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1 Introduction

The duality between symplectic and orthogonal groups has a long standing history, and has been
noted in physics literature in various settings, see e.g. [15; 20; 25; 27]. Informally, the duality
asserts that averages such as moments or partition functions for the symplectic case of “dimension”
N , can be derived from the respective formulas for the orthogonal case of dimension N by inserting
−N into these expressions and by simple scaling. The detailed study of the moments of one-matrix
Wishart ensembles, with duality explicitly noted, appears in [10], see [10, Corollary 4.2]. The du-
ality for one matrix Gaussian Symplectic Ensemble was noted by Mulase and Waldron [21] who
introduced Möbius graphs to write the expansion for traces of powers of GOE/GUE/GSE expansions
in a unified way. The duality appears also in [17, Theorem 6] as a by-product of differential equa-
tions for the generating functions of moments. Ref. [6; 7; 8] analyze the related “genus series" over
locally orientable surfaces.

The purpose of this paper is to prove that the duality between moments of the Gaussian Symplec-
tic Ensemble and the Gaussian Orthogonal Ensemble, and between real Wishart and quaternionic
Wishart ensembles extends to several independent matrices. Our technique consists of elementary
combinatorics; our proofs differ from [21] in the one matrix case, and provide a more geometric
interpretation for the duality; in the one-matrix Wishart case, our proof completes the combinato-
rial approach initiated in [10, Section 6]. The technique limits the scope of our results to moments,
but the relations between moments suggest similar relations between other analytic objects, such as
partition functions, see [21], [16]. The asymptotic expansion of the partition function and analytic
description of the coefficients of this expansion for β = 2 case appear in [4; 9; 19].

The paper is organized as follows. In Section 2 we review basic properties of quaternionic Gaussian
random variables. In Section 3 we introduce Möbius graphs; Theorems 3.1 and 3.2 give formulae
for the expected values of products of quaternionic Gaussian random variables in terms of the Euler
characteristics of sub-families of Möbius graphs or of bipartite Möbius graphs. In Section 4 we apply
the formulae to the quaternionic Wigner and Wishart families.

In this paper, we do not address the question of whether the duality can be extended to more general
functions, or to more general β-Hermite and β-Laguerre ensembles introduced in [3].

2 Moments of quaternion-valued Gaussian random variables

2.1 Quaternion Gaussian law

Recall that a quaternion q ∈ H can be represented as q = x0 + i x1 + j x2 + kx3 with i2 = j2 = k2 =

i jk = −1 and with real coefficients x0, . . . , x3. The conjugate quaternion is q = x0− i x1− j x2−kx3,
so |q|2 := qq ≥ 0. Quaternions with x1 = x2 = x3 = 0 are usually identified with real numbers; the
real part of a quaternion is ℜ(q) = (q+ q̄)/2.

It is well known that quaternions can be identified with the set of certain 2× 2 complex matrices:

H ∋ x0+ i x1+ j x2+ kx3 ∼

�

x0+ i x1 x2+ i x3

−x2+ i x3 x0− i x1

�

∈M2×2(C), (2.1)

where on the right hand side i is the usual imaginary unit of C. Note that since ℜ(q) is twice the
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trace of the matrix representation in (2.1), this implies the cyclic property

ℜ(q1q2 . . . qn) =ℜ(q2q3 . . . qnq1). (2.2)

The (standard) quaternion Gaussian random variable is an H-valued random variable which can be
represented as

Z = ξ0+ iξ1+ jξ2+ kξ3 (2.3)

with independent real normal N(0,1) random variables ξ0,ξ1,ξ2,ξ3. Due to symmetry of the
centered normal laws on R, the law of (Z , Z) is the same as the law of (Z , Z). A calculation shows
that if Z is quaternion Gaussian then for fixed q1,q2 ∈ H,

E(Zq1Zq2) = E(Z
2)q̄1q2, E(Zq1Zq2) = E(Z Z̄)ℜ(q1)q2 .

For future reference, we insert explicitly the moments:

E(Zq1Zq2) = −2q̄1q2, (2.4)

E(Zq1Zq2) = 2(q1+ q̄1)q2. (2.5)

By linearity, these formulas imply

E(ℜ(Zq1)ℜ(Zq2)) = ℜ(q1q2), (2.6)

E(ℜ(Zq1)ℜ(Zq2)) = ℜ(q̄1q2). (2.7)

2.2 Moments

The following is known as Wick’s theorem [26].

Theorem A (Isserlis [12]). If (X1, . . . , X2n) is a R2n-valued Gaussian random vector with mean zero,

then

E(X1X2 . . . X2n) =
∑

V

∏

{ j,k}∈V

E(X jXk), (2.8)

where the sum is taken over all pair partitions V of {1,2, . . . , 2n}, i.e., partitions into two-element sets,

so each V has the form

V =
�

{ j1, k1}, { j2, k2}, . . . , { jn, kn}
	

.

Theorem A is a consequence of the moments-cumulants relation [18]; the connection is best visible
in the partition formulation of [22]. For another proof, see [14, page 12].

Our first goal is to extend this formula to certain quaternion Gaussian random variables. The gen-
eral multivariate quaternion Gaussian law is discussed in [24]. Here we will only consider a special
setting of sequences that are drawn with repetition from a sequence of independent standard Gaus-
sian quaternion random variables. In section 4 we apply this result to a multi-matrix version of the
duality between GOE and GSE ensembles of random matrices.

In view of the Wick formula (2.8) for real-valued jointly Gaussian random variables, formulas (2.4)
and (2.5) allow us to compute moments of certain products of quaternion Gaussian random vari-
ables. Suppose the n-tuple (X1, X2, . . . , Xn) consists of random variables taken, possibly with repeti-
tion, from the set

{Z1, Z̄1, Z2, Z̄2, . . . },
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where Z1, Z2, . . . are independent quaternion Gaussian random variables. Consider an auxiliary

family of independent pairs {(Y (r)
j

, Y
(r)

k
) : r = 1,2, . . . } which have the same laws as (X j , Xk), 1 ≤

j, k ≤ n and are independent for different r. Then the Wick formula for real-valued Gaussian
variables implies E(X1X2 . . . Xn) = 0 for odd n, and

E(X1X2 . . . Xn) =
∑

f

E(Y
( f (1))

1 Y
( f (2))

2 . . . Y ( f (n))n ), (2.9)

where the sum is over the pair partitions V that appear under the sum in Theorem A, each rep-
resented by the level sets of a two-to-one valued function f : {1, . . . , n} → {1, . . . , m} for n = 2m.
(Thus the sum is over classes of equivalence of f , each of m! representatives contributing the same
value.)

