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Abstract

The paper is concerned with the classical occupancy scheme with infinitely many boxes, in

which n balls are thrown independently into boxes 1,2, . . ., with probability p j of hitting the

box j, where p1 ≥ p2 ≥ . . . > 0 and
∑∞

j=1
p j = 1. We establish joint normal approximation as

n→∞ for the numbers of boxes containing r1, r2, . . . , rm balls, standardized in the natural way,

assuming only that the variances of these counts all tend to infinity. The proof of this approx-

imation is based on a de-Poissonization lemma. We then review sufficient conditions for the

variances to tend to infinity. Typically, the normal approximation does not mean convergence.

We show that the convergence of the full vector of r-counts only holds under a condition of reg-

ular variation, thus giving a complete characterization of possible limit correlation structures.
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1 Introduction

In the classical occupancy scheme with infinitely many boxes, balls are thrown independently into

boxes 1,2, . . ., with probability p j of hitting the box j, where p1 ≥ p2 ≥ . . . > 0 and
∑∞

j=1 p j = 1.

The most studied quantity is the number of boxes Kn occupied by at least one out of the first n

balls thrown. It is known that for large n the law of Kn is asymptotically normal, provided that

Var[Kn] → ∞; see [6; 7] for references and a survey of this and related results. In this paper, we

investigate the behaviour of the quantities Xn,r , the numbers of boxes hit by exactly r out of the n

balls, r ≥ 1.

Under a condition of regular variation, a multivariate CLT for the Xn,r ’s was proved by Karlin [8].

Mikhailov [12] also studied the Xn,r ’s, but in a situation where the p j ’s vary with n. In this paper,

we establish joint normal approximation as n → ∞ for the variables Xn,r1
, . . . , Xn,rm

, centred and

normalized, assuming only that limn→∞ Var Xn,ri
=∞ for each i. We also give examples to show that

this condition is not enough to ensure convergence, since the correlation matrices need not converge

as n→∞. The asymptotic behaviour of the moments of the Xn,r is thus of key importance, and we

discuss this under a number of simplifying assumptions.

The behaviour of these moments, as also of those of Kn =
∑∞

r=1 Xn,r , depends on the way in which

the frequencies p j decay to 0. In the case of power-like decay, p j ∼ c j−1/α with 0 < α < 1, it is

known that, for each fixed k, the moments EX k
n,r have the same order of growth with n for every r,

and this is the same order of growth as that of EKk
n ; moreover, the limit distributions of Kn and of

Xn := (Xn,1, Xn,2, . . .) are normal [6; 8]. In contrast, for a sequence of geometric frequencies p j = cq j

(0 < q < 1), there is no way to scale the Xn,r ’s to obtain a nontrivial limit distribution [10], and

the moments of Kn have oscillatory asymptotics. In a more general setting such that the p j ’s have

exponential decay, the oscillatory behaviour of Var[Kn] is typical [3]. The spectrum of interesting

possibilities is, however, much wider: for instance, frequencies p j ∼ ce− jβ , with 0 < β < 1, exhibit

a decay intermediate between power and exponential.

Karlin’s [8] multivariate CLT for Xn applies when the index of regular variation is in the range

0 < α < 1. We complement this by the analysis of the cases α = 0 and α = 1, showing that

for each α ∈ [0,1] there is exactly one possible normal limit. Finally, we prove that these one-

parameter normal laws are the only possible limits of naturally scaled and centred Xn. Specifically,

we show that a regular variation condition holds if Var Xn,r →∞ for all r and if all the correlations

{Corr (Xn,r , Xn,s), r, s ≥ 1} converge.

2 Poissonization

As in much previous work, we shall rely on a closely related occupancy scheme, in which the balls

are thrown into the boxes at the times of a unit Poisson process. The advantage of this model is that,

for every t > 0, the processes (N j(t) , t ≥ 0), counting the numbers of balls in boxes j = 1,2, . . .,

are independent. Let Yr(t) be the number of boxes occupied by exactly r balls at time t. In view of

the representation

Yr(t) =

∞
∑

j=1

1[N j(t) = r] (2.1)
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with independent Bernoulli terms, it follows that

Y ′r (t) := (Yr(t)−E[Yr(t)])/
p

Var[Yr(t)] →d N (0,1) as t →∞ (2.2)

if and only if Var[Yr(t)] → ∞. This suggests that normal approximation can be approached most

easily through the Yr(t), provided that the de-Poissonization can be accomplished. We now show

that this is indeed the case.

Let L (·) denote the probability law of a random element, dTV the distance in total variation.

Lemma 2.1. For any m, k ∈ N satisfying m≤ 1

2
npk, we have

dTV(L (Xn,1, . . . , Xn,m),L (Y1(n), . . . , Ym(n))) ≤ πk + 2ke−npk/10,

where π j :=
∑∞

i= j+1 pi .

Proof. We begin by noting that, in parallel to (2.1),

Xn,r :=

∞
∑

j=1

1[Mn, j = r], (2.3)

where Mn, j represents the number of balls out of the first n thrown that fall into box j. Our proof

uses lower truncation of the sums (2.1) and (2.3) that define Yr(n) and Xn,r .

Since Mn, j ∼ Binomial(n, p j), it follows from the Chernoff inequalities [5] that, if m ≤ 1

2
npk, then

for j ≤ k

P[Mn, j ≤ m] ≤ P[Mn, j ≤ 1

2
np j] ≤ exp{−np j/10} ≤ exp{−npk/10},

since the p j are decreasing, and m≤ 1

2
npk; and the same bound holds also for N j(n)∼ Poisson(np j).

Hence, defining

Xn,k,r :=

∞
∑

j=k+1

1[Mn, j = r], Yk,r(t) :=

∞
∑

j=k+1

1[N j(t) = r],

it follows that

dTV(L (Xn,1, . . . , Xn,m),L (Xn,k,1, . . . , Xn,k,m)) ≤ ke−npk/10; (2.4)

dTV(L (Y1(t), . . . , Ym(t)),L (Yk,1(t), . . . , Yk,m(t))) ≤ ke−t pk/10. (2.5)

But now, from an inequality of Le Cam [4] and Michel [11], we have

dTV(L (N j(n), j ≥ k+ 1),L (Mn, j , j ≥ k+ 1)) ≤ πk, (2.6)

and the Xn,k,r are functions of {Mn, j , j ≥ k+ 1}, the Yk,r(n) of {N j(n), j ≥ k+ 1}. The lemma now

follows from (2.4),(2.5) and (2.6). �

Proposition 2.2. Let k(n) be any sequence satisfying

k(n)→∞ and k(n)e−npk(n)/10→ 0.

