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Abstract

We study the random graph obtained by random deletion of vertices or edges from a random

graph with given vertex degrees. A simple trick of exploding vertices instead of deleting them,

enables us to derive results from known results for random graphs with given vertex degrees.

This is used to study existence of giant component and existence of k-core. As a variation of the

latter, we study also bootstrap percolation in random regular graphs.

We obtain both simple new proofs of known results and new results. An interesting feature is

that for some degree sequences, there are several or even infinitely many phase transitions for

the k-core.
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1 Introduction

One popular and important type of random graph is given by the uniformly distributed random

graph with a given degree sequence, defined as follows. Let n ∈ N and let d= (di)
n
1 be a sequence of

non-negative integers. We let G(n,d) be a random graph with degree sequence d, uniformly chosen

among all possibilities (tacitly assuming that there is any such graph at all; in particular,
∑

i di has

to be even).

It is well-known that it is often simpler to study the corresponding random multigraph G∗(n,d) with

given degree sequence d= (di)
n
1, defined for every sequence d with

∑
i di even by the configuration

model (see e.g. Bollobás [3]): take a set of di half-edges for each vertex i, and combine the half-

edges into pairs by a uniformly random matching of the set of all half-edges (this pairing is called a

configuration); each pair of half-edges is then joined to form an edge of G∗(n,d).

We consider asymptotics as the numbers of vertices tend to infinity, and thus we assume throughout

the paper that we are given, for each n, a sequence d(n) = (d
(n)

i
)n1 with

∑
i d
(n)

i
even. (As usual,

we could somewhat more generally assume that we are given a sequence nν → ∞ and for each ν

a sequence d(ν) = (d
(ν)
i
)

nν
1 .) For notational simplicity we will usually not show the dependency on

n explicitly; we thus write d and di , and similarly for other (deterministic or random) quantities

introduced below. All unspecified limits and other asymptotic statements are for n → ∞. For

example, w.h.p. (with high probability) means ’with probability tending to 1 as n→∞’, and
p−→

means ’convergence in probability as n→∞’. Similarly, we use op and Op in the standard way,

always implying n→∞. For example, if X is a parameter of the random graph, X = op(n) means

that P(X > ǫn)→ 0 as n→∞ for every ǫ > 0; equivalently, X/n
p−→ 0.

We may obtain G(n,d) by conditioning the multigraph G∗(n,d) on being a (simple) graph, i.e., on

not having any multiple edges or loops. By Janson [9] (with earlier partial results by many authors),

lim infP
�
G∗(n,d) is simple

�
> 0 ⇐⇒

n∑

i=1

d2
i = O

 
n∑

i=1

di

!
. (1.1)

In this case, many results transfer immediately from G∗(n,d) to G(n,d), for example, every result of

the type P(En)→ 0 for some events En, and thus every result saying that some parameter converges

in probability to some non-random value. This includes every result in the present paper.

We will in this paper study the random multigraph G∗(n,d); the reader can think of doing this

either for its own sake or as a tool for studying G(n,d). We leave the statement of corollaries for

G(n,d), using (1.1), to the reader. Moreover, the results for G(n,d) extend to some other random

graph models too, in particular G(n, p) with p ∼ λ/n and G(n, m) with m ∼ λn/2 with λ > 0, by

the standard device of conditioning on the degree sequence; again we omit the details and refer to

[10; 11; 12] where this method is used.

We will consider percolation of these random (multi)graphs, where we first generate a random

graph G∗(n,d) and then delete either vertices or edges at random. (From now on, we simply write

’graph’ for ’multigraph’.) The methods below can be combined to treat the case of random deletion

of both vertices and edges, which is studied by other methods in e.g. Britton, Janson and Martin-Löf

[4], but we leave this to the reader.

To be precise, we consider the following two constructions, given any graph G and a probability

π ∈ [0,1].
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Site percolation Randomly delete each vertex (together with all incident edges) with probability

1−π, independently of all other vertices. We denote the resulting random graph by Gπ,v.

Bond percolation Randomly delete each edge with probability 1− π, independently of all other

edges. (All vertices are left.) We denote the resulting random graph by Gπ,e.

Thus π denotes the probability to be kept in the percolation model. When, as in our case, the

original graph G itself is random, it is further assumed that we first sample G and then proceed as

above, conditionally on G.

The cases π= 0,1 are trivial: G1,v = G1,e = G, while G0,v = ;, the null graph with no vertices and no

edges, and G0,e is the empty graph with the same vertex set as G but no edges. We will thus mainly

consider 0< π < 1.

We may generalize the site percolation model by letting the probability depend on the degree of the

vertex. Thus, if π = (πd)
∞
0 is a given sequence of probabilities πd ∈ [0,1], let G

π,v be the random

graph obtained by deleting vertices independently of each other, with vertex v ∈ G deleted with

probability 1−πd(v) where d(v) is the degree of v in G.

For simplicity and in order to concentrate on the main ideas, we will in this paper consider only the

case when the probability π (or the sequence π) is fixed and thus does not depend on n, with the

exception of a few remarks where we briefly indicate how the method can be used also for a more

detailed study of thresholds.

The present paper is inspired by Fountoulakis [7], and we follow his idea of deriving results for the

percolation models G∗(n,d)
π,v and G∗(n,d)π,e from results for the model G∗(n,d) without deletions,

but for different degree sequences d. We will, however, use another method to do this, which we

find simpler.

Fountoulakis [7] shows that for both site and bond percolation on G∗(n,d), if we condition the

resulting random graph on its degree sequence d′, and let n′ be the number of its vertices, then the

graph has the distribution of G∗(n′,d′), the random graph with this degree sequence constructed by

the configuration model. He then proceeds to calculate the distributions of the degree sequence d′

for the two percolation models and finally applies known results to G∗(n′,d′).

Our method is a version of this, where we do the deletions in two steps. For site percolation, instead

of deleting a vertex, let us first explode it by replacing it by d new vertices of degree 1, where d

is its degree; we further colour the new vertices red. Then clean up by removing all red vertices.

Note that the (random) explosions change the number of vertices, but not the number of half-edges.

Moreover, given the set of explosions, there is a one-to-one correspondence between configurations

before and after the explosions, and thus, if we condition on the new degree sequence, the exploded

graph is still described by the configuration model. Furthermore, by symmetry, when removing the

red vertices, all vertices of degree 1 are equivalent, so we may just as well remove the right number

of vertices of degree 1, but choose them uniformly at random. Hence, we can obtain G∗(n,d)π,v as

follows:

Site percolation For each vertex i, replace it with probability 1−π by di new vertices of degree 1

(independently of all other vertices). Let d̃π,v be the resulting (random) degree sequence, let

ñ be its length (the number of vertices), and let n+ be the number of new vertices. Construct

the random graph G∗(ñ, d̃π,v). Finish by deleting n+ randomly chosen vertices of degree 1.

The more general case when we are given a sequence π= (πd)
∞
0 is handled in the same way:
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Site percolation, general For each vertex i, replace it with probability 1− πdi
by di new vertices

of degree 1. Let d̃
π,v be the resulting (random) degree sequence, let ñ be its length (the

number of vertices), and let n+ be the number of new vertices. Construct the random graph

G∗(ñ, d̃
π,v). Finish by deleting n+ randomly chosen vertices of degree 1.

Remark 1.1. We have here assumed that vertices are deleted at random, independently of each

other. This is not essential for our method, which may be further extended to the case when we

remove a set of vertices determined by any random procedure that is independent of the edges in

G(n,d) (but may depend on the vertex degrees). For example, we may remove a fixed number m of

vertices, chosen uniformly at random. It is easily seen that if m/n→ π, the results of Subsection 2.1

below still hold (with all π j = π), and thus the results of the later sections hold too. Another,

deterministic, example is to remove the first m vertices.

For bond percolation, we instead explode each half-edge with probability 1−pπ, independently of

all other half-edges; to explode a half-edge means that we disconnect it from its vertex and transfer

it to a new, red vertex of degree 1. Again this does not change the number of half-edges, and there

is a one-to-one correspondence between configurations before and after the explosions. We finish

by removing all red vertices and their incident edges. Since an edge consists of two half-edges, and

each survives with probability
p
π, this gives the bond percolation model G∗(n,d)π,e where edges

are kept with probability π. This yields the following recipe:

Bond percolation Replace the degrees di in the sequence d by independent random degrees d̃i ∼
Bi(di,

p
π). (I.e., d̃i has the binomial distribution Bi(di,

p
π).) Add n+ :=

∑n

i=1(di − d̃i) new

degrees 1 to the sequence (d̃i)
n
1, and let d̃π,e be the resulting degree sequence and ñ= n+ n+

its length. Construct the random graph G∗(ñ, d̃π,e). Finish by deleting n+ randomly chosen

vertices of degree 1.

In both cases, we have reduced the problem to a simple (random) modification of the degree se-

quence, plus a random removal of a set of vertices of degree 1. The latter is often more or less

trivial to handle, see the applications below. We continue to call the removed vertices red when

convenient.

Of course, to use this method, it is essential to find the degree sequence d̃ after the explosions. We

study this in Section 2. We then apply this method to three different problems:

Existence of a giant component in the percolated graph, i.e., what is called percolation in random

graph theory (Section 3). Our results include and extend earlier work by Fountoulakis [7], which

inspired the present study, and some of the results by Britton, Janson and Martin-Löf [4].

Existence of a k-core in the percolated graph (Section 4). We obtain a general result analogous to

(and extending) the well-known result by Pittel, Spencer and Wormald [17] for G(n, p). We study

the phase transitions that may occur in some detail and show by examples that it is possible to have

several, and even an infinite number of, different phase transitions as the probability π increases

from 0 to 1.

Bootstrap percolation in random regular graphs (Section 5), where we obtain a new and simpler

proof of results by Balogh and Pittel [1].

For a graph G, let v(G) and e(G) denote the numbers of vertices and edges in G, respectively, and

let v j(G) be the number of vertices of degree j, j ≥ 0. We sometimes use G∗(n,d)π to denote any of

the percolation models G∗(n,d)π,v, G∗(n,d)
π,v or G∗(n,d)π,e.
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2 The degree sequence after explosions

Let n j := #{i ≤ n : di = j}. Thus
∑∞

j=0 n j = n, and n j equals the number v j(G
∗(n,d)) of vertices of

degree j in G∗(n,d). We assume for simplicity the following regularity condition.

Condition 2.1. There exists a probability distribution (p j)
∞
j=0 with finite positive mean λ :=∑

j jp j ∈ (0,∞) such that (as n→∞)

n j/n→ p j , j ≥ 0, (2.1)

and ∑∞
j=0 jn j

n
→ λ :=

∞∑

j=0

jp j . (2.2)

Note that, in order to avoid trivialities, we assume that λ > 0, which is equivalent to p0 < 1. Thus,

there is a positive fraction of vertices of degree at least 1.

Note that
∑

j jn j =
∑

i di equals twice the number of edges in G∗(n,d), and that (2.2) says that the

average degree in G∗(n,d) converges to λ.

Let the random variable D̂ = D̂n be the degree of a random vertex in G∗(n,d), thus D̂n has the

distribution P(D̂n = j) = n j/n, and let D be a random variable with the distribution (p j)
∞
0 . Then

(2.1) is equivalent to D̂n

d−→ D, and (2.2) is E D̂n → λ = ED. Further, assuming (2.1), (2.2)

is equivalent to uniform integrability of D̂n, or equivalently uniform summability (as n→∞) of∑
j jn j/n, see for example Gut [8], Theorem 5.5.9 and Remark 5.5.4.

Remark 2.2. The uniform summability of
∑

j jn j/n is easily seen to imply that if H is any (random

or deterministic) subgraph on G∗(n,d) with v(H) = o(n), then e(H) = o(n), and similarly with

op(n).