For example, if Z is quaternion Gaussian then applying (2.9) with f1 that is constant, say 1, on
{1,2}, f2 that is constant on {1,3}, and f3 that is constant on {1,4} we get

E(Z4) = E(Z2)
�

E(Z2) +E(Z̄ Z) +E(Z̄2)
�

= 0.

Formulas (2.4) and (2.5) then show that the Wick reduction step takes the following form.

E(X1X2 . . . Xn) =

n
∑

j=2

E(X1X j)E(U jX j+1 . . . Xn), (2.10)

where

U j =







ℜ(X2 . . . X j−1) if X j = X̄1

X̄ j−1 . . . X̄2 if X j = X1

0 otherwise .

This implies that one can do inductively the calculations, but due to noncommutativity arriving at
explicit answers may still require significant work.

Formula (2.10) implies that E(X1X2 . . . Xn) is real, so on the left hand side of (2.10) we can write
E(ℜ(X1X2 . . . Xn)); this form of the formula will be associated with one-vertex Möbius graphs.

Furthermore, we have a Wick reduction which will correspond to the multiple vertex Möbius graphs:

E(ℜ(X1)ℜ(X2X3 . . . Xn))

=

n
∑

j=2

E(ℜ(X1)ℜ(X j))E(ℜ(X2 . . . X j−1X j+1 . . . Xn)). (2.11)

(This is just a consequence of Theorem A).

In the next section we will show that formulae (2.10) and (2.11) give a method of computing the
expected values of quaternionic Gaussian random variables by the enumeration of Möbius graphs
partitioned by their Euler characteristic. This is analogous to similar results for complex Gaussian
random variables and ribbon graphs, and for real Gaussian random variables and Möbius graphs. In
Section 4 we will show that this result implies the duality of the GOE and GSE ensembles of Wigner
random matrices and the duality of real and quaternionic Wishart random matrices.
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3 Möbius graphs and quaternionic Gaussian moments

In this section we introduce Möbius graphs and then give formulae for the expected values of prod-
ucts of quaternionic Gaussian random variables in terms of the Euler characteristics of sub-families
of Möbius graphs. This is an analogue of the method of t’Hooft [1; 5; 8; 11; 13; 23]. Möbius graphs
have also been used to give combinatoric interpretations of the expected values of traces of Gaussian
orthogonal ensemble of random matrices and of Gaussian symplectic ensembles, see the articles [8]
and [21]. The connection between Möbius graphs and quaternionic Gaussian random variables is
at the center of the work of Mulase and Waldron [21].

3.1 Möbius graphs

Möbius graphs are ribbon graphs where the edges (ribbons) are allowed to twist, that is they either
preserve or reverse the local orientations of the vertices. As the convention is that the ribbons in
ribbon graphs are not twisted we follow [21] and call the unoriented variety Möbius graphs. The
vertices of a Möbius graph are represented as disks together with a local orientation; the edges are
represented as ribbons, which preserve or reverse the local orientations of the vertices connected
by that edge. Next we identify the collection of disjoint cycles of the sides of the ribbons found by
following the sides of the ribbon and obeying the local orientations at each vertex. We then attach
disks to each of these cycles by gluing the boundaries of the disks to the sides of the ribbons in the
cycle. These disks are called the faces of the Möbius graph, and the resulting surface we find is the
surface of maximal Euler characteristic on which the Möbius graph may be drawn so that edges do
not cross.

Denote by v(Γ), e(Γ), and f (Γ) the number of vertices, edges, and faces of Γ. We say that the Euler
characteristic of Γ is

χ(Γ) = v(Γ)− e(Γ) + f (Γ),

for connected Γ, this is also the maximal Euler characteristic of a connected surface into which Γ
is embedded. For example, in Fig. 1, the Euler characteristics are χ1 = 1− 1+ 2 = 2 and χ2 =

1− 1+ 1= 1. The two graphs may be embedded into the sphere or projective sphere respectively.

If Γ decomposes into connected components Γ1, Γ2, then χ(Γ) = χ(Γ1) +χ(Γ2).

Throughout the paper our Möbius graphs will have the following labels attached to them: the
vertices are labeled to make them distinct, in addition the edges emanating from each vertex are
also labeled so that rotating any vertex produces a distinct graph. These labels may be removed if
one wishes by rescaling all of our quantities by the number of automorphisms the unlabeled graph
would have.

3.2 Quaternion version of Wick’s theorem

Suppose the 2n-tuple
(X1, X2, . . . , X2n)

consists of random variables taken, possibly with repetition, from the set {Z1, Z̄1, Z2, Z̄2, . . . } where
Z1, Z2, . . . are independent quaternionic Gaussian. Fix a sequence j1, j2, . . . , jm of natural numbers
such that j1+ · · ·+ jm = 2n.
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Consider the familyM =M j1,..., jm(X1, X2, . . . , X2n), possibly empty, of Möbius graphs with m vertices
of degrees j1, j2, . . . , jm with edges labeled by X1, X2, . . . , X2n, whose regular edges correspond to
pairs X i = X̄ j and flipped edges correspond to pairs X i = X j . No edges of Γ ∈ M can join random
variables X i , X j that are independent.

Theorem 3.1. Let
�

X1, X2, . . . , X2n

	

be chosen, possibly with repetition, from the set {Z1, Z̄1, Z2, Z̄2, . . . }
where Z j are independent quaternionic Gaussian random variables, then

E
�

ℜ(X1X2 . . . X j1
)ℜ(X j1+1 . . . X j1+ j2

)× . . .

×ℜ(X j1+ j2+...+ jm−1+1 . . . X2n)
�

= 4n−m
∑

Γ∈M

(−2)χ(Γ). (3.1)

(The right hand side is interpreted as 0 whenM = ;.)

Remark 3.1. We would like to emphasize that in computing the Euler characteristic one must first
break the graph into connected components. For example, if j1 = · · · = jm = 1 so that m = 2n is
even, and X1, X2, . . . , X2n are n independent pairs, as the real parts are commutative we may assume
that X2k = X2k−1, and the moment is

1= E(ℜ(X1)ℜ(X2) . . .ℜ(X2n)) = 4−n(−2)χ(Γ).

