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Abstract

We give simple conditions that ensure exponential forgetting of the initial conditions of the filter
for general state-space hidden Markov chain. The proofs are based on the coupling argument
applied to the posterior Markov kernels. These results are useful both for filtering hidden Markov
models using approximation methods (e.g., particle filters) and for proving asymptotic properties
of estimators. The results are general enough to cover models like the Gaussian state space
model, without using the special structure that permits the application of the Kalman filter.
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1 Introduction and Notation

We consider the filtering problem for a Markov chain {Xk, Yk}k≥0 with state X and observation Y .
The state process {Xk}k≥0 is an homogeneous Markov chain taking value in a measurable set X

equipped with a σ-algebra B(X). We let Q be the transition kernel of the chain. The observations
{Yk}k≥0 takes values in a measurable set Y (B(Y) is the associated σ-algebra). For i ≤ j, denote
Yi: j ¬ (Yi, Yi+1, · · · , Yj). Similar notation will be used for other sequences. We assume furthermore
that for each k ≥ 1 and given Xk, Yk is independent of X1:k−1,Xk+1:∞, Y1:k−1, and Yk+1:∞. We also
assume that for each x ∈ X, the conditional law has a density g(x , ·) with respect to some fixed
σ-finite measure on the Borel σ-fieldB(Y ).

We denote by φξ,n[y0:n] the distribution of the hidden state Xn conditionally on the observations

y0:n
def
= [y0, . . . , yn], which is given by

φξ,n[y0:n](A) =

∫
Xn+1 ξ(d x0)g(x0, y0)

∏n

i=1 Q(x i−1, d x i)g(x i , yi)1A(xn)∫
Xn+1 ξ(d x0)g(x0, y0)

∏n

i=1 Q(x i−1, d x i)g(x i, yi)
, (1)

In practice the model is rarely known exactly and therefore suboptimal filters are computed by
replacing the unknown transition kernel, likelihood function and initial distribution by approxima-
tions.

The choice of these quantities plays a key role both when studying the convergence of sequential
Monte Carlo methods or when analysing the asymptotic behaviour of the maximum likelihood es-
timator (see e.g., [8] or [5] and the references therein). A key point when analyzing maximum
likelihood estimator or the stability of the filter over infinite horizon is to ask whether φξ,n[y0:n]

and φξ′,n[y0:n] are close (in some sense) for large values of n, and two different choices of the initial
distribution ξ and ξ′.

The forgetting property of the initial condition of the optimal filter in nonlinear state space models
has attracted many research efforts and it is impossible to give credit to every contributors. The
purpose of the short presentation of the existing results below is mainly to allow comparison of
assumptions and results presented in this contributions with respect to those previously reported in
the literature. The first result in this direction has been obtained by [15], who established Lp-type
convergence of the optimal filter initialised with the wrong initial condition to the filter initialised
with the true initial distribution; their proof does not provide rate of convergence. A new approach
based on the Hilbert projective metric has later been introduced in [1] to establish the exponential
stability of the optimal filter with respect to its initial condition. However their results are based on
stringent mixing conditions for the transition kernels; these conditions state that there exist positive
constants ǫ− and ǫ+ and a probability measure λ on (X,B(X)) such that for f ∈ B+(X),

ǫ−λ( f )≤Q(x , f )≤ ǫ+λ( f ) , for any x ∈ X . (2)

This condition implies in particular that the chain is uniformly geometrically ergodic. Similar re-
sults were obtained independently by [9] using the Dobrushin ergodicity coefficient (see [10] for
further refinements of this result). The mixing condition has later been weakened by [6], under the
assumption that the kernel Q is positive recurrent and is dominated by some reference measure λ:

sup
(x ,x ′)∈X×X

q(x , x ′)<∞ and

∫
essinfq(x , x ′)π(x)λ(d x)> 0 ,
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where q(x , ·) = dQ(x ,·)
dλ

, essinf is the essential infimum with respect to λ and πdλ is the stationary
distribution of the chain Q . Although the upper bound is reasonable, the lower bound is restrictive
in many applications and fails to be satisfied e.g., for the linear state space Gaussian model.

In [13], the stability of the optimal filter is studied for a class of kernels referred to as pseudo-

mixing. The definition of pseudo-mixing kernel is adapted to the case where the state space is
X = Rd , equipped with the Borel sigma-field B(X). A kernel Q on (X,B(X)) is pseudo-mixing if
for any compact set C with a diameter d large enough, there exist positive constants ǫ−(d)> 0 and
ǫ+(d)> 0 and a measure λC (which may be chosen to be finite without loss of generality) such that

ǫ−(d)λC(A)≤Q(x ,A)≤ ǫ+(d)λC(A) , for any x ∈ C , A∈B(X) (3)

This condition implies that for any (x ′, x ′′) ∈ C × C ,

ǫ−(d)

ǫ+(d)
< essinfx∈Xq(x ′, x)/q(x ′′, x)≤ esssupx∈Xq(x ′, x)/q(x ′′, x)≤

ǫ+(d)

ǫ−(d)
,

where q(x , ·)
def
= dQ(x , ·)/dλC , and esssup and essinf denote the essential supremum and infimum

with respect to λC . This condition is obviously more general than (2): in particular, [13] gives non-
trivial examples of pseudo-mixing Markov chains which are not uniformly ergodic. Nevertheless,
this assumption is not satisfied in the linear Gaussian case (see [13, Example 4.3]).

Several attempts have been made to establish the stability conditions under the so-called small

noise condition. The first result in this direction has been obtained by [1] (in continuous time) who
considered an ergodic diffusion process with constant diffusion coefficient and linear observations:
when the variance of the observation noise is sufficiently small, [1] established that the filter is
exponentially stable. Small noise conditions also appeared (in a discrete time setting) in [4] and
[16]. These results do not allow to consider the linear Gaussian state space model with arbitrary
noise variance.

More recently, [7] prove that the nonlinear filter forgets its initial condition in mean over the ob-
servations for functions satisfying some integrability conditions. The main result presented in this
paper relies on the martingale convergence theorem rather than direct analysis of filtering equations.
Unfortunately, this method of proof cannot provide any rate of convergence.

It is tempting to assume that forgetting of the initial condition should be true in general, and that
the lack of proofs for the general state-space case is only a matter of technicalities. The heuristic
argument says that either

• the observations Y ’s are informative, and we learn about the hidden state X from the Y s
around it, and forget the initial starting point.

• the observations Y s are non-informative, and then the X chain is moving by itself, and by itself
it forgets its initial condition, for example if it is positive recurrent.

Since we expect that the forgetting of the initial condition is retained in these two extreme cases, it
is probably so under any condition. However, this argument is false, as is shown by the following
examples where the conditional chain does not forget its initial condition whereas the unconditional
chain does. On the other hand, it can be that observed process, {Yk}k≥0 is not ergodic, while the
conditional chain uniformly forgets the initial condition.
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Example 1. Suppose that {Xk}k≥0 are i.i.d. B(1,1/2). Suppose Yi = 1(X i = X i−1). Then
P
�

X i = 1
¯̄
X0 = 0, Y0:n

�
= 1− P
�

X i = 1
¯̄
X1 = 1, Y0:n

�
∈ {0,1}.

Here is a slightly less extreme example. Consider a Markov chain on the unit circle. All values below
are considered modulus 2π. We assume that X i = X i−1+Ui, where the state noise {Uk}k≥0 are i.i.d.
. The chain is hidden by additive white noise: Yi = X i + ǫi , ǫi = πWi + Vi , where Wi is Bernoulli
random variable independent of Vi . Suppose now that Ui and Vi are symmetric and supported on
some small interval. The hidden chain does not forget its initial distribution under this model. In
fact the support of the distribution of X i given Y0:n and X0 = x0 is disjoint from the support of its
distribution given Y0:n and X0 = x0+π.