Then, for any sequence m(n) satisfying m(n)≤ 1

2
npk(n) for each n, it follows that

dTV(L (Xn,1, . . . , Xn,m(n)),L (Y1(n), . . . , Ym(n)(n))) → 0. (2.7)
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Proof. Since m(n) ≤ 1

2
npk(n) for each n, it follows that Lemma 2.1 can be applied for each n. Since

k(n) → ∞, it follows that πk(n) → 0, so that the first element in its bound converges to zero; the

second converges to zero also, by assumption. �

Remark. Such sequences k(n) always exist. For instance, one can take

k(n) =max{k : 20 log k/pk ≤ n}.

For this choice, it is immediate that k(n) → ∞, and that npk(n) ≥ 20 log k(n) → ∞, entailing also

that k(n)e−npk(n)/10 ≤ 1/k(n)→ 0. Hence there are always sequences m(n)→∞ for which (2.7) is

satisfied.

Hence, in particular, any approximation to the distribution of a finite subset of the components

of Y (n) = (Y1(n), Y2(n), . . .) (suitably scaled) remains valid for the corresponding components of Xn,

at the cost of introducing an extra, asymptotically negligible, error in total variation of at most

πk(n)+ 2k(n)e−npk(n)/10, (2.8)

where k(n) is any sequence satisfying the conditions of Proposition 2.2.

3 Normal approximation

As noted above, the distribution of Yr(t) is asymptotically normal as t →∞ whenever Var Yr(t)→
∞. Here, we consider the joint normal approximation of any finite set of counts Yr1

(t), . . . , Yrm
(t)

such that ri ≥ 1 and limt→∞ Var Yri
(t) = ∞ for each 1 ≤ i ≤ m. We measure the closeness of two

probability measures P and Q on Rm in terms of differences between the probabilities assigned to

arbitrary convex sets:

dc(P,Q) := sup
A∈C
|P(A)−Q(A)|,

where C denotes the class of convex subsets of Rm. Let

Φr(t) := EYr(t), Vr(t) := Var Yr(t), Crs(t) := Cov (Yr(t), Ys(t))

denote the moments of the Yr(t), and let

Σrs(t) := Crs(t)/
p

Vr(t)Vs(t) = Cov (Y ′r (t), Y ′s (t))

denote the covariance matrix of the standardized random variables Y ′r (t) as in (2.2).

Now the random vector (Y ′r1
(t), . . . , Y ′rm

(t)) is a sum of independent mean zero random vectors

(Y ′
l,r1
(t), . . . , Y ′

l,rm
(t)), l ≥ 1, where Y ′

l,r
(t) := (1[Nl(t) = r]− pl,r(t))/

p

Vr(t), and

pl,r(t) := P[Nl(t) = r] = e−t pl
(t pl)

r

r!
. (3.1)

A theorem of Bentkus [1, Thm. 1.1] then shows that

dc(L (Y ′r1
(t), . . . , Y ′rm

(t)),MVN m(0,ΣR(t))) ≤ Cm1/4βt ,
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for an absolute constant C , where

βt :=
∑

l≥1

βt,l and βt,l := E|Σ−1/2
R (t)(Y ′l,r1

(t), . . . , Y ′l,rm
(t))T |3,

and ΣR(t) denotes the m×m matrix with elements {Σrs(t), r, s ∈ R := {r1, . . . , rm}}. Applying this

result, we obtain the following theorem.

Theorem 3.1. If limt→∞ Vri
(t) =∞ for each 1 ≤ i ≤ m, where 1 ≤ r1 < . . . < rm, then, as t and n

tend to∞,

dc(L (Y ′r1
(t), . . . , Y ′rm

(t)),MVN m(0,ΣR(t))) = O
�

1
.

min
1≤i≤m

p

Vri
(t)
�

→ 0;

dc(L (X ′n,r1
, . . . , X ′n,rm

),MVN m(0,ΣR(n))) = O
�

πk(n)+ 2k(n)e−npk(n)/10+
n

1
.

min
1≤i≤m

p

Vri
(n)
o�

→ 0,

where k(n) is any sequence chosen as for Proposition 2.2 and satisfying max1≤ j≤m r j ≤ 1

2
npk(n) for

each n. If, in addition, ΣR(t)→ ΣR as t →∞, for some fixed ΣR, then

(Y ′r1
(t), . . . , Y ′rm

(t)) →d MVN m(0,ΣR) and (X ′n,r1
, . . . , X ′n,rm

) →d MVN m(0,ΣR).

Proof. All that we need to do is to control the quantity βt . This in turn involves bounding the

smallest eigenvalue of ΣR(t) away from 0. Now direct calculation shows that, for any column vector

a ∈ Rm,

aTΣR(t) a = Var
�

m
∑

j=1

a jY
′
r j
(t)
�

=
∑

l≥1

Var
�

m
∑

j=1

a jY
′
l,r j
(t)
�

.

Using the definition of Y ′
l,r
(t), this gives

aTΣR(t) a =
∑

l≥1

n

pl,R(t)El,R,t(U2)− {pl,R(t)}2 {El,R,t(U)}2
o

,

where pl,R(t) :=
∑

r∈R pl,r(t) and, under the measure Pl,R,t , U takes the value a j/
p

Vr j
(t) with

probability pl,r j
(t)/pl,R(t), 1≤ j ≤ m. This in turn implies that

aTΣR(t) a ≥
∑

l≥1

pl,R(t)(1− pl,R(t))El,R,t(U2),

and since

E
l,R,t(U2) =

m
∑

j=1

pl,r j
(t) a2

j

pl,R(t)Vr j
(t)

,

it follows that

aTΣR(t) a ≥
∑

l≥1

(1− pl,R(t))

m
∑

j=1

pl,r j
(t) a2

j

Vr j
(t)

≥ min
l≥1
(1− pl,R(t)) aT a,
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since Vr(t)≤
∑

l≥1 pl,r(t). However, for each l, pl,R(t)≤ 1−pl,0(t)−
∑

j>rm
pl, j(t), and (pl,r(t), r ≥

1) are just the Poisson probabilities (3.1). Hence 1 − pl,R(t) ≥ e−1 if t pl ≤ 1, and 1 − pl,R(t) ≥
q(rm) := Poisson(1){[rm+ 1,∞)} if t pl > 1, implying that

min
l≥1
(1− pl,R(t)) ≥ cR := min{e−1,q(m)} > 0,

for all t. It thus follows that aTΣR(t)a ≥ cRaT a for all a ∈ Rm.