We see that graphically Γ is a collection of 2n degree one vertices connected together forming n

dipoles (an edge with a vertex on either end). Hence there are n connected components each of
Euler characteristic 2, therefore the total Euler characteristic is χ = 2n giving

4−n(−2)χ = 4−n4n = 1.

Proof of Theorem 3.1. In view of (2.9) and (2.10), it suffices to show that if X1, . . . , X2n consists of n

independent pairs, and each pair is either of the form (X , X ) or (X , X̄ ), then

E
�

ℜ(X1X2 . . . X j1
)ℜ(X j1+1 . . . X j1+ j2

)× . . .

×ℜ(X j1+ j2+···+ jm−1+1 . . . X2n)
�

= 4n−m(−2)χ(Γ) , (3.2)

where Γ is the Möbius graph that describes the pairings of the sequence.

First we check the two Möbius graphs for n= 1, m= 1:

E(ℜ(X X̄ )) = (−2)2 , and E(ℜ(X X )) = (−2)1 .

One checks that these correspond to the Möbius graphs in Figure 1, which gives a sphere (χ = 2)
and projective sphere (χ = 1) respectively.

We now proceed with the induction step. One notes that by independence of the pairs at different
edges, the left hand side of (3.2) factors into the product corresponding to connected components
of Γ. It is therefore enough to consider connected Γ.

If Γ has two vertices that are joined by an edge, we can use cyclicity of ℜ to move the variables
that label the edge to the first positions in their cycles, say X1 and X j1+1 and use (2.6) or (2.7) to
eliminate this pair from the product. The use of relation (2.6) is just that of gluing the two vertices
together removing the edge x which is labeled by the two appearances of Z . Relation (2.7) glues
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Figure 1: The two possible Möbius graphs with a single degree 2 vertex. The left hand one is a
ribbon which is untwisted and the graph embeds into a copy of the Riemann sphere, while the right
hand one is a ribbon which is twisted and the graph embeds into a copy of the projective sphere.

together the two vertices, removing the edge x , and the reversal of orientation across the edge is
given by the conjugate (see Figure 2). These geometric operations reduce n and m by one without
changing the Euler characteristic: the number of edges and the number of vertices are reduced by
1; the faces are preserved – in the case of edge flip in Fig. 2, the edges of the face from which we
remove the edge, after reduction follow the same order.

Therefore we will only need to prove the result for the single vertex case of the induction step.

We wish to show that
E(X1X2X3X4 . . . X2n) = (−2)χ(Γ)4n−1 , (3.3)

where Γ is a one vertex Möbius graph with arrows (half edges) labeled by Xk. We will do this by
induction, there are two cases:

Case 1: X1 = X̄ j for 1< j ≤ 2n,

E(X1X2 . . . X j−1X̄1X j+1 . . . X2n) = E(X1X̄1)E(ℜ(X2 . . . X j−1)ℜ(X j+1 . . . X2n))

= 4E(ℜ(X2 . . . X j−1)ℜ(X j+1 . . . X2n)) . (3.4)

This corresponds to the reduction of the Möbius graph pictured in Figure 3, which splits the
single vertex into two vertices. The Euler characteristic becomes χ2 = 2−(n−1)+ f1 = χ1+2.
By the induction assumption we find

E(X1 . . . X2n) = 4
�

4(n−1)−2(−2)χ2
�

= 4n−2(−2)χ1+2 = 4n−1(−2)χ1 .

Case 2: X1 = X j for 1< j ≤ 2n,

E(X1X2 . . . X j−1X1X j+1 . . . X2n) = E(X1X1)E(X̄ j−1 . . . X̄2X j+1 . . . X2n)

= (−2)E(X̄ j−1 . . . X̄2X j+1 . . . X2n) . (3.5)

This corresponds to the reduction of the Möbius graph pictured in Figure 4, which keeps the
single vertex and flips the order and orientation of the edges between X1 and X j . The Euler
characteristic becomes χ2 = 1− (n− 1) + f1 = χ1+ 1. By the induction assumption we find

E(X1 . . . X2n) = (−2)
�

4(n−1)−1(−2)χ2
�

= (−2)−14n−1(−2)χ1+1 = 4n−1(−2)χ1 .
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Figure 2: A Möbius graph with two vertices connected by a ribbon may be reduced to a Möbius
graph with one less vertex and one less edge. In these graphs the “. . . " are to mean that there are
arbitrary numbers of other edges at the vertex, and the edges drawn are connected to other vertices.
The top graph is an example of this reduction when the connecting ribbon is untwisted, in this case
the two vertices are glued together with no other changes in the ribbons. The bottom graph is an
example of this reduction when the connecting ribbon is twisted, in this case the two vertices are
glued together and the order and orientation (twisted or untwisted) of the ribbons on one side are
reversed.

Note that taking away an oriented ribbon creates a new vertex. The remaining graph might still be
connected, or it may split into two components. If taking away a loop makes the graph disconnected,
then the counts of changes to edges and vertices are still the same. But the faces need to be counted
as follows: the inner face of the removed edge becomes the outside face of one component, and the
outer face at the removed edge becomes the outer face of the other component. Thus the counting
of faces is not affected by whether the graph is connected.

With these two cases checked, by the induction hypothesis, the proof is completed.

3.3 Bipartite Möbius graphs and quaternionic Gaussian moments

To deal with quaternionic Wishart random matrices, we need to consider a special subclass of quater-
nionic Gaussian variables from Theorem 3.1. Suppose the 2n-tuple (X±1, X±2, . . . , X±n) consists of n
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Figure 3: Here we have an untwisted ribbon of the Möbius graph returning to the same vertex, this
edge is removed in our reduction procedure giving us a Möbius graph with one more vertex and one
less edge.

Figure 4: Here we have a twisted ribbon of the Möbius graph returning to the same vertex, this
edge is removed in our reduction procedure giving us a Möbius graph with one less edge and giving
a reverse in both the order and orientation (twisted or untwisted) of the ribbons on one side of the
removed ribbon.
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pairs of random variables taken with repetition, from the set {Z1, Z2, . . . , Zn} of independent quater-
nionic Gaussian random variables. Note that in contrast to the setup for Theorem 3.1, here all Z ’s
are without conjugation. Fix a sequence j1, j2, . . . , jm of natural numbers such that j1+ · · ·+ jm = n.
Theorem 3.1 then says that

E
�

ℜ(X̄−1X1 · · · X̄− j1
X j1
)×ℜ(X̄− j1−1X j1+1 · · · X̄− j1− j2

X j1+ j2
)× · · ·

· · · ×ℜ(X̄− j1− j2−···− jm−1−1 · · · X̄−nXn)
�

= 4n−m(−2)χ(Γ),

where Γ is the Möbius graph with m vertices and with edges labeled by X±1, . . . , X±n that describes
the pairings between the variables under the expectation. Our goal is to show that the same formula
holds true for another graph, a bipartite Möbius graph whose edges are labeled by n pairs (X− j , X j),
1≤ j ≤ n.

