coupling with marginal measures µ
ζ+

x ,ℓ−1
and µ

ζ−

x ,ℓ−1
. We then have

µ
ζ+

x ,ℓ−1
(hx)−µ

ζ−

x ,ℓ−1
(hx) =
∑

σ,σ′

ν(σ,σ′)
�
hx(σ)− hx(σ

′)
�

≤ ‖hx‖∞ ν(σy 6= σ
′
y , y ∈ Dx)

≤ ∆‖hx‖∞ max
y∈Dx

�
ν(σy =+)− ν(σ

′
y =+)
�

= ∆‖hx‖∞ max
y∈Dx

(µ
ζ+

x ,ℓ−1
(σy =+)−µ

ζ−

x ,ℓ−1
(σy = +)), (4.41)

where we used that the function hx only depends on the spins on Dx .

From Proposition 3.1, with U = Fi+2 ∪ Dx ,ℓ, and since d(z, y) ≥ d(z, Dx) ≥ ℓ, the probability of

disagreement appearing in (4.41) can be bounded as

µ
ζ+

x ,ℓ−1
(σy =+)−µ

ζ−

x ,ℓ−1
(σy =+)≤ c e−β

′ℓ . (4.42)
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Putting together formulas (4.39)-(4.42), and applying inequality (4.28), we obtain that for all η ∈

Ω+,

Var
η

x ,ℓ
(µx ,ℓ−1(hx)) ≤ k′β e−2β ′ ℓ (4.43)

with k′
β
= c(1+O(e−cβ )) .

Conclusion.

Let us go back to inequalities (4.33) and (4.35). Applying bounds (4.36),(4.38) and (4.43), we get

respectively

• (µτ
−

i+1(µx ,0(hx , gi+2)))
2 ≤ kβ

∑

y∈Dx

µτ
−

i+1(VarKy
(gi+2)),

• [µτ
−

i+1(µx ,0(hx),µx ,0(gi+2))]
2 ≤ k′β

ℓ0∑

ℓ=1

ℓ2e−2β ′ ℓ
∑

y∈Dx ,ℓ

µτ
−

i+1(VarKy
(gi+2)),

where we included in kβ and k′
β

all constants non depending on β .

For all β ≫ 1, there exists a constant ǫ ≡ ǫ(β , g,∆) = O(e−cβ ) such that kβ ≤ ǫ and k′
β
ℓ2e−β

′ℓ ≤

k′
β

e−β
′

≤ ǫ. Substituting ǫ in the inequalities above and summing the two terms as in (4.32), we

obtain
�
µτ
−

i+1(hx , gi+2)
�2
≤ ǫ

ℓ0∑

ℓ=0

e−β
′ℓ
∑

y∈Dx ,ℓ

µτ
−

i+1(VarKy
(gi+2)) .

Inserting this result in the second term of formula (4.30) and rearranging the summation, we get

m−1∑

i=0

∑

x∈Li

µ

�∑

τ

µi(τ)p(τ)q(τ)
�
µτ
−

i+1(hx , gi+2)
�2�

≤ ǫ

m−1∑

i=0

∑

x∈Li

ℓ0∑

ℓ=0

∑

y∈Dx ,ℓ

e−β
′ℓµ(VarKy

(gi+2))

≤ ǫ

m−1∑

i=0

∑

y∈Li+1

µ(VarKy
(gi+2))

ℓ0∑

ℓ=0

e−β
′ℓn(ℓ) , (4.44)

where in the last line we denoted by n(ℓ) the factor which bounds the number of vertices x such

that a fixed vertex y belongs to Dx ,ℓ. Since n(ℓ) grows at most like ∆ℓ, the product e−β
′ℓn(ℓ) decays

exponentially with ℓ for all β ≫ 1. Thus the sum over ℓ ∈ {0, . . . ,ℓ0} can be bounded by a finite

constant c which will be included in the factor ǫ in front of the summations. Continuing from (4.44),

we get

m−1∑

i=0

∑

x∈Li

µ

�∑

τ

µi(τ)p(τ)q(τ)
�
µτ
−

i+1(hx , gi+2)
�2�

≤ ǫ

m∑

i=1

∑

y∈Li

µ(VarKy
(gi+1))

