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Abstract

We consider the random walk on supercritical percolation clusters in Z?. Previous papers have
obtained Gaussian heat kernel bounds, and a.s. invariance principles for this process. We show
how this information leads to a parabolic Harnack inequality, a local limit theorem and estimates
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1 Introduction

We begin by recalling the definition of bond percolation on ZZ: for background on percolation see
[18]. We work on the Euclidean lattice (Z4,E4), where d > 2 and E4 = {{x, y} : |x — y| = 1}. Let
Q=1{0,1}%, p €[0,1],and P = P, be the probability measure on  which makes w(e), e € Eq
i.i.d. Bernoulli r.v.,, with P(w(e) = 1) = p. Edges e with w(e) = 1 are called open and the open
cluster 6 (x) containing x is the set of y such that x «— y, that is x and y are connected by an open
path. It is well known that there exists p. € (0, 1) such that when p > p, there is a unique infinite
open cluster, which we denote 6, = 6, (w).

Let X = (X,,n € Z;, P}, x € 6,) be the simple random walk (SRW) on %,,. At each time step,
starting from a point x, the process X jumps along one of the open edges e containing x, with
each edge chosen with equal probability. If we write u,,(w) = 1if {x,y} is an open edge and 0
otherwise, and set u, = ). y My then X has transition probabilities

u
Px(x,y) = —. (1.1)
M
We define the transition density of X by
P (Xn=y)
pY(x,y) = ———. (1.2)
y

This random walk on the cluster 6, was called by De Gennes in [12] ‘the ant in the labyrinth’.
Subsequently slightly different walks have been considered: the walk above is called the ‘myopic
ant’, while there is also a version called the ‘blind ant’. See [19], or Section 5 below for a precise
definition.
There has recently been significant progress in the study of this process, and the closely related
continuous time random walk Y = (Y, t € [0,00), P¥, x € 6,,), with generator

2f() =352 G0 - F,
y X

We write .
P (Y, =Y)

Y

q;(x,y) = (1.3)
for the transition densities of Y. Mathieu and Remy in [20] obtained a.s. upper bounds on
sup, q;°(x, y), and these were extended in [2] to full Gaussian-type upper and lower bounds — see
[2, Theorem 1.1]. A quenched or a.s. invariance principle for X was then obtained in [25; 7; 21]:
an averaged, or annealed invariance principle had been proved many years previously in [14].

The main result in this paper is that as well as the invariance principle, one also has a local limit
theorem for p®’(x,y) and q;’(x,y). (See [17], XV5 for the classical local limit theorem for lattice
r.v.) For D > 0 write

kED)(x) — (ZntD)—d/Ze—lxlz/ZDt

for the Gaussian heat kernel with diffusion constant D.

Theorem 1.1. Let X be either the ‘myopic’ or the ‘blind’ ant random walk on 6,,. Let T > 0. Let
gw RY — 6. (w) be defined so that g@(x) is a closest point in 6y (w) to v/nx. Then there exist
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constants a, D (depending only on d and p, and whether X is the blind or myopic ant walk) such that
P-a.s. on the event {0 € 6},

lim sup sup
=00\ eRrd t>T

/2 (pe2, (0, 82 (x)) + P2 41(0, g2(x))) — 2a-1k£’”(x)] =0. (14

For the continuous time random walk Y we have

lim sup sup
%0 yerd t2T

n?/2¢° (0, (x)) — a‘lkED)(x)] =0, (1.5)

where the constants a, D are the same as for the myopic ant walk.

We prove this theorem by establishing a parabolic Harnack inequality (PHI) for solutions to the
heat equation on %,,. (See [2] for an elliptic Harnack inequality.) This PHI implies Holder continuity
of p2’(x,-), and this enables us to replace the weak convergence given by the CLT by pointwise
convergence. In this paper we will concentrate on the proof of (1.4) — the same arguments with
only minor changes give (1.5).

Some of the results mentioned above, for random walks on percolation clusters, have been
extended to the ‘random conductance model’, where u,, are taken as i.i.d.rv. in [0,00) — see
[9; 22;/25]. In the case where the random conductors are bounded away from zero and infinity, a
local limit theorem follows by our methods — see Theorem 5.7, If however the u,., have fat tails at 0,
then while a quenched invariance principle still holds, the transition density does not have enough
regularity for a local limit theorem — see Theorem 2.2 in [8].

As an application of Theorem/1.1/we have the following theorem on the Green’s function g,,(x, y)
on %é,,, defined (when d > 3) by

g,(x,¥) =J q(x, y)dt. (1.6)
0

Theorem 1.2. Let d > 3. (a) There exist constants 8,cq,...c4, depending only on d and p, and r.v.
R,, x € 74 satisfying

P(R, > n|x € €,) < cle_C2”5, 1.7)
such that
C3 Cq .
——— < g, Y) S ———— if [x —y| =R, AR,. (1.8)
|x — y|d—2 |x — y|d—2

(b) There exists a constant C = F(% —1)/(2n%2aD) > 0 such that for any € > 0 there exists M =
M (e, w) such that on {0 € 6},

(1-¢)C (1+¢)C
5 <8,(0,x) < ————— for |x| > M(w). (1.9)
|| |x|
(c) We have
lxllimoo Ix>~9E(g,,(0,x)]|0 € 6,,) = C. (1.10)

Remark. While (1.7) gives good control of the tail of the random variables R, in (1.8), we do not
have any bounds on the tail of the r.v. M in (1.9). This is because the proof of (1.9) relies on the
invariance principles in [25;/7;121], and these do not give a rate of convergence.



In Section 2 we indicate how the heat kernel estimates obtained in [2] can be extended to
discrete time, and also to variants of the basic SRW X. In Section 3 we prove the PHI for 4, using
the ‘balayage’ argument introduced in [3]. In the Appendix we give a self-contained proof of the
key equation in the simple fully discrete context of this section. In Section 4 we show that if the PHI
and CLT hold for a suitably regular subgraph ¢ of Z¢, then a local limit theorem holds. In Section
5 we verify these conditions for percolation, and prove Theorem[1.1l In Section 6, using the heat
kernel bounds for g;° and the local limit theorem, we obtain Theorem

We wrrite c, ¢’ for positive constants, which may change on each appearance, and c; for constants
which are fixed within each argument. We occasionally use notation such as c; 5 ; to refer to constant
¢; in Theorem 1.2.

2 Discrete and continuous time walks

Let I' = (G, E) be an infinite, connected graph with uniformly bounded vertex degree. We write d
for the graph metric, and B,(x,r) = {y : d(x,y) < r} for balls with respect to d. Given A C G, we
write JA for the external boundary of A (so y € dA if and only if y € G — A and there exists x € A
with x ~ y.) We set A=AU JA.