It is now immediate that, for any x ∈ Rm, |Σ−1/2
R (t)x | ≤ c

−1/2
R |x |, and hence, since |Y ′

l,r
(t)| ≤

1/
p

Vr(t) a.s., we have

|Σ−1/2
R (t)(Y ′l,r1

(t), . . . , Y ′l,rm
(t))T |3 ≤ c

−3/2
R

∑m

j=1{Y ′l,r j
(t)}2pm

min1≤i≤m

p

Vri
(t)

;

taking expectations and adding over l ≥ 1 gives βt ≤ (m/cR)
3/2/min1≤i≤m

p

Vri
(t), proving the first

statement of the theorem. The second follows in view of (2.8). �

Thus multivariate normal approximation is always good if the variances of the (unstandardized)

components Yr(t) are large. However, convergence typically does not take place: see a series of

examples in Proposition 4.4 below.

4 Moments

For normal approximation, in view of Theorem 3.1, we are particularly interested in conditions

under which Vr(t)→∞.

For the moments we have the formulas

Φr(t) =

∞
∑

j=1

p j,r(t), (4.1)

Vr(t) =

∞
∑

j=1

p j,r(t)
�

1− p j,r(t)
�

= Φr(t)− 2−2r

�

2r

r

�

Φ2r(2t), (4.2)

Crs(t) = −2−r−s

�

r + s

r

�

Φr+s(2t), r 6= s, (4.3)

where, as above, p j,r(t) = e−t p j (t p j)
r/r!.

From (4.1) and (4.2) we obtain

Φr(t) > Vr(t) > krΦr(t),

with kr > 0, as is seen by evaluating maxx≥0 e−x x r/r! and using the inequalities

1 ≥ 1−
e−t p j (t p j)

r

r!
≥ 1−

e−r r r

r!
> 0.
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It follows that

Vr(t)→∞ ⇐⇒ Φr(t)→∞;

hence, as long as only the convergence to infinity of Vr(t) is concerned, we can deal with the simpler

quantity Φr(t). This facilitates the proof of the following theorem, showing how the asymptotic

behaviour of Vr(t) for different values of r is structured.

Theorem 4.1. The asymptotic behaviour of the quantities Vr(t) as t →∞ follows one of the following

four regimes:

1. limt→∞ Vr(t) =∞ for all r ≥ 1;

2. lim supt→∞ Vr(t) =∞ for all r ≥ 1, and there exists an r0 ≥ 1 such that lim inft→∞ Vr(t) =∞
for all 1≤ r ≤ r0, and lim inft→∞ Vr(t)<∞ for all r > r0;

3. lim supt→∞ Vr(t) =∞ and lim inft→∞ Vr(t)<∞ for all r ≥ 1;

4. supt Vr(t)<∞ for all r ≥ 1.

Proof. Replacing Vr with Φr for the argument, the formula (4.1) yields

Φr(t) =
∑

j≥1

e−t p j
(t p j)

r

r!
; Φs(t/2) =

∑

j≥1

e−t p j/2
(t p j/2)

s

s!
.

For s < r, the ratio of the individual terms is given by

e−t p j/2(t p j/2)
s/s!

e−t p j (t p j)
r/r!

≥ min
y>0
{e y/2 y−(r−s)}

r!

s!2s
=

�

e

r − s

�r−s r!

s!2r
.

Hence, for all s < r,

Φs(t/2) ≥ Φr(t)

�

e

r − s

�r−s r!

s!2r
. (4.4)

It now follows that if, for some r, limt→∞ Vr(t) =∞, then limt→∞ Vs(t) =∞ for all 1 ≤ s ≤ r also;

and that, if supt Vr(t) < ∞ for some r, then supt Vs(t) < ∞ for all s > r. Hence, to complete the

proof, we just need to show that, if supt Vr(t)<∞ for some r ≥ 1, then supt V1(t)<∞.

For this last part, write Φr(t) = Lr(t) + Rr(t), where

Lr(t) :=
∑

j : t p j≥1

e−t p j (t p j)
r/r! ; Rr(t) :=

∑

j : t p j<1

e−t p j (t p j)
r/r! . (4.5)

Suppose that supt Φr(t) = K <∞. Then, for every t > 0,

L1(t) ≤ r! Lr(t) ≤ r!Φr(t) ≤ K r! . (4.6)

It thus remains to bound R1(t), which in turn can be reduced to finding a bound for

S(t) :=
∑

j : t p j<1

t p j .

371



Let a0 ≥ a1 ≥ . . . ≥ 0 be any decreasing sequence such that a j/a j+h ≥ 2 holds for some h ≥ 1 and

all j ≥ 1. Then aih+m ≤ am2−i for every i ≥ 0 and 0 ≤ m < h. Splitting the a j ’s into h subsequences

that are dominated by the geometric series, we thus have

∑

j≥0

a j ≤
h
∑

m=0

2am ≤ 2a0h.

Now if, for some h≥ 1, the frequencies p j satisfy

p j/p j+h ≥ 2 for all j ≥ 1, (4.7)

then applying the above result to the sequence a j = t p j+min{i:t pi<1} for any t yields the bound

R1(t)< S(t)< 2h, since a0 < 1.

On the other hand, if p j/p j+h < 2 for some j and h, then it follows from p j ≥ p j+1 ≥ . . . ≥ p j+h >

p j/2 that

L1(2/p j) >

j+h
∑

k= j

e−2pk/p j
2pk

p j

> e−2(h+ 1).

Thus, for any h such that e−2(h+ 1) > Kr! , we see that (4.7) must hold, since otherwise (4.6)

would be violated for t = 2/p j . Hence it follows that R1(t) < S(t) < 2e2Kr! , and the final part of

the lemma is proved. �

In particular, in Theorem 3.1, the quantity min1≤i≤m

p

Vri
(t) can thus be replaced in the error

estimates by Φrm
(2t).

We now turn to finding conditions sufficient for distinguishing the asymptotic behaviour of the Vr(t).