≤ ǫ Pvar( f ) . (4.45)
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Inserting this result in (4.30) and noticing that ǫ = O(e−cβ )< 1 for β large enough, we obtain

Pvar( f )≤ 2c1D( f ) + ǫPvar( f ) =⇒ Pvar( f )≤
2c1

1− ǫ
D( f ) .

Together with inequality (4.18), this implies that

Var( f )≤ c0Pvar( f )≤ c2D( f ) ,

that is the desired Poincaré inequality with c2 = c2(β , g,∆) = 2(1+ O(e−cβ )) independent of the

size of the system . Notice also that the lower bound on the spectral gap, 1/c2, increases with β and

converges to 1/2 when β ↑ ∞. This concludes the proof of Theorem 2.7. �

5 Influence of boundary conditions on the mixing time

In this section we discuss two examples of influence of the boundary condition on the mixing time

derived from Theorem 2.7. In particular, we first prove Lemma 2.3, which implies the applicability

of Theorem 2.7 to hyperbolic graphs with sufficiently high degree. Then we prove Theorem 2.8

providing an explicit example of growing graph which exhibits the behavior stated in the theorem.

5.1 Hyperbolic graphs

In this subsection we want to prove Lemma 2.3. Before starting the proof, let us recall the following

definition:

Definition 5.1. The number of ends, E (G), of a graph G = (V, E), is defined as

E (G) := sup
K⊂V

Kfinite

{ number of infinite connected components of G \ K } ,

where G \ K denotes the graph obtained from G by removing the vertices which belong to K and the

edges incident to these vertices.

It is well known that hyperbolic graphs have one-end, as well as all the lattices Zd with d ≥ 2. This

property, together with the planarity and the cycle-periodic structure of the hyperbolic graphs, will

be the main ingredient of the next proof.

Proof of Lemma 2.3. Consider a planar embedding of H(v, s) and assume, without loss of generality,

that the vertices of any ball Br around a fixed vertex o ∈ V , are in the infinite face of the graph.

With the same notation introduced in the previous sections, let us consider x ∈ Lr = ∂V Br−1. Let

Dx = Nx ∩ Lr+1 be the set of "descendants of x", and define

Sx := Nx ∩ Lr and Px := Nx ∩ Lr−1 ,

so that Nx = Dx ∪ Sx ∪ Px . Thus, when specialized to hyperbolic graphs H(v, s), the definition 2.2 of

growing graph corresponds to the condition:

min
x∈Lr ,r∈N

{Dx − Sx − Px}= min
x∈Lr ,r∈N

{v − 2(Sx + Px)}= g . (5.1)

Let us start verifying the following general properties:
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(i) Every vertex x ∈ Lr , has at least one neighbor in Lr+1, i.e. |Dx | ≥ 1;

(ii) Every vertex x ∈ Lr , has at most two neighbor in Lr , i.e. |Sx | ≤ 2;

(iii) Every vertex x ∈ Lr , has at most two neighbors in Lr−1, i.e. |Px | ≤ 2.

Property (i) is proved by contradiction. Assume the existence of a vertex x ∈ Lr such that Dx = ;.

By the periodic structure of the graph it follows that there are at least v vertices in Lr with no

descendants, spaced out by vertices in Lr connected to H(v, s) \ Br by at least one edge. Then,

it exists a finite path, from x to another vertex in Lr with no descendants, dividing two infinite

components. This is in contradiction we the property of having one end, thus we conclude that

|Dx | ≥ 1.

