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Abstract

We consider the Dirichlet form given by

1 d 0 0
8.1) = EJR > a0 T gi’;)dx
dq,j=1 i

+ J (F) = F(x))*I(x, y)dxdy.
RY xRE

Under the assumption that the {a;;} are symmetric and uniformly elliptic and with suitable
conditions on J, the nonlocal part, we obtain upper and lower bounds on the heat kernel of the
Dirichlet form. We also prove a Harnack inequality and a regularity theorem for functions that
are harmonic with respect to &.
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1 Introduction
The main aim of this article is prove a Harnack inequality and a regularity estimate for harmonic

functions with respect to some Dirichlet forms with non-local part. More precisely, we are going to
consider the following Dirichlet form

1 d 2f(x) 0
8(.f) = Ef > a0 2Ty,
RY j j=1 L

ax]'

+ f (F(y) = FG))2I(x, y)dxdy, 1.1
R4 JRA

where a;; : RY - R and J : R? x R? — R satisfy some suitable assumptions; see Assumptions
2.1/ and 2.2| below. The domain & of the Dirichlet form & is defined as the closure with respect
to the metric 6"11 /2 of C1-functions on RY with compact support, where &; is given by: & (f,f) :=

E(f, )+ [0 f(x)dx.

The local part of the above form corresponds to the following elliptic operator

—i;axl_ ()5 (1.2)

which was studied in the papers of E.DeGiorgi[Gio57], J.Nash[Nas58] and J.Moser[Mos61; Mos64]
as well as in many others. They showed that under the assumptions that the matrix a(x) = (a;;(x))
is symmetric and uniformly elliptic, harmonic functions with respect to ¥ behave much like those
with respect to the usual Laplacian operator. This holds true even though the coefficients a;; are
assumed to be measurable only. The above Dirichlet form given by (1.1) has a probabilistic interpre-
tation in that it represents a discontinuous process with the local part representing the continuous
part of the process while the non-local part represents the jumps of the process. We call J(x, y) the

jump kernel of the Dirichlet form. It represents the intensity of jumps from x to y.

In a way, this paper can be considered as the analogue of our earlier paper [Foo] where the following
operator was considered:

g %f(x) <& 9f (x)
gf(x) = Ei’jzzlaij(X)axiaxj+;bi(X) axi

+ f [f(x + h) - f(.X') - 1(|h|§1)h . Vf(x)]n(x, h)dh (1.3)
R4\ {0}

In that paper, a Harnack inequality as well as a regularity theorem were proved. The methods
employed were probabilistic and there we related the above operator to a process via the martingale
problem of Stroock and Varadhan, whereas here the probabilistic interpretation is given via the
theory described in [FOT94].

The study of elliptic operators has a long history. E. DeGiorgi[Gio57], J. Nash[Nas58] and J.
Moser[Mos61], among others, made significant contributions to the understanding of elliptic op-
erators in divergence form. In [KS79] Krylov and Safonov gave a probabilistic proof of the Harnack
inequality as well as a regularity estimate for elliptic operators in non-divergence form.
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While there has been a lot of research concerning differential operators, not much has been done
for non-local operators. It is only recently that Bass and Levin [BLO2] proved a Harnack inequality
and a continuity estimate for harmonic functions with respect to some non-local operators. More
precisely, they considered the following operator
n(x,h)
Lf(x)= f [ Gt ) = F G, (1.4)

R4\ {0}

where n(x,h) is a strictly positive bounded function satisfying n(x,h) = n(x, —h). Since then, non-
local operators have received considerable attention. For instance in [BKO5], Harnack inequalities
were established for variants of the above operator. Also, Chen and Kumagai [CKO3] established
some heat kernel estimates for stable-like processes in d-sets as well as a parabolic Harnack in-
equality for these processes and in [CKO8], the same authors established heat kernel estimates for
jump processes of mixed type in metric spaces. Non-local Dirichlet forms representing pure jump
processes have also been recently studied in [BBCK] where bounds for the heat kernel and Harnack
inequalities were established. A special case of the Dirichlet form given by (1.1) was studied by Kass-
mann in [Kas03] where a weak Harnack inequality was established. Related work on discontinuous
processes include [CS98], [CKSb], [CKSa], [SV0O5] and [RSV06].

At this point of the introduction it is pertinent to give some more details about the differences
between this paper and the results in some related papers.

e In [Kas03] a weak Harnack inequality was established and the jump kernel was similar to
the one defined in (1.4) but with index a € [1,2). There, the techniques used were purely
analytic while here the method used is more probabilistic. This allows us to prove the Harnack
inequality and continuity estimate for a much wider class of jump kernels.

e In [BBCK], a purely non-local Dirichlet form was considered. The jump kernel considered
there satisfies a lower and an upper bound. Here because of the presence of the local part, no
lower bound is required. The intuitive reason behind this is that since we have a uniformly
elliptic local part, the process can move even if there is no jump. This also agrees with the fact
that our results should hold when the jump kernel is identically zero.

e A parabolic Harnack inequality was also proved in [BBCK]. Their result holds on balls with
large radius R, while here we prove the Harnack inequality for small R only. Moreover, in
[BBCK] the authors considered processes with small jumps only. Here, our processes are
allowed to have big jumps.

e For our Harnack inequality to hold, we need assumption[2.2(c) below. This assumption is
modeled after the one introduced in [BKO5]. Thus with this assumption, our result covers the
case when the jump kernel J(x, y) satisfies

1 2
———— <J(x,y) < —————, where O0<a<f<2,
|x — y|dte |x — y|4+F

and the k;s are positive constants. Here, unlike in [BKO5], there is no restriction on f§ — a.

e In arecent preprint [CKK], Chen, Kim and Kumagai looked at truncated jump processes whose
kernel is given by the following

c(x,y)
J(x,y)= ml(leylsw’
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where a € (0,2), x is a positive constant and c(x, y) is bounded below and above by positive
constants. The results proved in that paper include sharp heat kernel estimates as well as a
parabolic Harnack inequality. The jump kernel studied here includes the ones they study, but
since the processes considered here include a continuous part, the results are different.

We now give a plan of our article. In Section 2, we give some preliminaries and state the main
results. We give upper and lower bounds for the heat kernel associated to the Dirichlet form in
Section 3. In Section 4, we prove some estimates which will be used in the proof of the regularity
theorem and the Harnack inequality. In Section 5, a proof of the regularity theorem is given. A proof
of the Harnack inequality is given in Section 6.