We will also use the probability generating function of the asymptotic degree distribution D:

gD(x) := E x D =

∞∑

j=0

p j x
j , (2.3)

defined at least for |x | ≤ 1.

We perform either site or bond percolation as in Section 1, by the explosion method described there,

and let ñ j := #{i ≤ ñ : d̃i = j} be the number of vertices of degree j after the explosions. Thus

∞∑

j=0

ñ j = ñ. (2.4)

It is easy to find the distribution of (ñ j) and its asymptotics for our two percolation models.
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2.1 Site percolation

We treat the general version with a sequence π. Let n◦j be the number of vertices of degree j that

are not exploded. Then

n◦j ∼ Bi(n j ,π j) (independent of each other), (2.5)

n+ =

∞∑

j=0

j(n j − n◦j ), (2.6)

ñ j = n◦j , j 6= 1, (2.7)

ñ1 = n◦1+ n+. (2.8)

By the law of large numbers, n◦j = n jπ j + op(n) and thus, using the assumption (2.1) and the

uniform summability of
∑

j jn j/n (which enables us to treat the infinite sums in (2.10) and (2.13)

by a standard argument),

n◦j = n jπ j + op(n) = π j p jn+ op(n), (2.9)

n+ =

∞∑

j=0

j(1−π j)p jn+ op(n), (2.10)

ñ j = π j p jn+ op(n), j 6= 1, (2.11)

ñ1 =
�
π1p1+

∞∑

j=0

j(1−π j)p j

�
n+ op(n), (2.12)

ñ=

∞∑

j=0

�
π j + j(1−π j)

�
p jn+ op(n). (2.13)

We can write (2.13) as
ñ

n

p−→ ζ :=

∞∑

j=0

�
π j + j(1−π j)

�
p j > 0. (2.14)

Further, by (2.11) and (2.12),

ñ j

ñ

p−→ p̃ j :=

(
ζ−1π j p j , j 6= 1,

ζ−1
�
π1p1+

∑∞
j=1 j(1−π j)p j

�
, j = 1.

(2.15)

Since ñ j ≤ n j for j ≥ 2 and ñ ≥ n− n0, the uniform summability of jn j/n implies uniform summa-

bility of jñ j/ñ, and thus also ∑∞
j=0 jñ j

ñ

p−→ λ̃ :=

∞∑

j=0

j p̃ j <∞. (2.16)

Hence Condition 2.1 holds, in probability, for the random degree sequence d̃ too. Further, the total

number of half-edges is not changed by the explosions, and thus also, by (2.14) and (2.2),

∑∞
j=0 jñ j

ñ
=

∑∞
j=0 jn j

ñ
=

n

ñ
·
∑∞

j=0 jn j

n

p−→ ζ−1λ; (2.17)
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hence (or by (2.15)),

λ̃= ζ−1λ. (2.18)

In the proofs below it will be convenient to assume that (2.15) and (2.16) hold a.s., and not just

in probability, so that Condition 2.1 a.s. holds for d̃; we can assume this without loss of generality

by the Skorohod coupling theorem [13, Theorem 4.30]. (Alternatively, one can argue by selecting

suitable subsequences.)

Let D̃ have the probability distribution (p̃ j), and let gD̃ be its probability generating function. Then,

by (2.15),

ζgD̃(x) =

∞∑

j=0

ζp̃ j x
j =

∞∑

j=0

π j p j x
j +

∞∑

j=0

j(1−π j)p j x = λx +

∞∑

j=0

π j p j(x
j − j x). (2.19)

In particular, if all π j = π,

ζgD̃(x) = πgD(x) + (1−π)λx , (2.20)

where now ζ= π+ (1−π)λ.

2.2 Bond percolation

For bond percolation, we have explosions that do not destroy the vertices, but they may reduce their

degrees. Let ñl j be the number of vertices that had degree l before the explosions and j after. Thus

ñ j =
∑

l≥ j ñl j for j 6= 1 and ñ1 =
∑

l≥1 ñl1 + n+. A vertex of degree l will after the explosions have

a degree with the binomial distribution Bi(l,π1/2), and thus the probability that it will become a

vertex of degree j is the binomial probability bl j(π
1/2), where we define

bl j(p) := P
�
Bi(l, p) = j

�
=

�
l

j

�
p j(1− p)l− j . (2.21)

Since explosions at different vertices occur independently, this means that, for l ≥ j ≥ 0,

ñl j ∼ Bi
�
nl , bl j(π

1/2)
�

and thus, by the law of large numbers and (2.1),

ñl j = bl j(π
1/2)pl n+ op(n).

Further, the number n+ of new vertices equals the number of explosions, and thus has the binomial

distribution Bi(
∑

l lnl , 1 − π1/2). Consequently, using also (2.2) and the uniform summability of∑
j jn j/n,

n+ =
∑

l

lnl(1−π1/2) + op(n) = (1−π1/2)λn+ op(n), (2.22)

ñ j =
∑

l≥ j

ñl j =
∑

l≥ j

bl j(π
1/2)pl n+ op(n), j 6= 1, (2.23)

ñ1 =
∑

l≥1

ñl1+ n+ =
∑

l≥1

bl1(π
1/2)pl n+

�
1−π1/2�λn+ op(n), (2.24)
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ñ= n+ n+ = n+
�
1−π1/2�λn+ op(n). (2.25)

In analogy with site percolation we thus have, by (2.25),

ñ

n

p−→ ζ := 1+
�
1−π1/2�λ (2.26)

and further, by (2.23) and (2.24),

ñ j

ñ

p−→ p̃ j :=




ζ−1

∑
l≥ j bl j(π

1/2)pl , j 6= 1,

ζ−1
�∑

l≥1 bl1(π
1/2)pl +

�
1−π1/2

�
λ
�

, j = 1.
(2.27)

Again, the uniform summability of jn j/n implies uniform summability of jñ j/ñ, and the total num-

ber of half-edges is not changed; thus (2.16), (2.17) and (2.18) hold, now with ζ given by (2.26).

Hence Condition 2.1 holds in probability for the degree sequences d̃ in bond percolation too, and

by the Skorohod coupling theorem we may assume that it holds a.s.

The formula for p̃ j is a bit complicated, but there is a simple formula for the probability generating

function gD̃. We have, by the binomial theorem,
∑

j≤l bl j(π)x
j = (1− π+ πx)l , and thus (2.27)

yields

ζgD̃(x) =

∞∑

l=0

(1−π1/2+π1/2 x)l pl + (1−π1/2)λx

= gD(1−π1/2+π1/2 x) + (1−π1/2)λx .

(2.28)

3 Giant component

The question of existence of a giant component in G(n,d) and G∗(n,d) was answered by Molloy and

Reed [16], who showed that (under some weak technical assumptions) a giant component exists

w.h.p. if and only if (in the notation above) ED(D − 2) > 0. (The term giant component is in this

paper used, somewhat informally, for a component containing at least a fraction ǫ of all vertices,

for some small ǫ > 0 that does not depend on n.) They further gave a formula for the size of this

giant component in Molloy and Reed [15]. We will use the following version of their result, given by

Janson and Luczak [12], Theorem 2.3 and Remark 2.6. Let, for any graph G, Ck(G) denote the k:th

largest component of G. (Break ties by any rule. If there are fewer that k components, let Ck := ;,
the null graph.)

Theorem 3.1 ([15; 12]). Consider G∗(n,d), assuming that Condition 2.1 holds and p1 > 0. Let

Ck := Ck(G
∗(n,d)) and let gD(x) be the probability generating function in (2.3).

(i) If ED(D− 2) =
∑

j j( j − 2)p j > 0, then there is a unique ξ ∈ (0,1) such that g ′D(ξ) = λξ, and

v(C1)/n
p−→ 1− gD(ξ)> 0, (3.1)

v j(C1)/n
p−→ p j(1− ξ j), for every j ≥ 0, (3.2)

e(C1)/n
p−→ 1

2
λ(1− ξ2). (3.3)

Furthermore, v(C2)/n
p−→ 0 and e(C2)/n

p−→ 0.
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(ii) If ED(D− 2) =
∑

j j( j − 2)p j ≤ 0, then v(C1)/n
p−→ 0 and e(C1)/n

p−→ 0.

Remark 3.2. ED2 =∞ is allowed in Theorem 3.1(i).

Remark 3.3. In Theorem 3.1(ii), where ED(D− 2)≤ 0 and p1 > 0, for 0≤ x < 1

λx − g ′D(x) =
∞∑

j=1

jp j(x − x j−1) = p1(x − 1) + x

∞∑

j=2

jp j(1− x j−2)

≤ p1(x − 1) + x

∞∑

j=2

jp j( j − 2)(1− x)

<

∞∑

j=1

j( j − 2)p j x(1− x) = ED(D− 2)x(1− x)≤ 0.

Hence, in this case the only solution in [0,1] to g ′D(ξ) = λξ is ξ = 1, which we may take as the

definition in this case.

Remark 3.4. Let D∗ be a random variable with the distribution

P(D∗ = j) = ( j + 1)P(D = j + 1)/λ, j ≥ 0;

this is the size-biased distribution of D shifted by 1, and it has a well-known natural interpretation

as follows. Pick a random half-edge; then the number of remaining half-edges at its endpoint has

asymptotically the distribution of D∗. Therefore, the natural (Galton–Watson) branching process

approximation of the exploration of the successive neighbourhoods of a given vertex is the branching

processX with offspring distributed as D∗, but starting with an initial distribution given by D. Since

gD∗(x) =

∞∑

j=1

P(D∗ = j − 1)x j−1 =

∞∑

j=1

jp j

λ
x j−1 =

g ′D(x)

λ
,

the equation g ′D(ξ) = λξ in Theorem 3.1(i) can be written gD∗(ξ) = ξ, which shows that ξ has an

interpretation as the extinction probability of the branching process X with offspring distribution

D∗, now starting with a single individual. (This also agrees with the definition in Remark 3.3 for the

case Theorem 3.1(ii).) Thus gD(ξ) in (3.1) is the extinction probability of X . Note also that

ED∗ =
ED(D− 1)

λ
=
ED(D− 1)

ED
,

so the condition ED(D − 2) > 0, or equivalently ED(D − 1) > ED, is equivalent to ED∗ > 1, the

classical condition for the branching process to be supercritical and thus have a positive survival

probability.

The intuition behind the branching process approximation of the local structure of a random graph

at a given vertex is that an infinite approximating branching process corresponds to the vertex being

in a giant component. This intuition agrees also with the formulas (3.2) and (3.3), which reflect the

fact that a vertex of degree j [an edge] belongs to the giant component if and only if one of its j

attached half-edges [one of its two constituent half-edges] connects to the giant component. (It is

rather easy to base rigorous proofs on the branching process approximation, see e.g. [4], but in the

present paper we will only use the branching process heuristically.)
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Consider one of our percolation models G∗(n,d)π, and construct it using explosions and an inter-

mediate random graph G∗(ñ, d̃) as described in the introduction. (Recall that d̃ is random, while d

and the limiting probabilities p j and p̃ j are not.) Let C j := C j

�
G∗(n,d)π

�
and C̃ j := C j

�
G∗(ñ, d̃)

�

denote the components of G∗(n,d)π, and G∗(ñ, d̃), respectively.

As remarked in Section 2, we may assume that G∗(ñ, d̃) too satisfies Condition 2.1, with p j replaced

by p̃ j . (At least a.s.; recall that d̃ is random.) Hence, assuming p̃1 > 0, if we first condition on

d̃, then Theorem 3.1 applies immediately to the exploded graph G∗(ñ, d̃). We also have to remove

n+ randomly chosen “red” vertices of degree 1, but luckily this will not break up any component.