The bipartite Möbius graph has two types of vertices: black vertices and white (or later, colored)
vertices with ribbons that can only connect a black vertex to a white vertex. (As previously, the
ribbons may carry a “flip" of orientation which we represent graphically as a twist.) To define this
graph, we need to introduce three pair partitions on the set {±1, . . . ,±n}. The first partition, δ,
pairs j with − j. The second partition, σ, describes the placement of ℜ: its pairs are

{1,−2}, {2,−3}, . . . , { j1,−1},

{ j1+ 1,−( j1+ 2)}, . . . , { j1+ j2,−( j1+ 1)},

...

{1+
m−1
∑

k=1

jk,−(2+
m−1
∑

k=1

jk)}, . . . , {n,−(1+
m−1
∑

k=1

jk)}.

The third partition, γ, describes the choices of pairs from Z1, . . . , Zn. Thus { j, k} ∈ γ if X j = Xk when
jk > 0 or X j = X̄k if jk < 0.

We will also represent these pair partitions as graphs with vertices arranged in two rows, and with
the edges drawn between the vertices in each pair of a partition. Thus

δ =

1
•

2
•

. . . n
•

•
−1

•
−2

. . . •
−n

(3.6)

and

σ =

1
•

=
=

=
=

=

2
•

=
=

=
=

=

3
•

. . . j1
•

hhhhhhhhhhhhhhhhhhhh
j1+1
•

C
C

C
C

C

j1+2
•

. . . j1+ j2
•

iiiiiiiiiiiiiiiii

j1+ j2+1
•

. . .

•
−1

•
−2

•
−3

. . . • • • . . . • • . . .

Consider the 2-regular graphs δ ∪ γ and δ ∪ σ. We orient the cycles of these graphs by ordering
(− j, j) on the left-most vertical edge of the cycle. For example,

σ∪δ =

1
•

=
=

=
=

=

2
•

=
=

=
=

=

3
•

. . . j1
•

hhhhhhhhhhhhhhhhhhhh
j1+1
•

C
C

C
C

C

j1+2
•

. . . j1+ j2
•

iiiiiiiiiiiiiiiii

j1+ j2+1
•

. . .

•
−1

OO

•
−2

•
−3

. . . • •

OO

• . . . • •

OO

. . .
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Figure 5: Representation of a bipartite Möbius graph, the edges drawn are ribbons that are either
twisted or untwisted.

Figure 6: Example of the labeling we use for the edges emanating from a black vertex in a bipartite
Möbius graph.

We now define the bipartite Möbius graph by assigning black vertices to the m cycles of δ ∪σ, and
white vertices to the cycles of δ ∪ γ.

Each black vertex is oriented counter-clockwise. For each black vertex we follow the cycle of δ ∪
σ, drawing a labeled line for each element of the partition. The lines corresponding to − j, j are
adjacent, and will eventually become two edges of a ribbon.

Each white vertex is oriented, say, clockwise; we identify the graphs that differ only by a choice
of orientation at some of the white vertices. For each white vertex, we follow the corresponding
cycle of δ ∪ γ, drawing a labeled line for each element of the partition. The lines corresponding
to − j, j are adjacent, but may appear in two different orders depending on the orientation of the
corresponding edge of δ on the cycle.

The final step is to connect pairs ( j,− j) on the black vertices with the same pairs on the white
vertices. This creates the ribbons, which carry a flip if the orientation of the two lines on the black
vertex does not match the orientation of the same edges on the white vertex.

The individual edges pictured in Figure 5 are ribbons and are labeled as in Figure 6. We allow twists
of ribbons to propagate through a white vertex calling the two bipartite Möbius graphs equivalent.

Suppose the 2n-tuple (X±1, X±2, . . . , X±n) consists of random variables taken with repetition,
from the set {Z1, Z2, . . . , Zn} of independent quaternionic Gaussian random variables. Let M =

M (X±1, X±2, . . . , X±n) denote the set of all bipartite Möbius graphs Γ that correspond to various
ways of pairing all repeated Z ’s in the sequence (X±1, X±2, . . . , X±n); the pairs are given by adjacent
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half edges at each white vertex. (See the preceding construction.) M = ; if there is a Z j that is
repeated an odd number of times.

Theorem 3.2.

E
�

ℜ(X̄−1X1 · · · X̄− j1
X j1
)×ℜ(X̄− j1−1X j1+1 · · · X̄− j1− j2

X j1+ j2
)× · · ·

· · · ×ℜ(X̄− j1− j2−···− jm−1−1 · · · X̄−nXn)
�

= 4n−m
∑

Γ∈M

(−2)χ(Γ) ,

(The right hand side is interpreted as 0 whenM = ;.)

Proof. The proof is fundamentally the same as that of the Wigner version of this theorem. In view
of (2.9) and (2.10), it suffices to consider {X±1, . . . X±n} that form n independent pairs, and show
that

E
�

ℜ(X̄−1X1 · · · X̄− j1
X j1
)×ℜ(X̄− j1−1X j1+1 · · · X̄− j1− j2

X j1+ j2
)× · · ·

· · · ×ℜ(X̄− j1− j2−···− jm−1−1 · · · X̄−nXn)
�

= 4n−m(−2)χ(Γ) , (3.7)

where Γ is the bipartite Möbius graph that describes the pairings.

We will prove (3.7) by induction; to that end we first check that with n = 1, m = 1 we have
E(X̄ X ) = (−2)2 in agreement with (3.7).

If Γ has two black vertices connected together by edges adjacent at a white vertex, we can use the
cyclicity of ℜ to move the variables that label the respective edges and share the same face to the
first position in their cycles, so that we may call them X̄−1 and either X j or X̄− j . We now use relations
(2.6) and (2.7) to eliminate the pair from the product:

E

�

ℜ(X̄−1 · · ·X j1
)ℜ(X j . . . X j1+ j2

X̄− j)
�

= E(X1 · · ·X j1+ j2
X̄− j) ,

or
E

�

ℜ(X̄−1 · · ·X j1
)ℜ(X̄ j . . . X j1+ j2

)
�

= E(X̄ j1
X− j1
· · · X̄1X j · · ·X j1+ j2

) .

