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Abstract

Let D be a bounded Lipschitz domain in Rn with n ≥ 2 and τD be the first exit time from D by

Brownian motion on Rn. In the first part of this paper, we are concerned with sharp estimates

on the expected exit time Ex[τD]. We show that if D satisfies a uniform interior cone condition

with angle θ ∈ (cos−1(1/
p

n), π), then c1ϕ1(x) ≤ Ex[τD] ≤ c2ϕ1(x) on D. Here ϕ1 is the first

positive eigenfunction for the Dirichlet Laplacian on D. The above result is sharp as we show

that if D is a truncated circular cone with angle θ < cos−1(1/
p

n), then the upper bound for

Ex[τD] fails. These results are then used in the second part of this paper to investigate whether

positive solutions of the semilinear equation ∆u= up in D, p ∈ R, that vanish on an open subset

Γ⊂ ∂ D decay at the same rate as ϕ1 on Γ.
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1 Introduction

Let n≥ 2 and X a Brownian motion on Rn. Suppose D is a bounded Lipschitz domain in Rn. Denote

by τD := inf{t : X t /∈ D} the first exit time from D by X , and X D the subprocess obtained from X by

letting it be killed upon exiting D. It is well-known that X D has a jointly continuous Green function

GD(x , y) on D× D except along the diagonal:

Ex

�∫ τD

0

f (Xs) ds

�

=

∫

D

GD(x , y) f (y)d y, x ∈ D,

for every Borel function f ≥ 0 on D. The right hand side of the above display will be denoted as

GD f (x). The infinitesimal generator of X D is the Laplacian 1

2
∆ on D with zero Dirichlet boundary

condition. This Dirichlet Laplacian on D has discrete spectrum 0 > −λ1 > −λ2 ≥ −λ3 ≥ · · · .
Let ϕ1 be the positive eigenfunction corresponding to the eigenvalue −λ1 normalized to have
∫

D
ϕ1(x)

2d x = 1. The random exit time τD, the Green function GD and the first eigenfunction

ϕ1 are fundamental objects in probability theory and analysis. In many occasions, one needs to

estimate Ex[τD] = GD1(x). When D is a bounded C1,1 domain, using the known two-sided Green

function estimate on GD (see Lemma 2.1 below), one can easily deduce

Ex[τD]≍ δD(x) on D. (1.1)

Here, and throughout the paper, δD(x) denotes the Euclidean distance between x and Dc , and for

two positive functions f , g, the notation f ≍ g means that there are positive constants c1 and c2

so that c1 g(x) ≤ f (x) ≤ c2 g(x) in the common domain of definition for f and g. Since ϕ1(x) =

λ1GDϕ1, using the two-sided Green function estimate on GD again, we have ϕ1(x) ≍ δD(x) on D.

Thus on a bounded C1,1 domain D,

Ex[τD]≍ ϕ1(x) on D. (1.2)

While it is clear that in general (1.1) no longer holds on bounded Lipschitz domains, it is reasonable

to ask if (1.2) remains true for a bounded Lipschitz domain D. We show in this paper that, in fact,

(1.2) holds on any bounded Lipschitz domain D with Lipschitz constant strictly less than 1/
p

n− 1,

and fails on some Lipschitz domain with Lipschitz constant strictly larger than 1/
p

n− 1. In fact, our

result is somewhat stronger than that. To state it, let us recall the following notions. For θ ∈ (0,π),

let C (θ) be the truncated circular cone in Rn with angle θ , defined by

C (θ) :=
�

x ∈ Rn : |x |< 1 and x · e1 > |x | cosθ
	

, (1.3)

where e1 := (1,0, · · · , 0) ∈ Rn. We say that a bounded Lipschitz domain D satisfies the interior cone

condition with common angle θ , if there is some a > 0 such that for every point x ∈ ∂ D, there is a

cone C ⊂ D with vertex at x that is conjugate to aC (θ); that is, C is the cone with vertex at x that

is obtained from C (θ) through parallel translation and rotation.

The result below states that (1.2) holds for bounded Lipschitz domains in Rn satisfying the interior

cone condition with common angle strictly larger than cos−1(1/
p

n). This includes as special case

bounded Lipschitz domains in Rn whose Lipschitz constant is strictly less than 1/
p

n− 1.

Theorem 1.1. Let D be a bounded Lipschitz domain in Rn with n ≥ 2 satisfying the interior cone

condition with common angle θ ∈
�

cos−1(1/
p

n),π
�

. Then there is a constant c ≥ 1 such that

c−1ϕ1(x)≤ Ex[τD]≤ cϕ1(x) for every x ∈ D. (1.4)
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Remark 1.2. (i) Theorem 1.1 can also be rephrased with ϕ1 being replaced by ϕ(x) := GD(x , x0)∧1,

where x0 ∈ D is fixed. This is because by Lemma 3.2, ϕ ≍ ϕ1 on D.

(ii) A variant but equivalent form of Theorem 1.1 has also been obtained independently by M.

Bieniek and K. Burdzy [4] using a different method. In [4], it is shown under the same condition

of Theorem 1.1 that for a fixed compact set A ⊂ D with non-empty interior, u(x) := Px(σA < τD)

is comparable to Ex[τD] on D, where σA := inf{t ≥ 0 : X t ∈ A} is the first entrance time of A

by X . Clearly u = 1 on K and u is a harmonic function in D \ A that vanishes continuously on

∂ D. So by the boundary Harnack inequality on bounded Lipschitz domains (see Theorem 1.5 on

next page), u is comparable to the function ϕ in (i). The proof of [4] involves a crucial use of

the boundary Harnack inequality on bounded Lipschitz domains and a construction of a particular

harmonic function through Kelvin transform. Our proof of Theorem 1.1 establishes a lower bound

on ϕ1 in terms of the distance function to the boundary and uses a Green function estimate of

GD(x , y) (see Propositions 2.2 and 3.1 below).

(iii) While the lower bound for Ex[τD] in (1.4) in fact holds for every bounded Lipschitz domain,

we show in Theorem 3.3 that the condition on θ is sharp for the upper bound (hence for (1.2)).

(iv) The above result is in sharp contrast to the situation when X is replaced by a rotationally

symmetric α-stable process Y on Rn with 0 < α < 2. For any bounded Lipschitz domain D ⊂ Rn

and for the process Y , [17, Theorem 8] shows that Ex[τD] ≍ ϕ0(x) on D, where ϕ0(x) = GD1K(x)

for some compact subset K of D. By a similar argument as that for Lemma 3.2, one can show that

ϕ1 ≍ ϕ0 on D. Thus for any rotationally symmetric α-stable process Y on Rn with 0 < α < 2, (1.4)

holds on every bounded Lipschitz domain D.