Let u,, be ‘bond conductivities’ on I'. Thus u,, is defined for all (x,y) € G x G. We assume
that u,, = u,, for all x,y € G, and that u,, = 0if {x,y} & E and x # y. We assume that the
conductivities on edges with distinct endpoints are bounded away from 0 and infinity, so that there
exists a constant Cy; such that

0< C];[l < Uyy <Cy whenever x ~ y, x # y. 2.1

We also assume that
0< Wy x < CM, for x € G; (22)

we allow the possibility that u,, > 0 so as to be able to handle ‘blind ants’ as in [19]. We define
U, =u({x}) = ZyeG Uyy, and extend u to a measure on G. The pair (T, u) is often called a weighted
graph. We assume that there exist d > 1 and Cy; such that

w(Bg(x,r)) < CUrd, r>1,x€aqG. (2.3)

The standard discrete time SRW X on (T, u) is the Markov chain X = (X,,n € Z,,P*,x € G) with
transition probabilities Py (x,y) given by (1.1). Since we allow u,, > 0, X can jump from a vertex
x to itself. We define the discrete time heat kernel on (T, u) by

P X, =y)

X

pa(x,y) = (2.4)

Let

LFO) =p" D ey (FO) = FOO). 2.5)
Yy

One may also look at the continuous time SRW on (T, u), which is the Markov process Y = (Y;,t €
[0,00), P*, x € G), with generator .. We define the (continuous time) heat kernel on (T, u) by

pPx(y, =
q.(x,y)= P=y) (2.6)

X



The continuous time heat kernel is a smoother object that the discrete time one, and is often slightly
simpler to handle. Note that p,, and q, satisfy

3‘1t(X,J’)
ot

We remark that Y can be constructed from X by making Y follow the same trajectory as X, but at
times given by independent mean 1 exponential r.v. More precisely, if M, is a rate 1 Poisson process,
we set Y, =X, t > 0. Define also the quadratic form

E(£,8) =122 1y (F () — FL((y) — g(x)). 2.7)
x oy

pn+1(x:}’)_pn(xa.)’):gpn(x:}’), ==%Qt(x:}’)-

[2] studied the continuous time random walk Y and the heat kernel q,(x,y) on percolation
clusters, in the case when u,, = 1 whenever {x, y} is an open edge, and u,, = 0 otherwise. It was
remarked in [2] that the same arguments work for the discrete time heat kernel, but no details were
given. Since some of the applications of [2] do use the discrete time estimates, and as we shall also
make use of these in this paper, we give details of the changes needed to obtain these bounds.

In general terms, [2] uses two kinds of arguments to obtain the bounds on q,(x, y). One kind
(see for example Lemma 3.5 or Proposition 3.7) is probabilistic, and to adapt it to the discrete time
process X requires very little work. The second kind uses differential inequalities, and here one does
have to be more careful, since these usually have a more complicated form in discrete time.

We now recall some further definitions from [2].

Definition Let Cy, Cp, and Cy, > 1 be fixed constants. We say B;(x,r) is (Cy, Cp, Cy )—good if:

Cyr? < p(Ba(x, 1)), (2.8)
and the weak Poincaré inequality
> PO = Famuy <Cor® >0 f) = F @)y, 2.9)
yE€B4(x,r) ¥,2€B4(x,Cy1r),z~y

holds for every f : B4(x,Cyr) — R. (Here j_de(x’,,) is the value which minimises the left hand side
of (2.9)).

We say By(x,R) is (Cy,Cp, Cy )-very good if there exists Ny = Np () < RY(d+2) guch that
B4(y,r) is good whenever B;(y,r) € B4(x,R), and Nz < r < R. We can always assume that Nz > 1.
Usually the values of Cy, Cp, Cy, will be clear from the context and we will just use the terms ‘good’
and ‘very good’. (In fact the condition that Ny < RY(@*2) is not used in this paper, since whenever
we use the condition ‘very good’ we will impose a stronger condition on Np).

From now on in the section we fix d > 2, Cy;, Cy, Cp, and Cy,, and take (I',u) = (G,E,u) to
satisfy (2.3). If f(n, x) is a function on Z, x G, we write

fn,x)=f(n+1,x) + f (n,x), (2.10)
and in particular, to deal with the problem of bipartite graphs, we consider
Pn(%,¥) = Pu1(, ¥) + pa(x, y). (2.11)

The following Theorem summarizes the bounds on g and p that will be used in the proof of the
PHI and local limit theorem.



Theorem 2.1. Assume that (2.1), (2.2) and (2.3) hold. Let x, € G. Suppose that R; > 16 and

By(xg,R;) is very good with Nsz&le) < R;/(2logR;). Let x; € By(xy,R1/3). Let RlogR = R;,

T =R? B = B4(xy,R), and qf(x,y), pf(x,y) be the heat kernels for the processes Y and X killed on
exiting from B. Then

4, ) =T %, ifx,y €By(x1,3R/4), T<t<T, (2.12)
q,(,y) < eoT~Y2 ifx,y € By(x1,R), IT<t<T, (2.13)
q,(x,y) < ;T2 ifx €By(x1,R/2), d(x,y)>R/8, 0<t<T, (2.14)

and
Poy (Y )+pR(,y) 2T~ ifx,y €By(x1,3R/4), ;T<n<T, (2.15)
P, Y) S eT™42, ifx,y €By(x1,R), ;T <n<T, (2.16)
Pa(x,¥) S T792, if x €B4(xy,R/2), d(x,y)>R/8, 0<n<T. (2.17)

To prove this theorem we extend the bounds proved in [2] for the continuous time simple random
walk on (T, u) to the slightly more general random walks X and Y defined above.

Theorem 2.2. (a) Assume that (2.1), (2.2) and (2.3) hold. Then the bounds in Proposition 3.1,
Proposition 3.7, Theorem 3.8, and Proposition 5.1- Lemma 5.8 of [2] all hold for p,(x,y) as well as

qt(xa }’)'
(b) In particular (see Theorem 5.7) let x € G and suppose that there exists Ry = Ry(x) such that

B(x,R) is very good with Ns((j;? <R for each R > R,. There exist constants c; such that if n satisfies
n> R?)/B then
Pa(x,y) S cn-2emeadCyin - d(x, y) <, (2.18)
and
Pa(x, )+ Prsa (X, y) = egn=2em VN d(x, ¥ <. (2.19)

(c) Similar bounds to those in (2.18), (2.19) hold for q.(x, y).

Remark. Note that we do not give in (b) Gaussian lower bounds in the range d(x,y) < n <
d(x,y)%?. However, as in [2, Theorem 5.7], Gaussian lower bounds on pn and g, will hold in
this range of values if a further condition ‘exceedingly good’ is imposed on B(x,R) for all R >
Ry. We do not give further details here for two reasons; first the ‘exceedingly good’ condition is
rather complicated (see [2, Definition 5.4]), and second the lower bounds in this range have few
applications.

Proof. We only indicate the places where changes in the arguments of [2] are needed.
First, let 2 , = Lif {x,y} € E, and 0 otherwise. Then (2.1) implies that if &9 is the quadratic

form associated with (,ugy), then

c18°(f,f) < 6(f,f) < c6°(f, ) (2.20)

for all f for which either expression is finite. This means that the weak Poincaré inequality for &°
implies one (with a different constant Cp) for &. Using this, the arguments in Section 3-5 of [2] go
through essentially unchanged to give the bounds for the continuous time heat kernel on (T, u).
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More has to be said about the discrete time case. The argument in [2, Proposition 3.1] uses the
equality

0
Eth(Xbxl) = —28(q,q¢)-

Instead, in discrete time, we set f,(x) = p,,(x;, x) and use the easily verified relation

Pont2(x1,x1) = Pan(xy, x1) = —E(fn, fr)- (2.21)

Given this, the argument of [2, Proposition 3.1] now goes through to give an upper bound on
Dn(x,x), and hence on p,(x,x). A global upper bound, as in [2, Corollary 3.2], follows since,
taking k to be an integer close to n/2,

Pa(6Y) =D (6, 2)Pai(152) < O o6, 220 pucie (3,202

= pax(x, X)1/2P2n—2k(}’; J’)l/z-

To obtain better bounds for x,y far apart, [2] used a method of Bass and Nash — see [5;[23].
This does not seem to transfer easily to discrete time. For a process Z, write T,(x,r) = inf{t :
d(Z.,x) > r}. The key bound in continuous time is given in [2, Lemma 3.5], where it is proved that
if B = B(x(,R) is very good, then

ct

5, if x € B(x(,2R/3), 0<t<cR*/logR, (2.22)
r

1
P ry(er) =)< 5+
provided cNg(logNB)l/ 2 < r <R. (Here Ny is the number given in the definition of ‘very good’.)
Recall that we can write Y, = Xj; , where M is a rate 1 Poisson process independent of X. So,

Px(Tx(X, r) < t)Px(MZt > t) = PX(TX(X’ r) < t:MZI > t) S P(TY(XJ r) < Zt)'
Since P(M,, > t) > 3/4 for t > ¢, we obtain

2 't
PX(tx(x,r)<t)< -+ —- (2.23)
3 r
Using (2.23) the remainder of the arguments of Section 3 of [2] now follow through to give the
large deviation estimate Proposition 3.7 and the Gaussian upper bound Theorem 3.8.