Property (ii) is also proved contradiction. Assume the existence of a vertex x ∈ Lr linked to three

vertices in Lr . Then there exist two faces, included in Br , both passing through x and one of its

neighbors on Lr , say y (see Fig. 5.2, left frame). Consequently, or Dy 6= ;, contradicting the

planarity of the graph or the property of having one-end, or Dy = ;, contradicting property (i). We

conclude that |Sx | ≤ 2.

Property (iii) is clearly satisfied if v = 3, as a consequence of property (i). Let v ≥ 4 and proceed by

induction. For all vertices x in the first level, we have obviously that |Px |= 1. Assume that property

(iii) holds for all vertices of Lr−1, and consider a vertex x ∈ Lr . If we assume by contradiction that

Px = 3, then there exist two faces, included in Br , both passing through x and one of its parents,

say y (see Fig. 5.2, right frame). Consequently, the vertex y can not have neighbors in Lr other

than x , because this would contradict the planarity of the graph or the property of having one-end.

On the other hand, if s > 3, y can not be linked to the other parents of x because this would

create a triangular face. Globally, and by the inductive hypothesis that |Py | ≤ 2, it follows that

|Ny | ≤ 3, which is a contradiction. Then Px ≤ 2, which completes the induction step for s > 3. If

s = 3, y is connected with the two other parents of x to create two triangular faces. Thus, by the

inductive hypothesis that |Py | ≤ 2, it follows that |Ny | = 5, which is a contradiction since v ≥ 7 for

all triangular tilings (recall the condition (v − 2)(s− 2) > 4). Then |Px | ≤ 2, and by induction this

concludes the proof of property (iii) also for s = 3.

Properties (ii) and (iii) imply that Sx+ Px ≤ 4. From (5.1), we then get that for all v ≥ 9, H(v, s) is a

growing graph with parameter g ≥ v−8. Moreover, it can be easily verified that if s = 3 (triangular

tilings), then g = v − 8, since in this case Sx + Px = 4 for some x ∈ V .

If s > 4, the above condition can be improved by proving the following properties:

(iv) If s = 2k, with k ≥ 2, then for every x ∈ Lr , Sx = 0;

(v) If s = 2k+ 1, with k ≥ 2, then for every x ∈ Lr , Sx + Px ≤ 2.

Let us prove property (iv) by induction. For all vertices x in the first level, we have obviously that

|Sx |= 0, otherwise we would have a triangular face. Assume that property (iv) holds for all vertices

of Lr−1, and consider a vertex x ∈ Lr . If we assume that x has a neighbor in Lr , say y , then there

exists a face F , included in Br , passing through x , y , and the respective parents (see Fig. 5.3, left

frame). The remaining sides of F are all included in Br−1, and by the inductive hypothesis they can

only connect vertices on subsequent levels. In particular, this face can only have an odd number of

sides, which is in contradiction with the hypothesis that s = 2k. We conclude that Sx = 0 for all

x ∈ V .
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Figure 5.2: The presence of more than two neighbors of x in the same level of x (left frame) or in the level

above x (right frame) is not consistent with the structure of hyperbolic graphs. The red lines correspond to

edges which are forbidden by the geometric properties of the graph.

Property (v) is clearly satisfied if v = 3, as a consequence of property (i). Thus let v ≥ 4 and assume

by contradiction that |Sx |+ |Px |= 3, which means, coherently to properties (ii) and (iii), that Sx = 2

and Px = 1 or viceversa. In both cases, there exist two faces, included in Br , passing through x and

one of its parents, say y (see Fig. 5.3, central and right frames). Then the vertex y can not have

neighbors in Lr other than x , because this would create a triangular face, or would contradict the

planarity of the graph or the property of having one-end. Analogously, y can not have neighbors

in Lr−1, because this would create a triangular or a square face, while s = 2k + 1 by hypothesis.

Then we get that |Ny | = 1+ |Py | ≤ 3, which is in contradiction with the hypothesis that v ≥ 4. We

conclude that |Sx |+ |Px | ≤ 2.
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Figure 5.3: Forbidden patterns. In the left frame it is shown that Sx 6= ; only if the number of side in each

face is odd. The right and central frames show that the condition |Sx |+ |Px | ≥ 3 is possible only if s = 3.