We now consider the positive solutions of the following semilinear equation on a bounded Lipschitz

domain D ⊂ Rn:
(

1

2
∆u= up in D,

u= φ on ∂ D,
(1.5)

where p ∈ R, and φ is a non-negative continuous function on ∂ D that vanishes on an open subset

Γ ⊂ ∂ D. If φ > 0 then existence of positive solutions is standard and we briefly review the vast

literature at the end of this section. If φ vanishes on a portion of the boundary we show that there is

a p0 ∈ R such that above Dirichlet problem has a positive solution if p ≥ p0 and does not if p < p0.

We investigate whether positive solutions of (1.5) go to zero at the same rate as ϕ1 on Γ.

The primary motivation for such a study comes from the BHP for positive harmonic functions. The

following classical BHP is due to A. Ancona, B. Dahlberg and J. M. Wu (see [3, p.176] for a proof).

Theorem 1.3. (Ancona, Dahlberg and Wu) Suppose that D is a bounded Lipschitz domain in Rn

with n≥ 2. Then there is a constant c ≥ 1 such that for every z ∈ ∂ D, r > 0 and two positive harmonic

functions u and v in B(z, 2r)∩ D that vanish continuously on ∂ D ∩ B(z, 2r), we have

u(x)

v(x)
≤ c

u(y)

v(y)
for every x , y ∈ D ∩ B(z, r). (1.6)

From Remark 1.2(i) and the above result it is clear that all harmonic functions that vanish continu-

ously on a part of the boundary go to zero at the same rate as ϕ1 on that part. One quickly observes

that positive solutions of (1.5) are subharmonic functions on D, and in general, subharmonic func-

tions need not go to zero on Γ ⊂ ∂ D at the same rate as ϕ1. To state our results precisely, we need

some definitions.

53



Definition 1.4. We say that u ∈ C(D) is a mild solution to (1.5) if

u(x) = h(x)−
∫

D

GD(x , y)up(y)d y, x ∈ D,

where h ∈ C(D) is a harmonic function in D satisfying h= φ on ∂ D.

Here C(D) denotes the space of continuous functions on D. It is easy to see that a function u ∈ C(D)

is a mild solution of (1.5) if and only if it is a weak solution of (1.5) (cf. [6]). We consider the

following classes of functions.

• H+ =H+(D, Γ) denotes the class of functions h ∈ C(D) that are positive and harmonic in D

and vanish on Γ.

• S p
+ = S

p
+ (D, Γ) denotes the class of positive mild solutions u ∈ C(D) to (1.5) for some non-

negative continuous function φ on ∂ D that vanishes on Γ.

• S p

H = S
p

H (D, Γ) denotes the class of u ∈ S p
+ for which u≍ h in D for some h ∈H+.

In view of Theorem 1.3 and Remark 1.2(i), we see that when D is a bounded Lipschitz domain in

Rn, functions in S p

H do go to zero on Γ ⊂ ∂ D at the same rate as ϕ1. So the purpose of the second

part of this paper is to investigate how large the class S p

H is and, in particular, when is S p

H = S
p
+

and when S p

H = ;.

Theorem 1.5. Assume that n≥ 2 and D is a bounded Lipschitz domain in Rn. Then

(i) S p
+ = S

p

H 6= ; for p ≥ 1.

Assume, in addition, that D satisfies

Ex[τD]≤ cϕ1(x) for every x ∈ D. (1.7)

Then there exists p0 ∈ (−∞, 0) such that

(ii) S p

H 6= ; for p0 < p < 1, and

(iii) S p

H = S
p
+ = ; for p < p0.

We conjecture that for p ∈ (p0, 1), ; 6= S p

H ( S
p
+ . Note that Theorem 1.1 gives a sufficient condition

on a Lipschitz D to satisfy condition (1.7). We can say more when D is a bounded C1,1-domain.

Recall that a bounded domain D ⊂ Rn is said to be C1,1-smooth if for every point z ∈ ∂ D, there is

r > 0 such that D∩ B(z, r) is the region in B(z, r), under some z-dependent coordinate system, that

lies above the graph of a function whose first derivatives are Lipschitz continuous.

Theorem 1.6. Assume that n≥ 2 and D is a bounded C1,1-domain in Rn. Then

(i) S p
+ = S

p

H 6= ; for p ≥ 1;

(ii) S p

H 6= ; for −1< p < 1;

(iii) S p

H = S
p
+ = ; for p ≤−1.
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Remark 1.7. (i) Our proof of Theorem 1.6 is based on a two-sided estimate on GD(x , y); see

Proposition 2.2 below. Theorem 1.6 in fact holds not only for the Laplacian but also for a large

class of uniformly elliptic operators in a bounded C2-domain D. Let L = 1

2

∑n

i, j=1
∂

∂ x i

�

ai j(x)
∂

∂ x j

�

,

where ai j has continuous derivatives on D (i.e. it is C1(D)), and A(x) = (ai j(x)) is a symmetric

matrix-valued function that is uniformly bounded and elliptic. Then by Theorem 3.3 of Grüter and

Widman [16], the Green function GLD (x , y) of L in D satisfies the following estimate

GLD (x , y)≤ cδD(x) |x − y |1−n, x , y ∈ D,

where c > 0. On the other hand, we know from Lemma 4.6.1 and Theorem 4.6.11 of Davies [8]

that GLD (x , y) ≥ cδD(x)δD(y). For r > 0, define Dr = {x ∈ D : δD(x) < r}. Thus for fixed y0 ∈ D

and r < δD(y0),

GLD (x , y0)≍ δD(x) for x ∈ Dr . (1.8)

It is well known that Harnack and boundary Harnack principles hold for L and the Green function

GLD (x , y)≍
(

|x − y |2−n when n≥ 3,

log(1+ |x − y |−2) when n= 2.

for x , y ∈ D \ Dr with r > 0. Hence by a similar argument as that in Bogdan [5], we conclude that

the estimate (2.1)-(2.2) hold for the Green function GLD of L in D . Finally, by imitating the proof

of Theorem 1.6 we can obtain the result for L as well.

(ii) Now suppose D = [0,1]n and −1< p < 1. Let u(x) = cp(x1)
2

1−p , where cp =
�

2(1+p)

(1−p)2

� 2

1−p
and x1

is the first coordinate of x = (x1, . . . , xn). Now u ∈ S p
+ clearly and due to the one dimensional nature

of this example one can establish u 6∈ S p

H . This suggests that Theorem 1.6(ii) could be replaced by:

; 6= S p

H ( S
p
+ , for − 1< p < 1;

However, we were not able to generalize the above example to general bounded C1,1- domains D.