To do so, introduce the measures

νr(dx) =

∞
∑

j=1

pr
jδp j
(dx).

Two special cases are ν0, a counting measure, and ν1, the probability distribution of a size-biased

pick from the p j ’s. For r > 0 write (4.1) as

Φr(t) =
t r

r!

∫ ∞

0

e−t x x rν0(dx) =
t r

r!

∫ ∞

0

e−t xνr(dx) =
t r+1

r!

∫ ∞

0

e−t xνr[0, x]dx . (4.8)

Comparing with standard gamma integrals, it is then immediate that

lim inf
x→0

νr[0, x]

x r
≤ lim inf

t→∞
Φr(t) ≤ lim sup

t→∞
Φr(t) ≤ lim sup

x→0

νr[0, x]

x r
. (4.9)

This, together with Theorem 4.1, enables us to conclude the following conditions for the conver-

gence to infinity of Φr(t), and hence equivalently of Vr(t), expressed in terms of the accessible

quantities

ρ j,r :=
1

pr
j

∞
∑

i= j+1

pr
i .
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Lemma 4.2.

(a) supt≥0Φs(t)<∞ for all s ≥ 1 if and only if, for some (and then for all) r ≥ 1, sup j ρ j,r <∞.

(b) If, for some r ≥ 1, lim j→∞ρ j,r =∞, then limt→∞Φs(t) =∞ for all 1≤ s ≤ r.

Proof. If p j+1 ≤ x < p j then

ρ j,r =
νr[0, p j+1]

pr
j

=
νr[0, x]

pr
j

<
νr[0, x]

x r
≤
νr[0, p j+1]

pr
j+1

= 1+ρ j+1,r .

Hence (4.9) can be replaced by the inequalities

lim inf
j→∞

ρ j,r ≤ lim inf
t→∞

Φr(t) ≤ lim sup
t→∞

Φr(t) ≤ 1+ lim sup
j→∞

ρ j,r . (4.10)

Part (b) of the lemma now follows directly from Theorem 4.1.

For part (a), much as for the last part of the proof of Theorem 4.1, define

h( j) :=max{l ≥ 0: p j+l/p j ≥ 1/2}; h∗ := sup
j

h( j).

Then it is immediate that

2−rh( j) ≤ ρ j,r ≤ h∗
∑

l≥1

2−(l−1) = 2h∗,

so that h∗ <∞ if and only if sup j ρ j,r <∞ for some, and then for all, r ≥ 1. We now conclude the

proof by showing that supt≥0Φs(t)<∞ for all s ≥ 1 if and only if h∗ <∞. Defining Lr(t) and Rr(t)

as in (4.5), we observe that, if h∗ <∞, then

Rr(t) ≤ h∗
∑

l≥1

2−r(l−1) ≤ 2h∗ and Lr(t) ≤ h∗
∑

l≥1

e−2l−1 2l r

r!
,

so that Φr(t) = Lr(t) + Rr(t)<∞ for all r ≥ 1. On the other hand,

Lr(1/p j+h( j)) ≥ e−2h( j)/r! ,

implying that, if h∗ =∞, then lim supt→∞Φr(t) =∞ for all r ≥ 1. �

The familiar ratio test yields simpler sufficient conditions. Thus supt Φr(t)<∞ for all r ≥ 1 if

lim sup
j→∞

p j+1/p j < 1,

while limt→∞Φr(t) =∞ for all r ≥ 1 if

lim
j→∞

p j+1/p j = 1.

For instance, for p j = cq j , the geometric distribution with 0 < q < 1, we have p j+1/p j = q; hence

supt Φr(t) < ∞ for all r, and normal approximation is not adequate for any r. This illustrates

possibility 4 in Theorem 4.1. For the Poisson distribution p j = cλ j/ j! , we even have p j+1/p j → 0,

and so normal approximation is no good here, either.

Continuing this line, we obtain a further set of conditions.
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Lemma 4.3. (a) Suppose for some 0< λ < 1

lim inf
j→∞

p j+h

p j

> λ (4.11)

for every h≥ 1. Then Φr(t)→∞ as t →∞ for all r ≥ 1.

(b) The condition lim supt→∞Φr(t) < ∞ holds for some (hence for all) r ≥ 1 if and only if there

exists h≥ 1 such that

lim sup
j→∞

p j+h

p j

≤
1

2
. (4.12)

Proof. For part (a), assume that ν0(λx , x) = #{ j : λx < p j < x} →∞ as x → 0. Then also

Φr(1/x)≥
∑

{ j:λx<p j<x}
e−p j/x(p j/x)

r/r!≥ ν0(λx , x) min
{y:λ<y<1}

[e−y y r/r!]→∞.

As x decreases, the piecewise-constant function ν0(λx , x) may have downward jumps only at the

values x ∈ {p j}, hence the assumption is equivalent to ν0(λp j , p j)→∞ (as j →∞), which in turn

is readily translated into (4.11).

For part (b), the same estimate with any 0 < λ < 1/2 shows that the condition (4.12) is necessary.

In the other direction, suppose that p j+h/p j < 3/4 for all j ≥ J . Split (p j , j ≥ J) into h subsequences

(pJ+s+ih, i ≥ 0), with 0 ≤ s ≤ h− 1. Each of the subsequences has the property that the ratio of

any two consecutive elements is at most 3/4. Hence, as above, the sum of the terms e−p j t(t p j)
r/r!

along a subsequence yields a uniformly bounded contribution to Φr . �

Examples of irregular behaviour of moments may be constructed by breaking the sequence (p j , j ≥
1) into finite blocks of sizes m1, m2, . . ., and setting the p j ’s within the i’th block all equal to some

qi. We use the notation V (t) := Var
�∑

r≥1 Yr(t)
�

to denote the variance of the number of occupied

boxes.

Example 1. [8, p. 384]. Take mi = i and qi = c2−2i

, with c a normalizing factor1 to achieve
∑

j p j =

1. Then both V (t) and Φ1(t) oscillate between 0 and ∞, approaching the extremes arbitrarily

closely. This illustrates possibility 3 in Theorem 4.1.

Example 2. As in [3, Example 4.4], take mi = 22i

, qi = c2−2i+1

. Then Φ1(t) → ∞, but Φ2(t)

oscillates between 0 and∞ as t varies; thus Y1(t) is asymptotically normal, but Y2(t) is not, and the

ratios p j+1/p j have accumulation points at 0 and 1. This illustrates possibility 2 in Theorem 4.1.