Consequently, if E D̃(D̃−2)> 0, then G∗(ñ, d̃) w.h.p. has a giant component C̃1, with v(C̃1), v j(C̃1)

and e(C̃1) given by Theorem 3.1 (with p j replaced by p̃ j), and after removing the red vertices,

the remainder of C̃1 is still connected and forms a component C in G∗(n,d)π. Furthermore, since

E D̃(D̃ − 2) > 0, p̃ j > 0 for at least one j > 2, and it follows by (3.2) that C̃1 contains cn +

op(n) vertices of degree j, for some c > 0; all these belong to C (although possibly with smaller

degrees), so C contains w.h.p. at least cn/2 vertices. Moreover, all other components of G∗(n,d)π
are contained in components of G∗(ñ, d̃) different from C̃1, and thus at most as large as C̃2, which by

Theorem 3.1 has op(ñ) = op(n) vertices. Hence, w.h.p. C is the largest component C1 of G∗(n,d)π,

and this is the unique giant component in G∗(n,d)π.

Since we remove a fraction n+/ñ1 of all vertices of degree 1, we remove by the law of large numbers

(for a hypergeometric distribution) about the same fraction of the vertices of degree 1 in the giant

component C̃1. More precisely, by (3.2), C̃1 contains about a fraction 1− ξ of all vertices of degree

1, where g ′
D̃
(ξ) = λ̃ξ; hence the number of red vertices removed from C̃1 is

(1− ξ)n++ op(n). (3.4)

By (3.1) and (3.4),

v(C1) = v(C̃1)− (1− ξ)n++ op(n) = ñ
�
1− gD̃(ξ)

�
− n+ + n+ξ+ op(n). (3.5)

Similarly, by (3.3) and (3.4), since each red vertex that is removed from C1 also removes one edge

with it,

e(C1) = e(C̃1)− (1− ξ)n++ op(n) =
1

2
λ̃ñ(1− ξ2)− (1− ξ)n++ op(n). (3.6)

The case E D̃(D̃ − 2) ≤ 0 is even simpler; since the largest component C1 is contained in some

component C̃ j of G∗(ñ, d̃), it follows that v(C1)≤ v(C̃ j)≤ v(C̃1) = op(ñ) = op(n).

This leads to the following results, where we treat site and bond percolation separately and add

formulas for the asymptotic size of C1.

Theorem 3.5. Consider the site percolation model G∗(n,d)
π,v, and suppose that Condition 2.1 holds

and that π = (πd)
∞
0 with 0 ≤ πd ≤ 1; suppose further that there exists j ≥ 1 such that p j > 0 and

π j < 1. Then there is w.h.p. a giant component if and only if

∞∑

j=0

j( j − 1)π j p j > λ :=

∞∑

j=0

jp j . (3.7)

(i) If (3.7) holds, then there is a unique ξ= ξ
v
(π) ∈ (0,1) such that

∞∑

j=1

jπ j p j(1− ξ j−1) = λ(1− ξ) (3.8)
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and then

v(C1)/n
p−→ χ

v
(π) :=

∞∑

j=1

π j p j(1− ξ j)> 0, (3.9)

e(C1)/n
p−→ µ

v
(π) := (1− ξ)

∞∑

j=1

jπ j p j −
(1− ξ)2

2

∞∑

j=1

jp j . (3.10)

Furthermore, v(C2)/n
p−→ 0 and e(C2)/n

p−→ 0.

(ii) If (3.7) does not hold, then v(C1)/n
p−→ 0 and e(C1)/n

p−→ 0.

Proof. We apply Theorem 3.1 to G∗(ñ, d̃) as discussed above. Note that p̃1 > 0 by (2.15) and the

assumption (1−π j)p j > 0 for some j. By (2.15),

ζE D̃(D̃− 2) = ζ

∞∑

j=0

j( j − 2)p̃ j =

∞∑

j=1

j( j − 2)π j p j −
∞∑

j=1

j(1−π j)p j

=

∞∑

j=1

j( j − 1)π j p j −
∞∑

j=1

jp j .

Hence, the condition E D̃(D̃− 2)> 0 is equivalent to (3.7).

In particular, it follows that v(C2) = op(n) in (i) and v(C1) = op(n) in (ii). That also e(C2) = op(n)

in (i) and e(C1) = op(n) in (ii) follows by Remark 2.2 applied to G∗(ñ, d̃).

It remains only to verify the formulas (3.8)–(3.10). The equation g ′
D̃
(ξ) = λ̃ξ is by (2.18) equivalent

to ζg ′
D̃
(ξ) = λξ, which can be written as (3.8) by (2.15) and a simple calculation.

By (3.5), using (2.10), (2.14) and (2.19),

v(C1)/n
p−→ ζ− ζg D̃(ξ)− (1− ξ)

∞∑

j=1

j(1−π j)p j

=

∞∑

j=0

π j p j −
∞∑

j=0

�
π j p jξ

j + j(1−π j)p jξ
�
+ ξ

∞∑

j=0

j(1−π j)p j

=

∞∑

j=0

π j p j(1− ξ j).

Similarly, by (3.6), (2.18), (2.14) and (2.10),

e(C1)/n
p−→ 1

2
λ(1− ξ2)− (1− ξ)

∞∑

j=1

j(1−π j)p j

= (1− ξ)
∞∑

j=1

jπ j p j −
(1− ξ)2

2
λ.

In the standard case when all πd = π, this leads to a simple criterion, which earlier has been shown

by Britton, Janson and Martin-Löf [4] and Fountoulakis [7] by different methods. (A modification

of the usual branching process argument for G∗(n,d) in [4] and a method similar to ours in [7].)
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Corollary 3.6 ([4; 7]). Suppose that Condition 2.1 holds and 0 < π < 1. Then there exists w.h.p. a

giant component in G∗(n,d)π,v if and only if

π > π
c

:=
ED

ED(D− 1)
. (3.11)

Remark 3.7. Note that π
c
= 0 is possible; this happens if and only if ED2 = ∞. (Recall that we

assume 0< ED <∞, see Condition 2.1.) Further, π
c
≥ 1 is possible too: in this case there is w.h.p.

no giant component in G∗(n,d) (except possibly in the special case when p j = 0 for all j 6= 0,2),

and consequently none in the subgraph G∗(n,d)π.

Note that by (3.11), π
c
∈ (0,1) if and only if ED < ED(D − 1) < ∞, i.e., if and only if 0 <

ED(D− 2)<∞.

Remark 3.8. Another case treated in [4] (there called E1) is πd = α
d for some α ∈ (0,1). Theo-

rem 3.5 gives a new proof that then there is a giant component if and only if
∑∞

j=1 j( j−1)α j p j > λ,

which also can be written α2 g ′′D(α) > λ = g ′D(1). (The cases E2 and A in [4] are more complicated

and do not follow from the results in the present paper.)

For edge percolation we similarly have the following; this too has been shown by Britton, Janson

and Martin-Löf [4] and Fountoulakis [7]. Note that the percolation threshold π is the same for site

and bond percolation, as observed by Fountoulakis [7].

Theorem 3.9 ([4; 7]). Consider the bond percolation model G∗(n,d)π,e, and suppose that Condi-

tion 2.1 holds and that 0< π < 1. Then there is w.h.p. a giant component if and only if

π > π
c

:=
ED

ED(D− 1)
. (3.12)

(i) If (3.12) holds, then there is a unique ξ= ξ
e
(π) ∈ (0,1) such that

π1/2 g ′D
�
1−π1/2+π1/2ξ

�
+ (1−π1/2)λ= λξ, (3.13)

and then

v(C1)/n
p−→ χ

e
(π) := 1− gD

�
1−π1/2+π1/2ξ

�
> 0, (3.14)

e(C1)/n
p−→ µ

e
(π) := π1/2(1− ξ)λ− 1

2
λ(1− ξ)2. (3.15)

Furthermore, v(C2)/n
p−→ 0 and e(C2)/n

p−→ 0.

(ii) If (3.12) does not hold, then v(C1)/n
p−→ 0 and e(C1)/n

p−→ 0.

Proof. We argue as in the proof of Theorem 3.5, noting that p̃1 > 0 by (2.27). By (2.28),

ζE D̃(D̃− 2) = ζg ′′
D̃
(1)− ζg ′

D̃
(1) = πg ′′D(1)−π

1/2 g ′D(1)− (1−π
1/2)λ

= πED(D− 1)−λ,

which yields the criterion (3.12). Further, if (3.12) holds, then the equation g ′
D̃
(ξ) = λ̃ξ, which by

(2.18) is equivalent to ζg ′
D̃
(ξ) = ζλ̃ξ= λξ, becomes (3.13) by (2.28).
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By (3.5), (2.26), (2.22) and (2.28),

v(C1)/n
p−→ ζ− ζg D̃(ξ)− (1− ξ)(1−π1/2)λ= 1− gD

�
1−π1/2+π1/2ξ)

�
,

which is (3.14). Similarly, (3.6), (2.26), (2.18) and (2.22) yield

e(C1)/n
p−→ 1

2
λ(1− ξ2)− (1− ξ)(1−π1/2)λ= π1/2(1− ξ)λ− 1

2
λ(1− ξ)2,

which is (3.15). The rest is as above.

Remark 3.10. It may come as a surprise that we have the same criterion (3.11) and (3.12) for

site and bond percolation, since the proofs above arrive at this equation in somewhat different

ways. However, remember that all results here are consistent with the standard branching process

approximation in Remark 3.4 (even if our proofs use different arguments) and it is obvious that both

site and bond percolation affect the mean number of offspring in the branching process in the same

way, namely by multiplication by π. Cf. [4], where the proofs are based on such branching process

approximations.

Define

ρ
v
= ρ

v
(π) := 1− ξ

v
(π) and ρ

e
= ρ

e
(π) := 1− ξ

e
(π); (3.16)

recall from Remark 3.4 that ξ
v

and ξ
e

are the extinction probabilities in the two branching processes

defined by the site and bond percolation models, and thus ρ
v

and ρ
e

are the corresponding survival

probabilities. For bond percolation, (3.13)–(3.15) can be written in the somewhat simpler forms

π1/2 g ′D
�
1−π1/2ρ

e

�
= λ(π1/2−ρ

e
), (3.17)

v(C1)/n
p−→ χ

e
(π) := 1− gD

�
1−π1/2ρ

e
(π)
�
, (3.18)

e(C1)/n
p−→ µ

e
(π) := π1/2λρ

e
(π)− 1

2
λρ

e
(π)2. (3.19)

Note further that if we consider site percolation with all π j = π, (3.8) can be written

π
�
λ− g ′D(1−ρv

)
�
= λρ

v
(3.20)

and it follows by comparison with (3.17) that

ρ
v
(π) = π1/2ρ

e
(π). (3.21)

Furthermore, (3.9), (3.10), (3.18) and (3.19) now yield

χ
v
(π) = π

�
1− gD(ξv

(π))
�
= π

�
1− gD(1−ρv

(π))
�
= πχ

e
(π), (3.22)

µ
v
(π) = πλρ

v
(π)− 1

2
λρ

v
(π)2 = πµ

e
(π). (3.23)

We next consider how the various parameters above depend on π, for both site percolation and

bond percolation, where for site percolation we in the remainder of this section consider only the

case when all π j = π.

We have so far defined the parameters for π ∈ (π
c
, 1) only; we extend the definitions by letting

ξ
v

:= ξ
e

:= 1 and ρ
v

:= ρ
e

:= χ
v

:= χ
e

:= µ
v

:= µ
e

:= 0 for π ≤ π
c
, noting that this is compatible

with the branching process interpretation of ξ and ρ in Remark 3.4 and that the equalities in (3.8)–

(3.23) hold trivially.
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Theorem 3.11. Assume Condition 2.1. The functions ξ
v
,ρ

v
,χ

v
,µ

v
,ξ

e
,ρ

e
,χ

e
,µ

e
are continuous func-

tions of π ∈ (0,1) and are analytic except at π= π
c
. (Hence, the functions are analytic in (0,1) if and

only if π
c
= 0 or π

c
≥ 1.)