On the other hand, let {Yk}k≥0 be an arbitrary process. Suppose it is modeled (incorrectly!) by a
autoregressive process observed in additive noise. We will show that under different assumptions on
the distribution of the state and the observation noise, the conditional chain (given the observations
Y s which are not necessarily generated by the model) forgets its initial condition geometrically fast.

The proofs presented in this paper are based on generalization of the notion of small sets and
coupling of the two (non-homogenous) Markov chains sampled from the distribution of X0:n given
Y0:n. The coupling argument is based on presenting two chains {Xk} and {X ′

k
}, which marginally

follow the same sequence of transition kernels, but have different initial distributions of the starting
state. The chains move independently, until they coupled at a random time T , and from that time on
they remain equal.

Roughly speaking, the two copies of the chain may couple at a time k if they stand close one to the
other. Formally, we mean by that, that the the pair of states of the two chains at time k belong to
some set, which may depend on the current, but also past and future observations. The novelty of
the current paper is by considering sets which are in fact genuinely defined by the pair of states. For
example, the set can be defined as {(x , x ′) : ‖x − x ′‖ < c}. That is, close in the usual sense of the
word.

The prototypical example we use is the non-linear state space model:

X i = a(X i−1) + Ui

Yi = b(X i) + Vi ,
(4)

where {Uk}k≥0 is the state noise and {Vk}k≥0 is the measurement noise. Both {Uk}k≥0 and {Vk}k≥0

are assumed to be i.i.d. and mutually independent. Of course, the filtering problem for the linear
version of this model with independent Gaussian noise is solved explicitly by the Kalman filter.
But this is one of the few non-trivial models which admits a simple solution. Under the Gaussian
linear model, we argue that whatever are Y0:n, two independent chains drawn from the conditional
distribution will be remain close to each other even if the Y s are drifting away. Any time they will
be close, they will be able to couple, and this will happen quite frequently.

Our approach for proving that a chain forgets its initial conditions can be decomposed in two stages.
We first argue that there are coupling sets (which may depend on the observations, and may also
vary according to the iteration index) where we can couple two copies of the chains, drawn inde-
pendently from the conditional distribution given the observations and started from two different
initial conditions, with a probability which is an explicit function of the observations. We then argue
that a pair of chains are likely to drift frequently towards these coupling sets.

The first group of results identify situations in which the coupling set is given in a product form,
and in particular in situations where X×X is a coupling set. In the typical situation, many values of
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Yi entail that X i is in some set with high probability, and hence the two conditionally independent
copies are likely to be in this set and close to each other. In particular, this enables us to prove
the convergence of (nonlinear) state space processes with bounded noise and, more generally, in
situations where the tails of the observations error is thinner than those of dynamics innovations.

The second argument generalizes the standard drift condition to the coupling set. The general
argument specialized to the linear-Gaussian state model is surprisingly simple. We generalize this
argument to the linear model where both the dynamics innovations and the measurement errors
have strongly unimodal density.

2 Notations and definitions

Let n be a given positive index and consider the finite-dimensional distributions of {Xk}k≥0 given
Y0:n. It is well known (see [5, Chapter 3]) that, for any positive index k, the distribution of Xk given
X0:k−1 and Y0:n reduces to that of Xk given Xk−1 only and Y0:n. The following definitions will be
instrumental in decomposing the joint posterior distributions.

Definition 1 (Backward functions). For k ∈ {0, . . . , n}, the backward function βk|n is the non-negative

measurable function on Y
n−k ×X defined by

βk|n(x) =

∫
· · ·

∫
Q(x , d xk+1)g(xk+1, yk+1)

n∏

l=k+2

Q(x l−1, d x l)g(x l , yl) , (5)

for k ≤ n− 1 (with the same convention that the rightmost product is empty for k = n− 1); βn|n(·) is

set to the constant function equal to 1 on X.

For notational simplicity, the dependence of the backward function in the observations y ’s is implicit.
The term “backward variables” is part of the HMM credo and dates back to the seminal work of
Baum and his colleagues [2, p. 168]. The backward functions may be obtained, for all x ∈ X by the
recursion

βk|n(x) =

∫
Q(x , d x ′)g(x ′, yk+1)βk+1|n(x

′) (6)

operating on decreasing indices k = n− 1 down to 0 from the initial condition

βn|n(x) = 1 . (7)

Definition 2 (Forward Smoothing Kernels). Given n ≥ 0, define for indices k ∈ {0, . . . , n − 1} the

transition kernels

Fk|n(x ,A)
def
=

(
[βk|n(x)]

−1
∫

A
Q(x , d x ′)g(x ′, yk+1)βk+1|n(x

′) if βk|n(x) 6= 0

0 otherwise ,
(8)

for any point x ∈ X and set A∈B(X). For indices k ≥ n, simply set

Fk|n
def
= Q , (9)

where Q is the transition kernel of the unobservable chain {Xk}k≥0.
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Note that for indices k ≤ n−1, Fk|n depends on the future observations Yk+1:n through the backward
variables βk|n and βk+1|n only. The subscript n in the Fk|n notation is meant to underline the fact
that, like the backward functions βk|n, the forward smoothing kernels Fk|n depend on the final index
n where the observation sequence ends. Thus, for any x ∈ X, A 7→ Fk|n(x ,A) is a probability measure
on B(X). Because the functions x 7→ βk|n(x) are measurable on (X,B(X)), for any set A ∈ B(X),
x 7→ Fk|n(x ,A) is B(X)/B(R)-measurable. Therefore, Fk|n is indeed a Markov transition kernel on
(X,B(X)).

Given n, for any index k ≥ 0 and function f ∈ Fb (X),

Eξ[ f (Xk+1) | X0:k, Y0:n] = Fk|n(Xk, f ) .

More generally, for any integers n and m, function f ∈ Fb

�
X

m+1
�

and initial probability ξ on
(X,B(X)),

Eξ[ f (X0:m) | Y0:n] =

∫
· · ·

∫
f (x0:m)φξ,0|n(d x0)

m∏

i=1

Fi−1|n(x i−1, d x i) , (10)

where {Fk|n}k≥0 are defined by (8) and (9), and φξ,k|n is the marginal smoothing distribution of the
state Xk given the observations Y0:n. Note that φξ,k|n may be expressed, for any A∈B(X), as

φξ,k|n(A) =

�∫
φξ,k(d x)βk|n(x)

�−1 ∫

A

φξ,k(d x)βk|n(x) , (11)

where φξ,k is the filtering distribution defined in (1) and βk|n is the backward function.

3 Coupling constants, coupling sets and the coupling construction

3.1 Coupling constant and coupling sets

As outlined in the introduction, our proofs are based on coupling two copies of the conditional chain
started from two different initial conditions. For any two probability measures µ1 and µ2 we define
the total variation distance



µ1−µ2




TV = 2 supA |µ1(A)− µ2(A)| and we also recall the identities

sup| f |≤1 |µ1( f )− µ2( f )| =


µ1−µ2




TV and sup0≤ f ≤1 |µ1( f )− µ2( f )| = (1/2)



µ1−µ2




TV. Let n

and m be integers, and k ∈ {0, . . . , n−m}. Define the m-skeleton of the forward smoothing kernel
as follows:

Fk,m|n
def
= Fkm|n . . . Fkm+m−1|n , (12)

Definition 3 (Coupling constant of a set). Let n and m be integers, and let k ∈ {0, . . . , n−m}. The

coupling constant of the set C ⊂ X×X is defined as

ǫk,m|n(C)
def
= 1−

1

2
sup

(x ,x ′)∈C



Fk,m|n(x , ·)− Fk,m|n(x
′, ·)




TV . (13)

This definition implies that the coupling constant is the largest ǫ ≥ 0 such that there exists a proba-
bility kernel ν on X×X, satisfying for any (x , x ′) ∈ C , and A∈B(X),

Fk,m|n(x ,A)∧ Fk,m|n(x
′,A)≥ ǫν(x , x ′;A) . (14)
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The coupling construction is of interest only if we may find set-valued functions C̄k|n whose coupling
constants ǫk,m|n(C̄k|n) are ’most often’ non-zero (recall that these quantities are typically functions
of the whole trajectory y0:n). It is not always easy to find such sets because the definition of the
coupling constant involves the product Fk|n forward smoothing kernels, which is not easy to handle.
In some situations (but not always), it is possible to identify appropriate sets from the properties of
the unconditional transition kernel Q.