The use of relation (2.6) corresponds to that of gluing together the two ribbons along the halves
adjacent at the white vertex, and gluing together the corresponding black vertices (see Figure 7).
The use of relation (2.7) corresponds to the same gluing, but in this case one of the ribbons has an
orientation reversal in it, resulting in an orientation reversal for the remaining sides (see Figure 8).
These geometric operations reduce n and m by one without changing the Euler characteristic: both
the number of edges and the number of vertices are reduced by one while the number of faces is
preserved.

Therefore we will only need to prove the result for the single black vertex case of the induction step.
We wish to show that

E(X̄−1X1X̄−2X2 · · · X̄−nXn) = 4n−1(−2)χ(Γ) , (3.8)

where Γ is a bipartite Möbius graph with a single black vertex and half ribbons labeled by X±k. We
will do this by induction, there are two cases:
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Figure 7: Here two black vertices are connected together through untwisted edges adjacent at a
white vertex. This bipartite Möbius graph reduces to one with one less vertex and one less edge.
The reduction is found by gluing the two black vertices together and gluing the two ribbons together
along their adjacent sides, here labeled by X̄−1 and X j . The same reduction would apply if the two
edges were twisted as we could pass this twist through the white vertex.

Figure 8: Here two black vertices are connected together through one twisted edge and one un-
twisted edge adjacent at a white vertex. This bipartite Möbius graph reduces to one with one less
vertex and one less edge. The reduction is found by gluing the two black vertices together, gluing
the two ribbons together along the sides adjacent at the white vertex, and reversing both the order
and orientations of remaining ribbons on the second black vertex.
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Figure 9: Here we have a black vertex with two ribbons, both twisted or both untwisted, adjacent
at the same white vertex. The reduction glues these two ribbons together along their common side.
The result is a bipartite Möbius graph with one more vertex and one less edge. The resulting graph
may or may not be disconnected at this point.

Case 1: X−1 = X j for 1≤ j ≤ n,

E(X̄−1X1 · · · X̄− jX j · · ·Xn) = E(X̄−1X j)E(ℜ(X1 · · · X̄− j)ℜ(X̄− j−1X j+1 · · ·Xn))

= 4E(ℜ(X̄− jX1 · · ·X j−1)ℜ(X̄− j−1X j+1 · · ·Xn)) .

This corresponds to the reduction of the bipartite Möbius graph pictured in Figure 9, which
for j > 1 splits the single black vertex into two black vertices, and glues the two edges labeled
as X̄−1 and X j together.

The edges (1,−1, j,− j) are adjacent at the white vertex and appear either in this order, or in
the reverse order. Thus after the removal of {−1, j} we get an ordered pair of labels (1,− j) or
(− j, 1) to glue back into a ribbon. On the black vertex, due to our conventions the edges of
the ribbons appear in the following order

((−1,1), (−2,2), . . . , (− j, j), (−k1, k1), . . . , (−kr , kr)).

Once we split the black vertex into two vertices with the edges of ribbons given by
((−1,1), (−2,2), . . . , (− j, j)) and ((−k1, k1), . . . , (−kr , kr)), the removal of {−1, j} creates a
new pair (1,− j) which we use to create the ribbon to the white vertex. [After this step, we
relabel all edges to use again ±1,±2, . . . consecutively.]

We note that the number of faces of the new graph is the same as the previous graph – the
face with the sequence of edges

(. . . , Xkr
, X̄−1, X j , X̄−k1

, . . . )

becomes the face with edges (. . . , Xkr
, X̄−k1

, . . . ) on the new graph. The Euler characteristic
becomes χ2 = (v1+1)− (e1−1)+ f1 = χ1+2 where v1, e1 and f1 are the number of vertices,
edges, and faces of Γ. By the induction assumption we then find

E(X̄−1X1 · · ·Xn) = 4
�

4(n−1)−2(−2)χ2
�

= 4n−2(−2)χ1+2 = 4n−1(−2)χ1 .

Case 2: X−1 = X− j for 1< j ≤ n,

E(X̄−1X1 · · · X̄− jX j · · ·Xn)

= E(X̄−1X̄− j)E(X̄ j−1X− j+1 · · · X̄1X j X̄− j−1X j+1 · · ·Xn)

= (−2)E(X̄ j−1X− j+1 · · · X̄1X j X̄− j−1X j+1 · · ·Xn) .
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Figure 10: Here we have a black vertex with two ribbons, one twisted and the other untwisted,
adjacent at the same white vertex. The reduction glues these two ribbons together along their
common side. The result is a bipartite Möbius graph with one less edge, and with the ribbons on
one side of the removed ribbon now with reversed order and orientations.

This corresponds to the reduction of the Möbius graph pictured in Figure 10, which switches
the order and the orientations of the ribbons on one side of the black vertex from the ±1
and ± j ribbons and glues the two edges adjacent at the white vertex together as shown. As
previously, the removed edges are adjacent at the white vertex. At the black vertex, the labeled
lines for the construction of the bipartite graph change from the sequence

(−1,1), (−2,2), . . . , (− j + 1, j − 1), (− j, j), (−k1, k1), . . . , (−kr , kr)

to the sequence

( j − 1,− j + 1), . . . , (2,−2), (1, j), (−k1, k1), . . . , (−kr , kr)

which then needs to be relabeled to use±1, . . . ,±n. Again the number of faces on the bipartite
graphs is preserved: the face with edges

(. . . , 2,−1,− j, k1, . . . )

becomes the face
(. . . , 2, 1, j, k1, . . . ).

The Euler characteristic becomes χ2 = v1−(e1−1)+ f1 = χ1+1. By the induction assumption
we then find

E(X̄−1X1 · · ·Xn) = (−2)
�

4(n−1)−1(−2)χ2
�

= (−2)4n−2(−2)χ1+1 = 4n−1(−2)χ1 .

With these two cases checked, by the induction hypothesis, the proof is completed.