2 Statement of results

We begin this section with some notations and preliminaries. B(x, r) and B, (x) will both denote the
ball of radius r and center x. The letter ¢ with subscripts will denote positive finite constants whose
exact values are unimportant. The Lebesgue measure of a Borel set A will be denoted by |A]. We
consider the Dirichlet form defined by (1.1) and make the following assumptions:

Assumption 2.1. We assume that the matrix a(x) = (a;;(x)) is symmetric and uniformly elliptic. In
other words, there exists a positive constant A such that the following holds:

d
Ay < ) via(x)y; SAly2, Vx,yeRY
i,j=1

We also need the following assumption on the nonlocal part of the Dirichlet form.

Assumption 2.2.

(a) There exists a positive function J such that J(x, y)1(y—yj<1) < J(Ix = yD1(x—y|<1) for x,y € RY

Moreover,
J lx —yPJ(Jx —y)dy <K; and J J(x,y)dy <K,, VxeR?
Ix—yl<1 lx—y|>1
where K; and K, are positive constants.
(b) The function J(x,y) is symmetric, that is,
Jo,y)=J(y,x)  Vx,yeR’,

(c) Let xo, € RY be arbitrary and r € (0,1], then whenever x, y € B(x,,r/2) and 2z € B(x,, 1), we
have
J(x,2) < k.J(y,2),

with k, satisfying 1 < k, < kr~F, where k and f are constants.
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In probabilistic terms, J(x, y) can be thought as the intensity of jumps from x to y. Our method is
probabilistic, so we need to work with a process associated with our Dirichlet form. The following
lemma gives conditions for the existence of a process and its density function. We say that a Dirichlet
form & satisfies a Nash inequality if

2(1+2)

IFl, < c8V (F AIFIIY,

where f € & and c is a positive constant. For an account of various forms of Nash inequalites, see
[CKS87]. For a definition of regular Dirichlet form, the reader is referred to page 6 of [FOT94].

Lemma 2.3. Suppose that the Dirichlet form is regular and satisfies a Nash inequality, then there exists
a process X with a transition density function p(t, x, y) defined on (0, 00) x RI\A x RI\ A satisfying
P(t,x,dy) = p(t,x,y)dy, where P(t,x,dy) denotes the transition probability of the process X and
N is a set of capacity zero.

Proof. The existence of such a process follows from Theorem 7.2.1 of [FOT94] while the existence
of the probability density is a consequence of Theorem 3.25 of [CKS87]. O

For the rest of the paper, A4 will denote the set of capacity zero, as defined in the above Lemma. For
any Borel set A, let
T, =inf{t : X, € A}, T, =inf{t : X, ¢ A}

be the first hitting time and first exit time, respectively, of A. We say that the function u is harmonic
in a domain D if u(X,,.,) is a P*-martingale for each x € D. Since our process is a discontinuous
process, we define

Xt_:lSiTr?Xs, and AX, =X, —X,_.

Here are the main results:

Theorem 2.4. Suppose Assumptions 2.2(a) and 2.2(b) hold. Let Y denote the process associated
with the Dirichlet form defined by (1.1) but with jump kernel given by J(x, ¥)1(jx—y|<1) and null set,

A, Then there exists a constant ¢; > 0 depending only on A and the K;s such that for all x, y € R4\ A
and for all t € (0, 1], the transition density function pY¥ (t,x, y) satisfies

Y —%e~lxyl
p (f;x:}’)fclt 2e .

Theorem 2.5. Suppose Assumptions 2.1} 2.2(a) and 2.2(b) hold. Let p(t,x,y) denote the transition
density function of the process X. Then there exist positive constants ¢; and 6 such that

p(t,x,y)cht_g if lx —y|> < 6t, where x,yeRd\JV.

Theorem 2.6. Suppose Assumptions 2.2(a) and 2.2(b) hold. Let z, € R and R € (0, 1]. Suppose
u is a function which is bounded in RY and harmonic in B(zo,R) with respect to the Dirichlet form
(&,F). Then there exists a € (0,1) and C > 0 depending only on A and the K;s such that

Ix —y\“
Iu(x)—u(y)lscllulloo( 2 ) , X, Y € B(z9,R/2)\N .
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Theorem 2.7. Suppose Assumptions 2.1 and 2.2 hold. Let z, € R? and R € (0,1]. Suppose u is
nonnegative and bounded on R? and harmonic with respect to the Dirichlet form (&, %) on B(zy,R).
Then there exists C > 0 depending only on A, k, 8, R and the K;s but not on 2, u or ||ul|o, such that

u(x) < Cu(y), x,y €B(20,R/2)\N .

We mention that the main ideas used for the proof of the above theorem appear in [BLO2]. Note
that Assumption [2.2(c) is crucial for the Harnack inequality to hold. In fact, an example in the
same spirit as that in [Foo] can be constructed so that the Harnack inequality fails for a Dirichlet
form with a jump kernel not satisfying Assumption|2.2(c). We do not reproduce this example here
because the only difference is that here, we require the process to be symmetric while in [Foo], the
process is not assumed to be symmetric.

We make a few more comments about some of the assumptions in the above theorem. We require
that the local part is uniformly elliptic and as far as we know, our method does not allow us to relax
this condition. Moreover, as shown in [Kas], the nonnegativity assumption cannot be dropped. In
that paper, the author constructs an example (violating the nonnegativity assumption) which shows
that the Harnack inequality can fail for non-local operators.

3 Upper and lower bounds for the heat kernel

The main goal of this section is to prove some upper and lower bounds on the heat kernel. The upper
bound on the heat kernel estimate follows from a Nash inequality which is proved in Proposition|3.4|
For more information about the relation between Nash inequalities and heat kernel estimates, see
[CKS87]. As for the lower bound, we use Nash’s original ideas, see [Nas58]. Since we are dealing
with operators which are not local, we also need some ideas which first appeared in [BBCK]. The
paper [SS91] also contain some useful information on how to deal with local operators.

We start off this section by proving the regularity of the Dirichlet form (&, Z). Let H'(RY) denote
the Sobolev space of order (1,2) on RY. In other words, H'(R?) := {f € L3(RY) : Vf € L?(R9)}.

Proposition 3.1. Let (&, F) be defined by . Then,

F=H'R) ={f e L’(RY) : Vf € L2 (RD)}.