(iii) We have stated all our results for solutions of the equation (1.5). However if we assume that

f (u)≍ up then the proofs of our main results can be suitably modified to yield the same quantitative

behavior for solutions of the equation

(

1

2
∆u= f (u) in D,

u= φ on ∂ D.
(1.9)

(iv) When D is a bounded C1,1 domain in Rn, and p ≥ 1, the result S p
+ 6= ; is established in [6]

(in fact the result is proved to be true for any bounded regular domain D), while for −1 < p < 1,

S p
+ 6= ; is shown in [1].

There is a wealth of literature on the semilinear elliptic equations. Under certain regularity condi-

tions on D ⊂ Rn and φ, where n≥ 3, the existence of solutions to (1.9), bounded below by a positive

harmonic function, was established in [6] when f satisfies the condition that −u ≤ f (u) ≤ u for

|u|< ǫ for some ǫ > 0, and in [1] the case when 0≤ f (u)≤ u−α for some α ∈ (0,1) was resolved.
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The equation ∆u = up in D with u = φ on ∂ D has also been widely studied. For 1 ≤ p ≤ 2, it has

been studied probabilistically using the exit measure of super-Brownian motion (a measure valued

branching process), by Dynkin, Le Gall, Kuznetsov, and others [11; 12; 18]. Properties of solutions

when f (u) = up, p ≥ 1, with both finite and singular boundary conditions have also been studied by

a number of authors using analytic techniques [2; 13; 15; 19].

Our proofs of Theorem 1.5 and Theorem 1.6 employ implicit probabilistic representation of solutions

of (1.5) and Schauder’s fixed point theorem. We emphasize that our main new contributions in these

two theorems are for subcases (ii)-(iii), that is for p < 1. Some part of the results that address the

case p ≥ 1 (Theorem 1.5(i) and Theorem 1.6(i)) may be known (cf. [11; 12; 18]). However,

the proofs we provide for these results appear to be more elementary than those available in the

literature.

In the sequel, we use C∞(D) to denote the space of continuous functions in D that vanish on ∂ D.

For two real number a and b, a ∧ b := min{a, b} and a ∨ b := max{a, b}. We will use B(x , r) to

denote the open ball in Rn centered at x with radius r.

The rest of the paper is organized as follows. In the next section we present some estimates on the

Green function which are required for the proof of Theorem 1.1, Theorem 1.5 and Theorem 1.6.

In Section 3, we prove Theorem 1.1 and show that the condition on the common angle is sharp

(Theorem 3.3). Finally in Section 4 we prove Theorem 1.5 and in Section 5 we prove Theorem 1.6.

2 Green function estimates

Recall that a bounded domain D ⊂ Rn is said to be Lipschitz if there are positive constants r0 and

r so that for every z ∈ ∂ D, there is an orthonormal coordinate system CSz and a Lipschitz function

Fz : Rn−1→ R with |Fz(ξ)− Fz(η)| ≤ λ |ξ−η| for ξ,η ∈ R−1 so that

D ∩ B(z, r) =
�

y = (y1, · · · , yn) ∈ CSz : |y |< r and yn > Fz(y1, · · · , yn−1)
	

.

The constants (r0,λ) are called the Lipschitz characteristics of D. If each Fz is a C1 function whose

first order partial derivatives are Lipschitz continuous, then the Lipschitz domain D is said to be a

C1,1 domain.

We begin with an estimate for Green function in C1,1 domains.

Lemma 2.1. Suppose that D is a bounded C1,1 domain. Then

GD(x , y) ≍ min

½

1

|x − y |n−2
,
δD(x)δD(y)

|x − y |n
¾

when n≥ 3 (2.1)

GD(x , y) ≍ log

�

1+
δD(x)δD(y)

|x − y |2
�

when n= 2. (2.2)

Proof. Estimate (2.1) is due to K.-O. Widman and Z. Zhao (see [21]). Estimate (2.2) is established as

Theorem 6.23 in [7] for bounded C2-smooth domain D. However the proof carries over to bounded

C1,1-domains.

For the rest of this subsection we will assume that D is a bounded Lipschitz domain in Rn with n≥ 2.

Recall that we defined ϕ(x) := GD(x , x0)∧ 1, where x0 ∈ D is fixed.
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Let r(x , y) := δD(x)∨δD(y)∨ |x − y | and (r0,λ) be the Lipschitz characteristics of D. For x , y ∈ D,

we let Ax ,y = x0 if r(x , y)≥ r0/32 and when r := r(x , y)< r0/32, Ax ,y is any point in D such that

B(Ax ,y ,κr)⊂ D ∩ B(x , 3r)∩ B(y, 3r),

with κ := 1

2
p

1+λ2
.

Proposition 2.2. Let D ⊂ Rn be a bounded Lipschitz domain with n ≥ 2. Then there is a constant

c > 1 such that on D× D \ d,

GD(x , y) ≍
ϕ(x)ϕ(y)

ϕ(Ax ,y)
2

1

|x − y |n−2
when n≥ 3, (2.3)

c−1
ϕ(x)ϕ(y)

ϕ(Ax ,y)
2
≤ GD(x , y) ≤ c

ϕ(x)ϕ(y)

ϕ(Ax ,y)
2

log

�

1+
1

|x − y |2
�

when n= 2. (2.4)

Proof. When n≥ 3, (2.3) is proved in [5] as Theorem 2. So it remains to show (2.4) when n= 2.

Since D is bounded, there is a ball B ⊃ D. It follows from [7, Lemma 6.19] that for x , y ∈ D,

GD(x , y)≤ GB(x , y)≤
1

2π
ln

�

1+ 4
δB(x)δB(y)

|x − y |2
�

≤ c ln
�

1+ |x − y |−2
�

.

On the other hand, by [7, Lemma 6.7], for every c1, there is a constant c2 > 0 such that

GD(x , y)≥ c2 for x , y ∈ D with |x − y | ≤ c1 min{δD(x), δD(y)}.

From these, inequality (2.4) can be proved in the same way as the proofs for [5, Proposition 6 and

Theorem 2].

3 Exit time and boundary decay rate

In this section we prove Theorem 1.1, and the sharpness of the requirement on the common angle

in its statement. To prove Theorem 1.1 we will need the following result.

Proposition 3.1. Let D ⊂ Rn be a bounded Lipschitz domain with n ≥ 2 and ϕ1 be the first positive

eigenfunction for the Dirichlet Laplacian in D normalized to have
∫

D
ϕ1(x)

2d x = 1. If D satisfies the

interior cone condition with common angle θ ∈
�

cos−1(1/
p

n),π
�

, there are positive constants ǫ > 0

and a > 0 such that

ϕ1(x)≥ aδD(x)
2−ǫ for every x ∈ D.