Proof. It suffices to show this for ξ
v
; the result for the other functions then follows by (3.16) and

(3.21)–(3.23). Since the case π ≤ π
c

is trivial, it suffices to consider π ≥ π
c
, and we may thus

assume that 0≤ π
c
< 1.

If π ∈ (π
c
, 1), then, as shown above, g ′

D̃
(ξ

v
) = λ̃ξ

v
, or, equivalently, G(ξ

v
,π) = 0, where G(ξ,π) :=

g ′
D̃
(ξ)/ξ−λ̃ is an analytic function of (ξ,π) ∈ (0,1)2. Moreover, G(ξ,π) is a strictly convex function

of ξ ∈ (0,1] for any π ∈ (0,1), and G(ξ
v
,π) = G(1,π) = 0; hence

∂ G(ξ,π)

∂ ξ

¯̄
ξ=ξ

v

< 0. The implicit

function theorem now shows that ξ
v
(π) is analytic for π ∈ (π

c
, 1).

For continuity at π
c
, suppose π

c
∈ (0,1) and let ξ̂ = limn→∞ ξv

(πn) for some sequence πn → πc
.

Then, writing D̃(π) and λ̃(π) to show the dependence on π, g ′
D̃(πn)

(ξ
v
(πn)) = λ̃(πn)ξv

(πn) and thus

by continuity, e.g. using (2.28), g ′
D̃(π

c
)
(ξ̂) = λ̃(π

c
)ξ̂. However, for π ≤ π

c
, we have E D̃(D̃− 2) ≤ 0

and then ξ= 1 is the only solution in (0,1] of g ′
D̃
(ξ) = λ̃ξ; hence ξ̂= 1. This shows that ξ

v
(π)→ 1

as π→ π
c
, i.e., ξ

v
is continuous at π

c
.

Remark 3.12. Alternatively, the continuity of ξ
v

in (0,1) follows by Remark 3.4 and continuity of

the extinction probability as the offspring distribution varies, cf. [4, Lemma 4.1]. Furthermore, by

the same arguments, the parameters are continuous also at π = 0 and, except in the case when

p0+ p2 = 1 (and thus D̃ = 1 a.s.), at π= 1 too.

At the threshold π
c
, we have linear growth of the size of the giant component for (slightly) larger

π, provided ED3 <∞, and thus a jump discontinuity in the derivative of ξ
v
,χ

v
, . . . . More precisely,

the following holds. We are here only interested in the case 0 < π
c
< 1, which is equivalent to

0< ED(D− 2)<∞, see Remark 3.7.

Theorem 3.13. Suppose that 0 < ED(D − 2) < ∞; thus 0 < π
c
< 1. If further ED3 < ∞, then as

ǫց 0,

ρ
v
(π

c
+ ǫ)∼

2ED(D− 1)

π
c
ED(D− 1)(D− 2)

ǫ =
2
�
ED(D− 1)

�2

ED ·ED(D− 1)(D− 2)
ǫ (3.24)

χ
v
(π

c
+ ǫ)∼ µ

v
(π

c
+ ǫ)∼ π

c
λρ

v
(π

c
+ ǫ)∼

2ED ·ED(D− 1)

ED(D− 1)(D− 2)
ǫ. (3.25)

Similar results for ρ
e
, χ

e
, µ

e
follow by (3.21)–(3.23).

Proof. For π= π
c
+ ǫց π

c
, by g ′′D(1) = ED(D− 1) = λ/π

c
, see (3.11), and (3.20),

ǫg ′′D(1)ρv
= (π−π

c
)g ′′D(1)ρv

= πg ′′D(1)ρv
−λρ

v
= π

�
g ′′D(1)ρv

−λ+ g ′D(1−ρv
)
�
. (3.26)

Since ED3 < ∞, gD is three times continuously differentiable on [0,1], and a Taylor expansion

yields g ′D(1−ρv
) = λ−ρ

v
g ′′D(1) +ρ

2
v

g ′′′D (1)/2+ o(ρ2
v
). Hence, (3.26) yields, since ρ

v
> 0,

ǫg ′′D(1) = πρv
g ′′′D (1)/2+ o(ρ

v
) = π

c
ρ

v
g ′′′D (1)/2+ o(ρ

v
).
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Thus, noting that g ′′D(1) = ED(D− 1) and g ′′′D (1) = ED(D− 1)(D− 2)> 0 (since ED(D− 2)> 0),

ρ
v
∼

2g ′′D(1)

π
c
g ′′′D (1)

ǫ =
2ED(D− 1)

π
c
ED(D− 1)(D− 2)

ǫ,

which yields (3.24). Finally, (3.25) follows easily by (3.22) and (3.23).

If ED3 =∞, we find in the same way a slower growth of ρ
v
(π), χ

v
(π), µ

v
(π) at π

c
. As an example,

we consider D with a power law tail, pk ∼ ck−γ, where we take 3 < γ < 4 so that ED2 < ∞ but

ED3 =∞.

Theorem 3.14. Suppose that pk ∼ ck−γ as k→∞, where 3 < γ < 4 and c > 0. Assume further that

ED(D− 2)> 0. Then π
c
∈ (0,1) and, as ǫց 0,

ρ
v
(π

c
+ ǫ)∼

�
ED(D− 1)

cπ
c
Γ(2− γ)

�1/(γ−3)

ǫ1/(γ−3),

χ
v
(π

c
+ ǫ)∼ µ

v
(π

c
+ ǫ)∼ π

c
λρ

v
(π

c
+ ǫ)

∼ π
c
λ

�
ED(D− 1)

cπ
c
Γ(2− γ)

�1/(γ−3)

ǫ1/(γ−3).

Similar results for ρ
e
, χ

e
, µ

e
follow by (3.21)–(3.23).

Proof. We have, for example by comparison with the Taylor expansion of
�
1− (1− t)

�γ−4
,

g ′′′D (1− t) =

∞∑

k=3

k(k− 1)(k− 2)pk(1− t)k−3 ∼ cΓ(4− γ)tγ−4, t ց 0,

and thus by integration

g ′′D(1)− g ′′D(1− t)∼ cΓ(4− γ)(γ− 3)−1 tγ−3 = c|Γ(3− γ)|tγ−3,

and, integrating once more,

ρ
v
g ′′D(1)− (λ− g ′D(1−ρv

))∼ cΓ(2− γ)ργ−2
v

.

Hence, (3.26) yields

ǫg ′′D(1)ρv
∼ cπ

c
Γ(2− γ)ργ−2

v

and the results follow, again using (3.22) and (3.23).

4 k-core

Let k ≥ 2 be a fixed integer. The k-core of a graph G, denoted by Corek(G), is the largest induced

subgraph of G with minimum vertex degree at least k. (Note that the k-core may be empty.) The

question whether a non-empty k-core exists in a random graph has attracted a lot of attention for

various models of random graphs since the pioneering papers by Bollobás [2], Łuczak [14] and

Pittel, Spencer and Wormald [17] for G(n, p) and G(n, m); in particular, the case of G(n,d) and
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G∗(n,d) with given degree sequences have been studied by several authors, see Janson and Luczak

[10, 11] and the references given there.

We study the percolated G∗(n,d)π by the exposion method presented in Section 1. For the k-core,

the cleaning up stage is trivial: by definition, the k-core of G∗(ñ, d̃) does not contain any vertices of

degree 1, so it is unaffected by the removal of all red vertices, and thus

Corek

�
G∗(n,d)π

�
= Corek

�
G∗(ñ, d̃)

�
. (4.1)

Let, for 0 ≤ p ≤ 1, Dp be the thinning of D obtained by taking D points and then randomly and

independently keeping each of them with probability p. Thus, given D = d, Dp ∼ Bi(d, p). Define,

recalling the notation (2.21),

h(p) := E
�

Dp1[Dp ≥ k]
�
=

∞∑

j=k

∞∑

l= j

jpl bl j(p), (4.2)

h1(p) := P(Dp ≥ k) =

∞∑

j=k

∞∑

l= j

pl bl j(p). (4.3)

Note that Dp is stochastically increasing in p, and thus both h and h1 are increasing in p, with

h(0) = h1(0) = 0. Note further that h(1) =
∑∞

j=k jp j ≤ λ and h1(1) =
∑∞

j=k p j ≤ 1, with strict

inequalities unless p j = 0 for all j = 1, . . . , k− 1 or j = 0,1, . . . , k− 1, respectively. Moreover,

h(p) = EDp −E
�

Dp1[Dp ≤ k− 1]
�
= EDp −

k−1∑

j=1

j P(Dp = j)

= λp−
k−1∑

j=1

∑

l≥ j

jpl

�
l

j

�
p j(1− p)l− j

= λp−
k−1∑

j=1

p j

( j − 1)!
g
( j)

D (1− p).

(4.4)

Since gD(z) is an analytic function in {z : |z| < 1}, (4.4) shows that h(p) is an analytic function in

the domain {p : |p − 1| < 1} in the complex plane; in particular, h is analytic on (0,1]. (But not

necessarily at 0, as seen by Example 4.13.) Similarly, h1 is analytic on (0,1].

We will use the following result by Janson and Luczak [10], Theorem 2.3.

Theorem 4.1 ([10]). Suppose that Condition 2.1 holds. Let k ≥ 2 be fixed, and let Core∗
k

be the k-core

of G∗(n,d). Let bp :=max{p ∈ [0,1] : h(p) = λp2}.

(i) If h(p) < λp2 for all p ∈ (0,1], which is equivalent to bp = 0, then Core∗
k

has op(n) vertices and

op(n) edges. Furthermore, if also k ≥ 3 and
∑n

i=1 eαdi = O(n) for some α > 0, then Core∗
k

is

empty w.h.p.

(ii) If h(p) ≥ λp2 for some p ∈ (0,1], which is equivalent to bp ∈ (0,1], and further bp is not a local

maximum point of h(p)−λp2, then

v(Core∗k)/n
p−→ h1(bp)> 0, (4.5)
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v j(Core∗k)/n
p−→ P(Dbp = j) =

∞∑

l= j

pl bl j(bp), j ≥ k, (4.6)

e(Core∗k)/n
p−→ h(bp)/2= λbp2/2. (4.7)

Remark 4.2. The result (4.6) is not stated explicitly in [10], but as remarked in [11, Remark 1.8],

it follows immediately from the proof in [10] of (4.5). (Cf. [5] for the random graph G(n, m).)

Remark 4.3. The extra condition in (ii) that bp is not a local maximum point of h(p)−λp2 is actually

stated somewhat differently in [10], viz. as λp2 < h(p) in some interval (bp− ǫ,bp). However, since

g(p) := h(p)−λp2 is analytic at bp, a Taylor expansion at bp shows that either g(p) = 0 for all p (and

then bp = 1), or for some such interval (bp−ǫ,bp), either g(p)> 0 or g(p)< 0 throughout the interval.

Since g(bp) = 0 and g(p)< 0 for bp < p ≤ 1, the two versions of the condition are equivalent.

The need for this condition is perhaps more clearly seen in the percolation setting, cf. Remark 4.8.

There is a natural interpretation of this result in terms of the branching process approximation of

the local exploration process, similar to the one described for the giant component in Remark 3.4.

For the k-core, this was observed already by Pittel, Spencer and Wormald [17], but (unlike for the

giant component), the branching process approximation has so far mainly been used heuristically;

the technical difficulties to make a rigorous proof based on it are formidable, and have so far been

overcome only by Riordan [18] for a related random graph model. We, as most others, avoid this

complicated method of proof, and only identify the limits in Theorem 4.1 (which is proved by other,

simpler, methods in [10]) with quantities for the branching process. Although this idea is not new,

we have, for the random graphs that we consider, not seen a detailed proof of it in the literature, so

for completeness we provide one in Appendix A.