The next use of differential inequalities in [2] is in Proposition 5.1, where a technique of Fabes
and Stroock [16] is used. Let B = By(x;,R) be a ball in G, and ¢ : G — R, with ¢(x) > 0 for x € B
and ¢ =0on G — B. Set

Vo= Z P () -
X€B
Let gn(x) = pn(xlax); and
Hy= V5" D 10g(gn(x))p (). (2:24)

X€B



We need to take n > R here, so that g,(x) > 0 for all x € B. Using Jensen’s inequality, and recalling
that Py(x,y) = ‘uxy/‘ux’

Hyr = Hy = ) 108(8041()/ 80 ()@ ()i

XEB
= > (uxlog (D Px(x, 1)gn(¥)/2a(x))
x€G YEG
> ZG ()bt ZGPX(x,y)log(gn(y)/gn(x))
xe ye
=D 00y (log g,(y) — log g,(x))
x€G yeG
=127 1(0(3) — 9(x))(10g gu(y) — 108 8, (x))pdsy - (2.25)
x€G yeG

Given (2.25), the arguments on p. 3071-3073 of [2] give the basic ‘near diagonal’ lower bound in
[2, Proposition 5.1], for p,,(x, y). The remainder of the arguments in Section 5 of [2] can now be
carried through. O

Proof of Theorem This follows from Theorem 2.2, using the fact that Theorem 3.8 and Lemma
5.8 of [2] hold. O

3 Parabolic Harnack Inequality

In this section we continue with the notation and hypotheses of Section 2. Our first main result,
Theorem 3.1, is a parabolic Harnack inequality. Then, in Proposition|3.2/we show that solutions to
the heat equation are Holder continuous; this result then provides the key to the local limit theorem
proved in the next section.
Let
Q(x,R,T)=(0,T] x B4(x,R),

and
Q_(x,R, T)=[3T,5T] x B4(x,5R), Q4(x,R,T)=I[3T,T]x By(x,3R).
We use the notation t —l;Q(x,R, T)=(t, t+ T) x By4(x,R). We say that a function u(n, x) is caloric
on Q if u is defined on Q = ([0, T] N Z) x B4(x,R), and
u(n+1,x) —u(n,x)=Lu(n,x) for0<n<T-1, x €By(x,R). 3.1

It follows that if n > 1 then M) = u(n — k,X}) is a P*-martingale for 0 < k < n Amin{j : X; ¢
B4(x,R)}. We say the parabolic Harnack inequality (PHI) holds with constant Cy for Q = Q(x,R, T)
if whenever u = u(n, x) is non-negative and caloric on Q, then

sup d(n,x)<Cy inf a(n,x). (3.2)
(n,x)eq_ (n,x)eQ

The PHI in continuous time takes a similar form, except that caloric functions satisfy
du

— =YZu,
ot



and (3.2) is replaced by sup, u < Cyinfy, u.
We now show that the heat kernel bounds in Theorem lead to a PHI.

Theorem 3.1. Let xq € G. Suppose that R; > 16 and B4(xg,R;) is (Cy,Cp, Cy )-very good with

N;j&jﬂ) < R;/(21ogR;). Let x; € By(xg,R;/3), and RlogR = R;. Then there exists a constant
Cy such that the PHI (in both discrete and continuous time settings) holds with constant Cy for

Q(x1,R,R).
Remark. The condition R; = RlogR here is not necessarily best possible.
Proof. We use the balayage argument introduced in [3] — see also [4] for the argument in a graph
setting. Let T = R2, and write:
BO=Bd(x17R/2)> BlzBd(xl)ZR/B)J B:Bd(leR):
and
Q=Q(x1,R,T)=[0,T] xB, E=(0,T]xB;.

We begin with the discrete time case. Let u(n, x) be non-negative and caloric on Q. We consider
the space-time process Z on Z X G given by Z, = (I,,,X,,), where X is the SRWon T, I, = I, —n, and
Zy = (I, X,) is the starting point of the space time process. Define the réduite uy by

ug(n,x) =E*(u(n— T, Xr1,); T < 7q), (3.3)

where T is the hitting time of E by Z, and 7, the exit time by Z from Q. So ug =u on E, up = 0 on
Q°, and since u(n — k,X}) is a martingale on 0 < k < T we have uy; <uonQ —E.
As the process Z has a dual, the balayage formula of Chapter VI of [10] holds and we can write

uE(n’X):f pg_r(xa.)’)VE(dr:d}’); (n)x)eQJ (3-4)
E

. B . o . . . ., .
for a suitable measure vg. Here p; (X, y) is the transition density of the process X killed on exiting
from B.

In this simple discrete setup we can write things more explicitly. Set

ZyeB ‘nyf(}’), lfx € Bl;
y

Jf(x)= _ (3.5)
, if x € B—B;.
Then we have for x € B,
n
ug(n,x) = Zp’,f(x,y)u(O,y)uy + Z pr_r(x,y)k(r,y)uy, (3.6)
YEB YEBr=2
where for r > 2
k(r,J’):J(u(r_ 1:)_UE(T'_1:))(}’) (37)

See the appendix for a self-contained proof of (3.6) and (3.7).



Since u = ug on E, if r > 2 then (3.7) implies that k(r, y) = 0 unless y € d(B —B;). Adding (3.6)
for u(n,x) and u(n + 1, x), and using the fact that k(n+ 1, x) = 0 for x € B, we obtain, for x € B,

5(n,x) = Y D pE (e, y)k(r, Y )iy (3.8)
YEB; r=1

Now let (n;,y,) € Q_ and (n,,y,) € Q4. Since (n;,y;) € E for i = 1,2, we have ug(n;,y;) =
u(n;, y;), and so (3.8) holds. By Theorem 2.1 we have, writing A= 3(B — B;),

sz_r(x,y) > clT_d/2 forx,ye€B,;,0<r<T/2,
p.(x,y)<c; T2 forx,y€B,, T/4<r<T/2,

Pry—r(x,¥) < CZT_d/2 forx €By, y €A 0<r <n;.

Substituting these bounds in (3.8),

(ng, y2) = D, PE (2 YIU(0, YDty + D, D L% _ (32, k(1 ¥ )ty

YE€B, YEAT=2
n
> > B8 (2 )u(0, )y + YD PE (2 YIK(r Yy
YE€B; YEAT=2
m
> > aT P,y + > aT Pk y)u,
Y€B; yEAT=2

3!
> > ey BE ()0, )y + D > ey BE (v k(Y
Y€E€B; YEAT=2

1~
=16y i(ny, y1),

which proves the PHI.
The proof is similar in the continuous time case. The balayage formula takes the form

t
ug(t,x) = qu(x,y)u(O,y)uy + Z f qr_y(x, y)k(s, y)u,ds, (3.9)
Y€B YEB; JO
where k(s, y) is zero if y € B—B; and
k(s,y) =J(u(s, ) —ugls, D), y€B;. (3.10)
(See [4, Proposition 3.3]). Using the bounds on qf in Theorem 2.1]then gives the PHI. O

Remark. In [2] an elliptic Harnack inequality (EHI) was proved for random walks on percolation
clusters — see Theorem 5.11. Since the PHI immediately implies the EHI, the argument above gives
an alternative, and simpler, proof of this result.