Proof. By Theorem 4.6.8 of [8] and its proof, there is some constant a > 0 such that

ϕ1(x)≥ aδD(x)
α for every x ∈ D,

where α > 0 is the constant determined by

α(α+ n− 2) = λ1(θ). (3.1)
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Here λ1(θ) is the first eigenvalue for the Dirichlet Beltrami-Laplace operator in the unit spherical

cap C (θ) ∩ {x ∈ Rn : |x | = 1}. The first eigenvalue λ1(θ) can be determined in terms of the

hypergeometric function and so can α. Recall the hypergeometric function

F(α,β ,γ, z) := 1+
αβ

γ

z

1!
+
α(α+ 1)β(β + 1)

γ(γ+ 1)

z2

2!
+
α(α+ 1)(α+ 2)β(β + 1)(β + 2)

γ(γ+ 1)(γ+ 2)

z3

3!
+ · · ·

Let θ(p, n) be the smallest positive zero of F
�

−p, p+ n− 2, n−1

2
, 1−cosθ

2

�

. It is known that p 7→
θ(p, n) is continuous and strictly decreasing with θ(1, n) = π/2 (cf. p.62 of [10]). Let θ 7→ p(θ , n)

be the inverse function of p 7→ θ(p, n). We know from [10, p.59 and p.63] that α in (3.1) is equal

to

α= p(θ , n). (3.2)

Note that

F

�

−2, n,
n− 1

2
, z

�

= 1−
4n

n− 1
z +

4n

n− 1
z2,

which has roots
n−pn

2n
and

n+
p

n

2n
. Set z = 1−cosθ

2
. The corresponding smallest positive root for θ is

cosθ0 =
1p
n

or θ0 = cos−1(1/
p

n). In other words, we have for n≥ 2,

θ(2, n) = cos−1(1/
p

n), or equivalently, p(cos−1(1/
p

n), n) = 2. (3.3)

As θ 7→ p(θ , n) is strictly decreasing, we have p(θ , n) < 2 for every θ > cos−1(1/
p

n). This proves

the proposition.

Recall that ϕ(x) := GD(x , x0)∧ 1. The following lemma is known to the experts, but we provide its

proof for completeness.

Lemma 3.2. Suppose that D is a bounded Lipschitz domain in Rn with n ≥ 2. There is a constant

c ≥ 1 such that

c−1ϕ1(x)≤ ϕ(x)≤ cϕ1(x) for x ∈ D.

Proof. It is well-known that D is intrinsic ultracontractive (cf. [8]) and so for every t > 0, there is a

constant ct ≥ 1 such that

c−1
t ϕ1(x)ϕ1(y)≤ pD(t, x , y)≤ ct ϕ1(x)ϕ1(y) for every x , y ∈ D. (3.4)

For the definition of intrinsic ultracontractivity and its equivalent characterizations, see Davies and

Simon [9]. By (3.4), we have

1

c
ϕ(x)≥

∫

D

pD(1, x , y)ϕ(y)d y ≥ c

�∫

D

ϕ(y)ϕ1(y)d y

�

ϕ1(x).

Thus there is a constant c1 > 0 such that

ϕ(x)≥ c1ϕ1(x) for every x ∈ D. (3.5)

On the other hand, let K := {x ∈ D : GD(x , x0) ≥ 1}, which is a compact subset of D. Observe

that both ϕ and ϕ1 are continuous and strictly positive in D. So a := supx∈K
ϕ(x)

ϕ1(x)
is a positive
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and finite number. Since ϕ is harmonic in D \ K and ∆ϕ1(x) = −λ1ϕ1(x) with λ1 > 0, we have

∆(ϕ− a−1ϕ1) > 0 on D \ K . As both ϕ and ϕ1 vanish continuously on ∂ D and ϕ(x)− aϕ1(x) ≤ 0

on K , we have by the maximal principle for harmonic functions that

ϕ(x)≤ aϕ1(x) for every x ∈ D \ K . (3.6)

This proves the Lemma.

Proof of Theorem 1.1. Since ϕ1 is bounded on D, we have

ϕ1(x) = λ1GDϕ1(x)≤ λ1‖ϕ1‖∞ GD1(x) = λ1‖ϕ1‖∞Ex[τD] for x ∈ D.

To establish the upper bound on Ex[τD], set K = {x ∈ D : GD(x , x0) ≥ 1}, which is a compact

subset of D. By taking r0 > 0, we may and do assume that the Euclidean distance between K and

Dc is at least r0. Since ϕ is a positive harmonic function in D \K that vanishes on ∂ D, by Carleson’s

estimate (see, e.g., Theorem III.1.8 of [3]), there is a universal constant c1 = c1(D, K) > 0 such

that ϕ(y) ≤ c1ϕ(Ax ,y) whenever r(x , y) < r0/32. Note also that ϕ is bounded on D and that, by

Proposition 3.1 and (3.5), ϕ(x)≥ cδD(x)
2−ǫ.

When n≥ 3, we have by (2.3),

GD(x , y)≤ c
ϕ(x)ϕ(y)

ϕ(Ax ,y)
2

1

|x − y |n−2
, x , y ∈ D,

Thus we have

GD1(x)

ϕ(x)
≤ c

∫

D

ϕ(y)

ϕ(Ax ,y)

1

ϕ(Ax ,y)|x − y |n−2
d y

= c

∫

{y∈D:r(x ,y)≥r0/32}

ϕ(y)

ϕ(Ax ,y)
2

1

|x − y |n−2
d y

+c

∫

{y∈D:r(x ,y)<r0/32}

ϕ(y)

ϕ(Ax ,y)

1

ϕ(Ax ,y) |x − y |n−2
d y

≤ c

∫

D

1

|x − y |n−2
d y + c

∫

{y∈D:r(x ,y)<r0/32}

1

(r(x , y)2−ǫ |x − y |n−2
d y

≤ c + c

∫

{y∈D:r(x ,y)<r0/32}

1

|x − y |n−ǫ d y

≤ c <∞.
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When n= 2, we have by (2.4),

GD1(x)

ϕ(x)
≤ c

∫

D

ϕ(y)

ϕ(Ax ,y)

1

ϕ(Ax ,y)
log(1+ |x − y |−2)d y

= c

∫

{y∈D:r(x ,y)≥r0/32}

ϕ(y)

ϕ(Ax ,y)
2

1

|x − y |ǫ/2
d y

+c

∫

{y∈D:r(x ,y)<r0/32}

ϕ(y)

ϕ(Ax ,y)

1

ϕ(Ax ,y) |x − y |ǫ/2
d y

≤ c

∫

D

1

|x − y |ǫ/2
d y + c

∫

{y∈D:r(x ,y)<r0/32}

1

(r(x , y)2−ǫ |x − y |ǫ/2
d y

≤ c + c

∫

{y∈D:r(x ,y)<r0/32}

1

|x − y |2−(ǫ/2)
d y

≤ c <∞.