Definition 4 (Strong small set). A set C ∈ B(X) is a strong small set for the transition kernel Q,

if there exists a measure νC and constants σ−(C) > 0 and σ+(C) < ∞ such that, for all x ∈ C and

A∈B(X),

σ−(C)νC(A)≤Q(x ,A)≤ σ+(C)νC(A) . (15)

The following Lemma helps to characterize appropriate sets where coupling may occur with a posi-
tive probability from products of strong small sets.

Proposition 5. Assume that C is a strong small set. Then, for any n and any k ∈ {0, . . . , n}, the

coupling constant of the set C × C is uniformly lower bounded by the ratio σ−(C)/σ+(C).

Proof. The proof is postponed to the appendix.

Assume that X = Rd , and that the kernel satisfies the pseudo-mixing condition (3). We may choose
a compact set C with diameter d = diam(C) large enough so that C is a strong small set (i.e., (15)
is satisfied). The coupling constant of C̄ = C × C is lower bounded by ǫ−(d)/ǫ+(d) uniformly over
the observations, where the constant ǫ−(d) and ǫ+(d) are defined in (3).

Nevertheless, though the existence of small sets is automatically guaranteed for phi-irreducible
Markov chains, the conditions imposed for the existence of a strong small set are much more strin-
gent. As shown below, it is sometimes worthwhile to consider coupling set which are much larger
than products of strong small sets.

3.2 The coupling construction

We may now proceed to the coupling construction. The construction introduced here is a straight-
forward adaptation of the coupling construction for Markov Chain on general state-spaces (see for
example [12], [14] and [17]). Let n be an integer, and for any k ∈ {0, . . . , ⌊n/m⌋}, let C̄k|n be a set-
valued function, C̄k|n : Y

n→B(X×X). We define R̄k,m|n as the Markov transition kernel satisfying,
for all (x , x ′) ∈ C̄k|n and for all A,A′ ∈B(X) and (x , x ′) ∈ C̄k|n,

R̄k,m|n(x , x ′;A× A′) =
¦
(1− ǫk,m|n)

−1(Fk,m|n(x ,A)− ǫk,m|nνk,m|n(x , x ′;A))
©

×
¦
(1− ǫk,m|n)

−1(Fk,m|n(x
′,A′)− ǫk,m|nνk,m|n(x , x ′;A′))

©
, (16)

where the dependence on C̄k|n of the coupling constant ǫk,m|n and of the minorizing probability
νk,m|n is omitted for simplicity. For all (x , x ′) ∈ X×X, we define

F̄k,m|n(x , x ′; ·) = Fk,m|n⊗ Fk,m|n(x , x ′; ·) , (17)
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where, for two kernels K and L on X, K⊗ L is the tensor product of the kernels K and L, i.e., for all
(x , x ′) ∈ X×X and A,A′ ∈B(X)

K ⊗ L(x , x ′;A× A′) = K(x ,A)L(x ′,A′) . (18)

Define the product space Z= X×X×{0,1}, and the associated product sigma-algebraB(Z). Define

on the space (ZN,B(Z)⊗N) a Markov chain Zi
def
= (X̃ i , X̃ ′i , di), i ∈ {0, . . . , n} as follows. If di = 1, then

draw X̃ i+1 ∼ Fi,m|n(X̃ i, ·), and set X̃ ′i+1 = X̃ i+1 and di+1 = 1. Otherwise, if (X̃ i, X̃ ′i ) ∈ C̄i|n, flip a coin
with probability of heads ǫi,m|n. If the coin comes up heads, then draw X̃ i+1 from νi,m|n(X̃ i , X̃ ′i ; ·),
and set X̃ ′i+1 = X̃ i+1 and di+1 = 1. If the coin comes up tails, then draw (X̃ i+1, X̃ ′i+1) from the
residual kernel R̄i,m|n(X̃ i , X̃ ′i ; ·) and set di+1 = 0. If (X̃ i , X̃ ′i ) 6∈ C̄i|n, then draw (X̃ i+1, X̃ ′i+1) according
to the kernel F̄i,m|n(X̃ i , X̃ ′i ; ·) and set di+1 = 0. For µ a probability measure on B(Z), denote PY

µ the
probability measure induced by the Markov chain Zi , i ∈ {0, . . . , n} with initial distribution µ. It is
then easily checked that for any i ∈ {0, . . . , ⌊n/m⌋} and any initial distributions ξ and ξ′, and any
A,A′ ∈B(X),

PY
ξ⊗ξ′⊗δ0

�
Zi ∈ A×X× {0,1}

�
= φξ,im|n(A) ,

PY
ξ⊗ξ′⊗δ0

�
Zi ∈ X× A′× {0,1}

�
= φξ′,im|n(A) ,

where δx is the Dirac measure and ⊗ is the tensor product of measures and φξ,k|n is the marginal
posterior distribution given by (11)

Note that di is the bell variable, which shall indicate whether the chains have coupled (di = 1) or
not (di = 0) by time i. Define the coupling time

T = inf{k ≥ 1, dk = 1} , (19)

with the convention inf; =∞. By the Lindvall inequality, the total variation distance between the
filtering distribution associated to two different initial distribution ξ and ξ′ is bounded by the tail
distribution of the coupling time,



φξ,n−φξ′,n




TV ≤ 2 PY
ξ⊗ξ′⊗δ0

(T ≥ ⌊n/m⌋) . (20)

In the following section, we consider several conditions allowing to bound the tail distribution of
the coupling time. Such bounds depend crucially on the coupling constant of such sets and also on
probability bounds of the return time to these coupling sets.

4 Coupling over the whole state-space

The easiest situation is when the coupling constant of the whole state space ǫk,m|n(X× X) is away
from zero for sufficiently many trajectories y0:n; for unconditional Markov chains, this property
occurs when the chain is uniformly ergodic (i.e., satisfies the Doeblin condition). This is still the case
here, through now the constants may depend on the observations Y ’s. As stressed in the discussion,
perhaps surprisingly, we will find non trivial examples where the coupling constant ǫk,m|n(X× X)

is bounded away from zero for all y0:n, whereas the underlying unconditional Markov chain is not

uniformly geometrically ergodic. We state without proof the following elementary result.

34



Theorem 6. Let n be an integer and ℓ≥ 1. Then,



φξ,n−φξ′,n




TV ≤ 2
⌊n/m⌋∏

k=0

¦
1− ǫk,m|n(X×X)

©
.

Example 2 (Uniformly ergodic kernel). When X is a strong small set then one may set m = 1
and, using Proposition 5, the coupling constant ǫk,1|n(X×X) of the set X×X is lower bounded by
σ−(X)/σ+(X), where the constants σ−(X) and σ+(X) are defined in (15). In such a case, Theorem
6 shows that


φξ,n−φξ′,n




TV ≤ {1−σ−(X)/σ+(X)}
n.

Example 3 (Bounded observation noise). Assume that a Markov chain {Xk}k≥0 in X= Rd is observed
in a bounded noise. The case of bounded error is of course particular, because the observations of
the Y ’s allow to locate the corresponding X ’s within a set. More precisely, we assume that {Xk}k≥0

is a Markov chain with transition kernel Q having density q with respect to the Lebesgue measure
and Yk = b(Xk) + Vk where,

• {Vk} is an i.i.d., independent of {Xk}, with density pV . In addition, pV (|x |) = 0 for |x | ≥ M .