It is well known that the PHI implies Hélder continuity of caloric functions — see for example
Theorem 5.4.7 of [24]. But since in our context the PHI does not hold for all balls, we give the
details of the proof. In the next section we will just use this result when the caloric function u is

either qt(x7 J’) or pn(x: y)'
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Proposition 3.2. Let x, € G. Suppose that there exists s(xg) > 0 such that the PHI (with constant Cy;)
holds for Q(xq,R,R?) for R > s(x,). Let 8 =log(2Cy/(2Cy — 1))/ log2, and

p(xg,x,y) =5(xg) Vd(xg,x)Vd(xg,y). (3.11)

Let 1y > s(x), to = r2, and suppose that u = u(n,x) is caloric in Q = Q(x,ro,r3). Let x1,X5 €
1 2
By(xo, 570), and to — p(xq, X1, x2)" < ny,ny < to— 1. Then

p(X(), xl)xZ)

1/2
ty

)
[ti(ny,xq) —d(ng, xq)| < c( ) sup |i]. (3.12)
Q.

Proof. We just give the discrete time argument — the continuous time one is almost identical. Set
re = 2 r,, and let

Qk) = (to — 1) + Q(x0, i, T7)-
Thus Q, (k) = Q(k + 1). Let k be such that r, > s(xy). Let ¥ be @ normalised in Q(k) so that
0 <9 <1, and Osc(9,Q(k)) = 1. (Here Osc(u,A) = supou — inf,u is the oscillation of u on A).
Replacing ¥ by 1 — v if necessary we can assume supq_ () ¥ = % By the PHI,

1
2
and it follows that, if § = (2Cy) ™, then

Osc(21,Q4(k)) < (1—6)0sc(i1,Q(k)). (3.13)

Now choose m as large as possible so that r,, > p(xg, X, y). Then applying (3.13) in the chain of
boxes Q(1) D Q(2) D ...Q(m), we deduce that, since (x;,n;) € Q(m),

|a(n1:x1) - a(n2zx2)| S OSC (ﬂa Qm) S (]- - 5)m_1 OSC(ﬁ, Q(l)) (314)
Since (1-6)" < c(ro/té/z)e, (3.12) follows from (3.14) . O

4 Local limit theorem

Now let ¢ c 74, and let d denote graph distance in ¥, regarded as a subgraph of Z?. We assume
¢ is infinite and connected, and 0 € ¢. We define Uy, as in Section 2 so that (2.1), (2.2) and (2.3)
hold, and write X = (X,,,n € Z,,P*,x € ¢) for the associated simple random walk on (¥, u). We
write | - |, for the L? norm in RY; | - is the usual (p = 2) Euclidean distance.

Recall that kED)(x) is the Gaussian heat kernel in R¢ with diffusion constant D > 0 and let
xm = n"Y2X| ). For x €RY, set

H(x,r)=x+[-rr]%, A(x,r)=H(x,r)n4. “4.1
In general A(x, r) will not be connected. Let
A (x,r)= A(xn/2, rnt/?).

Choose a function g, : RY — ¢ so that g,(x) is a closest point in ¢ to n'/?

can define g, by using some fixed ordering of Z¢ to break ties.)
We now make the following assumption on the graph ¢ and the SRW X on 9. Let x € RY.

x, in the |- |,, norm. (We

11



Assumption 4.1. There exists a constant 6 > 0, and positive constants D, Cy, C;,aq such that the
following hold.
(a) (CLT for X). For any y € RY r >0,

P°(x" € H(y,r)) — f KP(y)dy'. (4.2)
H(y,r)

(b) There is a global upper heat kernel bound of the form
pe(0,Y) < Cok™ 2 forall y € 4,k > Cs.

(c) For each y € ¥ there exists s(y) < oo such that the PHI (3.2) holds with constant Cy; for Q(y,R,R?)

for R>s(y).
(d) Forany r >0
p(An(x, 1))
(2n1/2r)d
(e) For each r > O there exists ng such that, for n > ny,

- ay as n — oo. (4.3)

1276 forall x',y' € A, (x, 7).

|xl _.y/|oo < d(xl,}”) =< (Cllxl _ylloo) vn
@) n_l/zs(gn(x)) — 0 as n— oo.

We remark that for any x all these hold for Z9: for the PHI see [13]. We also remark that these
assumptions are not independent; for example the PHI in (c) implies an upper bound as in (b). For
the region Q(y,R,R?) in (c) the space ball is in the graph metric on ¥.

We write, for t € [0, 00),
P, y)=D1e)(6, ¥) =Py, ¥) + P+ (6, ¥).
Theorem 4.2. Let x € R? and t > 0. Suppose Assumption 4.1 holds. Then
lim n4/2p,,,(0, g, (x)) = 2a5 k™ (x). (4.4)

Proof. Write k, for kED). Let 6 be chosen as in Proposition [3.2. Let ¢ € (0, %). Choose k > 0 such
that (k? + k) < e. Write A, = A,(x,x) = A(n*/?x,n'/%k). Set

J(n) = PO(n—1/2XLnt | € A(x, K)) + po(n—uzxm J+1 € Ax, K)) - 2J k(y)dy.  (4.5)

A(x,K)
Then
J() =" (Pne(0,2) = Pue(0, 8,(x))) s
Z2€EN,

+ (AP (0, 8,(x)) — p(A)n ™42 ag 2k, (x) (4.6)

+ 2kt(x)(,u(An)n_d/2a;1 —29x) (4.7)

+ ZJ (ke(x) = k. (¥))dy (4.8)

H(x,x)

=J1(n) +Jy(n) +J3(n) + J4(n).

12



We now control the terms J(n), J;(n), J3(n) and J4(n). By Assumption 4.1/ we can choose n;
with n1_5 < 2C;k such that, for n > n4,

()] < ke, (4.9)
B ‘58<1 (4.10)
aq(2n1/2k)d 2’
sup  P(0,2) < cy(nt)~?, (4.11)
kZ%nt,ze‘g
s(gn(x))n_l/2 < 2C4K. (4.12)

We bound J;(n) by using the Holder continuity of p, which comes from the PHI and Proposition
3.2l We begin by comparing A,, with balls in the d-metric. Let n > n;. By (4.10) u(A,) > 0, so
gn(x) € A,,. By Assumption [4.1((e) there exists n, > n; such that, if n > n, and y € A, then

d(y, 8(x)) < (C1ly = ga(X)loo) V1272 <n'/2((2C,x) vn®) < 2C;xkn'/2.
So, writing B = B;(g,(x),2C;kn'/?), A, C B when n > n,. Thus we have, using (4.10),
1(m)] < A X [ (0,2) — e (0. gD
< 2a4(2n"?x)" max |pn. (0,2) = Puc (0, ga(x))). (4.13)
Using Assumption|4.1(c), Proposition|3.2/and then (4.11) and (4.12),

s(ga(x)) v 2C;xn!/?
(nt)l/z

0
) s pl0.2)

kz%nt,ze‘f

max [Py (0,2) = Pue (0, 82 ()] < ¢
z€B

5(g,(x))n" 2 v 2C; K\ 0
£1/2 )
< czt_(d+9)/2n_d/21<9. (4.14)

< c(nt)_d/z(

Hence combining (4.13) and (4.14)
|J1(n)| < ¢yt~ (d+0)/2,d+6 (4.15)
We now control the other terms. Since |Vk,(x)| < c,t~@+1/2,
()| < 2|A(x, K)ca(£)(2K) = k¥ es (). (4.16)
For J5(n), using (4.10) and (4.11), if n > n, then
Ja(n) = 2k, ()| u(A)n ™ 2agt — 24|

u(Ay,)

=2k, (x)2%xd | ——2
((x) aq(2n1/2k)d

1‘ < c6(t)1<d£.