One should note that this is fundamentally the same proof as in the Wigner case, however in this
case the geometric reduction is given by gluing together two ribbons, while in the Wigner case the
geometric reduction is the elimination of one ribbon at a time. The inductive steps remain the same.
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4 Duality between real and symplectic ensembles

By MM×N (H) we denote the set of all M × N matrices with entries from H. For A ∈ MM×N (H),

the adjoint matrix is A∗i, j := Aj,i . The trace is tr(A) =
∑N

j=1 A j j . Since the traces tr(A) may fail to
commute, in the formulas we will use ℜ(tr(A)), compare to [10].

4.1 Duality between GOE and GSE ensembles

The Gaussian orthogonal ensembles consist of square symmetric matrices, Z, whose independent
entries are independent (real) Gaussian random variables; the off diagonal entries have variance 1
while the diagonal entries have variance 2. One may show that

Theorem B. For Z from the N × N Gaussian orthogonal ensemble:

1

N n−m
E(tr(Z j1)tr(Z j2) . . . tr(Z jm)) =

∑

Γ

Nχ(Γ) ,

where the sum is over labeled Möbius graphs Γ with m vertices of degree j1, j2, . . . , jm, χ(Γ) is the Euler

characteristic and j1 + j2 + · · ·+ jm = 2n. More generally, if Z1, . . . ,Zs are independent N × N GOE

ensembles and t : {1,2, . . . , 2n} → {1, . . . , s} is fixed, then

1

N n−m
E(tr(Zt(1) . . .Zt(β1)

)tr(Zt(α2)
. . .Zt(β2)

)× . . .

· · · × tr(Zt(αm)
. . .Zt(βm)

)) =
∑

Γ

Nχ(Γ) ,

where α1 = 1, αk = j1+ j2+· · ·+ jk−1+1, and βk = j1+ j2+· · ·+ jk denote the ranges under the traces,

and where the sum is over labeled color-preserving Möbius graphs Γ with vertices of degree j1, j2, . . . , jm
whose edges are colored by the mapping t. If there are no Γ that are consistent with the coloring we

interpret the sum as being 0.

The single color version of this Theorem was given in Ref. [8].

The Gaussian symplectic ensembles (GSE) consist of square self-adjoint matrices

Z=
�

Zi, j

�

, (4.1)

where {Zi, j : i < j} is a family of independent H-Gaussian random variables (2.3), {Zi,i} is a family
of independent real Gaussian random variables of variance 2, and Zi, j = Z̄ j,i . The law of such a

matrix has a density C exp(−1
4
ℜtr(x2)), which is supported on the self-adjoint subset ofMN×N (H).

(C = C(N) is a normalizing constant.)

In this section we will demonstrate a multi-matrix version of the theorem of Mulase and Waldron
[21] from our Wick formula. This represents an improvement to the argument of Mulase and
Waldron as we will not need to rely on labelings of the vertices by the quaternions 1, i, j, and k. This
part of their argument is encoded in relations (2.4-2.7).

We will compute here the expected values of the real traces of powers of a quaternionic self-dual
matrix in the Gaussian symplectic ensemble (4.1) where the off-diagonal matrix entries are (2.3).

The basic theorem we will prove is
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Theorem 4.1. For Z from the N × N Gaussian symplectic ensemble:

1

(4N)n−m
E(ℜ(tr(Z j1))ℜ(tr(Z j2)) . . .ℜ(tr(Z jm))) =

∑

Γ

(−2N)χ(Γ) , (4.2)

where the sum is over labeled Möbius graphs Γ with m vertices of degree j1, j2, . . . , jm, χ(Γ) is the Euler

characteristic and j1+ j2+ · · ·+ jm = 2n.

More generally, suppose Z1, . . . ,Zs are independent N × N GSE ensembles and t : {1, . . . , 2n} →

{1, . . . , s} is fixed. Let α1 = 1, αk = j1 + j2 + · · · + jk−1 + 1, βk = j1 + j2 + · · · + jk denote the

ranges under traces. Then

1

(4N)n−m
E
�

ℜ(tr(Zt(1) . . .Zt(β1)
))ℜ(tr(Zt(α2)

. . .Zt(β2)
))× . . .

· · · ×ℜ(tr(Zt(αm)
. . .Zt(βm)

))
�

=
∑

Γ

(−2N)χ(Γ) , (4.3)

where the sum is over labeled color-preserving Möbius graphs Γ with vertices of degree j1, j2, . . . , jm
that are colored with s colors by the mapping t. As previously, χ(Γ) is the Euler characteristic and

j1 + j2 + · · ·+ jm = 2n. (If there are no Γ that are consistent with the coloring t, we interpret the sum

as 0.)

In view of Theorem B, Theorem 4.1 gives the duality between the GOE and GSE ensembles of
random matrices as N →−2N .

Example 4.1. To illustrate the multi-matrix aspect of the theorem, suppose Z1,Z2 are independent
N × N GSE ensembles and X1,X2 are independent N × N GOE ensembles. For p, r, k ≥ 0 let
bp,r,k(N) := E((tr(X2p

1 X2r
2 ))

k). By Theorem B, bp,r,k(N) = N (p+r−1)k
∑

Γ Nχ(Γ). Therefore Theo-
rem 4.1 implies that the moments for the independent GSE ensembles are determined from the
corresponding moments of independent GOE ensembles by the “dual formula”

E((tr(Z2p

1 Z2r
2 ))

k) = (−2)(p+r−1)k bp,r,k(−2N).

In particular,
E(tr(Z2p

1 )) = (−2)p−1 bp,0,1(N).

This is equivalent to [17, Theorem 6] with cp(N) = E(tr(Z
2p))/2p; an extra factor of 2p in our

formula is due to the fact that the symplectic ensemble in [17] has the variance of 1/2 instead of
our choice of 1.

Proof of Theorem 4.1. We begin by expanding out the traces in terms of the matrix entries

N m

4n−m
E(ℜ(tr(Z j1))ℜ(tr(Z j2)) . . .ℜ(tr(Z jm))) = (4.4)

=
∑

1≤ a1, a2, . . . , a j1
≤ N

1≤ b1, b2, . . . , b j2
≤ N

...
1≤ c1, c2, . . . , c jm

≤ N

1
(4n)n−mE(ℜ(Za1,a2

Za2,a3
. . . Za j1

,a1
)ℜ(Zb1,b2

. . . Zb j2
,b1
)× . . .

· · · ×ℜ(Zc1,c2
. . . Zc jm

,c1
)) .
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Note that essentially the same expansion applies to (4.3), except that the consecutive entries Z
(t)

i, j
must now be labeled also by the “color" t. It is then better to index the products by the cycles of a
permutation. Put

σ = (1, . . . ,β1)(α2, . . . ,β2) . . . (αm, . . . , 2n) .