• the transition density (x , x ′) 7→ q(x , x ′) is strictly positive and continuous.

• The level sets of b, {x ∈ X : |b(x)| ≤ K} are compact.

This case has already been considered by [3], using projective Hilbert metrics techniques. We will
compute an explicit lower bound for the coupling constant ǫk,2|n(X×X), and will then prove, under
mild additional assumptions on the distribution of the Y ’s that the chain forgets its initial conditions

geometrically fast. For y ∈ Y, denote C(y)
def
= {x ∈ X, |b(x)| ≤ |y |+ M}. Note that, for any x ∈ X

and A∈B(X),

Fk|nFk+1|n(x ,A) =
∫∫

q(x , xk+1)gk+1(xk+1)q(xk+1, xk+2)gk+2(xk+2)1A(xk+2)βk+2|n(xk+2)dxk+1dxk+2∫∫
q(x , xk+1)gk+1(xk+1)q(xk+1, xk+2)gk+2(xk+2)βk+2|n(xk+2)dxk+1dxk+2

,

where gk+1(x) is a shorthand notation for g(x , Yk+1). Since q is continuous and positive, for any
compact sets C and C ′, infC×C ′ q(x , x ′) > 0 and supC×C ′ q(x , x ′) <∞. On the other hand, because
the observation noise is bounded, g(x , y) = g(x , y)1C(y)(x). Therefore,

Fk|nFk+1|n(x ,A)≥ ρ(Yk+1, Yk+2)νk|n(A) ,

where

ρ(y, y ′) =
infC(y)×C(y ′) q(x , x ′)

supC(y)×C(y ′) q(x , x ′)
,

and

νk|n(A)
def
=

∫
gk+2(xk+2)1A(xk+2)βk+2|n(xk+2)ν(dxk+2)∫

gk+2(xk+2)βk+2|n(xk+2)ν(dxk+2)
.

This shows that the coupling constant of X × X is lower bounded by ρ(Yk, Yk+1). By applying
Theorem 6, we obtain that
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TV ≤ 2
⌊n/2⌋∏

k=0

{1−ρ(Y2k, Y2k+1)} .
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Hence, the posterior chain forgets its initial condition provided that

lim inf
n→∞

⌊n/2⌋∑

k=0

ρ(Y2k, Y2k+1) =∞ , PY a.s. .

This property holds under many different assumptions on the observations Y0:n.

To go beyond these examples, we have to find alternate verifiable conditions upon which we may
control the coupling constant of the set X×X. An interesting way of achieving this goal is to identify
a uniformly accessible strong small set.

Definition 7 (Uniform accessibility). Let j,ℓ, n be integers satisfying ℓ ≥ 1 and j ∈ {0, . . . , ⌊n/ℓ⌋}. A

set C is uniformly accessible for the product of forward smoothing kernels F j|n . . . F j+ℓ−1|n if

inf
x∈X

F j|n . . . F j+ℓ−1|n(x , C)> 0 . (21)

Proposition 8. Let k,ℓ, n be integers satisfying ℓ ≥ 1 and k ∈ {0, . . . , ⌊n/ℓ⌋ − 1}. Assume that there

exists a set C which is uniformly accessible for the forward smoothing kernels Fk,ℓ|n and which is strongly

small set for Q. Then, the coupling constant of X×X is lower bounded by

ǫk,ℓ+1|n(X×X)≥
σ−(C)

σ+(C)
inf
x∈X

Fk(ℓ+1)|n . . . Fk(ℓ+1)+ℓ−1|n(x , C) . (22)

The proof is given in Section 6. Using this Proposition with Theorem 6 provides a mean to derive
non-trivial rate of convergence, as illustrated in Example 4. The idea amounts to find conditions
upon which a set is uniformly accessible. In the discussion below, it is assumed that the kernel Q has
a density with respect to a σ-finite measure µ on (X,B(X)), i.e., for all x ∈ X, Q(x , ·) is absolutely
continuous with respect to µ. For any set A∈B(X), define the function α : Y

ℓ→ [0,1]

α(y1:ℓ;A)
def
= inf

x0,xℓ+1∈X×X

W[y1:ℓ](x0, xℓ+1;A)

W[y1:ℓ](x0, xℓ+1;X)
=
�
1+ α̃(y1:ℓ;A)
	−1 , (23)

where we have set

W[y1:ℓ](x0, xℓ+1;A)
def
=
∫
· · ·

∫
q(xℓ, xℓ+1)1A(xℓ)

ℓ∏

i=1

q(x i−1, x i)g(x i, yi)µ(dx i) , (24)

and

α̃(y1:ℓ;A)
def
= sup

x0,xℓ+1∈X×X

W[y1:ℓ](x0, xℓ+1;Ac)

W[y1:ℓ](x0, xℓ+1;A)
. (25)

Of course, the situations of interest are when α(y1:ℓ;A) is positive or, equivalently, α̃(y1:ℓ;A) <∞.
In such case, we may prove the following uniform accessibility condition:

Proposition 9. For any integer n and any j ∈ {0, . . . , n− ℓ},

inf
x∈X

F j|n · · ·F j+ℓ−1|n(x , C)≥ α(Yj+1: j+ℓ; C) . (26)
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The proof is given in Section 6.

Example 4 (Functional autoregressive in noise). It is also of interest to consider cases where both the
X ’s and the Y ’s are unbounded. We consider a non-linear non-Gaussian state space model (borrowed
from [13, Example 5.8]). We assume that X0 ∼ ξ and for k ≥ 1,

Xk = a(Xk−1) + Uk ,

Yk = b(Xk) + Vk ,

where {Uk} and {Vk} are two independent sequences of random variables, with probability densities
p̄U and p̄V with respect to the Lebesgue measure on X = Y = Rd . We denote by |x | the norm of the
vector x . In addition, we assume that

• For any x ∈ X = Rd , p̄U(x) = pU(|x |) where pU is a bounded, bounded away from zero on
[0, M], is non increasing on [M ,∞[, and for some positive constant γ, and all α ≥ 0 and
β ≥ 0,

pU(α+ β)

pU(α)pU(β)
≥ γ > 0 . (27)

,

• the function a is Lipshitz, i.e., there exists a positive constant a+ such that |a(x)− a(x ′)| ≤

a+|x − x ′|, for any x , x ′ ∈ X,

• the function b is one-to-one differentiable and its Jacobian is bounded and bounded away
from zero.

• For any y ∈ Y = Rd , p̄V (y) = pV (|y |) where pV is a bounded positive lower semi-continuous
function, pV is non increasing on [M ,∞[, and satisfies

Υ
def
=

∫ ∞

0

[pU(x)]
−1pV (b−x)[pU(a+x)]−1dx <∞ , (28)

where b− is the lower bound for the Jacobian of the function b.

The condition on the state noise {Uk} is satisfied by Pareto-type, exponential and logistic densities
but obviously not by Gaussian density, because the tails are in such case too light.

The fact that the tails of the state noise U are heavier than the tails of the observation noise V (see
(28)) plays a key role in the derivations that follow. In Section 5 we consider a case where this
restriction is not needed (e.g., normal).

The following technical lemma (whose proof is postponed to section 7), shows that any set with
finite diameter is a strong small set.

Lemma 10. Assume that diam(C)<∞. Then, for all x0 ∈ C and x1 ∈ X,

ǫ(C)hC(x1)≤ q(x0, x1)≤ ǫ
−1(C)hC(x1) , (29)

with

ǫ(C)
def
= γpU(diam(C))∧ inf

u≤diam(C)+M
pU(u)∧

�
sup

u≤diam(C)+M

pU(u)

�−1

, (30)

hC(x1)
def
= 1(d(x1, a(C))≤ M) + 1(d(x1, a(C))> M)pU(|x1− a(z0)|) , (31)
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where γ is defined in (27) and z0 is an arbitrary element of C. In addition, for all x0 ∈ X and x1 ∈ C,

ν(C)kC(x0)≤ q(x0, x1) , (32)

with

ν(C)
def
= inf
|u|≤diam(C)+M

pU , (33)

kC(x0)
def
= 1(d(a(x0), C)< M) + 1(d(a(x0), C)≥ M)pU(|z1− a(x0)|) , (34)

where z1 is an arbitrary point in C.