The theorem is now proved in view of Lemma 3.2.

The following result says that Theorem 1.1 is sharp.

Theorem 3.3. Let D = Γ(θ) be a truncated circular cone in Rn with common angle θ < cos−1(1/
p

n)

and n≥ 2, defined by (1.3). Then there are constants c > 0 and α > 2 such that

GD1(x)≥ cδD(x)
2−αϕ1(x) for every x = (x1, 0, · · · , 0) with 0< x1 < 1/2. (3.7)

Proof. It is known (see, e.g., two lines above (4.6.6) on page 129 of [8]) that ϕ1(x) decays at rate

δD(x)
α as x → 0 along the axis of the cone C (θ), where α is given by (3.1). We see from (3.2)-(3.3)

that α > 2 when θ < cos−1(1/
p

n). Clearly there is ǫ ∈ (0, 1/2) such that B(x ,δD(x)) ⊂ D \ K for

every x = (x1, 0, · · · , 0) with 0 < x1 < ǫ. This together with (3.6) implies in particular that there is

a constant c > 0 such that

ϕ(x)≤ aϕ1(x)≤ cδD(x)
α for x = (x1, 0, · · · , 0) with 0< x1 < ǫ.

By Harnack inequality,

ϕ(y)≤ cϕ(x)≤ cδD(x)
α ≤ cδD(y)

α (3.8)

for every y ∈ B(x ,δD(x)/2) and every x = (x1, 0, · · · , 0) with 0< x1 < ǫ. By Proposition 2.2,

GD(x , y)≥ c
ϕ(x)ϕ(y)

ϕ(Ax ,y)
2

1

|x − y |n−2
, x , y ∈ D,

where Ax ,y is as given in the proof of Theorem 1.1. Here for the case of n= 2, we use the convention

that 00 = 1. Let x = (x1, 0, · · · , 0) with 0 < x1 < ǫ. For y ∈ B(x ,δD(x)/4) \ B(x ,δD(x)/6), we can
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take Ax ,y = y . Note that in this case, δD(y)≤ 5δD(x)/4≤ 15|x − y |. We therefore have

GD1(x) ≥
∫

B(x ,δD(x)/2)\B(x ,δD(x)/3)

GD(x , y)d y

≥ cϕ(x)

∫

B(x ,δD(x)/2)\B(x ,δD(x)/3)

1

ϕ(y)|x − y |n−2
d y

≥ cϕ(x)

∫

B(x ,δD(x)/2)\B(x ,δD(x)/3)

1

|x − y |α |x − y |n−2
d y

≥ cϕ(x)δD(x)
2−α.

This together with Lemma 3.2 establishes the theorem.

Remark 3.4. Note that the circular cone C (θ) with angle θ = cos−1(1/
p

n) has Lipschitz con-

stant 1/
p

n− 1 at its vertex. So if D is a bounded Lipschitz domain in Rn with Lipschitz con-

stant strictly less than 1/
p

n− 1, then D satisfies interior cone condition with common angle

θ ∈
�

cos−1(1/
p

n), π
�

. We point out that this is only a sufficient condition. The aforementioned

interior cone condition can be satisfied in some bounded Lipschitz domains with Lipschitz constant

larger than 1/
p

n− 1. A smooth domain with an inward sharp cone is such an example.

4 Semilinear elliptic equations

We start with some technical lemmas for general bounded domains and then proceed to present the

proof of Theorem 1.5.

Let Ω be the set of continuous functions from [0,∞) to Rn, and let X t(ω) = ω(t), t ≥ 0. Endow Ω

with the Borel sigma-field B(Ω). Let F̂t denote the canonical sigma-field σ{ω(s) : 0 ≤ s ≤ t}. For

x ∈ Rn let Px denote the probability measure on (Ω,B(Ω)) under which X is a Brownian motion

starting from x . Let {Ft} denote the usual augmentation of the filtration {F̂t} with respect to

the family of measures {Px , x ∈ Rn} (see p. 45 of [20]). For a positive harmonic function h in D

and x ∈ D, we denote by Ph
x the h-transform of Px under h (see [3] or [7]). Let Ex (Eh

x) denote

expectation with respect to Px (respectively, Ph
x). For any set A⊂ Rn we denote

τA = inf{t : X t /∈ A}.

The following is a well known result. We provide a proof here for the reader’s convenience. This

result in fact holds for more general potentials q ≥ 0, for example when q is in some Kato class (see

[7]).

Lemma 4.1. Assume that every point of ∂ D is regular with respect to Dc . Let h ∈H+ and q ≥ 0. Then

the function v given by

v(x) = Ex

h

h(XτD
)e−

∫ τD

0
q(Xs)ds

i

, x ∈ D (4.1)

satisfies

v(x) = h(x)−
∫

D

GD(x , y)q(y)v(y)d y, x ∈ D. (4.2)

The converse is true if q is bounded.
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Proof. The proof is along the lines of [6]. Suppose that v is given by (4.1). Then for x ∈ D, by the

Markov property of X ,

v(x) = h(x) +Ex

h

h(XτD
)
�

e−
∫ τD

0
q(Xs)ds − 1

�i

= h(x)−Ex

�

h(XτD
)

∫ τD

0

q(X t)e
−
∫ τD

t
q(Xs)dsd t

�

= h(x)−Ex

�∫ τD

0

q(X t)v(X t)d t

�

= h(x)−
∫

D

GD(x , y)q(y)v(y)d y.

For the converse, assume q ≥ 0 is bounded. Suppose now that v satisfies (4.2). Then v is a weak

solution to the following equation (cf. [6])

1

2
∆v − qv = 0 in D with v|∂ D = h|∂ D. (4.3)

As q ≥ 0 is bounded, it is well known that solutions to equation (4.3) are continuous on D and C1 in

D (see, e.g., [14]). Furthermore, the solution of (4.3) enjoys the maximum principle and therefore

is unique. This proves the Lemma.

Lemma 4.2. There exists a constant γ= γ(D)> 0 such that for every h ∈H+ and p > 1−2γ, we have

sup
x∈D

Eh
x

�∫ τD

0

hp−1(Xs)ds

�

≤ C1 <∞,

where C1 depends only on h, p and D.