Remark 4.4. If k = 2, then (4.4) yields

h(p) = λp−
∞∑

l=0

pl l p(1− p)l−1 = λp− pg ′D(1− p) (4.8)

and thus

h(p)−λp2 = p
�
λ(1− p)− g ′D(1− p)

�
.

It follows that bp = 1− ξ, where ξ is as in Theorem 3.1 and Remark 3.3; i.e., by Remark 3.4, bp = ρ,

the survival probability of the branching process X with offspring distribution D∗. (See Appendix A

for further explanations of this.)

We now easily derive results for the k-core in the percolation models. For simplicity, we consider

for site percolation only the case when all πk are equal; the general case is similar but the explicit

formulas are less nice.

Theorem 4.5. Consider the site percolation model G∗(n,d)π,v with 0 ≤ π ≤ 1, and suppose that

Condition 2.1 holds. Let k ≥ 2 be fixed, and let Core∗
k

be the k-core of G∗(n,d)π,v. Let

π
c
= π(k)

c
:= inf

0<p≤1

λp2

h(p)
=

�
sup

0<p≤1

h(p)

λp2

�−1

. (4.9)
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(i) If π < π
c
, then Core∗

k
has op(n) vertices and op(n) edges. Furthermore, if also k ≥ 3 and∑n

i=1 eαdi = O(n) for some α > 0, then Core∗
k

is empty w.h.p.

(ii) If π > π
c
, then w.h.p. Core∗

k
is non-empty. Furthermore, if bp = bp(π) is the largest p ≤ 1 such

that h(p)/(λp2) = π−1, and bp is not a local maximum point of h(p)/(λp2) in (0,1], then

v(Core∗k)/n
p−→ πh1(bp)> 0,

v j(Core∗k)/n
p−→ πP(Dbp = j), j ≥ k,

e(Core∗k)/n
p−→ πh(bp)/2= λbp2/2.

Theorem 4.6. Consider the bond percolation model G∗(n,d)π,e with 0 ≤ π ≤ 1, and suppose that

Condition 2.1 holds. Let k ≥ 2 be fixed, and let Core∗
k

be the k-core of G∗(n,d)π,e. Let π
c
= π(k)

c
be

given by (4.9).

(i) If π < π
c
, then Core∗

k
has op(n) vertices and op(n) edges. Furthermore, if also k ≥ 3 and∑n

i=1 eαdi = O(n) for some α > 0, then Core∗
k

is empty w.h.p.

(ii) If π > π
c
, then w.h.p. Core∗

k
is non-empty. Furthermore, if bp = bp(π) is the largest p ≤ 1 such

that h(p)/(λp2) = π−1, and bp is not a local maximum point of h(p)/(λp2) in (0,1], then

v(Core∗k)/n
p−→ h1(bp)> 0,

v j(Core∗k)/n
p−→ P(Dbp = j), j ≥ k,

e(Core∗k)/n
p−→ h(bp)/2= λbp2/(2π).

For convenience, we define ϕ(p) := h(p)/p2, 0< p ≤ 1.

Remark 4.7. Since h(p) is analytic in (0,1), there is at most a countable number of local maximum

points of ϕ(p) := h(p)/p2 (except when h(p)/p2 is constant), and thus at most a countable number

of local maximum values of h(p)/p2. Hence, there is at most a countable number of exceptional

values of π in part (ii) of Theorems 4.5 and 4.6. At these exceptional values, we have a discontinuity

of bp(π) and thus of the relative asymptotic size πh1(bp(π)) or h1(bp(π)) of the k-core; in other words,

there is a phase transition of the k-core at each such exceptional π. (See Figures 1 and 2.) Similarly,

if ϕ has an inflection point at bp(π), i.e., if ϕ′(bp) = ϕ′′(bp) = · · · = ϕ(2ℓ)(bp) = 0 and ϕ(2ℓ+1)(bp) < 0

for some ℓ ≥ 1, then bp(π) and h1(bp(π)) are continuous but the derivatives of bp(π) and h1(bp(π))
become infinite at this point, so we have a phase transition of a different type. For all other π > π

c
,

the implicit function theorem shows that bp(π) and h1(bp(π)) are analytic at π.

Say that p̃ is a critical point of ϕ if ϕ′(p̃) = 0, and a bad critical point if further, p̃ ∈ (0,1), ϕ(p̃) > λ

and ϕ(p̃) > ϕ(p) for all p ∈ (p̃, 1). It follows that there is a 1–1 correspondence between phase

transitions in (π
c
, 1) or [π

c
, 1) and bad critical points p̃ of ϕ, with the phase transition occurring at

π̃= λ/ϕ(p̃). This includes π
c

if and only if sup(0,1]ϕ(p) is attained and larger than λ, in which case

the last global maximum point is a bad critical point; if this supremum is finite not attained, then

there is another first-order phase transition at π
c
, while if the supremum is infinite, then π

c
= 0.

Finally, there may be a further phase transition at π̃ = 1 (with p̃ = 1); this happens if and only if

ϕ(1) = h(1) = λ and ϕ′(1)≤ 0.
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The phase transitions are first-order when the corresponding p̃ is a bad local maximum point of ϕ,

i.e., a bad critical point that is a local maximum point. (This includes π
c

when sup(0,1]ϕ is attained,

but not otherwise.) Thus, the phase transition that occur are typically first order, but there are

exceptions, see Examples 4.13 and 4.18.

Remark 4.8. The behaviour at π= π
c

depends on more detailed properties of the degree sequences

(d
(n)

i
)n1, or equivalently of D̂n. Indeed, more precise results can be derived from Janson and Luczak

[11], Theorem 3.5, at least under somewhat stricter conditions on (d
(n)

i
)n1; in particular, it then fol-

lows that the width of the threshold is of the order n−1/2, i.e., that there is a sequence π
cn depending

on (d
(n)

i
)n1, with π

cn → πc
, such that G∗(n,d)π,v and G∗(n,d)π,e w.h.p. have a non-empty k-core if

π = π
cn +ω(n)n

−1/2 with ω(n) → ∞, but w.h.p. an empty k-core if π = π
cn −ω(n)n−1/2, while

in the intermediate case π = π
cn + cn−1/2 with −∞ < c <∞, P(G∗(n,d)π has a non-empty k-core)

converges to a limit (depending on c) in (0,1). We leave the details to the reader.

The same applies to further phase transitions that may occur.

Remark 4.9. If k = 2, then (4.8) yields

ϕ(p) := h(p)/p2 =
∑

j≥2

p j j(1− (1− p) j−1)/p,

which is decreasing on (0,1] (or constant, when P(D > 2) = 0), with

sup
p∈(0,1]

ϕ(p) = lim
p→0
ϕ(p) =

∑

j

p j j( j − 1) = ED(D− 1)≤∞.

Hence

π(2)
c
= λ/ED(D− 1) = ED/ED(D− 1),

coinciding with the critical value in (3.11) for a giant component.

Although there is no strict implication in any direction between “a giant component” and “a non-

empty 2-core”, in random graphs these seem to typically appear together (in the form of a large

connected component of the 2-core), see Appendix A for branching process heuristics explaing this.

Remark 4.10. We see again that the results for site and bond percolation are almost identi-

cal. In fact, they become the same if we measure the size of the k-core in relation to the size

of the percolated graph G∗(n,d)π, since v(G∗(n,d)π,e) = n but v(G∗(n,d)π,v) ∼ Bi(n,π), so

v(G∗(n,d)π,v)/n
p−→ π. Again, this is heuristically explained by the branching process approxi-

mations; see Appendix A and note that random deletions of vertices or edges yield the same result

in the branching process, assuming that we do not delete the root.

Proof of Theorem 4.5. The case P(D ≥ k) = 0 is trivial; in this case h(p) = 0 for all p and

π
c
= 0 so (i) applies. Further, Theorem 4.1(i) applies to G∗(n,d), and the result follows from

Corek(G
∗(n,d)π,v) ⊆ Corek(G

∗(n,d)). In the sequel we thus assume P(D ≥ k) > 0, which implies

h(p)> 0 and h1(p)> 0 for 0< p ≤ 1.

We apply Theorem 4.1 to the exploded graph G∗(ñ, d̃), recalling (4.1). For site percolation,

G∗(n,d)π,v, p̃ j = ζ
−1πp j for j ≥ 2 by (2.15), and thus

P(D̃p = j) = ζ−1πP(Dp = j), j ≥ 2,
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and, because k ≥ 2,

h̃(p) := E
�

D̃p1[D̃p ≥ k]
�
= ζ−1πh(p), (4.10)

h̃1(p) := P(D̃p ≥ k) = ζ−1πh1(p). (4.11)

Hence, the condition h̃(p)≥ λ̃p2 can, using (2.18), be written

πh(p)≥ λp2. (4.12)

If π < π
c
, then for every p ∈ (0,1], by (4.9), π < π

c
≤ λp2/h(p) so (4.12) does not hold and h̃(p)<

λ̃p2. Hence Theorem 4.1(i) applies to G∗(ñ, d̃), which proves (i); note that if
∑n

i=1 eαdi = O(n) for

some α > 0, then also

ñ∑

i=1

eαd̃i ≤
n∑

i=1

eαdi + n+eα ≤
n∑

i=1

eαdi + eα
∑

j≥1

jn j = O(n).

If π > π
c
, then there exists p ∈ (0,1] such that π > λp2/h(p) and thus (4.12) holds and Theo-

rem 4.1(ii) applies to G∗(ñ, d̃). Moreover, bp in Theorem 4.1(ii) is the largest p ≤ 1 such that (4.12)

holds. Since πh(1) ≤ h(1) ≤ λ and h is continuous, we have equality in (4.12) for p = bp, i.e.,

πh(bp) = λbp2, so bp is as asserted the largest p ≤ 1 with h(p)/(λp2) = π−1.

Further, if bp is a local maximum point of h̃(p)− λ̃p2 = ζ−1(πh(p)−λp2), then πh(p)−λp2 ≤ 0 in

a neighbourhood of bp and thus h(p)/(λp2) ≤ 1/π = h(bp)/(λbp2) there; thus bp is a local maximum

point of h(p)/(λp2). Excluding such points, we obtain from Theorem 4.1(ii) using (4.1), (2.14),

(2.15), (2.18), (4.10) and (4.11),

v(Core∗
k
)

n
=

ñ

n
·

v(Core∗
k
)

ñ

p−→ ζh̃1(bp) = πh1(bp),
v j(Core∗

k
)

n
=

ñ

n
·

v j(Core∗
k
)

ñ

p−→ ζP(D̃bp = j) = πP(Dbp = j), j ≥ k,

e(Core∗
k
)

n
=

ñ

n
·

e(Core∗
k
)

ñ

p−→ ζ
λ̃bp2

2
=
λbp2

2
.

This proves the result when bp is not a local maximum point of h(p)/(λp2). In particular, since

h1(bp) > 0, Core∗
k

is non-empty w.h.p. when π > π
c

is not a local maximum value of h(p)/(λp2).

Finally, even if π is such a local maximum value, we can find π′ with π
c
< π′ < π that is not,

because by Remark 4.7 there is only a countable number of exceptional π. By what we just have

shown, G∗(n,d)π′,v has w.h.p. a non-empty k-core, and thus so has G∗(n,d)π,v ⊇ G∗(n,d)π′,v.

Proof of Theorem 4.6. We argue as in the proof just given of Theorem 4.6, again using (4.1) and

applying Theorem 4.1 to the exploded graph G∗(ñ, d̃). We may again assume P(D ≥ k) > 0, and

thus h(p)> 0 and h1(p)> 0 for 0< p ≤ 1. We may further assume π > 0.