By Lemma 10, the denominator of (25) is lower bounded by

W[y](x0, x2; C)≥ ǫ(C) ν(C)kC(x0)hC(x2)

∫

C

g(x1, y)dx1 , (35)

where we have set z0 = b−1(y) in the definition (31) of hC and z1 = b−1(y) in the definition (34)
of kC . Therefore, we may bound α̃(y1, C), defined in (25), by

α̃(y1, C)≤

�
ǫ(C) ν(C)

∫

C

g(x1, y1)dx1

�−1

I(y1, C) (36)

I(y1, C)
def
= sup

x0,x2∈X

�
[kC(x0)]

−1[hC(x2)]
−1W[y1](x0, x2; C c)

�
. (37)

In the sequel, we set C = CK(y)
def
= {x , |x − b−1(y)| ≤ K}, where K is a constant which will be

chosen later. Since, by construction, the diameter of the set CK(y) is 2K uniformly with respect to
y , the constants ǫ(CK(y)) (defined in (30)) and ν(CK(y)) (defined in (33)) are functions of K only
and are therefore uniformly bounded from below with respect to y . The following Lemma shows
that, for K large enough,

∫
CK (y)

g(x1, y)dx1 is uniformly bounded from below:

Lemma 11.

lim
K→∞

inf
Y

∫

CK (y)

g(x , y)dx > 0 .

The proof is postponed to Section 7. The following Lemma shows that K may be chosen large
enough so that I(y, CK(y)) is uniformly bounded.

Lemma 12.

lim sup
K→∞

sup
y∈Y

I(y, CK(y))<∞ . (38)

The proof is postponed to Section 7. Combining the previous results, α̃(y1, CK(y1)) is uniformly
bounded in y1 for large enough K , and therefore α(y1, CK(y1)) is uniformly bounded away from
zero. Using Proposition 8 with C = CK(y) shows that the coupling constant of X× X is bounded
away from zero uniformly in y . Hence, Proposition 6 shows that there exists ǫ > 0, such that for
any probability measures ξ and ξ′,
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TV ≤ 2(1− ǫ)⌊n/2⌋ .
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5 Pairwise drift conditions

5.1 The pair-wise drift condition

In the situations where coupling over the whole state-space leads to trivial result, one may still use
the coupling argument, but this time over smaller sets. In such cases, however, we need a device
to control the return time of the joint chain to the set where the two chains are allowed to couple.
In this section we obtain results that are general enough to include the autoregression model with
Gaussian innovations and Gaussian measurement error. Drift conditions are used to obtain bounds
on the coupling time. Consider the following drift condition.

Definition 13 (Pair-wise drift conditions toward a set). Let n be an integer and k ∈ {0, . . . , n− 1}
and let C̄k|n be a set valued function C̄k|n : Y

n+1→B(X)×B(X). We say that the forward smoothing

kernel Fk|n satisfies the pair-wise drift condition toward the set C̄k|n if there exist functions Vk|n :
X× X× Y

n+1 → R, Vk|n ≥ 1, functions λk|n : Y
n+1 → [0,1), ρk|n : Y

n+1 → R+ such that, for any

sequence y0:n ∈ Y
n,

R̄k|nVk+1|n(x , x ′)≤ ρk|n (x , x ′) ∈ C̄k|n (39)

F̄k|nVk+1|n(x , x ′)≤ λk|nVk|n(x , x ′) (x , x ′) 6∈ C̄k|n . (40)

where R̄k|n is defined in (16) and F̄k|n is defined in (17).

We set ǫk|n = ǫk|n(C̄k|n), the coupling constant of the set C̄k|n, and we denote

Bk|n
def
= 1∨ρk|n(1− ǫk|n)λk|n . (41)

For any vector {ai,n}1≤i≤n, denotes by [↓ a](i,n) the i-th largest order statistics, i.e., [↓ a](1,n) ≥ [↓

a](2,n) ≥ · · · ≥ [↓ a](n,n) and [↑ a](i,n) the i-th smallest order statistics, i.e., [↑ a](1,n) ≤ [↑ a](2,n) ≤

· · · ≤ [↑ a](n,n).

Theorem 14. Let n be an integer. Assume that for each k ∈ {0, . . . , n− 1}, there exists a set-valued

function C̄k|n : Y
n+1→B(X)⊗B(X) such that the forward smoothing kernel Fk|n satisfies the pairwise

drift condition toward the set C̄k|n. Then, for any probability ξ,ξ′ on (X,B(X)),


φξ,n−φξ′,n




TV ≤ min
1≤m≤n

Am,n (42)

where

Am,n
def
=

m∏

i=1

(1− [↑ ǫ](i|n)) +
n∏

i=0

λi|n

m∏

i=0

[↓ B](i|n)ξ⊗ ξ
′(V0) (43)

The proof is in section 6.

Corollary 15. If there exists a sequence {m(n)} of integers satisfying, m(n) ≤ n for any integer n,

limn→∞m(n) =∞, and, PY -a.s.

lim sup




m(n)∑

i=0

log(1− [↑ ǫ](i|n)) +
n∑

i=0

logλi|n+

m(n)∑

i=0

log[↓ B(i,n)]


 = −∞ ,

then

lim sup
n



φξ,n−φξ′,n




TV

a.s.
−→ 0 , PY −a.s. .
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Corollary 16. If there exists a sequence {m(n)} of integers such that m(n) ≤ n for any integer n,

lim inf m(n)/n= α > 0 and PY -a.s.

lim sup


1

n

m(n)∑

i=0

log(1− [↑ ǫ](i|n)) +
1

n

n∑

i=1

logλi|n+
1

n

n−m(n)∑

i=1

log[↓ B(i|n)]


 ≤−λ ,

then there exists ν ∈ (0,1) such that

ν−n
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TV

a.s.
−→ 0 , PY −a.s. .

5.2 Examples

5.2.1 Gaussian autoregression

Let

X i = αX i−1 +σUi

Yi = X i +τVi

where |α| < 1 and {Ui}i≥0 and {Vi} are i.i.d. standard Gaussian and are independent from X0. Let
n be an integer and k ∈ {0, . . . , n− 1}. The backward functions are given by

βk|n(x)∝ exp
�
−(αx −mk|n)

2/(2ρ2
k|n
)
�

, (44)

where mk|n and ρk|n can be computed for k = {0, . . . , n−2} using the following backward recursions
(see (6))

mk|n =
ρ2

k+1|nYk+1+ατ
2mk+1|n

ρ2
k+1|n+α

2τ2
, ρ2

k|n
=
(τ2+σ2)ρ2

k+1|n+α
2σ2τ2

ρ2
k+1|n+α

2τ2
, (45)

initialized with mn−1|n = Yn and ρn−1|n = σ
2 + τ2. The forward smoothing kernel Fi|n(x , ·) has a

density with respect to to the Lebesgue measure given by φ(·;µi|n(x),γ
2
i|n
), where φ(z;µ,σ2) is the

density of a Gaussian random variable with mean µ and variance σ2 and

µi|n(x) =
τ2ρ2

i+1|nαx +σ2ρ2
i+1|nYi+1+σ

2ατmi+1|n

(σ2+τ2)ρ2
i+1|n+τ

2α2σ2
,

γ2
i|n
=

σ2τ2ρ2
i+1|n

(τ2+σ2)ρ2
i+1|n+α

2τ2σ2
.