Proof. We assume that f is continuous with compact support, K € RY. Let us write

E(f,f)=&(f, )+ &(f. f)

where

1 2f(x) @
arf) = 3| Sas0f 0 Bas,
=1 i

&(f.f) = f (F() = f(x))*I(x, y)dxdy.
RIxR4
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From Assumption 2.1, we see that if Vf € L2(R?) then &.(f, f) < 1 ||V f ||§. As for the discontinuous
part, we have

gd(f:f)

IA

JJ (F() = F(x))2 (x, y)dxdy
(BR)XB(r)N(lx—y|<1)

+ H (F ) = FON2I(x, y)dxdy
(BR)*Br)NN(lx~y|>1)

+ 2 ” (f())?I(x, y)dxdy
B(R)*xB(r)
= I]_ + 12 + 13,

where B(r) and B(R) are balls with a common center but with radius r and R respectively, satisfying
K c B(r) € B(R) and R — r > 1. We consider the term I; first. Recall that from Assumption|2.2(a),
we have

L < JJ (f () = FGD2T(Ix = yDdxdy. 6.1
(BR)XB(r)n(lx—yI<1)
Since the measure J (Ih)1¢p<1ydh is a Lévy measure, we can use the Lévy Khintchine formula(see

(1.4.21) of [FOT94]) to estimate the characteristic function 1) of the corresponding process as
follows

Y = J (1 — cos(u - h)J (|h[) dh
(IrI<1)

= C1f |ul*|h[%T (Ih]) dh
(Inl<1)

= C2|U|2-

We now use a simple substitution, Plancherel’s theorem as well as the above inequality to obtain
L =< JJ (f (x + 1) = £ ()T (IR (py<1y dhdx
(202
< ¢ ) |f )"y (w)du

S G Jr | @Pluldu

(..
< “ | F@PQA+ luP)du = csIf 15+ IVFIS).

In the above f denotes the Fourier transform of f. A similar argument is used in the proof of
(1.4.24) in [FOT94]. As for the second term I,, we have

I, = 4ff If (I2T(x, y)dxdy
(lx=y|>1)
collf 113

A
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The third term I5 is bounded similarly, that is we have I3 < ¢;||f ||§. From the above, we see that
if fe{felLl*RY:VfelL* R} then &(f,f) < oo. Using uniform ellipticity, we can also
conclude that if &(f,f) < oo, then f € {f € L>(R?) : Vf € L?(RY)}. We now show that for any
u € H'(R?), there is a sequence {u,} ¢ C'(R?) such that u,, — u in the metric 5’11 /2. Denote by
H(l) (RD), the closure of Cgo(Rd) in HY(R?). Then from Proposition 1.1 on page 210 of [CW98], we
have H'(RY) = H}(R?). Therefore there exists a sequence of u, € C(R?) c C}(R?) such that
u, — u in H'(R?). From the calculations above, we have

E(u — tp, u—uy) < cgll V(= up)lI3 + collu — uyll. (3.2)

Letting n — oo, we thus have &(u — u,,u —u,) — 0. Thus u,, is & -convergent to u € &. This shows
that C'(R?) is dense in (&, H'(R?)), hence concluding the proof. O

Remark 3.2. In Chapter 7 of [FOT94], it is shown that for any regular Dirichlet form, there exists
a Hunt process whose Dirichlet form is the given regular one. More precisely, there exists 4 C RY
having zero capacity with respect to the Dirichlet form (&, %) and there exists a Hunt process (P*, X)
with state space RY\.4#. Moreover, the process is uniquely determined on 4°. In other words, if
there exist two Hunt processes for which the corresponding Dirichlet forms coincide, then there exist
a common proper exceptional set 4 so that the transition functions coincide on A¢.

Remark 3.3. We will repeatedly use the following construction due to Meyer([Mey75]); see also
[BBCK] and [BGK]. This will enable us to restrict our attention to the process with small jumps
only and then incorporate the big jumps later. Suppose that we have two jump kernels Jy(x,z) and
J(x,2) with Jy(x,2) < J(x,2) and such that for all x € RY,

N(x)= J (J(x,2) — Jy(x,2))dz <c,
Rd

where c is a constant.

Let & and &, be the Dirichlet forms corresponding to the kernels J(x, %) and Jy(x,z) respectively.
If X, is the process corresponding to the Dirichlet form &,, then we can construct a process X,
corresponding to the Dirichlet form & as follows. Let S; be an exponential random variable of

parameter 1 independent of X, let C, = fot N(X,)ds, and let U; be the first time that C, exceeds S.

At the time U, we introduce a jump from Xy, _ to y, where y is chosen at random according to the
following distribution:

J(Xy,-,2) —Jo()_(Ul—:Z)d

— z.
NXy,-)

This procedure is repeated using an independent exponential variable S,. And since N(x) is finite,
for any finite time interval we have introduced only a finite number of jumps. Using [Mey75], it
can be seen that the new process corresponds to the Dirchlet form &. And if A is the set of zero
capacity corresponding to the Dirichlet form &, then A C Aj.
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3.1 Upper bounds

Let Y* be the process associated with the following Dirichlet form:

» 1 d df(x)d
&, f) = EJ > a0 2 5,
RY {,j=1 Xi

an

+ JJ (f(y) = F ()T (x, y)dxdy, (3.3)
[x—y|<A

so that Y* has jumps of size less than A only. Let 4 (1) be the exceptional set corresponding to
the Dirichlet form defined by (3.3). Let PtY " be the semigroup associated with &Y". We will use the
arguments in [FOT94] and [CKS87] as indicated in the proof of Lemma |2.3|to obtain the existence
of the heat kernel pyl(t, x,y) as well as some upper bounds. For any v, € &, we can define

T v1(x)

D; (y)?

and provided that D, (1) < oo, we set

Ey(t,x,y) = sup{lyp(y) — ()l = tD ()% D, () < oo}

Proposition 3.4. There exists a constant c; such that the following holds.

%w -aVv + f () —v(¥)I(x, y)dy,
[x—y|<A

lle™¥Ta[e¥Tlloo V 12 T [ ™ Ml oo,

PV (t,x,y) < it 2exp[—E;(2t,x,y)], ¥ x,y eROA(A), and t € (0,00),

where pY"(t,x,y) is the transition density function for the process Y* associated with the Dirichlet
A
form &Y.

Proof. Similarly to Proposition we write

e =8 (F.F)+E (£, ),

Since J(x,y) > 0 for all x, y € R, we have

&, )= & (£, ). (3.4)

We have the following Nash inequality; see Section VII.2 of [Bas97]:

2(1+2) 2 d
IFIl, % <8 (F AN

This, together with (3.4) yields

2(1+2) y) d
IFIl, % <8 (F AIFNIYA.