Now write p,, = n%/2p,,.(0, g,(x)). Then for n > n,

2()] = p(AR)IP e (0, g(x)) — n~2ag" 2k, ()]
A
= %(2’061 Ipn — 2a(;1kt(x)| = %ag(ZK)d P, — 2a(;1kt(x)|,
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So,

2aqy(26) (B, — 2a k()| < ()] + 1 ()] + 3()] + ()]
<xle+ C3 ¢ (d+0)/2,.d+6 c6(t)1<d€ + c5(t)1<d+1

< c7(t)1<d(8 +x?+x)< 2c7(t)de.

Thus for n > n,,
[P — 205 k(0] < cg(0)e, (4.17)

which completes the proof. O

Corollary 4.3. Let 0 < T; < T, < 0o. Suppose Assumption 4.1 holds, and in addition that for each
H(y,r) the CLT in Assumption 4.1{(a) holds uniformly for t € [T,, T5]. Then

lim sup [n?2p,(0, ga(x)) — 2a5 ki (x)] = 0. (4.18)

=0T <t<T,

Proof. The argument is the same as for the Theorem; all we need do is to note that the constant
cg(t) in (4.17) can be chosen to be bounded on [T, T, ]. O

If we slightly strengthen our assumptions, then we can obtain a uniform result in x.

Assumption 4.4. (a) For any compact I C (0,00), the CLT in Assumption [4.1(a) holds uniformly for
tel.
(b) There exist C; such that

Pr(0,x) < Cok™4/2 exp(—C4d(0,x)?/k),  fork>Cyand x € 9. (4.19)

(c) Assumption|4.1(c) holds.

(d) Let h(r) be the size of the biggest ‘hole’ in A(O,r). More precisely, h(r) is the suprema of the r’ such
that A(y,r") =0 for some y € H(O,r). Then lim,_,o, h(r)/r =0.

(e) There exist constants 6, Cq, Cy such that for each x € Qd Assumption4.1(d), (e) and (f) hold.

Note that in discrete time we have p;(0,x) = 0 if d(0, x) > k, so it is not necessary in (4.19) to
consider separately the case when d(0, x) > k.

Theorem 4.5. Let T; > 0. Suppose Assumption[4.4]holds. Then

lim sup sup |nd/2pm(0, g,(x)) — 2a;1kED)(x)| =0. (4.20)

n—o00
TP xerd t=T,

Proof. As before we write k, = kED). Set
w(n, ¢,x) = 1425, (0, 8,(x)) = 2a; "k, (x)].

Let £ € (0, %). We begin by restricting to a compact set of x and t. Choose n; so that n;T; > Cs, and
Ty > 1+ T; such that

2a;'kr, (0)+C, T, V% <.
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If t > T, then using Assumption|4.1(b), for n > n,,
w(n, t,x) < %Py (0, g,(x)) +2a5 "k (x) < n2Cy(nt) ™ + 2a5 'k, (0) < e.

So we can restrict to t € [Ty, T,].
Now choose R > 0 so that h(r) < %r forr >R. Let |[x| >Rand t € [T}, T,]. Then

2a; k,(x) < cT] Y% exp(—R%/2T,). (4.21)
We have [n'/2x — g,(x)|o < h(Jx|n'/?) < %lenl/z, as |x|n'/2 > R for all n > 1, and hence
d(0,8,(x)) = 182(X)|0 = 3lx[n/2.
The Gaussian upper bound (4.19) yields

n/2p,,,(0, g, (x)) < ct™/2 exp(—c'|x?/t) < cT; /2 exp(—c'R?/Ty). (4.22)

We can choose R large enough so the terms in (4.21) and (4.22) are smaller than e. Thus w(n, t,x) <
€ whenever t > T, or |x| > R, and n > n;. Thus it remains to show that there exists n, such that for
n=ns,
sup w(n,t,x) <e.
|x|<R,T;<t<T,

Now let k be chosen as in the proof of Theorem 4.2, and also such that

oy Ty HO/20 < ¢ (4.23)

where c; is the constant c5 in (4.15). Let n) € (0,x) N Q. Set ¥ = {y € nZ% N Bg(0)}, where Bz(0)
is the Euclidean ball centre 0 and radius R. By Theorem 4.2 and Corollary|4.3 for each y € % there
exists n(y) such that

sup w(n,t,y)<e forn>n3(y). (4.24)

T\ <t<T,

We can assume in addition that n3(y) is greater than the n, = n,(y) given by the proof of Theorem
4.2 Let ny = maXycqy ny(y). Now let x € Bg(0), and write y(x) for a closest point (in the |- |4,
norm) in % to x: thus [x — y(x)|, < 7. Let n > ny. We have

In1/2p,,:(0, g,(x)) — 2a5 k()| < [n?.(0, g,(x)) — /2P, (0, g, (¥ (D)) (4.25)
+1n2p,,,(0, g, (¥ (x))) — 2a5, k(¥ (x))] (4.26)
+ |2a;1kt(y(x)) - 2a(;1kt(x)|, 4.27)

and it remains to bound the three terms (4.25), (4.26), (4.27), which we denote L, L,, L3 respec-
tively. Since n < k and n > n4 > n3(y(x)), we have the same bound for L, as in (4.14), and
obtain

Ly = [n%%p (0, g, (x)) = 2P (0, g, (y (X)))| < cq ¢~ @020 (4.28)
<c Tl_(d+9)/2n9 <e, (4.29)

by (4.23). Asn>n, and y(x) € %, by (4.24) L, < ¢. Finally,

Ly = [k, (x) = ke (y ()| < nd (VK[| < en Ty D2,
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and choosing 1 small enough this is less than ¢. Thus we have w(n, t,x) < 3¢ for any x € Bg(0),
t € [Ty, T,] and n > ny, completing the proof of the theorem. O

In continuous time we replace X by Y, pi(0, y) by q,(0, y), and modify Assumptions/4.1/and 4.4/
accordingly. That is, in both Assumptions we replace the CLT for X in (a) by a CLT for Y, replace p,,
in (b) by ¢q,, and require the continuous time version of the PHI in (c). The same arguments then
give a local limit theorem as follows.

Theorem 4.6. Let T; > 0. Suppose Assumption |4.4| (modified as above for the continuous time case)
holds. Then
nl m sup sup |nd/2qm(0, gn(x)) — a;lkED)(xN =0. (4.30)

i
X xerd t2T,

5 Application to percolation clusters

We now let (£, ) be a probability space carrying a supercritical bond percolation process on Z.
As in the Introduction we write 6,, = 6 (w) for the infinite cluster. Let Py(-) = P(:|0 € 6,,). Let
x ~y. We set u,,(w) = 1 if the edge {x,y} is open and u,,(w) = 0 otherwise. In the physics
literature one finds two common choices of random walks on %, called the ‘myopic ant’ and ’blind
ant’ walks, which we denote X™ and X® respectively. For the myopic walk we set

Myy =Uxy, Y # X,
ull =0,
and for each w € Q we then take XM = (Xﬂ/[, n€Z,,P),x € 6y(w)) to be the random walk on the

graph (6., (), uM(w)). Thus XM jumps with equal probability from x along any of the open bonds
adjacent to x. The second choice (‘the blind ant’) is to take

ng =Uxy, Y # X,

ub . =2d —p,,
and take X2 to be the random walk on the graph (6,,(w), u?(w)). This walk attempts to jump with
probability 1/2d in each direction, but the jump is suppressed if the bond is not open. By Theorem
2.2|the same transition density bounds hold for these two processes. Since these two processes are
time changes of each other, an invariance principle for one quickly leads to one for the other - see
for example [7, Lemma 6.4].