The main difference from the site percolation case is that for bond percolation G∗(n,d)π,e, (2.27)

yields

P(D̃ = j) = ζ−1
P(Dπ1/2 = j), j ≥ 2,

and hence

P(D̃p = j) = ζ−1
P(Dpπ1/2 = j), j ≥ 2, (4.13)
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and thus

h̃(p) := E
�

D̃p1[D̃p ≥ k]
�
= ζ−1h(pπ1/2), (4.14)

h̃1(p) := P(D̃p ≥ k) = ζ−1h1(pπ
1/2). (4.15)

Consequently, the condition h̃(p)≥ λ̃p2 can, using (2.18), be written as h(pπ1/2)≥ λp2, or

πh(pπ1/2)≥ λ
�

pπ1/2�2
. (4.16)

If π < π
c
, then for every p ∈ (0,1] we have pπ1/2 ∈ (0,1] and thus by (4.9)

π < π
c
≤
λ(pπ1/2)2

h(pπ1/2)

so (4.16) does not hold and h̃(p) < λ̃p2. Hence Theorem 4.1(i) applies to G∗(ñ, d̃) as in the proof

of Theorem 4.5.

If π > π
c
, then there exists p ∈ (0,1] such that π > λp2/h(p) and, as before, bp is the largest such p

and satisfies h(bp)/(λbp2) = π−1. Furthermore, if π1/2 < p ≤ 1, then

πh(p)≤ πh(1)≤ πλ < λp2, (4.17)

and thus p 6= bp. Hence bp ≤ π1/2. Let bp0 := bp/π1/2. Then bp0 ∈ (0,1] and bp0 is the largest p ≤ 1 such

that (4.16) holds; i.e., the largest p ≤ 1 such that h̃(p) ≥ λ̃p2. We thus can apply Theorem 4.1(ii)

to G∗(ñ, d̃), with bp replaced by bp0, noting that if bp0 is a local maximum point of h̃(p)− λ̃p2, then bp
is a local maximum point of

h̃(pπ−1/2)− λ̃(pπ−1/2)2 = ζ−1
�
h(p)−π−1λp2

�

and thus of πh(p)− λp2, which as in the proof of Theorem 4.5 implies that bp is a local maximum

point of h(p)/(λp2). (The careful reader may note that there is no problem with the special case

bp0 = 1, when we only consider a one-sided maximum at bp0: in this case bp = π1/2 and πh(bp) =
λbp2 = λπ so h(bp) = λ and bp = 1, π = 1.) Consequently, when bp is not a local maximum point of

h(p)/(λp2), Theorem 4.1(ii) yields, using (2.26), (4.13), (4.15),

v(Core∗
k
)

n
=

ñ

n
·

v(Core∗
k
)

ñ

p−→ ζh̃1(bp0) = h1(bp),
v j(Core∗

k
)

n
=

ñ

n
·

v j(Core∗
k
)

ñ

p−→ ζP(D̃bp0
= j) = P(Dbp = j), j ≥ k,

e(Core∗
k
)

n
=

ñ

n
·

e(Core∗
k
)

ñ

p−→ ζ
λ̃bp2

0

2
=
λbp2

2π
.

The proof is completed as before.

Consider now what Theorems 4.5 and 4.6 imply for the k-core as π increases from 0 to 1. (We

will be somewhat informal; the statements below should be interpreted as asymptotic as n→∞ for

fixed π, but we for simplicity omit “w.h.p.’’ and “
p−→”.)

If k = 2, we have by Remark 4.9 a similar behaviour as for the giant component in Section 3: in the

interesting case 0 < π
c
< 1, the 2-core is small, o(n), for π < π

c
and large, Θ(n), for π > π

c
, with
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a relative size h1(bp(π)) that is a continuous function of π also at π
c

and analytic everywhere else in

(0,1), cf. Theorem 3.11.

Assume now k ≥ 3. For the random graph G(n, p) with p = c/n, the classical result by Pittel,

Spencer and Wormald [17] shows that there is a first-order (=discontinuous) phase transition at

some value ck; for c < ck the k-core is empty and for c > ck it is non-empty and with a relative

size ψk(c) that jumps to a positive value at c = ck, and thereafter is analytic. We can see this as a

percolation result, choosing a large λ and regarding G(n, c/n) as obtained by bond percolation on

G(n,λ/n) with π = c/λ for c ∈ [0,λ]; G(n,λ/n) is not exactly a random graph of the type G∗(n,d)

studied in the present paper, but as said in the introduction, it can be treated by our methods by

conditioning on the degree sequence, and it has the asymptotic degree distribution D ∼ Po(λ). In

this case, see Example 4.11 and Figure 1, ϕ is unimodal, with ϕ(0) = 0, a maximum at some interior

point p0 ∈ (0,1), and ϕ′ < 0 on (p0, 1). This is a typical case; ϕ has these properties for many other

degree distributions too (and k ≥ 3), and these properties of ϕ imply by Theorems 4.5 and 4.6 that

there is, provided ϕ(p0) > λ, a first-order phase transition at π = π
c
= λ/ϕ(p0) where the k-core

suddenly is created with a positive fraction h1(p0) of all vertices, but no other phase transitions since

h1(bp(π)) is analytic on (π
c
, 1). Equivalently, recalling Remark 4.7, we see that p0 is the only bad

critical point of ϕ.

However, there are other possibilities too; there may be several bad critical points of ϕ, and thus

several phase transitions of ϕ. There may even be an infinite number of them. We give some

examples showing different possibilities that may occur. (A similar example with several phase

transitions for a related hypergraph process is given by Darling, Levin and Norris [6].)

0

5

10

15

20

25

30

0.2 0.4 0.6 0.8 1

Figure 1: ϕ(p) = h(p)/p2 for D ∼ Po(10) and k = 3.

Example 4.11. A standard case is when D ∼ Po(λ) and k ≥ 3. (This includes, as said above, the case

G(n,λ/n) by conditioning on the degree sequence, in which case we recover the result by [17].)

Then Dp ∼ Po(λp) and a simple calculation shows that h(p) = λpP(Po(λp) ≥ k − 1), see [10, p.
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Figure 2: ϕ(p) = h(p)/p2 for k = 3 and p10i = 99 · 10−2i , i = 1,2, . . . , (p j = 0 for all other j). Cf.

Example 4.15.

59]. Hence, if ck := minµ>0µ/P(Po(µ) ≥ k − 1) and λ > ck, then π
c
= inf0<p≤1

�
λp2/h(p)

�
=

ck/λ. Moreover, it is easily shown that h(p)/p2 is unimodal, see [10, Lemma 7.2] and Figure 1.

Consequently, there is as discussed above a single first-order phase transition at π= ck/λ [17].

Example 4.12. Let k = 3 and consider graphs with only two vertex degrees, 3 and m, say, with

m≥ 4. Then, cf. (4.4),

h(p) = 3p3 P(Dp = 3 | D = 3) + pmE(Dp − Dp1[Dp ≤ 2] | D = m)

= 3p3p3+ pm

�
mp−mp(1− p)m−1 −m(m− 1)p2(1− p)m−2

�
.

Now, let p3 := 1− a/m and pm := a/m, with a > 0 fixed and m ≥ a, and let m→∞. Then, writing

h= hm, hm(p)→ 3p3+ ap for p ∈ (0,1] and thus

ϕm(p) :=
hm(p)

p2
→ ϕ∞(p) := 3p+

a

p
.

Since ϕ′∞(1) = 3 − a, we see that if we choose a = 1, say, then ϕ′∞(1) > 0. Furthermore, then

ϕ∞(1/4) =
3

4
+ 4 > ϕ∞(1) = 4. Since also ϕ′m(1) = 3p3 −mpm = 3p3 − a→ ϕ′∞(1), it follows that

if m is large enough, then ϕ′m(1)> 0 but ϕm(1/4)> ϕm(1). We fix such an m and note that ϕ = ϕm

is continuous on [0,1] with ϕ(0) = 0, because the sum in (4.2) is finite with each term O(p3).

Let p̃0 be the global maximum point of ϕ in [0,1]. (If not unique, take the largest value.) Then,

by the properties just shown, p̃0 6= 0 and p̃0 6= 1, so p̃0 ∈ (0,1); moreover, 1 is a local maximum

point but not a global maximum point. Hence, π
c
= λ/ϕ(p̃0) is a first-order phase transition where

the 3-core suddenly becomes non-empty and containing a positive fraction h1(p̃0) of all (remaining)

vertices. There is another phase transition at π = 1. We have ϕ(1) = h(1) = λ, but since ϕ′(1) > 0,
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if p̃1 := sup{p < 1 : ϕ(p) > ϕ(1)}, then p̃1 < 1. Hence, as π ր 1, bp(π) ր p̃1 and h(bp(π)) ր
h1(p̃1)< 1. Consequently, the size of the 3-core jumps again at π= 1.

For an explicit example, numerical calculations (using Maple) show that we can take a = 1 and

m= 12, or a = 1.9 and m= 6.

Example 4.13. Let k = 3 and let D be a mixture of Poisson distributions:

P(D = j) = p j =
∑

i

qi P(Po(λi) = j), j ≥ 0, (4.18)

for some finite or infinite sequences (qi) and (λi) with qi ≥ 0,
∑

i qi = 1 and λi ≥ 0. In the case

D ∼ Po(λ) we have, cf. Example 4.11, Dp ∼ Po(λp) and thus

h(p) = EDp − P(Dp = 1)− 2P(Dp = 2) = λp−λpe−λp − (λp)2e−λp

= (λp)2 f (λp),

where f (x) :=
�
1− (1+ x)e−x

�
/x . Consequently, by linearity, for D given by (4.18),

h(p) =
∑

i

qi(λi p)
2 f (λi p), (4.19)

and thus

ϕ(p) =
∑

i

qiλ
2
i f (λi p). (4.20)

As a specific example, take λi = 2i and qi = λ
−2
i
= 2−2i , i ≥ 1, and add q0 = 1−

∑
i≥1 qi and λ0 = 0

to make
∑

qi = 1. Then

ϕ(p) =

∞∑

i=1

f (2i p). (4.21)

Note that f (x) = O(x) and f (x) = O(x−1) for 0 < x < ∞. Hence, the sum in (4.21) converges

uniformly on every compact interval [δ, 1]; moreover, if we define

ψ(x) :=

∞∑

i=−∞
f (2i x), (4.22)

then the sum converges uniformly on compact intervals of (0,∞) and |ϕ(p)−ψ(p)|= O(p). Clearly,

ψ is a multiplicatively periodic function on (0,∞): ψ(2x) =ψ(x); we compute the Fourier series of

the periodic function ψ(2y) on R and find ψ(2y) =
∑∞

n=−∞
bψ(n)e2πiny with, using integration by
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parts,

bψ(n) =
∫ 1

0

ψ(2y)e−2πiny dy =

∫ 1

0

∞∑

j=−∞
f (2 j2y)e−2πiny dy

=

∞∑

j=−∞

∫ 1

0

f (2 j+y)e−2πiny dy =

∫ ∞

−∞
f (2y)e−2πiny dy

=

∫ ∞

0

f (x)x−2πin/ ln2
dx

x ln 2

=
1

ln 2

∫ ∞

0

�
1− (1+ x)e−x

�
x−2πin/ ln2−2 dx

=
1

ln 2(2πin/ ln 2+ 1)

∫ ∞

0

xe−x x−2πin/ ln2−1 dx

=
Γ(1− 2πin/ ln 2)

ln 2+ 2πin
.