From (45), it follows that for any i ∈ {0, . . . , n− 1}, σ2 ≤ ρ2
i|n
≤ σ2 + τ2. This implies that, for any

(x , x ′) ∈ X× X, and any i ∈ {0, . . . , n− 1}, the function µi|n is Lipshitz and with Lipshitz constant
which is uniformly bounded by some β < |α|,

|µi|n(x)−µi|n(x
′)| ≤ β |x − x ′| , β

def
= |α|

τ2(σ2+τ2)

(σ2+τ2)2+τ2α2σ2 , (46)
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and that the variance is uniformly bounded

γ2
−

def
=

σ2τ2

(1+α2)τ2+σ2 ≤ γ
2
i|n
≤ γ2

+

def
=

σ2τ2(σ2+τ2)

(τ2+σ2)2+α2τ2σ2 . (47)

For 0< c <∞, consider the set

C
def
=
�
(x , x ′) ∈ X×X : |x − x ′| ≤ c

	
, (48)

For any i ∈ {0, . . . , n− 1}, the coupling constant of C is uniformly lower-bounded,

1−
1

2



Fi|n(x , ·)− Fi|n(x
′, ·)




TV = 1− erf
�
γ−1

i|n
|µi|n(x)−µi|n(x

′)|
�
≤ 1− erf(γ−1

− β c) ,

where erf is the error function. For c large enough, the drift condition is satisfied with V (x , x ′) =

1+ (x − x ′)2:

F̄i|nV (x , x ′) = 1+
¦
µi|n(x)−µi|n(x

′)
©2
+ 2γ2

i|n
≤ 1+ β2|x − x ′|2+ γ2

+ .

The condition (39) is satisfied with

ρi|n ≤ ρ
def
=

�
1+ β2c2+ γ2

+

�

erf(γ−1
− β c)

, (49)

where c is defined in (48). The condition (40) is satisfied with λi|n = β̃
2 for any β̃ and c satisfying

β < β̃ < 1 and c2 > (1 − β̃2 + γ2
+)/(β̃

2 − β2). All these bounds are uniform with respect to n,
i ∈ {0, . . . , n− 1} and the observations y0:n. Therefore, for any m ∈ {0, . . . , n},
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TV ≤ min
1≤m≤n

¨
(1− ǫ)m+ Bmβ̃2n

�
1+ 2

∫
ξ(d x)x2+ 2

∫
ξ′(d x)x2

�«

with ǫ = erf(γ−1
− β c), B = 1 ∨ ρ(1− ǫ)β̃2 where ρ is defined in (49). Taking m = [δn] for some

δ > 0 such that Bδβ̃2 < 1, this upper bound may be shown to go to zero exponentially fast and
uniformly with respect to the observations y0:n.

5.2.2 State space models with strongly unimodal distributions

The Gaussian example can be generalized to the more general case where the distribution of the
state noise and the measurement noise are strongly unimodal. Recall that a density is strongly
unimodal if the log of its density is concave.

Note that if f and g are two strongly unimodal density, then the density h = f g/
∫

f g is also
strongly unimodal, with mode that lies between the two modes; its second-order derivative of log h

is smaller that the sum of the second-order derivative of log f and log g. Let the state noise density
be denoted by pU(·) = eϕ(·) and that of the measurements’ errors be pV (·) = eψ(·). Define by the
recursion operating on the decreasing indices

β̄i|n(x) = pV (yi − x)

∫
q(x , x i+1)β̄i+1|n(x i+1)dx i+1 , (50)
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with the initial condition β̄n|n(x) = pV (yn − x). These functions are the conditional distribution of
the observations Yi:n given X i = x . They are related to the backward function through the relation

β̄i|n(x)
def
= βi|n(x)pV (yi − x). We denote ψi|n(x)

def
= log β̄i|n(x). Now,

ψi|n(x) =ψ(Yi − x) + log

∫
pU(z−αx)β̄i+1|n(z)dz .

Under the stated assumptions, the forward smoothing kernel Fi|n has a density with respect to the
Lebesgue measure which is given by

fi|n(x i , x i+1) = pU(x i+1−αx i)β̄i+1|n(x i+1)/

∫
pU(z −αx i)β̄i+1|n(z)dz . (51)

Denote by gCovi|n,x the covariance function with respect to the forward smoothing kernel density.
We recall that for any probability distribution µ on (X,B(X)) and any two increasing measurable
functions f and g which are square integrable with respect to µ, the covariance of f and g with
respect to µ, is non-negative. Hence,

ψ′′
i|n
(x)

=ψ′′(Yi − x) +α2

∫
p′′U(z −αx)β̄i+1|n(z) dz
∫

pU(z −αx)β̄i+1|n(z) dz
−α2
�∫ p′U(z −αx)β̄i+1|n(z) dz
∫

pU(z −αx)β̄i+1|n(z) dz

�2

=ψ′′(Yi − x)−α2

∫
p′U(z −αx)β̄ ′

i+1|n(z) dz
∫

pU(z −αx)β̄i+1|n(z) dz

+α2
�∫ p′U(z −αx)β̄i+1|n(z) dz
∫

pU(z −αx)β̄i+1|n(z) dz

��
∫

pU(z −αx)β̄ ′
i+1|n(z) dz

∫
pU(z −αx)β̄i+1|n(z) dz

�

=ψ′′(Yi − x)−α2gCovi|n,x
�
ϕ′(· −αx),ψ′

i+1|n(·)
�

≤ψ′′(Yi − x),

(52)

where we used a direct differentiation, integration by parts, and the fact that both φ′ andψ′
i+1|n are

monotone non-increasing functions (the last statement follows by applying (52) inductively from n

backward).

We conclude that ψi|n is strongly unimodal with curvature at least as that of the original likelihood
function. Hence the curvature of the logarithm of the forward smoothing density is smaller than the
sum of the curvature of the state and of the measurement noise,

�
log fi|n(x i , x i+1)

�′′
≤ ϕ′′(x i+1−αx i) +ψ

′′(Yi+1− x i+1)≤−c , (53)

where
c =−max

x i+1
ϕ′′(x i+1)−max

x i+1
ψ′′(x i+1) . (54)

Lemma 17 shows that the variance of X i+1 given X i and Yi+1:n is uniformly bounded

vi|n(x)
def
=

∫ �
x i+1−

∫
x i+1fi|n(x , x i+1)dx i+1

�2
fi|n(x , x i+1)dx i+1 ≤ c−1 .
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where c is defined in (54). Now let

ei|n(x)
def
=

∫
x i+1fi|n(x , x i+1)dx i+1 .

Similarly as above
dei|n

dx
(x) =−αgCovi|n,x

�
Z ,ϕ′(Z −αx)
�

.

Note that x i+1 7→ ei|n(x) − x i+1, x i+1 7→ ϕ
′(x i+1 − αx), and x i+1 7→ ψ

′
i+1|n(x i+1) are monotone

non-increasing and therefore their correlation is positive with respect to any probability measure.
Hence ¯̄
¯̄dei|n

dx
(x)

¯̄
¯̄

= |α|

∫ �
ei|n(x)− x i+1

�
ϕ′(x i+1−αx)eϕ(x i+1−αx)+ψi+1|n(x i+1)dx i+1∫

eϕ(x i+1−αx)+ψi+1|n(x i+1)dx i+1

≤ |α|

∫ �
ei|n(x)− x i+1

��
ϕ′(x i+1−αx) +ψ′

i+1|n(x i+1)
�

eφ(x i+1−αx)+ψi+1|n(x i+1)dx i+1
∫

eϕ(x i+1−αx)+ψi+1|n(x i+1)dx i+1

= |α| .

by integration by parts. Put as before V (x , x ′) = 1+ (x − x ′)2. It follows from the discussion above
that

F̄i|nV (x , x ′) = 1+ (ei|n(x)− ei|n(x
′))2+ vi|n(x) + vi|n(x

′) ,

where vi|n(x) and vi|n(x
′) are uniformly bounded with respect to x and x ′ and |ei|n(x)− ei|n(x

′)| ≤

α|x − x ′|. The rest of the argument is like that for the normal-normal case.