We now extend this example, showing among other things that one can have any value for r0 in

behaviour 2 in Theorem 4.1.

Proposition 4.4. Fix 0 < β < 1 and α > 0, and take the blocks construction with mi = ⌊2(1−β)
−i⌋,

qi = cm
−(1+α)
i

, where c is the appropriate normalizing constant. Then we have

1In fact, the Poisson sampling model makes sense for arbitrary p j ’s, and the enumeration of small counts makes sense

if
∑

j
p j <∞.
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(i) lim supt→∞ Vr(t) = ∞ for all r ≥ 1;

(ii) limt→∞ Vr(t) = ∞ if and only if rβ(1+α)≤ 1;

(iii) lim j→∞ρr, j =∞ if and only if rβ(1+α)< 1;

(iv) The quantities Σrs(t) do not converge for any r 6= s.

Proof. Once again, we work with Φr instead of Vr , now writing

Φr(t) =
∑

i≥1

mie
−tqi (tqi)

r/r! . (4.13)

For part (i), it is enough to consider the subsequence t l := 1/ql , l ≥ 1.

For part (ii), split R+ into intervals Jl := [q−1
l

,q−1
l+1
), l ≥ 1; we show that liml→∞ inft∈Jl

Φr(t) =∞
if rβ(1+ α) ≤ 1, and exhibit a subsequence (t ′

l
, l ≥ 1) with t ′

l
∈ Jl such that liml→∞Φr(t

′
l
) = 0 if

rβ(1+α)> 1. Indeed, for t ∈ Jl , taking just the term with i = l + 1 in (4.13), we obtain

ml+1 exp{−φql+1/ql}(φql+1/ql)
r/r! ≍ ml+1φ

r





m
(1−β)(1+α)
l+1

m
(1+α)

l+1





r

= φ r m
1−rβ(1+α)

l+1
,

where we write t = φ/ql with 1 ≤ φ ≤ ql/ql+1 ∼ m
β(1+α)

l+1
, and use the fact that φql+1/ql ≤ 1 in

this range. The notation a ≍ b means that ε < a(t)/b(t) < 1/ε for some ε > 0 and all sufficiently

large t. For rβ(1+α)< 1, it follows that inft∈Jl
Φr(t)≍ m

1−rβ(1+α)

l+1
→∞ as l →∞.

For rβ(1+α) = 1, take also the term with i = l in (4.13), giving a combined contribution of at least

ml e
−φφ

r

r!
+ Kφ r ,

for some K > 0. It is easily checked that the minimum value of this sum for φ > 1 goes to ∞ with

l, hence, once again, liml→∞ inft∈Jl
Φr(t) =∞.

For rβ(1+α)> 1, these two terms contribute an amount of order

φ r{m(1−β)
l+1

e−φ +m
1−rβ(1+α)

l+1
}, (4.14)

to (4.13), which is small as l →∞, for example, for φ = 2 log ml+1. The sum of the terms in (4.13)

for i ≥ l + 2 is of order

∑

i≥l+2

mi

�

φqi

ql

�r

∼ φ r
∑

i≥l+2

mi{m
(1−β)i−l−1

i
}r(1+α) = φ rO(m

1−rβ(1+α)−η
l+1

),

where η > 0, and hence asymptotically smaller than the second element of (4.14). The sum of the

terms in (4.13) for i ≤ l − 1 is of order at most
(

l−1
∑

i=1

mi

)

exp{−φql−1/ql}
�

φql−1

ql

�r

,

largest for φ = 1 for all l large enough, when it is of order

m
1+rβ(1+α)/(1−β)
l−1

exp{−m
β(1+α)/(1−β)
l−1

},
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asymptotically small as l →∞. Hence, for t ′
l
= 2q−1

l
log ml+1, it follows that liml→∞Φr(t

′
l
) = 0, and

therefore that Φr(t) does not converge to infinity as t →∞.

For part (iii), writing Mi :=
∑i

l=1 ml , we have

ρr, j ≥ q−r
i

∑

l≥i+1

mlq
r
l whenever Mi−1 < j ≤ Mi ,

with equality for j = Mi . Now
∑

l≥i+1

mlq
r
l ≍ m

1−r(1+α)
i+1

,

and

q−r
i = m

r(1+α)
i

∼ m
r(1−β)(1+α)
i+1

.

Hence ρr,Mi
≍ m

1−rβ(1+α)

i+1
is bounded for rβ(1+α)≥ 1, and ρr, j →∞ as j→∞ if rβ(1+α)< 1.

For part (iv), we note that, for t = φ/ql , the quantity

Σrs(t) =−2−r−s

�

r + s

r

�

Φr+s(2t)
p

Vr(t)Vs(t)
, r 6= s,

behaves asymptotically, as l becomes large, in the same way as for the Poisson occupancy scheme

with a single block of ml boxes with equal frequencies ql . Computing the limit,

lim
l→∞
Σrs(φ/ql) = −

1
p

r!s!

e−φφ(r+s)/2

p

{1− e−φ/r!2r}{1− e−φ/s!2s}
,

where ml cancels because of the additivity of the moments. As φ varies, this limit value varies too,

and hence, for r 6= s, the quantities Σrs(t) do not converge as t →∞. �

It follows from parts (ii) and (iii) of Proposition 4.4 that the implication in part (b) of Lemma 4.2

cannot be reversed, and from part (iv) that the correlations between different components of Y (t)

need not converge, even when their variances tend to infinity. Hence the approximation in Theo-

rem 3.1 does not necessarily imply convergence. Yet another kind of pathology appears when Y1(t)

is asymptotically independent of (Yr(t), r > 1), as in the following example.

Example 3. Suppose that the frequencies in the block construction satisfy qi = 1/i!, mi = (i − 2)!

(with i ≥ 2). Since q−r
i

∑∞
k=i+1 mkqr

k
→ ∞ for each r, we have lim j→∞ρ j,r = ∞, and hence all

the variances Vr(t) go to ∞ by Lemma 4.2 (b). On the other hand, miqi

.

∑∞
k=i+1 mkqk → 0, and it

follows that
Φ1+s(2t)

Φ1(t)
=

2s+1
∑

i miqie
−tqi{e−tqi tsqs

i
}

(s+ 1)!
∑

i miqie
−tqi

→ 0

as t →∞. Since Φ1+s(2t)/Φs(t) is bounded above by (4.4), we conclude that Σ1,s(t)→ 0 for s ≥ 2.