Since these Fourier coefficients are non-zero, we see that ψ is a non-constant continuous function

on (0,∞) with multiplicative period 2. Let a > 0 be any point that is a global maximum of ψ,

let b ∈ (a, 2a) be a point that is not, and let I j := [2− j−1 b, 2− j b]. Then ψ attains its global

maximum at the interior point 2− ja in I j , and since ϕ(p) −ψ(p) = O(2− j) for p ∈ I j , it follows

that if j is large enough, then ϕ(2− ja) > max(ϕ(2− j−1 b),ϕ(2− j b)). Hence, if the maximum of ϕ

on I j is attained at p̃ j ∈ I j (choosing the largest maximum point if it is not unique), then, at least

for large j, p̃ j is in the interior of I j , so p̃ j is a local maximum point of ϕ. Further, as j → ∞,

ϕ(p̃ j)→maxψ > bψ(0) = 1/ ln 2 while λ := ED =
∑

i qiλi =
∑∞

1 2−i = 1, so ϕ(p̃ j) > λ for large j.

Moreover, p̃ j/2 ∈ I j+1, and since (4.21) implies

ϕ(p/2) =

∞∑

i=1

f (2i−1p) =

∞∑

i=0

f (2i p)> ϕ(p), p > 0, (4.23)

thus ϕ(p̃ j)< ϕ(p̃ j/2)≤ ϕ(p̃ j+1). It follows that if p ∈ Ii for some i < j, then ϕ(p)≤ ϕ(p̃i)< ϕ(p̃ j).

Consequently, for large j at least, p̃ j is a bad local maximum point, and thus there is a phase

transition at π j := λ/ϕ(p̃ j) ∈ (0,1). This shows that there is an infinite sequence of (first-order)

phase transitions.

Further, in this example ϕ is bounded (with supϕ = maxψ), and thus π
c
> 0. Since, by (4.23),

supϕ is not attained, this is an example where the phase transition at π
c

is continuous and not first-

order; simple calculations show that as πց π
c
, bp(π) = Θ(π−π

c
) and h1(bp(π)) = Θ((π−πc

)2).

Because of the exponential decrease of |Γ(z)| on the imaginary axis, | bψ(n)| is very small for n 6= 0;

we have | bψ(±1)| ≈ 0.78 ·10−6 and the others much smaller, so ψ(x) deviates from its mean bψ(0) =
1/ ln 2 ≈ 1.44 by less than 1.6 · 10−6. The oscillations of ψ and ϕ are thus very small and hard

to observe numerically or graphically unless a large precision is used. (Taking e.g. λi = 10i yields

larger oscillations.)

Note also that in this example, ϕ is not continuous at p = 0; ϕ(p) is bounded but does not converge

as pց 0. Thus h is not analytic at p = 0.
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Example 4.14. Taking λi = 2i as in Example 4.13 but modifying qi to 2(ǫ−2)i for some small ǫ > 0,

similar calculations show that pǫϕ(p) = ψǫ(p) + O(p) for a non-constant function ψǫ with multi-

plicative period 2, and it follows again that, at least if ǫ is small enough, there is an infinite number

of phase transitions. In this case, ϕ(p)→∞ as p→ 0, so π
c
= 0.

Since ϕ is analytic on (0,1], if there is an infinite number of bad critical points, then we may

order them (and 1, if ϕ′(1) ≤ 0 and ϕ(1) = λ) in a decreasing sequence p̃1 > p̃2 > . . . , with

p̃ j → 0. It follows from the definition of bad critical points that then ϕ(p̃1) < ϕ(p̃2) < . . . , and

sup0<p≤1ϕ(p) = sup j ϕ(p̃ j) = lim j→∞ϕ(p̃ j). Consequently, if there is an infinite number of phase

transitions, they occur at {π j}∞1 ∪ {πc
} for some decreasing sequence π j ց πc

≥ 0.

Example 4.15. We can modify 4.13 and 4.14 and consider random graphs where all vertex degrees

di are powers of 2; thus D has support on {2i}. If we choose p2i ∼ 2−2i or p2i ∼ 2(ǫ−2)i suitably,

the existence of infinitely many phase transitions follows by calculations similar to the ones above.

(But the details are a little more complicated, so we omit them.) A similar example concentrated on

{10i} is shown in Figure 2.

Example 4.16. We may modify Example 4.13 by conditioning D on D ≤ M for some large M .

If we denote the corresponding h and ϕ by hM and ϕM , it is easily seen that hM → h unformly

on [0,1] as M → ∞, and thus ϕM → ϕ uniformly on every interval [δ, 1]. It follows that if we

consider N bad local maximum points of ϕ, then there are N corresponding bad local maximum

points of ϕM for large M , and thus at least N phase transitions. This shows that we can have any

finite number of phase transitions with degree sequences (d
(n)

i
)n1 where the degrees are uniformly

bounded. (Example 4.17 shows that we cannot have infinitely many phase transitions in this case.)

Example 4.17. In Examples 4.13 and 4.14 with infinitely many phase transitions, we have ED2 =∑
i qi(λ

2
i + λi) = ∞. This is not a coincidence; in fact, we can show that: If ED2 < ∞, then the

k-core has only finite number of phase transitions.

This is trivial for k = 2, when there never is more than one phase transition. Thus, assume k ≥ 3. If

k = 3, then, cf. (4.4),

ϕ(p) = h(p)/p2 =
∑

l≥3

l pl

�
p− p(1− p)l−1 − (l − 1)p2(1− p)l−2

�
p−2

=
∑

l≥3

l pl

�1− (1− p)l−1

p
− (l − 1)(1− p)l−2

�
.

Each term in the sum is non-negative and bounded by l pl

�
1−(1−p)l−1

�
/p ≤ l pl(l−1), and as p→ 0

it converges to l pl(l − 1− (l − 1)) = 0. Hence, by dominated convergence, using the assumption∑
pl l(l − 1) = ED(D − 1) < ∞, we have ϕ(p) → 0 as p → 0. For k > 3, h(p) is smaller than for

k = 3 (or possibly the same), so we have the same conclusion. Consequently, ϕ is continuous on

[0,1] and has a global maximum point p0 in (0,1]. Every bad critical point has to belong to [p0, 1].

Since ϕ is analytic on [p0, 1], it has only a finite number of critical points there (except in the trivial

case ϕ(p) = 0), and thus there is only a finite number of phase transitions.

Example 4.18. We give an example of a continuous (not first-order) phase transition, letting D be

a mixture as in Example 4.13 with two components and carefully chosen weights q1 and q2.

Let f be as in Example 4.13 and note that f ′(x) ∼ 1/2 as x → 0 and f ′(x) ∼ −x−2 as x → ∞.

Hence, for some a,A ∈ (0,∞), 1

4
< f ′(x) < 1 for 0 < x ≤ 4a and 1

2
x−2 ≤ − f ′(x) ≤ 2x−2 for

112



x ≥ A. Let f1(x) := f (Ax) and f2(x) := f (ax). Then, f ′1(x) < 0 for x ≥ 1. Further, if g(x) :=

f ′2(x)/| f ′1(x)|= (a/A) f ′(ax)/| f ′(Ax)|, then

g(1) =
a f ′(a)

A| f ′(A)| <
a

A · A−2/2
= 2aA,

g(4) =
a f ′(4a)

A| f ′(4A)| >
a/4

A · 2(4A)−2
= 2aA,

and thus g(1) < g(4). Further, if x ≥ A/a, then f ′2(x) < 0 and thus g(x) < 0. Consequently,

supx≥1 g(x) = max1≤x≤A/a g(x) < ∞, and if x0 is the point where the latter maximum is attained

(choosing the largest value if the maximum is attained at several points), then 1 < x0 < ∞ and

g(x)< g(x0) for x > x0. Let β := g(x0) and

ψ(x) := β f1(x) + f2(x) = β f (Ax) + f (ax). (4.24)

Then ψ′(x)≤ 0 for x ≥ 1, ψ′(x0) = 0 and ψ′(x0)< 0 for x > x0.

Let b be large, to be chosen later, and let D be as in Example 4.13 with q1 := βa2/(βa2 + A2),

q2 := 1− q1, λ1 := bA, λ2 := ba. Then, by (4.20),

ϕ(p) = q1(bA)2 f (bAp) + q2(ba)2 f (bap) =
b2a2A2

βa2+ A2
ψ(bp). (4.25)

Hence, ϕ′(x0/b) = 0, ϕ′(x) ≤ 0 for x ≥ 1/b and ϕ′(x) < 0 for x > x0/b. Consequently, x0/b

is a critical point but not a local maximum point. Furthermore, ϕ(x0/b) = q1 b2A2 f (Ax0) +

q2 b2a2 f (ax0) and λ := ED = q1λ1 + q2λ2 = b(q1A+ q2a); hence, if b is large enough, then

ϕ(x0/b) > λ. We choose b such that this holds and b > x0; then p̃ := x0/b is a bad critical point

which is an inflection point and not a local maximum point. Hence there is a continuous phase

transition at π̃ := λ/ϕ(p̃) ∈ (π
c
, 1).

We have ϕ′(p̃) = ϕ′′(p̃) = 0; we claim that, at least if A is chosen large enough, then ϕ′′′(p̃) 6= 0.

This implies that, for some c1, c2, c3 > 0, ϕ(p)−ϕ(p̃) ∼ −c1(p− p̃)3 as p→ p̃, and bp(π)− bp(π̃) ∼
c2(π− π̃)1/3 and h1(bp(π))−h1(bp(π̃))∼ c3(π− π̃)1/3 as π→ π̃, so the critical exponent at π̃ is 1/3.

To verify the claim, note that if also ϕ′′′(p̃) = 0, then by (4.25) and (4.24), ψ′(x0) = ψ
′′(x0) =

ψ′′′(x0) = 0„ and thus

βAj f ( j)(Ax0) + a j f ( j)(ax0) = 0, j = 1,2,3. (4.26)

Let x1 := Ax0 and x2 := ax0. Then x1 ≥ A, and f ′(x2) > 0 so x2 ≤ C for some C . Further, (4.26)

yields

x2 f ′′(x2)

f ′(x2)
=

x1 f ′′(x1)

f ′(x1)
and

x2
2 f ′′′(x2)

f ′(x2)
=

x2
1 f ′′′(x1)

f ′(x1)
. (4.27)

Recall that x1 and x2 depend on our choices of a and A, and that we always can decrease a and

increase A. Keep a fixed and let A→ ∞ (along some sequence). Then x1 → ∞ but x2 = O(1), so

by selecting a subsequence we may assume x2 → y ≥ 0. As x →∞, f ′(x) ∼ −x−2, f ′′(x) ∼ 2x−3,

and f ′′′(x) ∼ −6x−4. Hence, if (4.27) holds for all large A (or just a sequence A→∞), we obtain

by taking the limit

y f ′′(y)

f ′(y)
= lim

x→∞

x f ′′(x)

f ′(x)
=−2 and

y2 f ′′′(y)

f ′(y)
= lim

x→∞

x2 f ′′′(x)

f ′(x)
= 6.

113



Finally, let F(x) := x f (x) = 1− (1+ x)e−x . Then F ′′(y) = y f ′′(y) + 2 f ′(y) = 0 and F ′′′(y) =
y f ′′′(y) + 3 f ′′(y) = 6y−1 f ′(y) − 6y−1 f ′(y) = 0. On the other hand, F ′(x) = xe−x , F ′′(x) =
(1− x)e−x , F ′′′(x) = (x −2)e−x , so there is no solution to F ′′(y) = yF ′′′(y) = 0. This contradiction

finally proves that ϕ′′′(p̃) 6= 0, at least for large A.