In what follows we take X to be either of the two walks given above. We write p:°(x, y) for its

transition density, and as before we set p:°(x, y) = p,’(x, ) +p;’,,(x, y). We begin by summarizing
the heat kernel bounds on p’(x, y).

Theorem 5.1. There exists 1 = 1(d) > 0 and constants c; = ¢;(d, p) and r:v. V,,, x € Z, such that

P(V,(w) > n) < cexp(—cn"), (5.1
andif n > c|x — y| VV, then
cln_d/ze_C2|x_y|2/" <pr(x,y) < c3n_d/ze_c4|x_3’|2/". (5.2)
Further if n > c|x — y| then
cin e YN < R(pE(x, y)lx, y € 6) < can eI, 5.3)
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Proof. This follows from Theorem|2.2(a), and the arguments in [2], Section 6. O

We now give the local limit theorem. As in Section 4 we write g,°(x) for a closest point in 6, to
n'/2x, set A(x, ) = A(x, r)(w) = By(w) NH(x, 1), and write h,,(r) for the largest hole in A0, r).

Theorem 5.2. Let T; > 0. Then there exist constants a, D such that Py-a.s.,

lim sup sup |nd/2p,‘;’t(0, g (x)) — 2a_1k£D)(x)| =0. (5.4
700 yerd t2T,
In view of Theorem it is enough to prove that, Py-a.s., the cluster 6,,(w) and process X satisfy
Assumption 4.4, Note that since we apply Theorem 4.5 separately to each graph 46, (w), it is not
necessary that the constants C; in Assumption should be uniform in w - in fact, it is clear that
the constant C5 in (4.19) cannot be taken independent of w.

Lemma 5.3. (a) There exist constants 8, C. such that Assumption 4.4 (a), (b), (c) all hold Py-a.s.
(b) Let x € R%. Then Assumption|4.1(e) holds Py-a.s.

Proof. (a) The CLT holds (uniformly) by the invariance principles proved in [25;7; 21]. Assumption
[4.4|(b) holds by Theorem 1.1 of [2].

For x € Z4, let S, be the smallest integer n such that By(x,R) is very good with Ngj&‘;) <R for

allR > n. (If x & 6., we take S, = 0.) Then by Theorem 2.18 and Lemma 2.19 of [2] there exists
Y =74 > 0 such that

P(S, > n) < cexp(—cn’). (5.5)

In particular, we have that S, < oo for all x € 6., P-a.s. By Theorem 3.1, the PHI holds for
Q(x,R,R?) for allR > S, and Assumption 4.4(c) holds.

(b) Assumption|4.1(e) holds by results in [2] — see Proposition 2.17(d), Lemma 2.19 and Remark 2
following Lemma 2.19. O

In the results which follow, we have not made any effort to obtain the best constant y in the
various bounds of the form exp(—n").

Lemma 5.4. With P-probability 1, lim,_, hw(r)r_l/2 = 0, and so Assumption[4.4(d) holds.

Proof. Let M, be the random variable given in Lemma 2.19 of [2]. Let @ = 1/4, and note that
B=1-2(1+d)"! > 1/3. Therefore

Po(Mo = n) < cexp(—cn®/?),

and if My < n then the event D(Q,a) defined in (2.21) of [2] holds for every cube of side n
containing 0. It follows from this (see (2.20) and the definition of R(Q) on p. 3040 in [2]) that
every cube of side greater than n® in [—n/2,n/2]? intersects %,,. Thus

Py(h,(n) >n%) < cexp(—cna/?’), (5.6)

and using Borel-Cantelli we deduce that lim,_,, h,,(r)r /% = 0 Py-a.s. O

Lemma 5.5. Let x € RY. With P-probability 1, Assumption|4.1(f) holds.
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Proof. Let F, = {g(x) € A,(x,1)}, and B, = {ng(x) > nl/3}. If F; occurs, then a cube side n
containing A, (x,1) has a hole greater than n'/2. So, by (5.6)

P(F,) < ce—n”?,
Let Z, = maX,ep (x,1)Sx- Then
Bn < Fri U {Zn > n1/3},
so using (5.5)
]P)(Bn) < Ce_clnl/3 + Cnd/Ze—c’nr/3’

and by Borel-Cantelli Assumption [4.1(f) follows. O

It remains to prove Assumption [4.1(d). If instead we wanted to control |A,|/(n*/?x)¢ then we
could use results in [11; 15]. Since the arguments for u(A,) are quite similar, we only give a sketch
of the proof.

Lemma 5.6. Let x € R, There exists a > 0 such that with P-probability 1,

p(An(x, 1))

W —a asn—oo, (57)

and so Assumption [4.1(d) holds.

Proof. For a cube Q c Z4 write s(Q) for the length of the side of Q. Let 3,Q = 2(z* — Q) be the
‘internal boundary’ of Q, and Q° = Q — 3,Q. Recall that u, is the number of open bonds adjacent to
x, and set

MQ) ={x€Q’:x—3Q},  V(Q) =uM(Q)).

Note that if x € Q and x is connected by an open path to J;Q then x is connected to J;Q by an open
path inside Q. Thus the event x € M(Q) depends only on the percolation process inside Q. So if
Q; are disjoint cubes, then the V(Q;) are independent random variables. Let %6} be a cube of side
length k and set

a, =Ek~V(Cp).
By the ergodic theorem there exists a such that, P-a.s.,

. V(H(0,R/2))
lim ———— —

P-a.s. and in L1. .
Jim Y a, a.s. and in (5.8)

In particular, a = lima;. Since %,, has positive density; it is clear that a > 0.
We have
wQN ) SV(Q+ s

Let € > 0. Choose k large enough so that ¢; /k < ¢, and a; < a+e.
Now let Q be a cube of side nk, and let Q;, i = 1,... n? be a decomposition of Q into disjoint
sub-cubes each of side k. Then

(k)™ (@ N 6) — g < (M) ™ D L a(Qi N ) — g

<ck+nmt Y (KVQ) - ap).
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As this is a sum of i.i.d. mean 0 random variables, it follows that there exists c,(k, €) > 0 such that
P((nk) ™4 u(Q N €,,) > a + 3¢) < exp(—cy(k, )n?). (5.9)

The lower bound on u(Q N %,,) requires a bit more work. We call a cube Q ‘m-good’ if the event
R(Q) given in [1] or p. 3040 of [2] holds, and

U(6s NQ) > (a — £)s(Q)".

Let p; be the probability a cube of side k is m-good. Then by (2.24) in [1], and (5.8), limp; = 1. As
in [1] we can now divide Z? into disjoint macroscopic cubes T, of side k, and consider an associated
site percolation process where a cube is occupied if it is m-good. We write € * for the infinite cluster
for this process. Let Q be a cube of side nk, and T, be the nd disjoint sub-cubes of side k in Q. Then

(6 NQ) > Z“((goo NT,)>(a—e)ki#{x: T, € ¢* T, CQ}. (5.10)

By Theorem 1.1 of [15] we can choose k large enough so there exists a constant c5(k, €) such that

P(n~9#{x: T, € €%, T, CQ} <1—¢) < exp(—cs(k, &)n¢™1). (5.11)
It follows that

P((nk) ™ u(6, NQ) < a—(1+a)e) < exp(—cs(k, e)nd™1). (5.12)
Combining (5.9) and (5.12), and using Borel-Cantelli gives (5.7). O

Proof of Theorem |5.2. By Lemmas and 5.6 Assumption [4.1 holds for all x € Qd, P-a.s.,
and so also Py-a.s. Therefore using Lemma 5.3 we have that Assumption 4.4/ holds Py-a.s., so (5.4)
follows from Theorem 4.5. O

Proof of Theorem The discrete time case is given by Theorem|[5.2. For continuous time, since
Assumption 4.4/ holds Py-a.s., (1.5) follows from Theorem Since a is given by (4.3), and u is
the same for Y and the myopic walk, the constant a in (1.5) is the same as for the myopic walk in
(1.4). If Z, is a rate 1 Poisson process then we can write Y, = X , and it is easy to check that the
CLT for X implies one for Y with the same diffusion constant D. O

As a second application we consider the random conductance model in the case when the con-
ductances are bounded away from 0 and infinity.