We conclude the argument by stating and proving a lemma which was used above.

Lemma 17. Suppose that Z is a random variable with probability density function f satisfying

supx(∂
2/∂ x2) log f ≤−c. Then, Z is square integrable and Var(Z)≤ c−1.

Proof. Suppose, w.l.o.g., that the maximum of f is at 0. Under the stated assumption, there exist
constants a ≥ 0 and b such that f (x)≤ ae−c(x−b)2 . This implies that Z is square integrable. Denote
z 7→ ζ(z) = log f (z) + cz2/2 which by assumption is a concave function. Let m be the mean of Z .

E[(Z −m)2] =

∫
(z −m)zeξ(z)−cz2/2dz =

c−1

∫
(z −m)
�
cz − ξ′(z)
�

eξ(z)−cz2/2dz + c−1

∫
(z −m)ξ′(z)eξ(z)−cz2/2dz.

By construction, z 7→ ξ′(z) is a non-increasing function. Since the inequality Cov(ϕ(Z),ψ(Z)) ≥ 0
holds for any two non-decreasing function ϕ and ψ which have finite second moment, the second
term in the RHS of the previous equation is negative. Since

�
cz − ξ′(z)
�

eξ(z)−cz2/2 = − f ′(z), the
proof follows by integration by parts:

Var(Z)≤−c−1

∫
(z −m) f ′(z)dz = c−1

∫
f (z)dz = c−1 .
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6 Proofs

Proof of Proposition 5. The proof is similar to the one done in [11]. For x ∈ C , the condition, (15)
implies that

σ−(C)≤
dQ(x , ·)

dνC

(d x ′)≤ σ+(C) .

Plugging the lower and upper bounds in the numerator and the denominator of (8) yields,

Fk|n(xk,A)≥
σ−(C)

σ+(C)

∫
A
βk+1|n(xk+1)νC(dxk+1)∫

X
βk+1|n(xk+1)νC(dxk+1)

The result is established with

νk|n(A)
def
=

∫
A
βk+1|n(xk+1)µ(dxk+1)∫

X
βk+1|n(xk+1)µ(dxk+1)

.

Proof of Proposition 8. For any x ∈ X, by the Chapman-Kolmogorov equations,

Fk,l+1|n(x ,A) =

∫
Fk(ℓ+1)|n . . . Fk(ℓ+1)+ℓ−1|n(x , d x ′)Fk(ℓ+1)+ℓ|n(x

′,A)

≥ inf
x∈X

Fk(ℓ+1)|n . . . Fk(ℓ+1)+ℓ−1|n(x , C) inf
x ′∈C

Fk(ℓ+1)+ℓ|n(x
′,A) .

The proof follows from Proposition 5, showing that the infimum in the last term is greater or equal
that σ−(C)/σ+(C)νC(A).

Proof of Proposition 9. For simplicity, the dependence of W (; ) in the observations is implicit. Also,
we set gi(x) = g(x , yi). For any x i ∈ X,

P
�

X i+ℓ ∈ C
¯̄
X i = x i , Y1:n

�

=

∫
···
∫

W (x i , x i+ℓ+1; C)gi+ℓ+1(x i+ℓ+1)βi+ℓ+1|n(x i+ℓ+1)µ(dx i+ℓ+1)∫
···
∫

W (x i, x i+ℓ+1;X)gi+ℓ+1(x i+ℓ+1)βi+ℓ+1|n(x i+ℓ+1)µ(dx i+ℓ+1)
,

=

∫
···
∫

W (x i ,x i+ℓ+1;C)
W (x i ,x i+ℓ+1;X)

W (x i , x i+ℓ+1;X)gi+ℓ+1(x i+ℓ+1)βi+ℓ+1|n(x i+ℓ+1)µ(dx i+ℓ+1)
∫
···
∫

W (x i , x i+ℓ+1;X)gi+ℓ+1(x i+ℓ+1)βi+ℓ+1|n(x i+ℓ+1)µ(dx i+ℓ+1)
,

where W is defined in (24). The proof is concluded by noting that, under the stated assumptions,

inf
(x i ,x i+ℓ+1)∈X×X

W (x i, x i+ℓ+1; C)

W (x i , x i+ℓ+1;X)
≥ α(Yi+1:i+ℓ; C) ,

44



Proof of Theorem 14. For notational simplicity, we drop the dependence in the sample size n. Denote

Nn
def
=
∑n

j=01C̄ j
(X j , X ′j) and ǫi

def
= ǫ(C̄i). For any m ∈ {1, . . . , n+ 1}, we have:

PY
ξ,ξ′,0 (T ≥ n)≤ PY

ξ,ξ′,0

�
T ≥ n, Nn−1 ≥ m

�
+ PY

ξ,ξ′,0

�
T ≥ n, Nn−1 < m

�
. (55)

The first term on the RHS of the previous equation is the probability that we fail to couple the chains
after at least m independent trial. It is bounded by

PY
ξ,ξ′,0

�
T ≥ n, Nn−1 ≥ m

�
≤

m−1∏

i=0

�
1− [↑ ǫ](i)
�

. (56)

where [↑ ǫ](i) are the smallest-order statistics of (ǫ0, . . . ,ǫn−1). We consider now the second term in

the RHS of (55). Set B j
def
= 1∨ρ j(1− ǫ j)λ

−1
j

. On the event {Nn−1 ≤ m− 1},

n−1∏

j=0

B
1C̄ j
(X j ,X

′
j
)

j
≤

m−2∏

j=0

[↓ B]( j) ,

where [↓ B]( j) is the j-th largest order statistics of B1, . . . , Bn. Hence,

1{Nn−1 ≤ m− 1} ≤




n−1∏

j=0

B
1C̄ j
(X j ,X

′
j
)

j




−1
m−2∏

j=0

[↓ B]( j) ,

which implies that:

PY
ξ,ξ′,0

�
T ≥ n, Nn−1 < m

�
≤

n−1∏

j=0

λ j

m−2∏

j=0

[↓ B]( j) E
Y
ξ⊗ξ′⊗δ0

[Mn] (57)

where, M0 = V0(X0, X ′0)1{d0 = 0} and for k ∈ {1, . . . , n}:

Mk
def
=




k−1∏

j=0

λ j




−1
k−1∏

j=0

B
−1C̄ j

(X j ,X
′
j
)

j
Vk(Xk, X ′k)1{dk = 0} . (58)

Since, by construction,

Eξ,ξ′,0

�
Vk+1(Xk+1, X ′k+1)1{dk+1 = 0}

¯̄
Fk

�

(1− ǫk)R̄kVk(Xk, X ′k)1C̄ c
k
(Xk, X ′k) +λkVk(Xk, X ′k)1C̄k

(Xk, X ′k) ,

it is easily shown that (Mk, k ≥ 0) is a (F , PY
ξ,ξ′,0)-supermartingale w.r.t. whereF

def
= (Fk)1≤k≤n with

for k ≥ 0, Fk
def
= σ
h
(X j , X ′j , d j), 0≤ j ≤ k

i
. Therefore,

EY
ξ,ξ′,0(Mn)≤ EY

ξ,ξ′,0(M0) = ξ⊗ ξ
′(V0) .

This establishes (42) and concludes the proof.
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7 Proofs of Example 4

To simplify the notations, the dependence of C(y) in K is implicit throughout the section.

Proof of Lemma 10. Consider first the case d(x1, a(C))≥ M . For any z1 ∈ a(C),

M ≤ |x1− a(x0)| ≤ |x1− z1|+ |z1− a(x0)| ≤ diam(C) + |x1− z1| ,

M ≤ |x1− z1| ≤ |x1− a(x0)|+ |z1− a(x0)| ≤ diam(C) + |x1− a(x0)| .