Now applying Theorem 3.25 from [CKS87], we get the required result. O
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We now estimate E; (¢, x, y) to obtain our first main result.
Proof of Theorem 2.4. Let us write I’ as
Tv] =T v]+Tiv],

where 1
rolvl= EVV -aVv,

and

rifv]= J (v(x) = vy (x, y)dy.
[x—y|<A

Fix (xg,y0) € (Rd\ﬂ(l)) X (Rd\ﬂ(l)). Let u > O be constant to be chosen later. Choose
Y(x) € Z such that |y(x) — ()| < ulx — y| for all x, y € Re. We therefore have the following:

e—zwx)ri[ew](x)\ = e f (e¥0) — eV O)2(x, y)dy
lx—yl<a

J (V0¥ 1)1 (x, y)dy
[x—y|<A

IA

¢y f [ () = ()22 Dy (x, y)dy
[x—y|<A

IA

cluzez‘”f Ix — y|2J(x, y)dy
[x=y|<A

= au’K(Q)e?,

where K(A) = sup J |x — y|2J(x, y)dy. Some calculus together with the ellipticity condition
xeR? J|x—y|<a

yields:

1
e—wmr;[eﬂ(x)‘ = 2| HWY(Er) . av (V)

1
= 5 [V¥(x)-avy(x)]

IA

1 2
EAIIWJIIoo
2u2A.

IA

Combining the above we obtain

e—zw(x)rl[ew](x)’ < o, u2K (M) + 202N,

Since we have similar bounds for |ez‘p(x)l“l[e_w](x)

, we have

—E;(2t;x,y) < 2tD; ()2 —|yY(y) — (x|

2tp? (¢ K(M)e** +2A) — ’

ulx —y)-(xo — ¥o)
lxo — Yol ’

IA

(3.5)
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Taking x = x(, ¥ = Yo and u = A =1 in the above and using Proposition 3.4 together with the fact
that t < 1, we obtain

d
pY(t,x0,¥0) < Cot ™ 2e XoYol)

Since x, and y, were taken arbitrarily, we obtain the required result. O

The following is a consequence of Proposition|3.4 and an application of Meyer’s construction.

Proposition 3.5. Let r € (0,1]. Then for x € RI\ A,

1
P*(sup X, —x|>r)= o,

s<tor?
where ty is a small constant.
Proof. The proof is a follow up of that of the Theorem 2.4, so we refer the reader to some of the

notations there. Let A be a small positive constant to be chosen later. Let Y be the subprocess of

X having jumps of size less or equal to A. Let &Y and le(t, x,y) be the corresponding Dirichlet
form and probability density function respectively. According to Proposition 3.4, we have

p" (£, x,¥) < ¢t exp[—E,(2t, x, )] (3.6)

Taking x = xy and y = y, in (3.5) yields

— E;(2t; X0, ¥0) < 2tuA + 2cot uK(A)e?** — ulxo — yo 3.7)
Taking A small enough so that K(A) < %, the above reduces to
2
—E;(2t;X0,¥0) < 2tuPA+(t/23)(uA)’ e — ulxo — yol
< 2tpPA+(t/22)e — ulxg — yol-

Upon setting u = % log (#) and choosing t such that t'/2 < A2, we obtain

t 1 |x—yol 1
~Ex(26%0,50) < cat!/(logt) + 5577 — BN log(tl/z)
< c3t'/?(logt)® + 1+ log[¢l*o=Y0l/62],

Applying the above to (3.6) and simplifying
le(t’XO,yO) < C4ec3t1/2(10gt)2t|x0—y0|/6lt—d/2

cqecst 208 ) ¢lxo—yol/122-d/2 ¢Ixo=ol/122

1/2 2 Ixo—yol
_ C4ec3t 2(log t) ¢lxo=yol/122~d/2 , =357 logt
For small ¢, the above reduces to

le(t, Xo, Yo) < cgtPo=Y0l/12A=d/2—celxo=Yol /122 (3.8)
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Let us choose A = ¢,r/d with ¢; < 1/24 so that for |x, — yo| > /2, we have |xq — yo|/12A —d /2 >
d/2. Since t is small(less than one), we obtain

IA

]P;xo(|Yt7t _ Xo| > T'/Z) J CStlxo—yl/IZA—d/Ze—c3|x0—y|/127tdy
lxo—y|>r/2

< Cstd/Zf e—cglxo—yl/IZAdy.
[xo=y|>r/2

We bound the integral on the right hand side to obtain
PXo(|Y} — x| > r/2) < ¢ t4/2e s,

Therefore there exists t; > 0 small enough such that for 0 <t < t;, we have
X A 1
PY(|Y — x| > 1/2) < 3
We now apply Lemma 3.8 of [BBCK] to obtain

P*(sup |V} — Y > 1) < Vse(0,t,]. (3.9)

1
Sftl 4

We can now use Meyer’s argument(Remark[3.3) to recover the process X from Y”*. Recall that in
our case Jo(x, ) = J(x, y)1(jx—y|<x) SO that after using Assumptions|2.2(a) and choosing c; smaller
if necessary, we obtain

supN(x) < c9r_2,
pe

where cq depends on the K;s and
N(x)= f (J (x,2) = Jo(x,2))dz.
R4

Set t, = tor? with t, small enough so that t, < t;. Recall that U; is the first time at which we
introduce the big jump. We thus have

P*(sup [X; —xol = 1) < P*(sup|X; — x| =1, Uy > tp) +PO(sup |X; — xo| > 1,Up < t5)
SSLLZ Sftz Sstz

< Po(sup Y, — x| > 1)+ P*(U; < tp)
s<ty
1
= 41— (upN)t
= —41—e %',
4

By choosing t, smaller if necessary, we get the desired result. O

Remark 3.6. It can be shown that the process Y* is conservative. This fact has been used above through
Lemma 3.8 of [BBCK].
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3.2 Lower bounds

The main aim of this subsection is to prove Theorem[2.5] We are going to use Nash’s original ideas
as used in [BBCK], [CKK] and [SS91]. Let x, € RY and R > 0. Set

|x — x|

= )*)? for all x eRY, (3.10)

Pr(x) =((1 -

and recall that

1 d df(x)og(x
&(f,g) = EfRd i,jZ:1aij(X) gii) agij)dx
+ JRd Rd(f(y) —f))(8(y) = g(x))J(x, y)dxdy, (3.11)
for f,g € &. We begin with the following technical result.
Proposition 3.7. (a) There exists a positive constant c; such that w <q t71742 for all

t>0,
(b) Fix yo € RI\AN and e > 0. If F(t) = f ¢r(x)logp.(t,x,yy)dx, then

Pr() )

_ 3.12
pe(t’ ")’0) ( )

F'(t)=-¢& (p(t, »Y0)s
where p.(t,x,y) :=p(t,x,y)+e.