It follows that every pair (Y ′1(t), Y ′s (t)), s ≥ 2, converges in distribution to the standard bivariate

normal distribution with independent components. Because the variances go to ∞, Theorem 3.1

guarantees increasing quality of the normal approximation for any finite collection of components

Y ′ri
(t). However, the full vector (Y ′r , r = 1,2, . . .) does not converge: see more on this example in

Sections 5 and 6.

376



Part (ii) of Proposition 4.4 also demonstrates that lim inf j→∞ p j+1/p j = 0 does not exclude that

Φr(t)→∞, hence the condition (4.11) in Lemma 4.3 is not necessary. Finally, by [3, Eqn. 3.1], we

have
1

2
Φ1(2t) < V (t) < Φ1(t),

meaning that Φ1(t) is always of the same order as the variance of the number of occupied boxes

V (t). The examples above show that this need not be the case for Φr(t), when r ≥ 2.

5 Regular variation

We now henceforth assume that Φr(t) → ∞ for all r ≥ 1. The CLT for each component of Y (t)

then holds, as observed above, and normal approximation becomes progressively more accurate for

the joint distribution of any finite collection of components. A joint normal limit for any collection

of the standardized components also holds, provided that the corresponding covariances converge.

From (4.3) we have

Cov (Y ′r (t), Y ′s (t)) = Σrs(t) = c(r, s)
Φr+s(2t)
p

Vr(t)Vs(t)
, r 6= s. (5.1)

The RHS converges to a nonzero limit for each pair r, s if, for each r, Φr ≈ f ∈ Rα, where Rα denotes

the class of functions regularly varying at ∞ with index α, and where, here and subsequently, we

write a ≈ b if a(t)/b(t)→ c as t →∞ with 0 < c <∞. If Φr ∈ Rα, then the index belongs to the

range 0≤ α≤ 1, because Φr(t) cannot converge to 0, and because Φr(t)/t → 0.

The results in the next section show that, if the covariances converge for a sufficiently large set of

pairs r, s, then this is in fact the only possibility. More formally, we say that then regular variation

holds in the occupancy problem, meaning that, for some 0≤ α≤ 1 and some rate function f ∈ Rα,

Φr ≈ f for all r ≥ 2 . (5.2)

This setting of regular variation extends the original approach by Karlin [8] in the special case α= 0,

and, moreover, it covers all possible limiting covariance structures (Theorem 6.4).

Observe that the functions t−rΦr satisfy

dr

dt r

¦

t−1Φ1(t)
©

= (−1)r r!
¦

t−rΦr(t)
©

, (5.3)

thus, in particular, they are completely monotone. This taken together with the standard properties

of regularly varying functions [2] implies that, if Φr ∈ Rα for some 0 ≤ α < 1 and r ≥ 1, then the

same is true for all r ≥ 1, and we can choose the rate function f = Φ1. The case α = 1 is special.

If Φr ∈ R1 for some r ≥ 2, then all Φr for r ≥ 2 are of the same order of growth and Φ1 ∈ R1, but

Φ1≫ Φ2 (this motivates the choice r ≥ 2 in (5.2)).

A necessary condition for (5.2) is lim j→∞ p j+1/p j = 1, as follows from the next lemma.

Lemma 5.1. If lim inf j→∞ p j+1/p j < 1 then Φr is not regularly varying for r ≥ 2, and Φ1 is not

regularly varying with index α < 1.
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Proof. We have

t−2Φ2(t) =

∞
∑

j=1

e−t p j p2
j =

∫ 1

0

e−t xν2(dx)

with ν2[0, x] :=
∑∞

j=1 p2
j 1[p j ≤ x]. Suppose t−2Φt ∈ R−β , then 1 ≤ β ≤ 2 and, by Karamata’s

Tauberian theorem, also ν2[0, t−1] ∈ R−β . Because β 6= 0, the latter implies that ν2[at−1, bt−1] ∈
R−β , i.e. that

ν2[at−1, bt−1]∼ (bβ − aβ)ℓ(t)t−β , t →∞ (5.4)

for any positive a < b. However, the assumption of the lemma allows to choose a < b < 1 such

that ν2[ap j , bp j] = 0 for infinitely many j = jk, so (5.4) fails for t = 1/p jk
→∞. The contradiction

shows that t−2Φ2(t) cannot be regularly varying. The assertions regarding r 6= 2 can be derived in

the same way. �

The example below shows that Φr may be regularly varying for r = 1 alone.

Example 3 (continued). Let g(t) = ν1[0, t−1] =
∑∞

j=1 p j 1[p j ≤ t−1]. We have the general esti-

mates

t−1Φ1(t) ≥ e−1 g(t)

and, for a > 1 and any ε > 0,

t−1Φ1(t)− (at)−1Φ1(at)

≤ εg(at/ε) + {g(t/ log{1/εg(t)})− g(at/ε)}+
∞
∑

j=1

p je
−t p j 1[p j > t−1 log{1/εg(t)}]

≤ 2εg(t) + {g(t/ log{1/εg(t)})− g(at/ε)}.

Applying these to the block construction with qi = 1/i! and mi = (i − 2)!, we observe that g(t) ≍
I(t)−1 and that g(t/ log{1/εg(t)})− g(at/ε) involves at most two qi , each of the corresponding

terms being of the order of I(t)−2, where I(t) := min{i : i! ≥ t}. It follows that t−1Φ1(t) ∈ R0,

whence Φ1 ∈ R1 and Φ1 ≫ Φr for r ≥ 2. However, qi+1/qi → 0, therefore Lemma 5.1 implies that

Φr /∈ R1 for r ≥ 2.

The proper case of regular variation with index 0< α < 1 can be characterized by Karlin’s condition

[8, Equation 5]

ν0[x , 1] := #{ j : p j ≥ x} ∼ ℓ(1/x)x−α, x ↓ 0, (5.5)

where and henceforth the symbol ℓ stands for a function of slow variation at ∞. Other equivalent

conditions are (see [6])

Φ(t) :=

∫ 1

0

(1− e−t x)ν0(dx)∼ Γ(1−α)tαℓ(t),

νr[0, x] ∼
α

r −α x r−αℓ(1/x) for some r ≥ 1,

Φr(t) ∼
αΓ(r −α)

r!
tαℓ(t) for some r ≥ 1,

p j ∼ ℓ∗( j) j−1/α,
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where ℓ∗(y) = 1/{ℓ1/α(y1/α)}#, and # denotes the de Bruijn conjugate of a slowly varying function

[2]. Note that Vr(t) then has the same order of growth, in view of (4.2), yielding behaviour as in

possibility 1 of Theorem 4.1.