In this notation, the expansion of the left hand side of (4.3) takes the form

∑

a:{1...2n}→{1...N}

E







∏

c∈σ

ℜ(
∏

j∈c

[Zt( j)]a( j),a(σ( j)))






.

(Since ℜ has the cyclic property 2.2, this expression is well defined.)

From (2.10) it follows that the right hand side of (4.4) can be expanded as a sum over all pairings,
and we can assume that the pairs are independent.

Of course, pairings that match two independent random variables do not contribute to the sum. The
pairings that contribute to the sum are of three different types: pairs that match Z with another Z at
a different position in the product, pairs that match Z with Z̄ , and pairings that match the diagonal
(real) entries.

We first dispense with the pairings that match a diagonal entry Zi,i = ξ with another diagonal entry
Z j, j = ξ. Since real numbers commute with quaternions,

ℜ(E(q0ξq1ξq2)) = E(ξ
2)ℜ(q0q1q2) = 2ℜ(q0q1q2).

On the other hand, using the cyclic property of ℜ(·) and adding formulas (2.4) and (2.5), we see
that the same answer arises from

Eℜ(q0Zq1Zq2) +Eℜ(q0Zq1 Z̄q2) = Eℜ(Zq1Zq2q0) +Eℜ(Zq1 Z̄q2q0) = 2ℜ(q1q2q0).

So the contribution of each such diagonal pairing is the same as that of two matches of quaternionic
entries (Z , Z) and (Z , Z̄).

Thus, once we replace all the real entries that came from the diagonal entries by the corresponding
quaternion-Gaussian pairs, we get the sum over all possible pairs of matches of the first two types
only. We label all such pairings by Möbius graphs, with the interpretation that pairings or random
variables (Z , Z) correspond to twisted ribbons, while pairings (Z , Z̄) correspond to ribbons without
a twist. The pairs of variables at different ribbons can now be assumed independent. In the multi-
matrix case, the edges of the graph at each vertex are colored according to the function t, which
restricts the number of available pairings.

We now relabel the Zi, j by Zak ,ak+1
= Xk, Zbk ,bk+1

= X j1+k, . . . , Zck ,ck+1
= X j1+ j2+... jm−1+k. Our claim

is then that given a Möbius graph Γ with vertices of degree j1, j2, . . . , and jm with edges labeled by
Xk, satisfies

1

(4N)n−m
E(ℜ(X1 . . . X j1

)ℜ(X j1+1 . . . X j1+ j2
) . . .ℜ(X j1+···+ jm−1+1 . . . X2n))

= (−2N)χ(Γ)N− f (Γ) , (4.5)

where f (Γ) is the number of faces of Γ. The N− f (Γ) terms are removed by the summations in (4.4),
the relations given by the edges of Γ reduce the number of summations leaving us with f (Γ) sums
from 1 to N . Collecting the powers of N we find that this is the same as (3.2).
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Figure 11: For the Wishart applications we will label the sides of the ribbons emanating from a
black vertex. One side receives the label Xnkmk

while the other receives the label X̄mknk+1
. Note that

the interior index, mk, of the two labels on each ribbon match; while the exterior index, nk, of the
labels on ribbons adjacent at a black vertex match.

4.2 Duality between the Laguerre Ensembles

We will now consider the analogous problem for quaternionic Wishart random matrices. These are
N × N matrices of the form

W= X∗X , (4.6)

where X is an M × N matrix with independent H-Gaussian entries (2.3). The Wick formula (2.10)
in this case is expressed in terms of bipartite Möbius graphs defined in section 3.3; although in this
case it is helpful to view our labeling of the ribbons around each black vertex in a slightly different
way (see Figure 11). Our heuristic is the following: when edges are glued to a white vertex we
identify the labels on the interior of each ribbon as all equal, while the labels on the outside of each
ribbon are equal to the others which border the same face. The reason for this dichotomy is that
X is not a square matrix and therefore the n j ’s and m j ’s are to be treated as separate families of
variables.

In the multi-matrix case, we color the ribbons by the number of a matrix, and color the white vertices
so that only the ribbons of matching color can be attached.

For example,

E(tr(W)) =
M
∑

m=1

N
∑

n=1

E(X ∗nmXmn) = 4MN

corresponds to the bipartite Möbius graph in Figure 12. As another example
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Figure 12: The only possible bipartite Möbius graph with a single black vertex of degree one. In
this case the graph is embedded on a copy of the Riemann sphere.

Figure 13: The three possible bipartite Möbius graphs with a single black vertex of degree two. In
the top two cases the graph is embedded on a copy of the Riemann sphere, while in the bottom case
the graph is embedded on a copy of the projective sphere.

E(tr(W2)) =

M
∑

m1,m2=1

N
∑

n1,n2=1

E(X ∗n1m1
Xm1n2

X ∗n2m2
Xm2n1

)

=

M
∑

m1,m2=1

N
∑

n1,n2=1

h

E(X ∗n1m1
Xm1n2

)E(X ∗n2m2
Xm2n1

)

+E(X ∗n1m1
X ∗n2m2

)E(X̄m1n2
Xm2n1

)

+E(X ∗n1m1
Xm2n1

)E(Xm1n2
X ∗n2m2

)
i

= 16N M2− 8N M + 16N2M ,

corresponds to the bipartite Möbius graphs in Figure 13.

In this case our theorem takes the form.

Theorem 4.2. With M = λN we find

E(tr(W j1)tr(W j2) · · · tr(W jm)) = N n−m4n−m
∑

Γ

λw(Γ)(−2N)χ(Γ) ,
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where the sum is over the bipartite Möbius graphs with black vertices having degrees j1, j2, . . . , jm,

n= j1+ j2+ · · ·+ jm is the number of edges, w(Γ) is the number of white vertices, and χ(Γ) is the Euler

characteristic.

More generally, suppose that W1,W2, . . . ,Ws are N × N independent quaternionic Wishart with pa-

rameters M1, . . . , Ms. Denote λ j = M j/N. Fix t : {1, . . . , n} → {1, . . . , s}, and let α1 = 1,

αk = j1+ j2+ · · ·+ jk−1 + 1, βk = j1+ j2+ · · ·+ jk denote the ranges under traces. Then

1

(4N)n−m
E
�

ℜ(tr(Wt(1) . . .Wt(β1)
))ℜ(tr(Wt(α2)

. . .Wt(β2)
))× . . .