Proof. The proof of the first part of the proposition is omitted because it is similar to the proof of
Lemma 4.1 of [BBCK]. We now give a proof of the second part. We first need to argue that the right
hand side of (3.12) makes sense. The second step is to show the equality (3.12).

Step 1: By Proposition [3.1] it suffices to show that 0 o L2(R?) and V (¢R—()) e LA(RY).
o) pe(t,,¥0) pe(t,,y0)
e

Sy € L2(RY) follows from the definition of ¢x(-) and the fact that p,(t, x, y) is strictly positive.
By Lemma 1.3.3 of [FOT94], we have that p(t,-, y,) € &. Using some calculus, we can write
v ( ¢r() ) _ Pe(t, Y0)VPR() — dr(IVPL(t, -, Yo)
pe(t: ':yO) (pe(t,':yO))Z .

The above display together with the fact that p(t,-,y,) € & and the positivity of p.(t,x,y) show
that V (¢R—”) e L2(RY).

Pe(t,,¥0)
Step 2: We write (f, g) for ff(x)g(x)dx. By Lemma 1.3.4 of [FOT94], we have
20 1 Pr()
—-& (p(t,',yo),m) lln’(l) ( (t‘l‘h, ,}’o) P(t, ,}/0) pe(t: ',J’o))
~ 1 ¢r()
= hm 2R (pe(t +h, ,J’o) pE(t> :yO) e(t)'yyo))

= lim - quR() Pelt X, %o) 1)dx.
pe(t X, Yo)
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Taking into consideration the upper and lower bounds on p.(t, x, y), we see that the right hand side
of the above is well defined. We have

1
F/(£) = lim J (logpe(t +h,x, y0) ~ 10g pe(t, x, Y))pr(x)dx.
Set
Pe(t + h’x)y())

D(h) = [logpe(t +h3 X;.YO) - logpe(t) X,.YO) - (
p(t,x, o)

— D]¢r(x).
This gives
Pr(x)

pe(t +h:x’y0)pe(t:x:y0)'

Using the mean value theorem, D(h)/h = D’(h*) where h* = h*(x, yo,h) € (0,h). The bounds on
p(t,x,y) imply that D(h)/h tends to O for x € Bg(xy) as h — 0. An application of the dominated
convergence theorem then yields the desired result. O

3
D'(h)= Epe(t +h,x,¥0)(Pe(t, %, ¥0) = pe(t +h, x,¥0))

We will need the following Poincaré inequality. A proof can be found in [SS91].

Proposition 3.8. Consider the function defined by (3.10), there exists a constant c¢; not depending on
R, f and y,, such that

J |f(x)—7|2¢R(x)dxsc1R2J V£ ()12 pr(x)dx, f € CPRY). (3.13)
RA RA

where

f= f f(x)ch(x)dx/f%(x)dx.
Rd

Proof of Theorem 2.5.: Let R > 0 and take an arbritary e > 0. Fix z € R? such that z € Bx(0) and
define ¢pr(x) = ((1 — |x|/R)T)? for x € RY. Set

p(t,x,y) = p(t,x,y)+e,

u(t:x) = |BR(O)|p(tR27‘Z:x)>
u(t,x) = |Br(0)|p.(tR?z,x),
ue(t,x)

T

u®R) = J¢R(X)dx,

G(t) = M(R)_lj¢R(X)10gue(t,x)dx.

Using part(b) of Proposition (3.7, we then have

u(R)G.(t) = —Rzg(u(t,-),f?t('?))
e ) 0 29
= —R*I, +1), (3.14)
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where & and &7 are the local and non-local parts of the Dirichlet form & respectively. Let us look
at I, first. By considering the local part of (3.11) and doing some algebra, we obtain

J [u(t, y) —u(t, x)]

I —
2 uc(t, uc(t, y)

[ue(t, x)pr(y) —uc(t, y)pr(x)]J (x, y )dxdy

= JJ [u;(et(,:/))c)—uzl(et(’t},,J)C)] [uc(t, x)pr(y) —uc(t, y)pr(x)1J (x, y)dxdy.

Note that for A > 0, the following inequality holds
1
A+;\ — 2> (logA)>. (3.15)

We now set a = u.(t,y)/u.(t,x) and b = ¢px(y)/Ppr(x) and observe that

[ue(tJ .y) - ue(tz X)]
ue(t, xJuc(t,y)

[ue(t, x)pr(y) — uc(t, y)pr(x)]

= ()b Z —a+1]
1/2

= ¢r()[(1—b'?)? - bl/z( + = 2)].

bl /2
Applying inequality (3.15) with A= a/+/b to the above equality, we obtain

re(t,y)
re(t,x)

See Proposition 4.9 of [BBCK] where a similar argument is used. We also have

f [($r(x)2 = dr(¥)2)? = (dR(x) A dr(¥)) (1 g8~ ) 17 (x, y)dxdy.

f f [($r00) A $r(yN0g(re(t, ¥)/re(t, 02T (x, y)dxdy ] = 0

Assumption (2.2)(a) and the definition of ¢z(x) give the following
j (pr(x)"* = r(¥)/*)? (x, y)dxdy < c3|Bg(0)|/R>.

Hence we have I, < c3|Bg(0)|/R2. As for the continuous part I;, we use some calculus to obtain

I = JVue(t,x)-aV (uq:éﬁ()))dx

= f Vilogu(t,x) - aVogr(x)dx — j Vlogu(t,x) -aVlogu.(t,x)pr(x)dx. (3.16)
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Using the ellipticity condition, we obtain the following
Vr(x)

Vr(x)
LR a(y/pr(x)V logu(t, x) — —2B22 ) dx
Jbr(x) § NENES)

.
= ) Vor(x)-aVor(x)pr(x)tdx — ZJ Vilogu.(t,x)-aVgr(x)dx

.
0 < J(\/¢R(X)Vlogue(t,x)—

-
+ ) ¢r(xx)Viogu, (t,x)-aViogu,(t,x)dx.
Rearranging the above and using the ellipticity condition again, we obtain

J Vlogu,(t,x) - aVer(x)dx < c4|BR(0)R™> + CSJ |V logu,.(t,x)|>pr(x)dx.