We describe next all possible forms of multivariate convergence under the regular variation.

The proper case 0< α < 1. The joint CLT for

Yr(t)−Φr(t)
p

tαℓ(t)
, r = 1,2, . . .

in R∞ holds with the limiting covariance matrix S computed from (4.3) as

Srs = −
αΓ(r + s−α)

r!s!2r+s−α , r 6= s (5.6)

Sr r =
α

r!

�

Γ(r −α)−
Γ(2r −α)

r!22r−α

�

. (5.7)

This agrees with Karlin [8, Theorem 5].

The case of ‘rapid’ regular variation with α= 1. If (5.5) holds with α= 1 then ℓ(t)must approach

0 as t →∞ sufficiently fast to have
∑

p j <∞2. In this situation we have Φr(t)∼ (r2− r)−1ℓ(t)t for

r > 1 but Φ1(t) ∼ ℓ1(t)t with some ℓ1≫ ℓ. In fact, Xn,1 ∼ Kn as n→∞ almost surely. Because the

scaling of Y1(t) is faster than that for other Yr(t)’s, it follows from (4.2) and (4.3) that Σ1r(t)→ 0

for all r ≥ 2, so that the CLT holds with Y ′1(t) asymptotically independent of (Y ′r (t), r ≥ 2). The

limiting covariance matrix of

Yr(t)−Φr(t))
p

tℓ(t)
, r ≥ 2

is obtained by setting α= 1 in the above formulas (5.6), (5.7) for S. Our multivariate result extends

in this case the marginal convergence that was stated in [8, Thm 5′]3.

The case of slow variation α = 0. Karlin’s condition (5.5) with α = 0 is too weak to control the

Φr(t)’s. We impose therefore a slightly stronger condition

ν1[0, x] :=
∑

{ j:p j≤x}
p j ∼ xℓ1(1/x), (5.8)

which is equivalent to Φr ∈ R0 for any (and hence for all) r ≥ 1. To illustrate the difference,

note that in the geometric case, with p j = (1− q)q j−1, 0 < q < 1, we have ℓ(1/x) ∼ logq(1/x),

whereas ν1[0, x] = q⌈logq(x/(1−q))⌉ is not regularly varying, since ν1[0, x]/x jumps infinitely often

from (1 − q)−1 to q(1 − q)−1 as x → 0. The geometric case can be contrasted to the one with

frequencies p j = ce− jβ (0 < β < 1), for which we have ℓ(1/x) ∼ c| log x |
1

β and ν1[0, x]/x ∼
c| log x |

1

β
−1

.

2 One example is p j = c/ j{log( j+ 1)}β+1, β > 0, in which case ℓ(t)∼ 1/c(log t)β+1.
3 Mikhailov [12] indicated yet other situation where the Xn,r ’s for r > 1 all behave similarly, but their behaviour is

distinct from that of Xn,1.
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By [6, Prop. 15], the general connection between ℓ1 in (5.8) and ℓ in (5.5) is

ℓ(1/x) =

∫ 1

x

u−1ℓ1(1/u)du , 0< x < 1.

Adopting (5.8) we have νr[0, x] ∼ r−1 x rℓ1(1/x), r ≥ 1, and the situation is then very similar to

that in the proper case: we have Φr(t)∼ r−1ℓ1(t) and

Yr(t)−Φr(t)
p

ℓ1(t)
, r ≥ 1

jointly converge in law to a multivariate Gaussian limit with covariance matrix S given by

Srs = −
1

(r + s)2r+s

�

r + s

r

�

, r 6= s, (5.9)

Sr r =

�

1

r
−

1

r 22r+1

�

2r

r

��

. (5.10)

This applies, for instance, to the frequencies p j ∼ ce− jβ (0 < β < 1). This case of slow variation

seems not to have been considered before.

6 Convergence of the covariances

We will show in this section that regular variation is essential for the multivariate convergence of

the whole standardized vector of counts, so that all possible limit covariance structures are those

characterized in the previous section. Our starting point is the following lemma, which asserts that

the regular variation is forced by the convergence of the ratios of Φr ’s.

Lemma 6.1. Suppose for some r ≥ 1

lim
t→∞

Φr+1(t)/Φr(t) = c. (6.1)

Then (r − 1)/(r + 1) ≤ c ≤ r/(r + 1) and Φr ∈ Rα with α := r − c(r + 1). Moreover, we then always

have

lim
t→∞

Φs(t)

Φr(t)
=

r!Γ(s−α)
s!Γ(r −α) (6.2)

and Φs ∈ Rα for all s ≥ 1, unless α= 1. If (6.1) holds with r > 1 and c = (r−1)/(r+1), then Φs ∈ R1

for s ≥ 2, and (6.2) is still true (in particular, Φ1≫ Φ2).

Proof. A monotone density result which dates back to von Mises and Lamperti [9] says that the

convergence t g ′(t)/g(t)→ β implies g ∈ Rβ (this holds for arbitrary β , including ±∞). This result

applied to g(t) = t−rΦr(t) yields the regular variation Φr ∈ Rα , with some 0 ≤ α ≤ 1. The rest

follows from (5.3), monotonicity and the general behaviour of the regularly varying functions under

integration and differentiation [2]. �

To apply the lemma, we need to pass from the convergence of covariances (5.1) to the convergence

of a ratio as in (6.1). To this end, it is useful to exclude zero limits.
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Lemma 6.2. If lim supt Φs(t) = ∞ for any s ≥ 1, then no correlation Σr,r ′(t) with 2 ≤ r < r ′ can

converge to zero.