· · · ×ℜ(tr(Wt(αm)
. . .Wt(βm)

))
�

=
∑

Γ

λ
w1(Γ)

1 λ
w2(Γ)

2 . . .λws(Γ)
s (−2N)χ(Γ), (4.7)

where the sum is over the bipartite Möbius graphs with m black vertices of degrees j1, . . . , jm, whose

ribbons are colored according to t by one of the colors 1, . . . , s, and with white vertices that are colored to

match the ribbons. Here w j(Γ) is the number of white vertices of color j, χ(Γ) is the Euler characteristic

and j1+ j2+ · · ·+ jm = n is the number of edges/ribbons.

Proof. We begin by expanding out the traces in terms of the matrix entries of X where W= X∗X and
X is an M × N matrix of quaternionic Gaussian random variables

N m−n

4n−m
E(tr(W j1)tr(W j2) · · · tr(W jm)) = (4.8)

∑

1≤ a1, a2, . . . , a j1
≤ N

1≤ A1,A2, . . . ,A j1
≤ M

1≤ b1, b2, . . . , b j2
≤ N

1≤ B1, B2, . . . , B j2
≤ M

...
1≤ C1, C2, . . . , C jm

≤ M

N m−n

4n−m E(ℜ([X
∗]a1A1

[X]A1a2
[X∗]a2A2

[X]A2a3
. . . [X∗]a j1

A j1
[X]A j1

a1
)

ℜ([X∗]b1B1
. . . [X]B j2

b1
) . . .ℜ([X∗]c1C1

. . . [X]C jm
c1
)) .

Note that a similar expansion would be found for a multi matrix expression, see below.

From (2.10) it follows that (4.8) can be expanded as a sum over all pairings, and we can assume
that the pairs are independent.

We label all such pairings by bipartite Möbius graphs, that is Möbius graphs with labeled black
vertices of degree j1, j2, . . . , jm, and unlabeled white vertices of any degree. The half edges of each
graph are labeled by X̄A1a1

= X̄−1, XA1a2
= X1 and so on. The relations given by this Möbius graph

reduce the number of sums over capital indices (which go from 1 to M) to w(Γ) the number of
white vertices, and reduce the number of sums over lower case indices (which go from 1 to N) to
f (Γ) the number of faces of Γ. Therefore from Theorem 3.2, with M = λN , the total contribution
from the Wishart Möbius graph Γ to the sum is

N m−n

4n−m

�

4n−mλw(Γ)(−2)χ(Γ)
�

N w(Γ)+ f (Γ) = λw(Γ)(−2N)χ(Γ) ,

as χ(Γ) = m+w(Γ)− n+ f (Γ).

472



The multimatrix version of this proof requires no conceptual changes, but the notation becomes
more cumbersome. In this case it is more convenient to index the products by the cycles of a
permutation. Put

σ = (1, . . . ,β1)(α2, . . . ,β2) . . . (αm, . . . , n).

In this notation, the expansion on the right hand side of (4.8) is replaced by

∑

a:{1...n}→{1...N}

E







∏

c∈σ

ℜ(
∏

j∈c

[Wt( j)]a( j),a(σ( j)))







=
∑

a:{1...n}→{1...N}

∑

b∈B(t)

E







∏

c∈σ

ℜ(
∏

j∈c

[Xt( j)]b( j)a( j)[Xt( j)]b( j),a(σ( j)))






,

whereB(t) = {1, . . . , Mt(1)} × {1, . . . , Mt(2)} × · · · × {1, . . . , Mt(n)}.

From (2.10) the expected value can again be expanded as a sum over the pairings, where we can
assume that the pairs are independent random variables and the pairings connect only the random
variables of the same color t( j). For each bipartite Möbius graph Γ, the sum over b ∈ B(t) con-

tributes a factor of M
w j(Γ)

j
per color, where w j(Γ) is the number of vertices of color j in Γ, while the

sum over a contributes N f (Γ), as in the one-matrix case. Therefore from Theorem 3.2, the left hand
side of (4.7) becomes

(4N)m−n
∑

Γ

M
w1(Γ)

1 . . . M ws(Γ)
s N f (Γ)4n−m(−2)χ(Γ)

= N m−n
∑

Γ

N w(Γ)+ f (Γ)(−2)χ(Γ)
s
∏

j=1

λ
w j(Γ)

j

=
∑

Γ

N w(Γ)+m+ f (Γ)−n(−2)χ(Γ)
s
∏

j=1

λ
w j(Γ)

j

=
∑

Γ

N v(Γ)+ f (Γ)−e(Γ)(−2)χ(Γ)
s
∏

j=1

λ
w j(Γ)

j
=
∑

Γ

(−2N)χ(Γ)
s
∏

j=1

λ
w j(Γ)

j
.

We remark that the result is again in duality to the formula for real Wishart matrices, where the
analogue of (4.7) has the following form:

1

N n−m
E
�

tr(Wt(1) . . .Wt(β1)
)tr(Wt(α2)

. . .Wt(β2)
)× . . .

· · · × tr(Wt(αm)
. . .Wt(βm)

)
�

=
∑

Γ

λ
w1(Γ)

1 λ
w2(Γ)

2 . . .λws(Γ)
s Nχ(Γ). (4.9)

For the one-matrix case this can be read out from [10]. For the multivariate case this is a reinter-
pretation of [2, Theorem 2.10].

The following illustrates a one-matrix version of this duality.
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Example 4.2. Suppose WR is N × N real Wishart matrix with parameter M , and let

QRj1,..., jm
(M , N) = E(tr(W

j1
R
)tr(W j2

R
) · · · tr(W

jm
R
)).

If WH is N × N quaternion Wishart matrix with parameter M , and n = j1 + · · ·+ jm, then (4.9) and
(4.7) give

E(tr(W
j1
H
)tr(W j2

H
) · · · tr(W

jm
H
)) = (−2)n−mQRj1,..., jm

(−2M ,−2N).

This is equivalent to [10, Corollary 4.2], as with λ= ( j1, j2, . . . , jm) in their notation

QHj1,..., jm
(M , N) = 2−n

E(tr(W
j1
H
)tr(W j2

H
) · · · tr(W

jm
H
))

= (−1)n−m2−mQRj1,..., jm
(−2M ,−2N);

an extra factor of 2n in our formula is due to the fact that the quaternion Gaussian law in [10] has
the variance of 1/2 instead of our choice of 1.
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