Proof. We will be mainly using the notation in [3], page 200-201. Let lk = {x : h(x) = 2k}
for any k ∈ Z. Note that there exists k0 such that lk = ; for k ≥ k0. Define S−1 = 0 and let

S0 = τD ∧ inf{t : X t ∈ ∪lk}. For i ≥ 1, let Si = τD ∧ inf{t > Si−1 : X t ∈ ∪lk\lWi−1
}, where Wi−1 is the

number k for which XSi−1
∈ lk. Let vk = supx∈lk

Eh
x[S1]. From [3], one has that:

(a) there exists a constant γ(D)> 0 such that for any k, vk ≤ c022kγ(D)
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(b) there exists a constant c1 such that
∑∞

i=0 P
h
x(Wi = k)≤ c1 for all x ∈ D. Hence

Eh
x

�∫ τD

0

hp−1(Xs)ds

�

=

∞
∑

i=0

Eh
x





∫ Si

Si−1

hp−1(Xs)ds





≤ c2

∞
∑

i=0

Eh
x

�

2Wi−1(p−1)(Si − Si−1)
�

= c

∞
∑

i=0

Eh
x

�

2Wi−1(p−1)Eh
XSi−1

(S1)

�

≤ c

∞
∑

i=0

Eh
x

�

2Wi−1(p−1)vWi−1

�

= c

∞
∑

i=0

k0
∑

k=−∞
Eh

x

�

2Wi−1(p−1)vWi−1
1(Wi−1 = k)

�

= c

k0
∑

k=−∞
vk2k(p−1)Eh

x





∞
∑

i=0

1(Wi−1 = k)





≤ c

k0
∑

k=−∞
22kγ(D)2k(p−1) (4.4)

Hence if p > 1− 2γ(D) then Eh
x

h
∫ τD

0
hp−1(Xs)

i

< C1 for all x ∈ D.

Lemma 4.3. Let h ∈H+. Suppose that p is a real number such that

sup
x∈D

∫

D

GD(x , y)h(y)p(1+ǫ)d y <∞

for some ǫ > 0. Then

(i) The family of functions
�

GD(x , ·)hp(·) : x ∈ D
	

is uniformly integrable over D.

(ii) Let Bh,p = {g : D → R : g is Borel measurable and |g(x)| ≤ hp(x) for all x ∈ D}. The family

of functions {
∫

GD(·, y)g(y)d y : g ∈ Bh,p} is uniformly bounded and equicontinuous in C∞(D),
and, consequently, it is relatively compact in C∞(D).

The above assertions hold especially when p > 1− 2γ(D), where γ(D) is the constant in Lemma 4.2

Proof. Let q > 1 be such that q−1 + (1 + ǫ)−1 = 1. For any Borel measurable set A, by Hölder

inequality,

∫

A

GD(x , y)h(y)p d y ≤
�∫

D

GD(x , y)h(y)p(1+ǫ) d y

�1/(1+ǫ) �∫

A

GD(x , y) d y

�1/q

.

Since D is a bounded, it follows that supx∈D

∫

D
GD(x , y)h(y)p d y <∞ and

lim
δ→0

sup
A:m(A)<δ

sup
x∈D

∫

A

GD(x , y)h(y)p d y = 0,
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where m denotes the Lebesgue on Rd . Therefore the family of functions {GD(x , ·)h(·)p, x ∈ D} is

uniformly integrable over D. Since D is Lipschitz domain D, for each y ∈ D, it is known (see [7])

that x → GD(x , y) can be extended to be a continuous function on D\{y} by setting GD(x , y) = 0 for

x ∈ ∂ D. So the above particularly implies that the function x →
∫

D
GD(x , y)h(y)p d y is continuous

on D and vanishes on ∂ D. On the other hand, by using the triangle inequality, the family of functions
�

|GD(x , ·)− GD(y, ·)|h(·)p : x , y ∈ D
	

is uniformly integrable on D. Therefore the function (x , y)→
∫

D
|GD(x , z)− GD(y, z)|h(z)p dz is continuous on D× D.

For each g ∈ Bh,p, as |g| ≤ hp, the functions in Bh,p are continuous in D, uniformly bounded, and

converge uniformly to zero as x → ∂ D. For any x , y in D and g ∈ Bh,p,

¯

¯

¯

¯

¯

∫

D

GD(x , z)g(z)d y −
∫

D

GD(y, z)g(z)dz

¯

¯

¯

¯

¯

≤
∫

D

| GD(x , z)− GD(y, z) | h(z)pdz. (4.5)

Therefore the family of functions in the statement of the lemma is equi-continuous in D.

When p > 1−2γ(D), one can always find an ǫ > 0 such that p(1+ ǫ)> 1−2γ. Thus by Lemma 4.2

sup
x∈D

∫

D

GD(x , y)h(y)p(1+ǫ) d y ≤ sup
x∈D

h(x)Eh
x

�∫ τD

0

h(Xs)
p(1+ǫ)−1ds

�

<∞

and so the hypothesis of the Lemma is satisfied and the result holds. �

Proof of Theorem 1.5. (i) Fix p ≥ 1 and h ∈ H+. Let γ = γ(D) and C1 be the positive constants

from Lemma 4.2. Define

Λ =
¦

u ∈ C(D) : e−C1h≤ u≤ h on D
©

. (4.6)

Clearly, Λ is a closed non-empty convex subset of C(D). Let GD(·, ·) be the Green function of the

domain D. Define T : Λ→ C(D) as

T (u)(x) = Ex

�

h(XτD
)exp

�

−
∫ τD

0

up−1(Xs)ds

��

Clearly Tu(x) ≤ Ex

�

h(XτD
)
�

= h(x). Note that for u ∈ Λ, up−1T (u) ∈ Bh,p, where Bh,p is the space

defined in Lemma 4.3(ii). Thus we conclude from Lemma 4.3 that

¨∫

GD(·, y)up−1(y)T (u)(y)d y : u ∈ Λ
«

is relatively compact in C∞(D). Since h ∈H+ and by Lemma 4.1,

T (u)(x) = h(x)−
∫

GD(x , y)up−1(y)T (u)(y)d y for x ∈ D,

we have

T (Λ) is relatively compact in (C(D), ‖ · ‖∞). (4.7)
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On the other hand, for any u ∈ Λ and x ∈ D, since up−1 ≤ hp−1,

T (u)(x)

h(x)
=
Ex

h

h(XτD
)exp(−

∫ τD

0
up−1(Xs)ds)

i

h(x)

≥ Eh
x

�

exp

�

−
∫ τD

0

hp−1(Xs)ds

��

≥ exp

�

−Eh
x

�∫ τD

0

hp−1(Xs)ds

��

≥ exp(−C1)

where the last inequality follows from Lemma 4.2. By continuity we have T (u)(x) ≥ exp(−C1)h(x)

on D. Thus we have shown that

T (Λ)⊂ Λ. (4.8)

If un ∈ Λ is such that ‖un − u‖∞ → 0, then u
p−1
n (x) → up−1(x) for all x ∈ D. Now for u ∈ Λ,

up−1(x) ≤ hp−1(x) for all x ∈ D. An application of the Dominated Convergence Theorem implies

that T (un)(x)→ T (u)(x) for all x ∈ D and by (4.7), the convergence holds in the uniform norm.