Proof. (i) Let m j := #{l : 2−( j+1) < pl ≤ 2− j}. Then, if m∗ := sup j m j < ∞, it follows that, for

2 j ≤ t < 2 j+1,

s!Φs(t) =
∑

k≥0

∑

{l:2−(k+1)<pl≤2−k}
(t pl)

se−t pl

≤
∑

k≥0

mk2( j+1−k)s exp{−2 j−k−1}

≤ m∗
� ∑

k≥ j+1

2( j+1−k) + 2s

j
∑

k=0

2s( j−k) exp{−2 j−k−1}
�

≤ m∗
�

2+ 2s
∑

l≥0

2ls exp{−2l−1}
�

= m∗cs < ∞,

uniformly in j, which contradicts lim supt Φs(t) =∞. Hence sup j m j =∞.

(ii) Given any j0, there exists some j ≥ j0 such that

mk ≤ m j , 0≤ k ≤ j; mk ≤ 3k− jm j , k ≥ j. (6.3)

To see this, first take j1 ≥ j0 such that m j1
= max{mk, 0 ≤ k ≤ j1}, as can always be done, since

sup j m j = ∞. Then let j2 := max{k ≥ j1 : mk ≥ 3k− j1 m j1
}; this is finite, since 1 ≥

∑

l≥1 pl ≥
m j2
−( j+1) for each j ≥ 0. Finally, take j3 = argmax j1≤ j≤ j2

m j; then j3 satisfies the requirements of

(6.3).

(iii) Now suppose that j satisfies (6.3). Then, much as in part (i), for any r ≥ 2,

r!Φr(2
j) ≤
∑

k≥0

mk2( j−k)r exp{−2 j−k−1}

≤
� ∑

k≥ j+1

m j3
k− j2r( j−k) +m j

j
∑

k=0

2r( j−k) exp{−2 j−k−1}
�

≤ m j

�

3+
∑

l≥0

2l r exp{−2l−1}
�

= c′r m j ,

with c′r <∞, whereas also, just from the indices l with 2−( j+1) < pl ≤ 2− j , we have

r!Φr(2
j+1) ≥ m je

−2.

This implies that

Φr+r ′(2t)/
p

Φr(t)Φr ′(t) ≥
e−2/{r + r ′}!
p

c′r c′
r ′
/r!r ′!

> 0

for t = 2 j , whenever j satisfies the requirements of (6.3), and there are infinitely many such. Hence

the correlations Σr,r ′(t) with r ′ > r ≥ 2 cannot converge to zero. �
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Note that the correlations Σ1,s(t), s > 1, converge to zero in the case of regular variation with index

α = 1. Example 3 illustrates that Σ1,s(t) may also converge to zero when regular variation in the

sense of (5.2) does not hold.

Lemma 6.3. If g is continuous and positive, and g(2t)/
p

g(t)→ k as t →∞, with 0< k <∞, then

g(t)→ k2.

Proof. Given ǫ > 0, let tǫ be such that g(2t) ≤ k
p

(1+ ǫ)g(t) for all t ≥ tǫ. Let Kǫ := supt∈Jǫ
g(t),

where Jǫ := [tǫ, 2tǫ]. Then, for all t ∈ Jǫ and all n≥ 0, we have

g(2n t) ≤ {k2(1+ ǫ)}1−2−n{g(t)}2−n ≤ k2(1+ ǫ)K2−n

ǫ .

Thus lim supt g(t)≤ k2. A similar argument shows that lim inft g(t)≥ k2, proving the lemma. �

Theorem 6.4. Suppose the correlations Σr,s(t) converge, as t →∞, for r, s satisfying 2 ≤ r < s and

r + s ≤ 12. Then the following is true:

(i) (5.2) holds with some 0≤ α≤ 1,

(ii) the correlations Σr,s(t) converge for all r, s,

(iii) (Y ′r (t), r = 1,2, . . .) converges weakly to one of the multivariate normal laws described in Section

5 for the cases 0 < α < 1, α = 1 and α = 0, with the obvious adjustment of (5.6),(5.7) and

(5.9), (5.10) in order to have standard normal marginals,

(iv) the same multivariate normal limit holds for the normalized and centred Xn.

Proof. For short, write Vj = Vj(t), f j = Φ j(t) and F j = Φ j(2t).

By Lemma 6.2, the Σr,s(t) converge to nonzero limits, whence, for r, s in the required range,

Fr+s
p

Vr Vs

≈
Fr+s
p

Vr+1Vs−1

and hence Vr Vs ≈ Vr+1Vs−1. From this, V5 ≈ V3V4/V2, V6 ≈ V3V5/V2 ≈ V 2
3 V4/V

2
2 , and substituting in

V2V6 ≈ V3V5 we get V4/V2 ≈ (V3/V2)
2. Continuing in this way yields

Vj

V2

≈
�

V3

V2

� j−2

for 2≤ j ≤ 10. (6.4)

From this and F2
j ≈ V2Vj−2, we obtain

F j

V2

≈
�

V3

V2

� j/2−2

for 5≤ j ≤ 12. (6.5)

Substituting (6.4) and (6.5) in f j = Vj + c j F2 j (recall (4.2)) yields

f j

V2

≈
�

V3

V2

� j/2−2

for 3≤ j ≤ 6. (6.6)
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This offers two ways of expressing F j for j = 5,6: using (6.5) or (6.6), but with the argument 2t for

the latter. The first gives

F5 ≈ V2(t)

�

V3(t)

V2(t)

�1/2

, F6 ≈ V2(t)

�

V3(t)

V2(t)

�

,

and the second gives

F5 ≈ V2(2t)

�

V3(2t)

V2(2t)

�3

, F6 ≈ V2(2t)

�

V3(2t)

V2(2t)

�4

.

It follows that
F6

F5

≈
�

V3(t)

V2(t)

�1/2

≈
V3(2t)

V2(2t)
.

Applying Lemma 6.3 to g(t) = V3(t)/V2(t) shows that this must converge, hence from (6.6) the

ratio Φ4(t)/Φ3(t) must converge too. Parts (i), (ii), (iii) of the theorem now follow from Lemma

6.1, and part (iv) follows by de-Poissonization. �

Combining Theorem 6.4 and Lemma 5.1 we arrive at a very simple test for the convergence, which

is easy to check in the examples of Section 4:

Corollary 6.5. The condition lim j→∞ p j+1/p j = 1 is necessary for the convergence of the (normalized

and centred) Xn to a multivariate normal law.

It should be stressed that the condition is by no means sufficient. For instance, the frequencies

p j = c{2+ sin(log j)}/ j2 satisfy p j+1/p j → 1 but do not have the property of regular variation due

to the oscillating sine factor. Thus in this case Xn has no distributional limit.
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