5 Bootstrap percolation in random regular graphs

Bootstrap percolation on a graph G is a process that can be regarded as a model for the spread of an

infection. We start by infecting a subset A0 of the vertices; typically we let A0 be a random subset

of the vertex set V (G) such that each vertex is infected with some given probability q, independently

of all other vertices, but other choices are possible, including a deterministic choice ofA0. Then, for

some given threshold ℓ ∈ N, every uninfected vertex that has at least ℓ infected neighbours becomes

infected. (Infected vertices stay infected; they never recover.) This is repeated until there are no

further infections. We letA f =A (ℓ)f
be the final set of infected vertices. (This is perhaps not a good

model for infectious diseases, but may be reasonable as a model for the spread of rumors or beliefs:

you are skeptical the first time you hear something but get convinced the ℓth time.)

Bootstrap percolation is more or less the opposite to taking the k-core. For regular graphs, there

is an exact correspondence: it is easily seen that if the common vertex degree in G is d, then

the set V (G) \ A (ℓ)
f

of finally uninfected vertices equals the (d + 1 − ℓ)-core of the set V (G) \
A0 of initially uninfected vertices. Furthermore, if the initial infection is random, with vertices

infected independently with a common probability q, then the initial infection can be seen as a site

percolation, where each vertex remains uninfected with probability π= 1− q. Consequently, in this

case we obtain results on the size of the final uninfected set from Theorem 4.5, taking k = d − ℓ+1

and π= 1− q.

Bootstrap percolation on the random regular graph G(n, d) with fixed vertex degree d was studied

by Balogh and Pittel [1]. We can recover a large part of their results from Theorem 4.5. We have,

as just said, k = d − ℓ+ 1 and π = 1− q. Moreover, all degrees d
(n)

i
= d; hence the definitions in

Section 2 yield n j = nδ jd , p j = δ jd , D̂n = d, D = d and λ = ED = d. Condition 2.1 is satisfied

trivially. Furthermore, (4.2) and (4.3) yield, since Dp ∼ Bi(d, p),

h(p) =

d∑

j=k

j bd j(p) =

d∑

j=k

j

�
d

j

�
p j(1− p)d− j =

d∑

j=k

dp

�
d − 1

j − 1

�
p j−1(1− p)d− j

= dpP
�
Bi(d − 1, p)≥ k− 1

�
= dpP

�
Bi(d − 1, p)≥ d − ℓ

�

= dpP
�
Bi(d − 1,1− p)≤ ℓ− 1

�

and

h1(p) = P
�
Bi(d, p)≥ k

�
= P
�
Bi(d, p)≥ d − ℓ+ 1

�
= P
�
Bi(d, 1− p)≤ ℓ− 1

�
.

Consequently, (4.9) yields

π
c

:= inf
0<p≤1

dp2

h(p)
= inf

0<p≤1

p

P
�
Bi(d − 1,1− p)≤ ℓ− 1

� .
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We define q
c

:= 1−π
c
, and Theorem 4.5 translates as follows. (Recall that we have proven Theo-

rem 4.5 for the random multigraph G∗(n, d), but as said in the introduction, the result holds for the

simple random graph G(n, d) by a standard conditioning.)

Theorem 5.1 ([1]). Let d, ℓ and q ∈ [0,1] be given with 1≤ ℓ≤ d−1. Consider bootstrap percolation

on the random d-regular graph G(n, d), with threshold ℓ and vertices initially infected randomly with

probability q, independently of each other. Let

q
c
= q(ℓ)

c
:= 1− inf

0<p≤1

p

P
�
Bi(d − 1,1− p)≤ ℓ− 1

� . (5.1)

(i) If q > q
c
, then |A f |= n− op(n). Furthermore, if l ≤ d−2 then w.h.p. |A f |= n, i.e., all vertices

eventually become infected.

(ii) If q < q
c
, then w.h.p. a positive proportion of the vertices remain uninfected, More precisely, if

bp = bp(q) is the largest p ≤ 1 such that P
�
Bi(d − 1,1− p)≤ ℓ− 1

�
/p = (1− q)−1, then

|A f |/n
p−→ 1− (1− q)P

�
Bi(d, 1− bp)≤ ℓ− 1

�
< 1.

Proof. It remains only to show that in case (ii), bp is not a local maximum point of ϕ̄(p) :=

h(p)/(dp2) = P
�
Bi(d − 1,1− p) ≤ ℓ− 1

�
/p. (In the notation of Section 4, ϕ̄(p) = ϕ(p)/λ.) In

fact, some simple calculus shows, see [1, §3.2, where R(y) = ϕ̄(y)−1] for details, that the function

ϕ̄ is unimodal when ℓ < d−1 and decreasing when ℓ= d−1; thus there is no local maximum point

when ℓ = d − 1, and otherwise the only local maximum point is the global maximum point p0 with

ϕ̄(p0) = π
−1
c
= (1− q

c
)−1. (It follows also [1] that the equation ϕ̄(p) = (1− q)−1 in (ii) has exactly

two roots for every q < q
c

when ℓ < d − 1 and one when ℓ= d − 1.)

Remark 5.2. The case ℓ= 1 (k = d) is rather trivial; in this case,A f is the union of all components

of G(n, d) that contain at least one initially infected vertex. If further d ≥ 3, then G(n, d) is w.h.p.

connected, and thus any non-emptyA0 w.h.p. yields |A f |= n. (The case d = 2 is different but also

simple: G(n, 2) consists of disjoint cycles, and only a few small cycles will remain uninfected.)

Actually, Balogh and Pittel [1] study primarily the case when the initially infected set A0 is deter-

ministic; they then derive the result above for a random A0 by conditioning on A0. Thus, assume

now that A0 is given, with |A0| = m. (For G(n, d), because of the symmetry, it does not matter

whether we remove a specified set of m vertices or a uniformly distributed random set with m ver-

tices.) Assuming m ∼ nq, we have the same results in this case, see Remark 1.1; indeed, the proof

is slightly simpler since the use of the law of large numbers in Subsection 2.1 is replaced by the

obvious ñd = n−m, ñ1 = n+ = dm.

Theorem 5.3. Theorem 5.1 remains valid if the initially infected set is any given set with m = m(n)

vertices, where m/n→ q.

Remark 5.4. As in Remark 4.8, it is also possible to study the threshold in greater detail by allowing

q to depend on n. If we assume ℓ ≤ d − 2 (i.e., k ≥ 3) and q = q(n) → q
c

defined by (5.1), then

Janson and Luczak [11], Theorem 3.5 applies and implies the following, also proved by Balogh and

Pittel [1] by different methods.
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Theorem 5.5 ([1]). Consider bootstrap percolation on G(n, d) with ℓ≤ d−2, and assume that the set

A0 of initially infected vertices either is deterministic with |A0| = q(n)n or random, with each vertex

infected with probability q(n).

(i) If q(n)− q
c
≫ n−1/2, then w.h.p. |A f |= n, i.e., all vertices become infected.

(ii) If q
c
− q(n)≫ n−1/2, then w.h.p. |A f |< n and, moreover,

|A f |= h1

�
bp(q(n))

�
n+Op

�
n1/2|q(n)− q

c
|−1/2�.

Janson and Luczak [11], Theorem 3.5 is stated for random multigraphs, and for G∗(n, d) it yields

further an asymptotic normal distribution in case (ii), as well as a precise result for P(|A f | = n) in

the transition window q(n)− q
c
= O(n−1/2). The latter result can easily be transformed into the

following analogue of [11, Theorem 1.4]; the asymptotic variance σ2 is given by explicit but rather

complicated formulas in [11].

Theorem 5.6. Assume ℓ≤ d−2. Infect (from the outside) the vertices in G∗(n, d) one by one in random

order, letting the infection spread as above to every vertex having at least ℓ infected neighbours, and let

M be the number of externally infected vertices required to make |A f | = n. Then (M − nq
c
)/n1/2 d−→

N(0,σ2), with σ2 > 0.

Presumably, the same results hold for G(n, d), but technical difficulties have so far prevented a proof,

cf. [11]. In any case, it follows from Theorem 5.6 that the size of the transition window is O(n−1/2)

for G(n, d) too, and not smaller.

A The k-core and branching processes

We give a precise statement of the relation between Theorem 4.1 and branching processes. This

can be seen heuristically from the branching process approximation of the local exploration process,

but as said above, we do not attempt to make this approximation rigorous; instead we compare the

quantities in Theorem 4.1 with branching process probabilities.

Theorem A.1. LetX be a Galton–Watson branching process with offspring distribution D∗ and starting

with one individual o, and let X be the modified branching process where the root o has offspring

distribution D but everyone else has offspring distribution D∗. We regard these branching processes as

(possibly infinite) trees with root o. Further, let Tk be the infinite rooted tree where each node has k−1

children, and let T k be the infinite rooted k-regular tree where the root has k children and everyone

else k− 1.

Then bp = P(X ⊇ Tk), the probability that X contains a rooted copy of Tk (i.e., a copy of Tk with root

o) and h1(bp) = P(X ⊇ T k), the probability that X contains a rooted copy of T k.

Hence, by Theorem 4.1, the probability that a random vertex belongs to the k-core, which is

E(v(Core∗
k
)/n), converges to the probability P(X ⊇ T k), the probability that the branching pro-

cess approximating the local structure at a random vertex contains the infinite k-regular tree T k.

Similarly, the probability that a random edge belongs to the Core∗
k
, which is ∼ E(e(Core∗

k
)/(nλ/2)),

converges to h(bp)/λ = bp2 = P(X ⊇ Tk)
2, which can be interpreted as the probability that both

endpoints of a random edge grow infinite k-regular trees in the branching process approximation.
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Proof. Let Tkn be the subtree of Tk consisting of all nodes of height ≤ n, i.e., the rooted tree of

height n where each node of height < n has k − 1 children, and let qn be the probability that X
contains a copy of Tkn. Thus, q0 = 1, and for n ≥ 0, qn+1 is the probability that the root o has at

least k − 1 children that each is the root of a copy of Tkn in the corresponding subtree of X ; let

us call such children good. By the branching property, the subtrees rooted at the children of o are

independent copies of X : thus the probability that a given child is good is qn, and the number of

good children of o has the tinned distribution D∗qn
. Hence,

qn+1 = P(D
∗
qn
≥ k− 1) =

∞∑

d=k

P(D∗ = d − 1)

∞∑

l=k

P
�
Bi(d − 1,qn) = l − 1

�

=
∑

d≥k

∑

l≥k

d

λ
P(D = d)

l

dqn

P
�
Bi(d,qn) = l

�

=
1

λqn

∑

l≥k

l P(Dqn
= l) =

1

λqn

h(qn).

Since x 7→ h(x)/(λx) is increasing (e.g. by the same calculation) and 1 = q0 ≥ q1 ≥ . . . , it follows

that qn decreases to the largest root bp of 1

λq
h(q) = q in [0,1]. On the other hand, the events

En := {X ⊇ Tkn} are decreasing, E1 ⊇ E2 ⊇ · · · , and
⋂

n En is, by a compactness argument, equal to

the event {X ⊇ Tk}. Hence, P(X ⊇ Tk) = limn qn = bp.

Similarly, X contains a rooted copy of T k if and only if the root o has at least k good (now with

n =∞) children. We have shown that each child is good with probability bp, and thus the number

of good children has the thinned distribution Dbp; hence P(X ⊇ T k) = P(Dbp ≥ k) = h1(bp).

Remark A.2. When k = 2, T2 is just an infinite path, and thus bp = P(X ⊇ T2) is just the survival

probability ρ of the branching process X , as observed algebraically in Remark 4.4. Hence the

thresholds for 2-core and giant component coincide, for any of our percolation models. Moreover,

we see that if v is a random vertex, the events “v is in a giant component” and “v is in the 2-core”

are approximated by “the root o in X has at least one child with infinite progeny” and “the root

o in X has at least two children with infinite progeny”, respectively, which again shows the close

connection between these properties.
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