We have shown that

T : Λ→ Λ is continuous. (4.9)

Therefore from (4.7), (4.8), (4.9) and Schauder’s fixed point theorem [14, Theorem 11.1], T has

a fixed point in Λ. Hence there exists a u such that u(x) = Ex

h

h(XτD
)exp

�

−
∫ τD

0
up−1(Xs)ds

�i

.

From Lemma 4.1 we conclude that u ∈ S p

H . Therefore S p

H 6= ; for p ≥ 1.

By definition, S p

H ⊂ S
p
+ . Let u ∈ S p

+ . Since p ≥ 1, it follows from Lemma 4.1 that

u(x) = Ex

�

h(XτD
)exp

�

−
∫ τD

0

up−1(Xs)ds

��

, x ∈ D

for some h ∈H+. Clearly, u(x)≤ h(x) for x ∈ D. By Jensen’s inequality

u(x)

h(x)
≥
Ex

h

h(XτD
)exp(−

∫ τD

0
hp−1(Xs)ds)

i

h(x)

≥ Eh
x

�

exp

�

−
∫ τD

0

hp−1(Xs)ds

��

≥ exp

�

−Eh
x

�∫ τD

0

hp−1(Xs)ds

��

≥ exp(−C1)

Hence u(x)≥ h(x)exp(−C1) for any x ∈ D. This implies that u ∈ S p

H , and therefore S p

H = S
p
+ .

(ii) For any h ∈H+, by (3.4),

h(x)≥
∫

D

pD(t, x , y)h(y)d y ≥ cϕ1(x).
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Hence for p ≥ 0, by assumption (1.7),

Eh
x

�∫ τD

0

hp−1(Xs)ds

�

=
GDhp(x)

h(x)
≤
‖h‖p∞

c

GD1(x)

ϕ1(x)
≤ c1 <∞.

Define

Λ =
¦

u ∈ C(D) : e−c1h≤ u≤ h on D
©

.

Observe that for any q ∈ R,

min{e−c1q, 1}hq ≤ uq ≤max{e−c1q, 1}hq in D. (4.10)

For h ∈H+, define

α(h) = inf

½

p : sup
x∈D

GDhp(x)

h(x)
<∞

¾

(4.11)

and define

p0 = inf
h∈H+

α(h). (4.12)

It follows from Lemma 4.2 that p0 < 0. We now show that p0 > −∞. By (4.11) and (4.12), it

suffices to show that

there exists q ∈ R such that sup
x∈D

GDh−q(x)

h(x)
=∞. (4.13)

By [7, Lemma 6.7], for every c1, there is a constant c2 > 0 such that

GD(x , y)≥ c2 for x , y ∈ D with |x − y | ≤ c1 min{δD(x), δD(y)}.

Fix c1 > 0 and a corresponding c2 > 0. Note that for a suitable constant c3 > 0, which depends only

on c1, |y − x | ≤ c3δD(x) implies |x − y | ≤ c1 min{δD(x), δD(y)}. Hence

GDh−q(x)

h(x)
=

∫

D
GD(x , y)h−q(y)d y

h(x)

≥
c2

∫

{|x−y|<c min{δD(x),δD(y)}
h−q(y)d y

h(x)

≥
c2

∫

B(x ,c3δD(x))
h−q(y)d y

h(x)
.

By [3, Lemma 1.9, page 185, equation (1.22)], there exist constants c4 > 0 and β > 0, such that

h(y)≤ c4δD(y)
β for all y ∈ B(x , c3δD(x)). Hence, for constants c5, c6 > 0,

GDh−q(x)

h(x)
≥ c5

∫

B(x ,c3δD(x))
δD(y)

−qβd y

δD(x)
β

≥ c6δ(x)
−qβ+d−β .

If q is chosen sufficiently large, the last expression above is unbounded over D. This proves (4.13)

and thus p0 >−∞.

For every p > p0, using (4.10) and a fixed point argument very similar to the one used in (i), we

have S p

H 6= ; for p > p0. Note that the only modifications in the fixed point argument of (i) are the

following.
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(a) We have min{1, ec1(p−1)}up−1T (u) ∈ Bh,p for u ∈ Λ rather than up−1T (u) ∈ Bh,p in the case of

p ≥ 1.

(b) up−1 ≤ hp−1 for the case of p ≥ 1 is now replaced by (4.10) with q = p− 1.

(iii) Now we show that for every p < p0, S p
+ = ;. Suppose S p

+ 6= ;. Then

u(x) = h(x)−
∫

D

GD(x , y)up(y) d y

for some h ∈H+. As u≤ h and p < p0 ≤ 0,

Eh
x

�∫ τD

0

hp−1(Xs)ds

�

=
GDhp (x)

h(x)
≤

GDup (x)

h(x)
=

h(x)− u(x)

h(x)
= 1−

u(x)

h(x)
≤ 1.

This contradicts the definition of p0 in (4.12). Hence S p
+ = ; for every p < p0.

5 C1,1 domain case

In this section we give a proof of Theorem 1.6.

Proof of Theorem 1.6. (i) As any bounded C1,1 domain satisfies the hypothesis of Theorem 1.5, the

results follows directly from Theorem 1.5(1).

(ii). It is well known that for a bounded C1,1 domain D, the Euclidean boundary ∂ D is the same as

the minimal Martin boundary for ∆ in D. So for any h ∈H+, there is a finite positive measure µ on

∂ D such that

h(x) =

∫

∂ D

KD(x , z)µ(dz),

where KD(x , z) is the Martin kernel for ∆ in D. It is a direct consequence of (2.1) and (2.4) that

KD(x , z)≍
δD(x)

|x − z|n for x ∈ D and z ∈ ∂ D. (5.1)

Hence

h(x)≥ cδD(x) for x ∈ D. (5.2)

Note that for each fixed z ∈ ∂ D, x 7→ KD(x , z) is a positive harmonic function in D.