Let (Q,Z,P) be a probability space. Let K > 1 and u,, e € E; be i.i.d.r.v. supported on
[K~1,K]. Let also 1,, x € Z¢ be ii.d. random variables on [0,1], F : R¥*! — [K~1 K], and
Pyx = F(n,(uy.)). Foreach w € Qlet X = (X,,n € Z,P} ,x € Z%) be the SRW on (Z4, u) defined
in Section 2, and p;’(x, y) be its transition density.

Theorem 5.7. Let T; > 0. Then there exist constants a, D such that Py-a.s.,

ILm sup sup |nd/2p;"t(0, g (x)) — 2a_1k§m(x)| =0. (5.13)

70y erd t2T)
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Proof. As above, we just need to verify Assumption 4.4, The invariance principle in [25] implies
the uniform CLT, giving (a). Since u, are bounded away from 0 and infinity, the results of [13]
immediately give the PHI (with S(x) = 1 for all x) and heat kernel upper bound (4.19), so giving
Assumption [4.4(b) and (c), as well as Assumption [4.1(f). As ¢ = Z?, Assumption [4.4(d) and
Assumption 4.1(e) hold.

It remains to verify Assumption [4.1d), but this holds by an argument similar to that in Lemma

O

6 Green’s functions for percolation clusters

We continue with the notation and hypotheses of Section |5, but we take d > 3 throughout this
section. The Green’s function can be defined by

8u(X,y) = J q;’(x, y)dt. 6.1)
0
By Theorem|2.2(c) g.,(x,y) is P-a.s. finite for all x, y € 6,,. We have that g ,(x, ) satisfies

Lg,(x,y)= 0 fy#x, (6.2)
—-1/u, ify=ux.

Since any bounded harmonic function is constant (see [[6] or [2, Theorem 4]), these equations have,
P-a.s., a unique solution such that g, (x,y) — 0 as |y| — oo. It is easy to check that the Green’s
function for the myopic and blind ants satisfy the same equations, so the Green’s function for the
continuous time walk Y, and the myopic and blind ant discrete time walks are the same.

We write d,,(x, y) for the graph distance on 4,,. By Lemma 1.1 and Theorem 1 of [2] there exist
1 > 0, constants ¢; and r.v. T, such that

P(T, > n) < ce " (6.3)
so that the following bounds on g{’(x, y) hold:
q:(x, ) < cyexp(—cyd(x, )1 +log L)) 1<t <d,,(x,y),  (6.4)

qe(x,y) < cue~ STV g (e y) <t (6.5)

cot~U2emer P/t < q;(x,y) < cgt ™2V > T vy — x|, (6.6)
We can and will assume that T, > 1 for all x.

Lemma 6.1. Let x,y € 6, and 6 € (0,1). Then

de(x,y)
f q@(x, y)dt < cpe™e* 1] 6.7)
0
T,
2
J q®(x,y)dt < cgTe eI/ T, (6.8)
dw(X,y)
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Proof. Using (6.4) and (6.5) we have

do,(x,y)

do(x,y)
f q; (x,y)dt < j cexp(—cd,,(x,y))dt < ce 0y,
0 0

TX TX
J q?‘)(x’y)dt S J‘ Ce_de(x’y)Z/tdt S CTXe_de(x’y)z/TX,
dw(X,J/) dw(x’y)
and since d,,(x,y) > c|x — y| this gives (6.7) and (6.8).
Proposition 6.2. Let X,y € 6., with x # y. Then there exist constants c; such that
€1

————— < g, (x,¥) <
T 8o(x,Y)

Co

= if |x — y[> > T (14 c3log|x — y|). (6.9)

|x —
Further, for x,y € 74,

Cq Cs

—  <E X, YN,y E€ECp) L ———, 6.10
E(g.,(x, x)k|x € 6,) < cg(k). (6.11)
Proof. Note first that, by
o0 o
2
f g (x,y)dt < f ct™d eyt qr < ' |x — y 271, (6.12)
T, 0
Combining (6.7), (6.8) and (6.12) we obtain
g, (x,y) < clemchyl4 che_%lx_ylz/Tx +clx — y|>4. (6.13)

Taking c3 = d/cg gives
e lx—y 2 _ _ _
Tee oY/ Te < ¢|x — y[2emdlosl =yl < ¢|x — y|274,

and this gives the upper bound in (6.9). For the lower bound in (6.9) we note that since T, < |x—y|?

o0 o0
8u(X,y) > f q;°(x, y)dt > f ct~d2chy P/t gy = lx—y)>4. (6.14)
lx—y|? lx—y/?
We now turn to (6.10). Choose kg such that P(T, < ky) > % Then
o0 o0
2
E*g,(x,y) > EX(J qP(x,y)dt; Ty < ko) > %J ct™42eclx =yt gy, (6.15)
Tx kO

If |x — y|? > ko, then the final term in (6.15) is bounded below by c|x — y|>~¢ in the same way as
in (6.15), while when |x — y|? < k, we have

(0.0]
E*ge,(x,y) > CJ ct~2emcl—yPlt gy > <:e_c|x_y|2/k0k(l)_d/2 >/, (6.16)
ko
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which gives the lower bound in (6.10). For the averaged upper bound, note first that

o0 o0
gw(x,x)zj q.(x,x)dt SCTX+J ct™42dt <'T,. (6.17)
0 T

X

So for any k > 1, by (6.3)
E(g.,(x, x)*|x € €) < c(KE(TX|x € 6,) < ¢'(k),

proving (6.11), and (taking k = 1) the upper bound in (6.10) when y = x.
Now let y # x and F = {|x — y|?> < T,.(1 + c¢ 5 3|x — y|)}. Then writing Eyy () =E(|x,y € 6),
and using (6.9), (6.17), the fact that g, (x,y) < g,(x,x) and (6.3),

Ery80(X,¥) =Eyy(80u(x,¥); F) + Ey ) (g, (x, ¥); F)
=< C|X - J’|2_d + (Exy(gw(x’y)z))l/szy(Fc)l/z

< clx = y P 4 (B (g (6, )2 2ce " < ¢/l — 274,

proving (6.10). O

To prove that |y|?~2g,(0, y) has a limit as |y| — co we use Theorem[1.1. Write k,(x) = kED)(x),

where D is the constant in (1.5).

Lemma 6.3. Let € > 0. Then for P-a.a. w € §, there exists a >0 and N = N(¢, w) such that

lg’(0,y) — a tk,(y)| < et™2 forallt >N, ye Boo(W). (6.18)
Proof. By Theorem/1.1. there exists N such that

sup sup nd/zq;;;(o, g (x)) — a lk,(x)|<eforn>N. (6.19)

xeR4 s21

Letn=N, s =t/nand x =n"2y, so that g,(x) = y. Then noting that k,(x) = n?/%k,(y) (6.18)
follows. =

Let |z| =1 and

r¢d -1

m. (6.20)

o0 o0
C=at f k,(z)dt = (Da)™* f (2ms)"4/2e 12 g5 =
0 0

Proof of Theorem (a) This was proved as Proposition|6.2.