All together, properties (iii)-(v) imply that if s ≥ 4, then Sx + Px ≤ 2. Thus, for all couples (v, s) such

that s ≥ 4 and v ≥ 5, H(v, s) is a growing graph with parameter g ≤ v − 4. It can be easily verified

that if s ≥ 4 then g = v − 4, since Sx + Px = 2 for some x ∈ V .

Together with Theorem 2.7, the above lemma implies that for all (v, s) such that H(v, s) is a growing
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graph and for all β ≫ 1, the dynamics on an n-vertex ball of H(v, s) with (+)-boundary condition,

has spectral gap uniformly positive in n and mixing time at most linear in n. Comparing this result

with the behavior of the dynamics with free boundary condition [4], we get a convincible example

of the influence of boundary conditions on the mixing time.

5.2 Expanders

In this subsection we prove Theorem 2.8 by providing an explicit example of growing graph which

exhibits the behavior stated in the theorem.

5.2.1 Construction

Let us start with some definitions.

Let G = (V, E) be a finite graph. The edge isoperimetric constant of G, defined in (2.1) for infinite

graphs, is given by

ie(G) := min
;6=S⊂V

|S|≤
|V |
2

½
|∂E(S)|

|S|

¾
. (5.2)

For c > 0 and k, n ∈ N, we then have the following definition:

Definition 5.2. A finite graph G = (V, E) is called an (n, k, c)-expander if it is regular with degree k,

|V |= n, and ie(G) = c.

Notice that, since G is finite, ie(G) > 0 if and only if G is connected. In particular, every connected

k-regular graph on n vertices is an expander for some c > 0. However, one is usually interested in a

family of expanders, that is a sequence of (n, k, c)-expander graphs such that k is fixed, c ≥ ε > 0,

and n→∞. That c ≥ ε > 0 ensures that these graphs are highly connected, or, in other terms, that

the sequence of expanders converges to an infinite regular nonamenable graph. It is easy to see that

this happens only if k ≥ 3. On the other hand, for all k ≥ 3, a sequence of (n, k, c)-expanders exists,

as it has been proved by showing that k-regular random graphs on n vertices are expanders with

probability tending to 1 as n→∞ (probabilistic method). See [12] for a nice survey on expanders

and their applications.

Let T∆ denote an infinite rooted tree with constant degree ∆ and root o ∈ V , and assume that

∆ ≥ 6. Fix an integer d < ∆− 2, and connect the vertices on each level Lr = {x ∈ V : d(x , o) = r}

of the tree in such a way that induced subgraph on Lr is an (∆(∆− 1)r−1, kr , cr)-expander, with

3 ≤ kr ≤ d and isoperimetric constant cr uniformly positive in r . We denote the infinite graph

obtained with this procedure by X∆,d (see Fig. 5.4).

Notice that X∆,d has degree D ≥ ∆+ d, and by construction it is (g, o)-growing graph with g ≥

∆−2−d. Moreover, one can easily realize that the isoperimetric constant ie(Br) of the ball Br ⊂ X∆,d

centered in o, is uniformly positive in r ≥ 1, namely, there is a constant ε = ε(∆, d) > 0 such that

ie(Br)> ε for all r ∈ N.
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Figure 5.4: Construction of X 8,3 to first level. The red lines correspond to the edges of the expander in L1.

5.2.2 Free boundary dynamics finite balls of X∆,d

Let us consider the Glauber dynamics on the n-vertex ball B ≡ Bm of the graph X∆,d with free

boundary condition. We use the same notation of section 2.3, but here µ denotes the Gibbs measure

over Ω≡ ΩB = {±1}B with free boundary condition, that is, for all σ ∈ Ω,

µ(σ) =
1

Z(β)
exp(β
∑

(x ,y)∈E(B)

σxσy) . (5.3)

With this notation, we can state the following result.