We first assume that n≥ 3. It follows from Zhao [21] that

GD(x , y)≤ c min
¦

δD(x)|x − y |1−n, δD(x)δD(y)|x − y |−n
©

. (5.3)

If −1< p < 0, then by (5.2) and (5.3)

sup
x∈D

Eh
x

�∫ τD

0

hp−1(Xs)ds

�

= sup
x∈D

∫

D
GD(x , y)hp(y)d y

h(x)

≤ c sup
x∈D

�

δD(x)
−1

∫

D

δD(x)δD(y)
−p

|x − y |n−1−p
δD(y)

p d y

�

= c sup
x∈D

∫

D

1

|x − y |n−1−p
<∞.
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If 0≤ p < 1, since h is bounded, by (5.2) and (5.3) we have

sup
x∈D

Eh
x

�∫ τD

0

hp−1(Xs)ds

�

= sup
x∈D

∫

D
GD(x , y)hp(y)d y

h(x)

≤ c sup
x∈D

�

δD(x)
−1

∫

D

δD(x)

|x − y |n−1
d y

�

= c sup
x∈D

∫

D

1

|x − y |n−1
<∞.

Now we can imitate the arguments presented in the proof of Theorem 1.5(ii), to conclude that

S p

H 6= ; when −1< p < 1 and n≥ 3.

We now assume n= 2. If −1< p < 0, then by (2.2) and (5.2)

sup
x∈D

Eh
x

�∫ τD

0

hp−1(Xs)ds

�

= sup
x∈D

∫

D
GD(x , y)hp(y)d y

h(x)

≤ c sup
x∈D

�

δD(x)
−1

∫

D

log

�

1+
δD(x)δD(y)

|x − y |2
�

δD(y)
p d y

�

.

Observe that log(1+ ab)≤ ab ≤ ab−p for a > 0 and 0< b ≤ 1 and log(1+ ab)≤ (−1/p)b−p b−p ≤
(−1/p)ab−p for a ≥ 1 and b > 0. Thus

log

�

1+
δD(x)δD(y)

|x − y |2
�

≤ c
δD(x)

|x − y |
δ(y)−p

|x − y |−p
(5.4)

when either δD(x)≥ |x − y | or δD(y)≤ |x − y |. It follows that

sup
x∈D

Eh
x

�∫ τD

0

hp−1(Xs)ds

�

≤ c sup
x∈D

 
∫

D

1

|x − y |1−p
d y +δD(x)

−1

∫

{y∈D:δD(x)<|x−y|<δD(y)}
log

�

1+
δD(x)δD(y)

|x − y |2
�

δD(y)
p d y

!

≤ c sup
x∈D

 

1+δD(x)
−1

∫

{y∈D:δD(x)<|x−y|<δD(y)}

δD(x)
−pδD(y)

−p

|x − y |−2p
δD(y)

p d y

!

≤ c sup
x∈D

 

1+δD(x)
−1−p

∫

{y∈D:|x−y|>δD(x)}

1

|x − y |−2p
d y

!

≤ c + c sup
x∈D

δD(x)
1+p <∞.

Consider 0 ≤ p < 1. Since h is bounded, by (2.2), (5.2) and as any C1,1-domain satisfies the

hypothesis of Theorem 1.5, we have

sup
x∈D

Eh
x

�∫ τD

0

hp−1(Xs)ds

�

= sup
x∈D

∫

D
GD(x , y)hp(y)d y

h(x)

≤ c sup
x∈D

�

δD(x)
−1GD1(x)

�

= c sup
x∈D

�

δD(x)
−1ϕ(x)

�

<∞.
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The last inequality is due to the fact that ϕ(·)≍ δD(·) in D, which is a consequence of (5.1) and the

BHP (Theorem 1.3).

The arguments presented in the proof of Theorem 1.5(ii) can now be used to conclude that S p

H 6= ;
when −1< p < 0 and n= 2. We thus obtain (ii).

(iii). Suppose that there exists a mild solution u to (1.5) which is positive in D and vanishing on Γ.

Then, by definition, there is a positive harmonic function h that vanishes on Γ such that u= h−GDup.

Hence

u(x)≤ h(x) and GDup(x)≤ h(x) for every x ∈ D. (5.5)

On the other hand there is a finite positive measure µ on ∂ D such that µ(Γ) = 0 and

h(x) =

∫

∂ D

KD(x , z)µ(dz) =

∫

∂ D\Γ
KD(x , z)µ(dz), x ∈ D.

Take z0 ∈ Γ and r0 > 0 such that B(z0, 2r0)⊂ D1. Then by (5.1),

h(x)≍ δD(x) for x ∈ D ∩ B(z0, r0). (5.6)

Since p ≤−1 and u(y)≤ h(y), we have

u(y)p ≥ cp δD(y)
p ≥ cp δD(y)

−1 for y ∈ D ∩ B(z0, r0).

Now take a sequence of points {xk} in D ∩ B(z0, r0) that converges to z0. Then for n≥ 3, by Fatou’s

lemma,

lim inf
k→∞

GDup(xk)

h(xk)
≥ c lim inf

k→∞

∫

D∩B(z0,r0)
GD(xk, y)δD(y)

−1 d y

δD(xk)

≍ c lim inf
k→∞

∫

D∩B(z0,r0)

δD(xk)
−1 min

½

1

|xk − y |n−2
,
δD(xk)δD(y)

|xk − y |n
¾

δD(y)
−1 d y

≥ c

∫

D∩B(z0,r0)

lim inf
k→∞

δD(xk)
−1 min

½

1

|xk − y |n−2
,
δD(xk)δD(y)

|xk − y |n
¾

δD(y)
−1 d y

= c

∫

D∩B(z0,r0)

|z0− y |−nd y

= ∞.

This contradicts inequality (5.5). Therefore S p
+ = ; when n≥ 3.

Similarly, when n= 2, by Fatou’s lemma,

lim inf
k→∞

GDup(xk)

h(xk)
≥ c lim inf

k→∞

∫

D∩B(z0,r0)
GD(xk, y)δD(y)

−1 d y

δD(xk)

≍ c lim inf
k→∞

∫

D∩B(z0,r0)

δD(xk)
−1 log

�

1+
δD(xk)δD(y)

|xk − y |2
�

δD(y)
−1 d y

≥ c

∫

D∩B(z0,r0)

lim inf
k→∞

δD(xk)
−1 log

�

1+
δD(xk)δD(y)

|xk − y |2
�

δD(y)
−1 d y

= c

∫

D∩B(z0,r0)

|z0− y |−2d y

= ∞.
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This again contradicts inequality (5.5). Therefore S p
+ = ; when n= 2.
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