(b) Let § € (0,1), to be chosen later. For y € 6., we set t; = t;(y) = &|y|?, and t, = t,(y) =
ly|?/8. Then

gw(oay) = J
0

ty ty (e 0]

qf’(O,y)dH—J q;°(0,y)dt =1 + 1, + I5. (6.21)

ty

q;°(0, y)dt +J

ty
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As in Proposition|6.2 we have, using (6.7) and (6.8), that provided |y| > T,

5lyl?

Iy < ce™W 4 cToe /Mo 4 J ct=d/2o=cly P/t gy
0
5
<ce W4 clyle=M 4 ¢|y >4 J s—d/20=c1/s 45
0

<ce M 4+ c|y|2_de_cl/25.

o0

I3 < f ct™2e= Pt gy = c5/271)y 274
lyI?/8

So there exist M; < oo and & > 0 so that

L+1I3< 3eClyP~*  when|y| > M.

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

Now let ¢’ > 0, and let N = N(¢&’) be given by Lemma6.3| For I, we have, provided t; > N

t

2 ta
I, < (e't™ 2 4 a7k, (y))dt < ce’t}_d/2+J a lk,(y)dt
t

t

< cs'51_d/2|y|2_d + C|y|2—d.

(6.27)

Taking &’ = %(C /c)e84/271 gives the upper bound in (1.9). This bound holds provided |y| > M; VT,

and 5|y|? > N(¢’), Thus the upper bound in (1.9) holds provided
> To v M, v (57 IN(e))Y2.

For the lower bound, note that
ty
Cly[~ —f a 'k (y)de < clyPri(eme/% + 69271,
t
So if (6.28) holds then

ta
8u(0,y) 21, = f (=&t + k,(y))dt
t

> |y|2—d (C _cel§lmd2 _ pmels _ 5d/2—1),

proving the lower bound in (1.9).

(c) Let ¢ > 0, and M be as in (a), and Uy = Ty(1 + cg2.510g|y|). Then by Proposition|6.2

Epg,(0,y) <Eo(g,(0,y); M < |y|) +E¢(g.,(0,¥); Uy < |yl < M)

+Eo(g,00,y); |yl < Up)

(1+e)C oo

Tyl fyld?
- (1+€)C +c622P0(M > |yl) 1 ce—chvI"?
|yld-2

23

Po(M > |y|) + (Boge (0, y)2)2Bo(Uy > |y)Y/2

(6.28)

(6.29)

(6.30)



Also

(1-¢)C
E08w(0,) 2 Eo(80,(0,¥); M <|y]) = MTP(M <IyD. (6.31)
Combining (6.30) and (6.31) completes the proof of Theorem/1.2. O

A Appendix

In this appendix, we give a proof of the ‘balayage’ formula (3.6)-(3.7) used in the proof of the PHI
in Section (3|

Let I' = (G,E) and u be as in Section Let B be a finite subset of G, and B; € B. Write
B=BUJB. Let T > 1, and

Q=(0,T]xB, Q=[0,T]xB, E=(0,T]x Bj.
Recall that pg (x,y) is the heat kernel for the process X killed on exiting B. Set
PPF() = pPle,y)f Dy, PFG) =D pr(x,y)f (3 )ksy, (A1)
Y€EB yei

for any function f on G
For a space-time function w(r, y) we will sometimes write w,(y) = w(r,y). Let

Hw(n,x)=w(n,x) — Pw,_1(x). (A.2)

Then w is caloric in a space-time region F C Z x G if and only if Hw(n,x) = 0 for (n,x) € F. Let 2
be the set of non-negative functions v(n, x) on Q such that v =0 on Q —Q and v is caloricon Q — E.
In particular we have v(0,x) =0 for v € 9.

Lemma A.1. Let w(r,y) >0 on Q, with w =0 on Q — E, and let v = v(n, x) be given by

n B .
v(n,x) = Zr:1 Pn_rWr(x): QC(H,X) €Q (A.3)
0 if (n,x) € Q.
Then v € 9, and
Hv(n,x)=w(n,x), (n,x)eqQ. (A.4)

Proof. 1t is clear that v > 0, and that v =0 on Q — Q. If x € B then it easy to check that PPfl flx)=
P2 f(x).Let(n,x)€Q,s01<n<T and x €B. Then

n n—1
Hv(n,x) = ZPf_rwr(x) - P( ZPf_l_rwr)(x)
r=1 r=1

n n—1
= ZPf_rwr(x) — ZPf_rwr(x) = w,(x). (A.5)
r=1 r=1

This proves (A.4), and as w(n,x) = 0 when x € B — B; we also deduce that v is caloric in Q — E,
proving that v € 9. O
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Lemma A.2. Let u,v € 9 satisfy Hu(n, x) = Hv(n, x) for (n,x) €Q. Thenu=v on Q.

Proof. We have u = v = 0 on Q — Q. We write u;, = u(k,-). First note that ug = v,. If u; = v; and
x € B then
u(k+1,x)=Hu(k+1,x)+ Pu(x) =Hv(k+1,x) + Pvi(x),

so that uy 1 = Vi q. O

Let Z be the space-time process on Z X G given by Z, = (I,,X,), where X is the SRW on T,
I, = I, —n, and Z, = (X,,1,) is the starting point of Z. We write E(*X) for the law of Z started at
(n,x). Let u(n, x) be non-negative and caloric on Q. Then the réduite uy is defined by

ug(n,x) = Enx) (u(ITE,XTE); Ty < 7q), (A.6)

where
Tp=min{k >0:Z; €E}, 74o=min{k >0:Z; €Q}. (A.7)

Lemma A.3. ug € 9.

Proof. If (n,x) € Q — Q then P(”’x)(TQ =0)=1, so ug(n,x) = 0. It is clear from the definition (A.6)
that uy is caloric on Q — E, and that uy > 0. O

Proposition A.4. Let 1 <n < T. Then

n
ug(n,x) = ) > pE_ (x, yk(r, Y)uy, (A.8)
Y€Br=1
where
k(r,y)z ZzEBpf(y:z)(u(r_1’2)_UE(r_1:z))ou’Z: l;fyeBls (A9)
OJ I:fy e B _B].'

Proof. Let k,.(y) = k(r, y) be defined by forr > 1. Set

v(n,x)= ZPf_rkr(x). (A.10)
r=1

By Lemma A.1/we have v € 2. To prove that v = uy it is sufficient, by Lemma [A.2 to prove that
Hv(n,x) = Hug(nx,) for (n,x) €Q.
We have Hv(n,x) = k(n,x) on Q by (A.4). If x € B — B; then k(n,x) = 0, while since uy is
caloric in Q — E we have Hug(n,x) = 0. If x € B; then as u = uy on E, and u is caloric on Q,
Hug(n,x) =ug(n,x) — Pug(n—1,x)
=u(n,x)—Pug(n—1,x)=Pu(n—1,x) — Pug(n—1,x)
= Pf(u —ug)(n—1,x).

So we deduce that v = uj. O
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If y € B; then the r =1 term of (A.8) can be written

D 0806,y Qi 2)uau(0,2)) = Y peu(0,2)ph(x, 2), (A1)

YEB z€B z€B
so that (A.8) can be rewritten as
n
ug(n,x) =Y pB(x, yJu(0, )y + Y, - ph_ (e, yIk(r, ¥ )ity (A.12)
YEB YEBr=2
which is the form given in (3.6).
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