Proposition 5.3. Let B the n-vertex ball of the graph X∆,d . Then, for all β ≫ 1, the Glauber dy-

namics on B with free boundary condition and zero external field, has spectral gap O(e−θn), with

θ = θ(∆, d,β)> 0.

Proof. For every σ ∈ Ω, let mB(σ) :=
∑

x∈Bσx be the magnetization of a configuration σ, and

define the following characteristic function:

1{mB>0}(σ) =

¨
1 if mB(σ)> 0

0 if mB(σ)≤ 0
. (5.4)

Without loss of generality we can restrict the analysis to odd values of n. Since in this case mB(σ) 6= 0

for all σ, by symmetry it follows that Var(1{mB>0}) = 1/4 and then, from (2.9),

cgap(µ)≤ 4D(1{mB>0}) = 2
∑

x∈B

µ
�

cx [∇x(1{mB>0})]
2
�

. (5.5)

Notice that∇x(1{mB>0})(σ) 6= 0 only if σ is such that |mB(σ)|= 1, namely only if there are (n+2)/2

spins in σ with the same value, and only if x is one of the (n+ 2)/2 vertices with spin of the same

sign of mB(σ). Then we get

D(1{mB>0}) ≤
n+2

4
µ(|mB|= 1) = n+2

2
µ(mB = 1) . (5.6)

For every configuration σ ∈ Ω, we define the subsets

A+(σ) := {x ∈ B s.t. σx =+} and A−(σ) = {x ∈ B s.t. σx =−} .
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Notice that the condition mB(σ) = 1 is satisfied if and only if |A+(σ)| = (n+ 1)/2 and |A−(σ)| =

(n−1)/2. Thus, any configuration σ with magnetization equal to 1, is univocally correspondent to a

partition of the vertex set of B into two subsets S and T of size (n+1)/2 and (n−1)/2, respectively,

such that A+(σ) = S and A−(σ) = T . Let P denote the set of these partitions, and define E(S, T ) as

the set of edges between S and T . Then we have

µ(mB = 1) =
∑

σ :mB(σ)=1

exp(−β
∑
(x ,y)∈E(B)σxσy)

Z(β)

=
∑

(S,T )∈P

exp(β(|E(S)|+ |E(T )| − |E(S, T )|) )

Z(β)

≤
∑

(S,T )∈P

exp(β(|E(S)|+ |E(T )| − |E(S, T )|) )

exp(β(|E(S)|+ |E(T )|+ |E(S, T )|) )

=
∑

(S,T )∈P

exp(−2β |E(S, T )|) . (5.7)

Notice that |E(S, T )| = |∂E T |. In particular, since B has uniformly positive isoperimetric constant,

namely ie(B)≥ ε > 0 for all n ∈ N,

|E(S, T )| ≥ ε|T |= ε

2
(n− 1) .

Continuing from (5.7), we get

µ(mB = 1) ≤
∑

(S,T )∈P

e−βε(n−1)

=

�
n

n−1

2

�
e−βε(n−1)

≤ 2ne−βε(n−1)

= ce−(βε−log 2)n , (5.8)

where in the third line we approximated the binomial factor using the Stirling formula. Inserting

this bound in (5.6) we get that, for all β >
log 2

ε
, there exists a positive constant θ = θ(∆, d,β) such

that

D(1{mB>0}) ≤
n+2

2
ce−(βε−log 2)n ≤ e−θn, (5.9)

which implies, by (5.5), that cgap(µ) = O(e−θn).

Theorem 2.8 follows from the above proposition, since by construction the infinite graph X∆,d is

growing with parameter g ≥ ∆− d − 2. Putting together Theorems 2.7 and Proposition 5.3, we

get the first rigorous example in which the mixing time is at most linear in n for the (+)-boundary

condition, while at least exponential in n for the free boundary condition.
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