To obtain the above inequality, we have also used the following

Vr(x) = 2¢—R(X)x,
R|x|

with |¢pr(x)| < 1. We now use the ellipticity condition once more and the above to bound I; as
follows:

I; < ¢c4|Br(0)IR™? ~ Cef |V loguc(t, x)|*pr(x)dx.

See [SS91] where similar arguments are used. Now using (3.13) and the fact that u(R) =< Bg(0),
we obtain

—R%I; > —c;|B(0)| +Csf ¢r(xX)[loguc(t,x) — G(t)|*dx.

Here u(R) =< By(0) means that there is a constant ¢ > 0 such that ¢ *u(R) < Bz(0) < cu(R). So
combining the above, inequality (3.14) reduces to

G;(t) > —co + crou(R) ! J |logu,.(t,x) — G.(t)|*pr(x)dx. (3.17)

Let D, = {x € Bg/y(0) : u.(t,x) = e K}, where K is a positive constant to be chosen later. By
choosing t; small and using Proposition|3.5, we obtain

1
P*( sup |X;—Xo|>R/2)< > (3.18)

s<t;R?

Using (3.18), we obtain

J p(tR%,z,y)dy > 1—P*( sup |X; —X,|>R/2)
B(O,R/2)

s<t,R?

> 1-1/2=1/2. for t <t;.
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So for t < t1, we have

B 0
|R/§( )] - f Wt x)dx
Bgy2(0)

= J u(t,x)dx—l—f u(t,x)dx
Dt BR/Z(O)_Dt

< J u(t,x)dx-l—f uc(t, x)dx.
D,

Bg2(0)—D;

Note that on Bg/5(0) — D,, we have u.(t,x) < e”X. Choosing K such that e™® = 1/4 and using

p(tR? x,y) < cy;t~¥2R~4. This upper bound can be obtain by using an argument very similar to
that of the proof of Proposition 3.4/, we obtain

|Br/2(0) |Br/2(0)]
N2 < epplD e/ 4 22
4
We thus obtain a2
t/<|Bg/2(0)|
|D,| > - R t <ty.

€13
Recall that

Ge(t) =uR)™ J(logue(t,X))fﬁR(X)dX-
Note that since € is small, we can assume that it satisfies € < c14t_d/ 2R=4. So for t < t1, we can use

the bound p(tR?,x,y) < ¢;5 t~4/2R~4 and the above inequality to conclude that G.(t) is bounded
above by a constant which we denote by G.

Since on D, logu.(t,x) > —K, we have only four possibilities:

(a) Iflogu.(t,x) >0 and G.(t) <0, then (logu.(t,x) — G.(t))* > G.(t)2.
(b) Iflogu.(t,x)>0and 0 < G.(t) < G, then (logu.(t,x) — G.(t))* > 0> G(t)* — G2
(¢) If =K <logu.(t,x) <0 and |G.(t)| < 2K, then (logu,(t,x) — G.(t))*>0> %ﬂz _K2.

(d) If =K <logu.(t,x) <0 and |G.(t)| > 2K, then (logu.(t,x) — G.(t))* > %t)z.
We can therefore conclude that there exist positive constants c;¢ and ¢y, such that on D,,
(logu(t,x) = Ge(£))* = —c16 + ¢17Ge (1),
Using the above and the fact that u(R) =< Bg/,(0), inequality (3.17) then reduces to

G/(t) > —cig+ 190G (t)? for all t € [t1/2,t1], (3.19)
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where c¢;g and ¢, are independent of €. Also note that t; is small and can be taken to be less than
one. See the proof of Proposition 4.9 of [BBCK] or the proof of Theorem 3.4 of [CKK] for details.
Assume that G, (t;) < —c;5 — 2(c15/¢19)"/%. We can now write

G.(t) > —cyg (3.20)

and use some calculus to show that (3.19) reduces to G/(t) > (3/4)c10G.(t)? and that G.(t,/2) < 0.
This in turn implies that G.(t;) > —8/(3c;9). We have thus obtain

Ge(tl) > —Co0 where Coo = Sup{clg + 2(C18/C19)1/2, 8/3C19}. (321)

Choose y € Bg(0). By the semigroup property, we have

IBr(0)|p(2t,R%,2,y) = |BR(0)|‘1J|BR(0)|p(t1R2,z,x)IBR(O)lp(thZ,x,y)dx

v

|BR(0)|™ J |BR(0)Ip(£1R?, 2, x)|Br(0)|p(t1R?, x, y )pp(x)d x.

Applying logarithm to the above and using Jensen’s inequality we obtain
log(IBr(0)Ip(26,R?,2,¥)) = log(u(R)|Bg(0)| ™)

+ uR)™? f log[|Bg(0)|p(t,R?, 2, x)]1¢pg(x)dx

+ @™ f 1og[|BR(0)Ip(t1R?, x, )1 $r(x)dxx.

Using the fact that G.(t;) > —cqq after taking the limit e — 0 as in the proof of Lemma 3.3.3 of
[Dav89], the above reduces to log[|Bx(0)|p(2t,R?,2,y)] > —cy;. Set t’ = t;R%. We have thus obtain
p(2t),2,y) > ¢, t'"Y? for |z — y|? < 20’ which is the desired result with 6 = 2/¢;. O

4 Some estimates
The following estimates will be crucial for the proof of the regularity theorem and the Harnack
inequality.

Proposition 4.1. Let x, € R4\ A". Then the following holds

(a) There exist constants ¢y, ¢y and rg such that E*tp, -y < ¢ r2, for x € B(xo,r) and r > 0 and
E¥Tp(xyr) = cor? for x € B(xy,r/2) and r € (0,1y].

c3lA
(b) for any A C B(xq,3r/4), there exists some positive constant cz such that P*(T, < Tp(y, 1)) = %

for x € B(xy,r/2) and r € (0, r;] where ry is some positive constant.
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Proof. Let C C B(xg,2r)\B(xg, ). We can then write

PX(TB(XO,I") <t) = ]P)X(TB(XO,r) <tX; € C)

> J p(t,x,y)dy
C

> clC|eT?,

where we used Theorem [2.5]in the last inequality. Taking |C| = csr? and t = c¢r? we obtain upon
choosing ¢ = (2c4c5)2/ d

1
PX(TB(xo,r) < c6r2) > >
Let m be a positive integer. By the Markov property and using induction, we obtain
P*(T(xy,r) = mcer®) < 27™,

We can now obtain E* T, -y < ¢y r? from the above. Let t = c,r2, then by Proposition/3.5, we have
P*(Tp(xy,r) S t) S P*(Tp(x,rj2) < t) < 1/2 for c; small enough. We thus have
IE:XTB(xO,r) > tPX(TB(xO,r) > t)