Using that pU is non-increasing for u≥ M and (27), we obtain

pU(|x1− a(x0)|)≥ pU(diam(C) + |x1− z1|)≥ γpU(diam(C))pU(|x1− z1|) ,

and similarly,
pU(|x1− z1|)≥ γpU(diam(C))pU(|x1− a(x0)|) ,

which establishes that (29) holds when d(x0, a(C))≥ M .

Consider now the case d(x1, a(C)) ≤ M . Since x0 belongs to C , then |x1 − a(x0)| ≤ M + diam(C),
which implies that

inf
u≤M+diam(C)

pU(u)≤ pU(|x1− a(x0)|)≤ sup
u≤M+diam(C)

pU(u) ,

(29) holds for d(x1, a(C))≤ M .

Consider now the second assertion. Assume first that x0 is such that d(a(x0), C) ≥ M and let z1 be
an arbitrary point of C . Then, for any x1 ∈ C ,

M ≤ |x1− a(x0)| ≤ |x1− z1|+ |z1− a(x0)| ≤ diam(C) + |z1− a(x0)| .

Using that pU is monotone decreasing on [M ,∞) and (27),

pU(|x1− a(x0)|)≥ pU(diam(C) + |z1− a(x0)|)

≥ γpU[diam(C)]pU(|z1− a(x0)|) . (59)

If d(a(x0), C)≤ M , then for any x1 ∈ C , |x1− a(x0)| ≤ diam(C) +M , so that

inf
|u|≤diam(C)+M

pU ≤ pU

�
|x1− a(x0)|
�

. (60)

Proof of Lemma 11. Let b−1
1 > 0 be a lower bound for the Jacobian of b and choose K such that

b−1
1 K ≥ M . If |b−1(y)− x | ≥ K , then,

|y − b(x)|= |b(b−1(y))− b(x)| ≥ b−1
1 |b

−1(y)− x | ≥ M , (61)

and since pV is non-increasing on the interval [M ,∞[, the following inequality holds
∫

|x−b−1(y)|≥K

pV (|y − b(x)|)dx ≤

∫

|x−b−1(y)|≥K

pV (b
−1
1 |b

−1(y)− x |)dx

≤

∫ ∞

|x |>K

pV (b
−1
1 |x |)dx .
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Since the Jacobian of b is bounded,
∫

pV (|y − b(x)|)dx is bounded away from zero by change of
variables. The proof follows.

Proof of Lemma 12. We will establish the results by considering independently the following cases:

1. For any y and any (x0, x2) such that d(a(x0), C(y))≤ M and d(x2, a[C(y)])≤ M ,

I(x0, x2; y)≤

�
sup
R

pU

�2
.

2. For any y and any (x0, x2) such that d(a(x0), C(y))> M and d(x2, a[C(y)])≤ M ,

I(x0, x2; y)≤ γ−1 �sup pU

�
∫ ∞

K

[pU(x)]
−1pV (b−x)d x .

3. For any y and any (x0, x2) such that d(a(x0), C(y))≤ M and d(x2, a[C(y)])> M

I(x0, x2; y)≤ γ−1 �sup pU

�
¨

b−1
− +

∫ ∞

K

pV (b−x)[pU(a+x)]−1dx

«

4. For any y and any (x0, x2) such that d(a(x0), C(y))> M and d(x2, a[C(y)])> M ,

I(x0, x2; y)≤ γ−2

×

∫ ∞

K

[pU(x)]
−1pV (b−x)

¨�
inf

u≤M
pU(u)

�−1

+ [pU(a+x)]−1

«
dx .

Proof of Assertion 1. On the set {x0, d(a(x0), C(y)) ≤ M}, kC(y)(x0) ≡ 1; On the set
{x2, d(x2, a[C(y)]) ≤ M}, hC(y)(x2) ≡ 1. Since pU is uniformly bounded, the bound follows from
Lemma 11 and the choice of K .

Proof of Assertion 2. On the set {x0, d(a(x0), C(y)) > M}, kC(x0) = pU(|b
−1(y)− a(x0)|) ; On the

set {x2, d(x2, a[C(y)])≤ M}, hC(x2)≡ 1. Therefore, for such (x0, x2),

I(x0, x2; y)≤
�
sup pU

�

p−1
U (|b

−1(y)− a(x0)|)

∫

C c(y)

pU(|x1− a(x0)|)pV (|y1− b(x1)|)dx1 . (62)

We set α= x1−a(x0) and β = b−1(y)− x1. Note that |α+β |= |b−1(y)−a(x0)| ≥ d(a(x0), C(y))>

M . Since pU is non-increasing on [M ,∞[, pU(|α+β |)≥ pU(|α|+ |β |), and the condition (27) shows
that
�

pU(|α+ β |)
�−1

pU(|α|)≤ γ
−1p−1

U (|β |) which implies

p−1
U (|b

−1(y)− a(x0)|)pU(|x1− a(x0)|)≤ γ
−1p−1

U (|b
−1(y)− x1|) . (63)
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Therefore, plugging (63) into the RHS of (62) yields

I(x0, x2; y)≤ γ−1 �sup pU

�
∫

|x1−b−1(y)|≥K

p−1
U (|b

−1(y)− x1|)pV (b−|b
−1(y)− x |)dx1

≤ γ−1 �sup pU

�
∫ ∞

K

p−1
U (x)pV (b−x)dx .

Proof of Assertion 3. On the set {x0, d(a(x0), C(y)) ≤ M}, kC(x0) ≡ 1; on the set
{x2, d(x2, a[C(y)])> M}, hC(x2) = pU(|x2− a[b−1(y)]|)≡ 1. Therefore, for such (x0, x2);

I(x0, x2; y)≤
�
sup pU

�

× p−1
U (|x2− a[b−1(y)]|)

∫

C c(y)

pV (|y − b(x1)|)pU(|x2− a(x1)|)dx1 . (64)

We set α= x2− a(x1), β = a(x1)− a[b−1(y)]. Since |α+β | ≥ d(x2, a[C(y)])> M , using as above
that
�

pU(|α+ β |)
�−1

pU(|α|)≤ γ
−1p−1

U (|β |), we show

p−1
U (|x2− a[b−1(y)]|)pU(|x2− a(x1)|)≤ γ

−1p−1
U (|a(x1)− a[b−1(y)]|) . (65)

Since for any x , x ′ ∈ X,

p−1
U (|a(x)− a(x ′)|)≤

�
inf

u≤M
pU(u)

�−1

1{|a(x)− a(x ′)| ≤ M}

+ p−1
U (a+|x − x ′|)1{|a(x)− a(x ′)|> M} , (66)

the RHS of (64) is therefore bounded by

I(x0, x2; y)≤ γ−1 �sup pU

�
∫

|x1−b−1(y)|≥K

pV (b−(|x1− b−1(y)|))

¨�
inf

u≤M
pU(u)

�−1

+ p−1
U (a+|x1− b−1(y)|)

«
dx1 .

Proof of Assertion 4. On the set {x0, d(a(x0), C(y))> M}, kC(y)(x0) = pU(|b
−1(y)−a(x0)|). On the

set {x2, d(x2, a[C(y)])> M}, kC(y)(x2) = pU(|x2− a[b−1(y)]). Therefore, for such (x0, x2),

I(x0, x2; y)≤ p−1
U (|b

−1(y)− a(x0)|)p
−1
U (|x2− a[b−1(y)]|)

×

∫

C c(y)

pU(|x1− a(x0)|)pV (|y − b(x1)|)pU(|x2− a(x1)|)dx1 . (67)

Using (61), (63), (65), and (66), the RHS of the previous equation is bounded by

I(x0, x2; y)≤ γ−2

∫ ∞

K

p−1
U (|x |)pV (b−|x |)

¨�
inf

u≤M
pU(u)

�−1

+ p−1
U (a+x)

«
dx .

The proof follows.
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