> cgrz.
For part(b), since we need to prove a lower bound, it suffices to obtain the result for small jumps(less
than A) only. The more general result follows from the following fact:

IP)X(TA < TB(XO,F)) = IPX(TA < TB(XO,F)J Ul < t) + PX(TA < TB(XO,T)) Ul > t)
P*(Ty < T(xo,r) S £, U1 > )

> o (uPMipr(Th < 7

v

A
B(Xo,r))’

where U; and N(x) are defined in Remark|3.3. The stopping times TX‘ and TQ(XO )

similar way to T, and Tp(,, ) respectively but for processes with jumps less than A. So from now
on, we assume that X has jumps less than A. For ¢ fixed, we can now write

are defined in a

II;Dx(’TA < TB(XO,I”)) > f p(t) X, J’)d.y
A

Xz
— J EX[E"Bro) [p(t — TBr(XO)’XTBr(xO)’y)]1(TBr(xO)<f):|dy' 4.1)
A

Since our process is assumed to have small jumps only, we can use (3.8) to obtain, for t sufficiently
small,

p(t o TBr(xo)’XTB (xo)’y) = C9tye_C10|XTBr(XO)_y|: (4.2)
where we have taken A small enough so that y = [X, o y|/124 —d/2 > 0 whenever |X o
y| > r/4. We now use the lower bound given by Theorem|[2.5 to reduce (4.1) to
c11/Al
P(Tp < T(ag) Z g (4.3)

We have taken t = c;,72, where r € (0,r;] and ry is a small constant so that the right hand side of
(4.2) is less than a positive fraction of the lower bound on the heat kernel p(t, x, y).

O
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5 The Regularity Theorem

We will need the following Lévy system formula for our process X. The proof is the same as that of
Lemma 4.7 in [CKO03]. So we omit it here.

Proposition 5.1. If A and B are disjoint Borel sets, then for each x € RI\ ¥,

t
E* Z lix, eax.eB) = EXJ J 1AX ) (X, y)d yds. (5.1)
o JB

s<t

The proof of the following is based on the proof of the regularity theorem in [BLO2]. For the sake
of completeness, we give a proof here.

Proof of Theorem [2.6.: Let us suppose u is bounded by M in R? and z; € B(2q,R/2)\.#. Set
s, = 6,a", r,=0y0", for n€N,

wherea<1,p < %, and 6; > 2M are constants to be chosen later. We choose 6, small enough that
B(zq,2r1) C B(zy,R/2). Write B, = B(z1,1,,) and 7, = 7p . Set

M,, = sup u(x), m, = inf u(x).
X€EB, X€B,

Holder continuity will follow from the fact that M,, — m,, < s, for all n which will be proved by
induction. Let ny be a positive number to chosen later and suppose M; —m; <s; foralli =1,2,...,n,
where n > n(; we want to show
Mn+1 — My < Sn+1-
Let
Ap={z€B, u(z) < (M, +m,)/2}.

We may suppose that |A,|/|B,| > %, for if not, we can look at M —u instead. Let A be compact subset
of A, such that |A|/|B,| > 1/3. By Proposition 4.1} there exists c¢; such that

PX(TA < Tn) > C1 (52)

for all x € B,,; ;. Let € > 0 and pick y,z € B, such that u(y) < m,,; +€ and u(z) > M,,; — €.
Since € > 0 is arbitrary, showing that u(z) — u(y) < s,41 will imply M,,,; — m, 1 < 5,4 as desired.

By optional stopping,

u(z) —u(y) = E[uXr,)—-u(y);Ta < 7,]
+ E u(X’Cn) - ll(y), Tn = TAJX’Cn € Bn—l]
n—2
+ E* [u(XTn) - u(.y)§ Tn = TAJXTH < Bn—i—l - Bn—i]
i=
+ E* [u(Xrn) - U(}’); Tn = TA"Xﬂ:n ¢ Bl]
= L+L+I1+1, (5.3)

[y
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By optional stopping and the Lévy system formula (5.1),

sup PY(X, ¢B, ) < sup Emf J(x, y)dx
[x=y|>rn_i—

Y€Bpi1 Y€Bnia n
= sup IEyTn[J J(x,y)dx-i—f J(x,y)dx]
Y€Bni1 [x—y|>1 Tnoi—Tp<|x—y|<1
Pt )’
2
S Czrn+C3(1_pi) . (54)

See the proof of Proposition 3.5 of [BLO2] where a similar argument is used. We have also used
Proposition[4.1(a), Assumption|[2.2|(a) and the fact that 1 < L=yl in the above computations. The

Tn—i—Tn
first term on the right of (5.3) is bounded by
M, +m, 1
— ™ PY(Ty <71, < EsnIP’y(TA <7,). (5.5)

The second term is bounded by

(Mn_]_ — mn_l)Py(Tn S TA) = (Mn—l — mn_l)(]. — ]P)y(TA S Tn)) S Sn_]_(]. - Py(TA S Tn)). (56)

Let p2 = g YL Using (5.4), the third term is bounded by

128c,
n—2
Z(Mn—i—l - mn—i—l)Py(X’rn¢Bn—i)
i=1
n—2 n—2
2 2i
=S o Sn—i—lrn+c325n—i—1p

Il
-

i=1
202 2n 2
ca”05p c3p®/a

i

< s,_

= “1[an(1—a) 1-p2/a
202
a“fycs ¢

= sealgZo sl

where we can take ng bigger if necessary so that the last inequality holds. We also choose 6, smaller

1 [a(=a)

1\ 207, and obtain

if necessary so that 0, <

Sn—1€1
[, < ———= 5.7
T (5.7)

The fourth term can be bounded similarly
Iy <2MPY(X; ¢By) < 2M[cyr? + czp?(n 1]

01[cya™02 + c3a* .

IA

By choosing n, bigger if necessary, we have, for n > n,, the above yields

S,_1C
I, < ”8“. (5.8)




Inequalities (5.5)-(5.8) give the following:

1 ¢ 2!
u(.y) - u(z) < Easn—lpy(TA < Tn) +5n—1(1 - IEDy(TA < Tn)) +sn—1(% + g)

Using the fact that a is less than one, we obtain

Sy PY(Ty<7T,) ¢ €
— < {1 - - -
u(z) —u(y) < a[ 5 +16+8]

< —[ —E]

Now let us pick a as follows:
. 1 5C1
a=4 6

u(z) - u(}’) = Snd = Sp41-

This yields

6 The Harnack Inequality

We start this section with the following proposition which will be used in the proof of the Harnack
inequality.

Proposition 6.1. Let x, € R? and r < r, where ry is a positive constant. Then there exists ¢, depending
on k, K;s and A such that if z € B(xy,r/4) and H is a bounded non-negative function supported in
B(xy, )¢, then

EXH(X ) < ¢k, E*H(X

TB(xo,r/Z) TB(xo,r/Z))'

Proof. By linearity and a limit argument, it suffices to show to consider only H(x) = 1,(x)
for a set C contained in B(xy,r)°. From Assumption [2.2(c), we have J(w,v) < k,J(y,w) for all
w, y € B(xy,r/2) and v € B(xy, ). Hence, we have

sup J(y,v) <k, _inf _J(y,v). 6.1
Y€B(xo,r/2) ¥€B(xo,r/2)

By optional stopping and the Lévy system formula, we have

1 = E* E 1 r .
(XMTB(xO,r/Z)GC) (IXs_Xs—|2§rXs€C)

sSt/\TB(XO,%)

U\TB(XO,%)
= }EZJ J J(X,,v)dvds.
0 c

> E(t A Tp(y, r))f inf J(y,v)dv.

B(Xo 2
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Letting t — oo and using the dominated convergence theorem on the left and monotone conver-
gence on the right, we obtain

2 > b4 . .
P (XTB(X(),%) S C) > E TB(XO’E) J;I yeBlgc{;,g)J(y’ V)dV.

Since EZTB(XO’g) > EZTB(Z,i), we have

PXryg) €CIZE Tpzy [ inf | J(y,v)dv. 6.2
( "B(x0.3) )z TB(z,4)ny€$&0,§) (v, v)dv (6.2)
Similarly we have
PXO(XTB(XO,UEC)SEX‘)TB(xO,g)J sup  J(y,v)dv. 6.3)
: C y€B(xo,3)

Combining inequalities (6.1), (6.2) and (6.3) and using Proposition 4.1(a), we get our result. [J

Proof of theorem|2.7.: By looking at u+e and letting € | 0, we may suppose that u is bounded below
by a positive constant. Also, by looking at au, for a suitable a, we may suppose that infp, gr/yu €
[1/4,1]. We want to bound u above in B(z,,R/2) by a constant not depending on u. Our proof is
by contradiction.

Since u is continuous, we can choose z; € B(zy,R/2) such that u(z;) = % Let r; = ryi 2 where
r, <1y is a chosen constant so that Zi:l r; < R/8. Recall that from Proposition 6.1, there exists ¢;
such that if r < ry, z € B(x,r/4) and H is a bounded non-negative function supported in B(x, ),
then

EXH(X

) <1k, EFH(X (6.4)

TB(x,r/2) TB(x,r/Z))'

We will also use Proposition 4.1 (b) which says that if A € B(x, 3r/4), then there exists a constant c,

such that
x colA|
P (TA < TB(x,r)) > r_d (6.5)

Let n be a constant to be chosen later and let £ be defined as follows

1

EZEAcl_ln.

Let c5 be a positive constant to be chosen later. Once this constant has been chosen, we suppose that
there exists x; € B(zy,R/2) with u(x;) = L, for some L, large enough so that we have

cszleCBjr;Hﬁ
> 2

W , for all _] (66)

The constants 8 and k are from Assumption 2.2(c).

We will show that there exists a sequence {(x;, L;)} with x;,, € B(xj,r;) C B(x;,2r;) C B(20,3R/4)
with
L] = U(Xj) and L] Z L16C3'].

336



This would imply that L; — oo as j — oo contradicting the fact that u is bounded. Suppose that we
already have xq, xo, ..., x; such that the above condition is satisfied. We will show that there exists
X;11 € B(x;,1;) € B(x;,2r;) such that L, ; = u(x;y,) and L, > LD, Define

€Liri[5

A={y €B(x;,ri/4);u(y) = X

1
We are going to show that |A| < EIB(xi, r;/4)|. To prove this fact, we suppose the contrary. Choose

1
a compact set A’ C Awith |A'| > §|B(xi, ri/4).

By optional stopping, (6.5), the induction hypotheses and the fact thatR < 1,

1
3 = u(z)=E" [u(XTA//\TB(ZO,R)); Ty < TB(ZO,R)]
B
EL;T;
> #le(TA’<TB(ZO,R))
B
- EL;T! cylA']
- K R
o oELrl | (/4
k  (r/49)? R4
> 2.

1
This is a contradiction. Therefore |A| < ElB(xl-, r;/4)|. So we can find a compact set E such that
E c B(x;,r;/4) —A and |E| > %|B(xi,rl-/4)|. Let us write 7, for Tp(y, ,./2). From (6.5) we have
PY(Tg < 7,,) = c4 where c, is some positive constant. Let M = Sup,cp(y, ) u(x). We then have
Li=u(x;) = E* [U(XTE/\T,i); Tg <7.]
+ ]Exi[u(XTE/\Tri); TE > Tri’XTri EB(XI', rl')]
+

E* [u(XTEMri); Ty > Tri’XTri ¢ B(x;,1;)]
= L4+, (6.7)

Writing p; = P*{(Ty < 7,,), we see that the first two terms are easily bounded as follows:

B
EL;p;r:
I, < %, and I, <M(1-p)).

To bound the third term, we prove E* [u(X; );X. ¢ B(x;,r;)] < nlL;. If not, then by using (6.4),
we will have, for all y € B(x;,r;/4),
u(y) = Eyu(X'rrl.) = EY [u(XTrl- );erl. ¢ B(xi> ri)]

B

L;  &Lr;

EN[u(X, )X, &B(x;r)]> b > 2L
i Ti krl_C]_ K

A%

ky.cq
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contradicting the fact that A < %IB(xi, r;/4)|. Hence

Is <nlL;.
So (6.7) becomes ;
L; < &%"'M(l —pi)+nl;,
or p
Choosing n = Cz“ and using the definition of & together with the fact that p; > ¢; and rl.ﬁ /k <1,

we see that there exists a constant ¥ bounded below by a positive constant, such that the inequality
(6.8) reduces to M > L;(1+ v). Therefore, there exists x;,; € B(x;,r;) with u(x;;1) = L;(1 + 7).
Setting L;, = u(x;,1), we see that

Liyw = Li(1+7y)
— Ll_elog(1+y).

The induction hypotheses is thus satisfied by taking c5 = log(1 + 7). O
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